1
|
Mononuclear Oxidovanadium(IV) Complexes with BIAN Ligands: Synthesis and Catalytic Activity in the Oxidation of Hydrocarbons and Alcohols with Peroxides. Catalysts 2022. [DOI: 10.3390/catal12101168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Reactions of VCl3 with 1,2-Bis[(4-methylphenyl)imino]acenaphthene (4-Me-C6H4-bian) or 1,2-Bis[(2-methylphenyl)imino]acenaphthene (2-Me-C6H4-bian) in air lead to the formation of [VOCl2(R-bian)(H2O)] (R = 4-Me-C6H4 (1), 2-Me-C6H4 (2)). Thes complexes were characterized by IR and EPR spectroscopy as well as elemental analysis. Complexes 1 and 2 have high catalytic activity in the oxidation of hydrocarbons with hydrogen peroxide and alcohols with tert-butyl hydroperoxide in acetonitrile at 50 °С. The product yields are up to 40% for cyclohexane. Of particular importance is the addition of 2-pyrazinecarboxylic acid (PCA) as a co-catalyst. Oxidation proceeds mainly with the participation of free hydroxyl radicals, as evidenced by taking into account the regio- and bond-selectivity in the oxidation of n-heptane and methylcyclohexane, as well as the dependence of the reaction rate on the initial concentration of cyclohexane.
Collapse
|
2
|
Housecroft CE, Constable EC. Solar energy conversion using first row d-block metal coordination compound sensitizers and redox mediators. Chem Sci 2022; 13:1225-1262. [PMID: 35222908 PMCID: PMC8809415 DOI: 10.1039/d1sc06828h] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/05/2022] [Indexed: 12/11/2022] Open
Abstract
The use of renewable energy is essential for the future of the Earth, and solar photons are the ultimate source of energy to satisfy the ever-increasing global energy demands. Photoconversion using dye-sensitized solar cells (DSCs) is becoming an established technology to contribute to the sustainable energy market, and among state-of-the art DSCs are those which rely on ruthenium(ii) sensitizers and the triiodide/iodide (I3 -/I-) redox mediator. Ruthenium is a critical raw material, and in this review, we focus on the use of coordination complexes of the more abundant first row d-block metals, in particular copper, iron and zinc, as dyes in DSCs. A major challenge in these DSCs is an enhancement of their photoconversion efficiencies (PCEs) which currently lag significantly behind those containing ruthenium-based dyes. The redox mediator in a DSC is responsible for regenerating the ground state of the dye. Although the I3 -/I- couple has become an established redox shuttle, it has disadvantages: its redox potential limits the values of the open-circuit voltage (V OC) in the DSC and its use creates a corrosive chemical environment within the DSC which impacts upon the long-term stability of the cells. First row d-block metal coordination compounds, especially those containing cobalt, and copper, have come to the fore in the development of alternative redox mediators and we detail the progress in this field over the last decade, with particular attention to Cu2+/Cu+ redox mediators which, when coupled with appropriate dyes, have achieved V OC values in excess of 1000 mV. We also draw attention to aspects of the recyclability of DSCs.
Collapse
Affiliation(s)
- Catherine E Housecroft
- Department of Chemistry, University of Basel Mattenstrasse 24a, BPR 1096 4058 Basel Switzerland
| | - Edwin C Constable
- Department of Chemistry, University of Basel Mattenstrasse 24a, BPR 1096 4058 Basel Switzerland
| |
Collapse
|
3
|
Muñoz-García AB, Benesperi I, Boschloo G, Concepcion JJ, Delcamp JH, Gibson EA, Meyer GJ, Pavone M, Pettersson H, Hagfeldt A, Freitag M. Dye-sensitized solar cells strike back. Chem Soc Rev 2021; 50:12450-12550. [PMID: 34590638 PMCID: PMC8591630 DOI: 10.1039/d0cs01336f] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Indexed: 12/28/2022]
Abstract
Dye-sensitized solar cells (DSCs) are celebrating their 30th birthday and they are attracting a wealth of research efforts aimed at unleashing their full potential. In recent years, DSCs and dye-sensitized photoelectrochemical cells (DSPECs) have experienced a renaissance as the best technology for several niche applications that take advantage of DSCs' unique combination of properties: at low cost, they are composed of non-toxic materials, are colorful, transparent, and very efficient in low light conditions. This review summarizes the advancements in the field over the last decade, encompassing all aspects of the DSC technology: theoretical studies, characterization techniques, materials, applications as solar cells and as drivers for the synthesis of solar fuels, and commercialization efforts from various companies.
Collapse
Affiliation(s)
- Ana Belén Muñoz-García
- Department of Physics "Ettore Pancini", University of Naples Federico II, 80126 Naples, Italy
| | - Iacopo Benesperi
- School of Natural and Environmental Science, Newcastle University, Bedson Building, NE1 7RU Newcastle upon Tyne, UK.
| | - Gerrit Boschloo
- Department of Chemistry, Ångström Laboratory, Uppsala University, P.O. Box 523, 751 20 Uppsala, Sweden.
| | - Javier J Concepcion
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Jared H Delcamp
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, USA
| | - Elizabeth A Gibson
- School of Natural and Environmental Science, Newcastle University, Bedson Building, NE1 7RU Newcastle upon Tyne, UK.
| | - Gerald J Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Michele Pavone
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | | | - Anders Hagfeldt
- Department of Chemistry, Ångström Laboratory, Uppsala University, P.O. Box 523, 751 20 Uppsala, Sweden.
- University Management and Management Council, Vice Chancellor, Uppsala University, Segerstedthuset, 752 37 Uppsala, Sweden
| | - Marina Freitag
- School of Natural and Environmental Science, Newcastle University, Bedson Building, NE1 7RU Newcastle upon Tyne, UK.
| |
Collapse
|
4
|
Stojanović M, Flores‐Diaz N, Ren Y, Vlachopoulos N, Pfeifer L, Shen Z, Liu Y, Zakeeruddin SM, Milić JV, Hagfeldt A. The Rise of Dye‐Sensitized Solar Cells: From Molecular Photovoltaics to Emerging Solid‐State Photovoltaic Technologies. Helv Chim Acta 2021. [DOI: 10.1002/hlca.202000230] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Marko Stojanović
- Laboratory of Photonics and Interfaces Institute of Chemistry and Chemical Engineering École Polytechnique Fédérale de Lausanne CH-1015 Lausanne Switzerland
| | - Natalie Flores‐Diaz
- Laboratory of Photomolecular Sciences Institute of Chemistry and Chemical Engineering École Polytechnique Fédérale de Lausanne CH-1015 Lausanne Switzerland
| | - Yameng Ren
- Laboratory of Photonics and Interfaces Institute of Chemistry and Chemical Engineering École Polytechnique Fédérale de Lausanne CH-1015 Lausanne Switzerland
| | - Nikolaos Vlachopoulos
- Laboratory of Photomolecular Sciences Institute of Chemistry and Chemical Engineering École Polytechnique Fédérale de Lausanne CH-1015 Lausanne Switzerland
| | - Lukas Pfeifer
- Laboratory of Photonics and Interfaces Institute of Chemistry and Chemical Engineering École Polytechnique Fédérale de Lausanne CH-1015 Lausanne Switzerland
| | - Zhongjin Shen
- Laboratory of Photonics and Interfaces Institute of Chemistry and Chemical Engineering École Polytechnique Fédérale de Lausanne CH-1015 Lausanne Switzerland
| | - Yuhang Liu
- Laboratory of Photonics and Interfaces Institute of Chemistry and Chemical Engineering École Polytechnique Fédérale de Lausanne CH-1015 Lausanne Switzerland
| | - Shaik M. Zakeeruddin
- Laboratory of Photonics and Interfaces Institute of Chemistry and Chemical Engineering École Polytechnique Fédérale de Lausanne CH-1015 Lausanne Switzerland
| | - Jovana V. Milić
- Laboratory of Photonics and Interfaces Institute of Chemistry and Chemical Engineering École Polytechnique Fédérale de Lausanne CH-1015 Lausanne Switzerland
| | - Anders Hagfeldt
- Laboratory of Photomolecular Sciences Institute of Chemistry and Chemical Engineering École Polytechnique Fédérale de Lausanne CH-1015 Lausanne Switzerland
| |
Collapse
|
5
|
Competitive behavior of nitrogen based axial ligands in the oxovanadium(IV)-salen catalyzed sulfoxidation of phenylmercaptoacetic acid. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
6
|
İlhan-Ceylan B. Oxovanadium(IV) and Nickel(II) complexes obtained from 2,2'-dihydroxybenzophenone-S-methyl-thiosemicarbazone: Synthesis, characterization, electrochemistry, and antioxidant capability. Inorganica Chim Acta 2020; 517:120186. [PMID: 33318715 PMCID: PMC7724315 DOI: 10.1016/j.ica.2020.120186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 11/19/2022]
Abstract
2,2'-Dihydroxybenzophenone-S-methyl-thiosemicarbazone and 3-methoxy-salicylaldehyde were reacted in the presence of oxovanadium(IV) or nickel(II) ions to yield the N2O2-type-chelate complex. The synthesized complexes were characterized by employing elemental analysis, electronic and infrared spectra, 1H NMR spectra, magnetic measurements, and thermogravimetric analyses. The expected structures of oxovanadium(IV) and nickel(II) complexes were confirmed by using the single-crystal X-ray diffraction method. The presence of π-π stacked dimeric structures provided stronger crystalline formations. The optimized geometries and vibrational frequencies of the compounds were obtained using the DFT/ωB97XD method with the 6-31G (d,p) basis set and compared with the experimental data. The electrochemical characterization of the oxovanadium(IV) and nickel(II) complexes were carried out by using the cyclic voltammetry (CV) method. The oxovanadium(IV) complex gives a ligand-centered oxidation and a metal-centered one electron reduction and oxidation peaks corresponding to the VIV/IIIO and VIV/VO, respectively. The nickel(II) complex gives a ligand-centered oxidation and metal-centered (NiII/I) reduction peaks in a dimethyl sulfoxide (DMSO) solution. The redox potentials were calculated in terms of Gibbs free energy change of the redox reaction at the theory level of M06-L/LANL2DZ/PCM. In addition, the energy gap, HOMO and LUMO distributions were calculated. The total antioxidant capacities of the compounds were determined by using cupric reducing antioxidant capacity (CUPRAC) method, in which the oxovanadium(IV) complex was found to be powerful as an antioxidant agent.
Collapse
Affiliation(s)
- Berat İlhan-Ceylan
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, 34320, Avcılar, Istanbul, Turkey
| |
Collapse
|
7
|
Fomenko IS, Vincendeau S, Manoury E, Poli R, Abramov PA, Nadolinny VA, Sokolov MN, Gushchin AL. An oxidovanadium(IV) complex with 4,4′-di-tert-butyl-2,2′-bipyridine ligand: Synthesis, structure and catalyzed cyclooctene epoxidation. Polyhedron 2020. [DOI: 10.1016/j.poly.2019.114305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Fomenko IS, Nadolinnyi VA, Efimov NN, Kokovkin VV, Gushchin AL. Binuclear Oxidovanadium(IV) Complex with the Bridging Chloranilate Ligand: Synthesis and Magnetic Properties. RUSS J COORD CHEM+ 2019. [DOI: 10.1134/s1070328419110022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
9
|
Freire C, Nunes M, Pereira C, Fernandes DM, Peixoto AF, Rocha M. Metallo(salen) complexes as versatile building blocks for the fabrication of molecular materials and devices with tuned properties. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.05.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
10
|
Abstract
Dye-sensitized solar cells (DSSCs) have attracted a substantial interest in the last 30 years for the conversion of solar power to electricity. An important component is the redox mediator effecting the transport of charge between the photoelectrode and the dark counter electrode (CE). Among the possible mediators, metal coordination complexes play a prominent role and at present are incorporated in several types of devices with a power conversion efficiency exceeding 10%. The present review, after a brief introduction to the operation of DSSCs, discusses at first the requirements for a successful mediator. Subsequently, the properties of various classes of inorganic coordination complexes functioning as mediators relevant to DSSC operation are presented and the operational characteristics of DSSC devices analyzed. Particular emphasis is paid to the two main classes of efficient redox mediators, the coordination complexes of cobalt and copper; however other less efficient but promising classes of mediators, notably complexes of iron, nickel, manganese and vanadium, are also presented.
Collapse
|
11
|
Economically viable V2O3@activated carbon composite materials as counter electrodes for dye sensitized solar cells by single step reduction. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.01.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Nitsche S, Schmitz S, Stirnat K, Sandleben A, Klein A. Controlling Nuclearity and Stereochemistry in Vanadyl(V) and Mixed Valent VIV/VVComplexes of Oxido-Pincer Pyridine-2,6-dimethanol Ligands. Z Anorg Allg Chem 2018. [DOI: 10.1002/zaac.201800352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sara Nitsche
- Institut für Anorganische Chemie; Universität zu Köln; Greinstraße 6 50939 Köln Germany
| | - Simon Schmitz
- Institut für Anorganische Chemie; Universität zu Köln; Greinstraße 6 50939 Köln Germany
| | - Kathrin Stirnat
- Institut für Anorganische Chemie; Universität zu Köln; Greinstraße 6 50939 Köln Germany
| | - Aaron Sandleben
- Institut für Anorganische Chemie; Universität zu Köln; Greinstraße 6 50939 Köln Germany
| | - Axel Klein
- Institut für Anorganische Chemie; Universität zu Köln; Greinstraße 6 50939 Köln Germany
| |
Collapse
|
13
|
Fomenko IS, Gushchin AL, Shul’pina LS, Ikonnikov NS, Abramov PA, Romashev NF, Poryvaev AS, Sheveleva AM, Bogomyakov AS, Shmelev NY, Fedin MV, Shul’pin GB, Sokolov MN. New oxidovanadium(iv) complex with a BIAN ligand: synthesis, structure, redox properties and catalytic activity. NEW J CHEM 2018. [DOI: 10.1039/c8nj03358g] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The combination of a new oxidovanadium(iv) complex1with pyrazine-2-carboxylic acid (PCA; a cocatalyst) affords a catalytic system for the efficient oxidation of saturated hydrocarbons.
Collapse
Affiliation(s)
- Iakov S. Fomenko
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences
- Novosibirsk 630090
- Russia
| | - Artem L. Gushchin
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences
- Novosibirsk 630090
- Russia
- Novosibirsk State University
- 630090 Novosibirsk
| | - Lidia S. Shul’pina
- Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- Moscow 119991
- Russia
| | - Nikolay S. Ikonnikov
- Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- Moscow 119991
- Russia
| | - Pavel A. Abramov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences
- Novosibirsk 630090
- Russia
| | - Nikolay F. Romashev
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences
- Novosibirsk 630090
- Russia
- Novosibirsk State University
- 630090 Novosibirsk
| | - Artem S. Poryvaev
- Novosibirsk State University
- 630090 Novosibirsk
- Russia
- International Tomography Center, Siberian Branch of Russian Academy of Sciences
- 630090 Novosibirsk
| | - Alena M. Sheveleva
- Novosibirsk State University
- 630090 Novosibirsk
- Russia
- International Tomography Center, Siberian Branch of Russian Academy of Sciences
- 630090 Novosibirsk
| | - Artem S. Bogomyakov
- International Tomography Center, Siberian Branch of Russian Academy of Sciences
- 630090 Novosibirsk
- Russia
| | - Nikita Y. Shmelev
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences
- Novosibirsk 630090
- Russia
- Novosibirsk State University
- 630090 Novosibirsk
| | - Matvey V. Fedin
- International Tomography Center, Siberian Branch of Russian Academy of Sciences
- 630090 Novosibirsk
- Russia
| | - Georgiy B. Shul’pin
- Department of Dynamics of Chemical and Biologicl Processes, Semenov Institute of Chemical Physics, Russian Academy of Sciences
- Moscow 119991
- Russia
- Chair of Chemistry and Physics, Plekhanov Russian University of Economics
- Moscow 117997
| | - Maxim N. Sokolov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences
- Novosibirsk 630090
- Russia
- Novosibirsk State University
- 630090 Novosibirsk
| |
Collapse
|
14
|
Baskaran S, Subramani VB, Detchanamurthy S, Rangasamy P. Potential Application of Redox Mediators and Metabolic Uncouplers in Environmental Research - A Review. CHEMBIOENG REVIEWS 2017. [DOI: 10.1002/cben.201600014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Suganya Baskaran
- Sri Venkateswara College of Engineering; Department of Chemical Engineering; 602117, Tamilnadu Pennalur, Sriperumbudur India
| | - Vishal Bellie Subramani
- Sri Venkateswara College of Engineering; Department of Chemical Engineering; 602117, Tamilnadu Pennalur, Sriperumbudur India
| | - Swaminathan Detchanamurthy
- Sri Venkateswara College of Engineering; Department of Chemical Engineering; 602117, Tamilnadu Pennalur, Sriperumbudur India
| | - Parthiban Rangasamy
- SSN College of Engineering; Department of Chemical Engineering; 603110, Tamilnadu Kalavakkam India
| |
Collapse
|
15
|
Tsudaka T, Kotani H, Ohkubo K, Nakagawa T, Tkachenko NV, Lemmetyinen H, Fukuzumi S. Photoinduced Electron Transfer in 9-Substituted 10-Methylacridinium Ions. Chemistry 2016; 23:1306-1317. [DOI: 10.1002/chem.201604527] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Indexed: 01/05/2023]
Affiliation(s)
- Takeshi Tsudaka
- Department of Material and Life Science Graduate School of Engineering; Osaka University and SENTAN, Japan Science and Technology Agency (JST), Suita; Osaka 565-0871 Japan
| | - Hiroaki Kotani
- Department of Chemistry, Graduate School of Pure and Applied Sciences; University of Tsukuba; 1-1-1 Tennoudai, Tsukuba Ibaraki 305-8571 Japan
| | - Kei Ohkubo
- Department of Material and Life Science Graduate School of Engineering; Osaka University and SENTAN, Japan Science and Technology Agency (JST), Suita; Osaka 565-0871 Japan
- Department of Chemistry and Nano Science; Ewha Womans University; Seoul 120-750 Korea
- Division of Innovative Research for Drug Design, Institute of Academic Initiatives; Osaka University, Suita; Osaka 565-0871 Japan
| | - Tatsuo Nakagawa
- Unisoku Co. Ltd, SENTAN, Japan Science and Technology Agency (JST); Hirakata Osaka 573-0131 Japan
| | - Nikolai V. Tkachenko
- Institute of Materials Chemistry; Tampere University of Technology; P.O. Box 541 33101 Tampere Finland
| | - Helge Lemmetyinen
- Institute of Materials Chemistry; Tampere University of Technology; P.O. Box 541 33101 Tampere Finland
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science; Ewha Womans University; Seoul 120-750 Korea
- Faculty of Science and Technology; Meijo University, SENTAN, Japan Science and Technology Agency (JST), Nagoya; Aichi 468-8502 Japan
| |
Collapse
|
16
|
Müller AV, Ramos LD, Frin KPM, de Oliveira KT, Polo AS. A high efficiency ruthenium(ii) tris-heteroleptic dye containing 4,7-dicarbazole-1,10-phenanthroline for nanocrystalline solar cells. RSC Adv 2016. [DOI: 10.1039/c6ra08666g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
cis-[Ru(cbz2-phen)(dcbH2)(NCS)2] sensitized cells exhibited higher performance than those by N3. The efficiency is discussed in terms of its thermodynamic and structure.
Collapse
Affiliation(s)
- Andressa V. Müller
- Centro de Ciências Naturais e Humanas
- Universidade Federal do ABC – UFABC
- Santo André
- Brazil
| | - Luiz D. Ramos
- Centro de Ciências Naturais e Humanas
- Universidade Federal do ABC – UFABC
- Santo André
- Brazil
| | - Karina P. M. Frin
- Centro de Ciências Naturais e Humanas
- Universidade Federal do ABC – UFABC
- Santo André
- Brazil
| | | | - André S. Polo
- Centro de Ciências Naturais e Humanas
- Universidade Federal do ABC – UFABC
- Santo André
- Brazil
| |
Collapse
|
17
|
Sun H, Shen W, Zhang X, Zhang D, Li M. Theoretical investigations of the electronic structures of carbazole-based triphenylphosphine oxide derivatives, potential bipolar host materials in blue-phosphorescent devices. J Mol Model 2015; 21:320. [PMID: 26631073 DOI: 10.1007/s00894-015-2859-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 11/08/2015] [Indexed: 10/22/2022]
Abstract
Density functional theory calculations were performed to investigate the electronic structures of bipolar host materials comprising a backbone of linked acceptor moieties where each acceptor was also linked to a pendant donor moiety. The acceptor was triphenylphosphine oxide with two of its phenyls substituted with fluorine atoms or nitrile groups (CN). The donor was carbazole (CZ) substituted, or not, with t-butyl groups. The HOMO and LUMO energy levels of these host molecules were mainly influenced by their respective hole- and electron-transport units. The t-butyl substituents on the CZ moieties had an adverse effect on the triplet energies (E T) of the host molecules, especially for molecules where the phenyls of the backbone chain were substituted with CN groups. While introducing CN substituents onto the backbone chain decreased the energy difference between the lowest singlet and triplet excited states (ΔE ST), it also caused the energy gap between the HOMO and LUMO to narrow. Among the host molecules investigated, that in which one of the phenyls in the acceptor moiety was linked to the donor while the other two phenyls in the acceptor were substituted with CN substituents exhibited the highest E T, balanced charge transport, a low charge-injection barrier, and a small ΔE ST, and is therefore a promising candidate host material for use in blue-phosphorescent devices. Graphical Abstract Density functional theory calculations were performed to explore the electronic properties of bipolar host materials comprising a backbone of linked acceptor moieties where each acceptor was also linked to a pendant donor moiety. All of the designed molecules with high triplet energies were found to be suitable for use as host materials when matched with a blue-light guest material. The results demonstrate that the host molecule in which one of the phenyls in the triphenylphosphine oxide acceptor moiety was linked to the carbazole donor while the other two phenyls in the acceptor moiety were substituted with CN substituents yields the highest blue-phosphorescent device performance, as this host molecule has interesting features such as a high E T, balanced charge transport, a low charge-injection barrier, and a small ΔE ST.
Collapse
Affiliation(s)
- Huili Sun
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China
| | - Wei Shen
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China
| | - Xiaguang Zhang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China
| | - Dongmei Zhang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China
| | - Ming Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China.
| |
Collapse
|
18
|
Liu S, Jung J, Ohkubo K, Hicks SD, Bougher CJ, Abu-Omar MM, Fukuzumi S. Activationless Electron Self-Exchange of High-Valent Oxo and Imido Complexes of Chromium Corroles. Inorg Chem 2015; 54:9223-8. [DOI: 10.1021/acs.inorgchem.5b01777] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shuo Liu
- Brown Laboratory and Department of Chemistry, Purdue University, 560
Oval Drive, West Lafayette, Indiana 47907, United States
| | - Jieun Jung
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea
| | - Kei Ohkubo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea
- Department of Material and Life Science, Graduate School
of Engineering, Osaka University, ALCA and SENTAN, Japan Science and Technology Agency (JST), Suita, Osaka 565-0871, Japan
| | - Scott D. Hicks
- Brown Laboratory and Department of Chemistry, Purdue University, 560
Oval Drive, West Lafayette, Indiana 47907, United States
| | - Curt J. Bougher
- Brown Laboratory and Department of Chemistry, Purdue University, 560
Oval Drive, West Lafayette, Indiana 47907, United States
| | - Mahdi M. Abu-Omar
- Brown Laboratory and Department of Chemistry, Purdue University, 560
Oval Drive, West Lafayette, Indiana 47907, United States
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea
- Department of Material and Life Science, Graduate School
of Engineering, Osaka University, ALCA and SENTAN, Japan Science and Technology Agency (JST), Suita, Osaka 565-0871, Japan
- Faculty of Science and Engineering, Meijo University, ALCA and SENTAN, Japan Science and Technology Agency (JST), Nagoya, Aichi 468-0073, Japan
| |
Collapse
|
19
|
Sun Z, Liang M, Chen J. Kinetics of Iodine-Free Redox Shuttles in Dye-Sensitized Solar Cells: Interfacial Recombination and Dye Regeneration. Acc Chem Res 2015; 48:1541-50. [PMID: 26001106 DOI: 10.1021/ar500337g] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dye-sensitized solar cells (DSCs) have gained widespread attentions owing to their low production cost, tunable optical response, and high light-to-electricity conversion. In DSCs, the performance of redox mediators with iodide/triiodide or iodine-free redox couples is vital to internal quantum efficiency. For a long time, iodide/triiodide based electrolytes are the most widely used mediators because of their desirable kinetics. Recently, exciting progress has been made with respect to iodine-free metallorganic and pure organic redox shuttles. Their tunable redox potential and diverse electron transfer behaviors enable the rational screening of electrolyte composition for enhancing the light-to-electricity conversion efficiency of DSCs toward the Shockley-Queisser limit. In this Account, we emphasize on current knowledge of two distinct but interrelated interfacial processes (electron recombination and dye regeneration), particularly for DSCs with iodine-free redox couples. We show that a deeper understanding of electron transfer kinetics of the alternative redox couples is fundamental to develop rational strategies for cell optimization. Compared with iodine electrolyte, iodine-free metallorganic redox couples such as iron, cobalt, and nickel complexes display much faster electron transfer kinetics in dye regeneration and interfacial recombination. Evidently, rapid regeneration enables the employment of more positive metal complex for attaining a higher photovoltage. However, severe recombination reactions have to be well controlled by using several effective surface treatments such as the addition of Brönsted bases and atomic layer deposition. Although these methods offer different pathways in surface passivation, a trade-off between charge injection efficiency and electron diffusion length is always observed. It follows that an appropriate LUMO level of sensitizer is essential to ensure efficient electron injection at the passivated TiO2 surface. Apart from fast recombination behavior, bulky metal complexes suffer from inefficient charge transport. Thus, the combination of thinner TiO2 film and sensitizers with high mole extinction coefficient has been employed for both enhancing diffusion-limited current and maintaining light-harvesting efficiency. Unlike metal complexes, most of organic sulfur redox couples in DSCs exhibit slow recombination kinetics. This allows the use of thicker TiO2 film to achieve an optimized light harvesting. However, the concomitant sluggish behavior of dye regeneration requires the use of sensitizers with more positive HOMO level, which is beneficial to efficient regeneration. Moreover, lower level of TiO2 band edge in DSCs based on organic sulfur mediators hinders the achievement of desirable photovoltage, spurring future explorations on this class of redox mediator. Based on the comparison of electron transfer behavior between iodine-free metallorganic complexes and pure organic redox couples, we aim to provide a comprehensive Account of the intriguing interfacial processes in iodine-free DSCs as the key scientific point is linked with the kinetics of interfacial reactions. This demonstrates the advantages as well as disadvantages of each class of iodine-free electrolyte and should shed light on to judicious selection of the energy levels for redox mediators, sensitizers, and the conduction band of TiO2 for DSCs. The knowledge of the reaction kinetics in DSCs should be also beneficial to the interface engineering on recent developed perovskite cells.
Collapse
Affiliation(s)
- Zhe Sun
- Key
Laboratory of Advanced Energy Materials Chemistry (KLAEMC) (Ministry
of Education) and State Key Laboratory of Elemento-Organic Chemistry,
Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, People’s Republic of China
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People’s Republic of China
| | - Mao Liang
- Key
Laboratory of Advanced Energy Materials Chemistry (KLAEMC) (Ministry
of Education) and State Key Laboratory of Elemento-Organic Chemistry,
Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, People’s Republic of China
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People’s Republic of China
| | - Jun Chen
- Key
Laboratory of Advanced Energy Materials Chemistry (KLAEMC) (Ministry
of Education) and State Key Laboratory of Elemento-Organic Chemistry,
Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, People’s Republic of China
| |
Collapse
|
20
|
Pashaei B, Shahroosvand H, Abbasi P. Transition metal complex redox shuttles for dye-sensitized solar cells. RSC Adv 2015. [DOI: 10.1039/c5ra13088c] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This review provides an in-depth investigation into exciting alternative electrolyte shuttles in DSSCs and the various advantages that they provide, such as high conversion efficiency and non-corrosive properties.
Collapse
|