1
|
Ramos R, Karaiskou A, Botuha C, Amhaz S, Trichet M, Dingli F, Forté J, Lam F, Canette A, Chaumeton C, Salome M, Chenuel T, Bergonzi C, Meyer P, Bohic S, Loew D, Salmain M, Sobczak-Thépot J. Identification of Cellular Protein Targets of a Half-Sandwich Iridium(III) Complex Reveals Its Dual Mechanism of Action via Both Electrophilic and Oxidative Stresses. J Med Chem 2024; 67:6189-6206. [PMID: 38577779 DOI: 10.1021/acs.jmedchem.3c02000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Identification of intracellular targets of anticancer drug candidates provides key information on their mechanism of action. Exploiting the ability of the anticancer (C∧N)-chelated half-sandwich iridium(III) complexes to covalently bind proteins, click chemistry with a bioorthogonal azido probe was used to localize a phenyloxazoline-chelated iridium complex within cells and profile its interactome at the proteome-wide scale. Proteins involved in protein folding and actin cytoskeleton regulation were identified as high-affinity targets. Upon iridium complex treatment, the folding activity of Heat Shock Protein HSP90 was inhibited in vitro and major cytoskeleton disorganization was observed. A wide array of imaging and biochemical methods validated selected targets and provided a multiscale overview of the effects of this complex on live human cells. We demonstrate that it behaves as a dual agent, inducing both electrophilic and oxidative stresses in cells that account for its cytotoxicity. The proposed methodological workflow can open innovative avenues in metallodrug discovery.
Collapse
Affiliation(s)
- Robin Ramos
- Sorbonne Université, INSERM, Centre de Recherche Saint Antoine, 184 rue du Faubourg Saint Antoine, F-75012 Paris, France
| | - Anthi Karaiskou
- Sorbonne Université, INSERM, Centre de Recherche Saint Antoine, 184 rue du Faubourg Saint Antoine, F-75012 Paris, France
| | - Candice Botuha
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 place Jussieu, F-75005 Paris, France
| | - Sadek Amhaz
- Sorbonne Université, INSERM, Centre de Recherche Saint Antoine, 184 rue du Faubourg Saint Antoine, F-75012 Paris, France
| | - Michaël Trichet
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Service d'imagerie cellulaire, F-75005 Paris, France
| | - Florent Dingli
- Institut Curie, PSL Research University, CurieCoreTech Mass Spectrometry Proteomics, F-75248 Paris, France
| | - Jérémy Forté
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 place Jussieu, F-75005 Paris, France
| | - France Lam
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Service d'imagerie cellulaire, F-75005 Paris, France
| | - Alexis Canette
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Service d'imagerie cellulaire, F-75005 Paris, France
| | - Chloé Chaumeton
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Service d'imagerie cellulaire, F-75005 Paris, France
| | - Murielle Salome
- ESRF, The European Synchrotron Research Facility, F-38043 Grenoble cedex 9, France
| | - Thomas Chenuel
- Sorbonne Université, PSL, CNRS, UMR8226, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, F-75005 Paris, France
| | - Céline Bergonzi
- Sorbonne Université, PSL, CNRS, UMR8226, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, F-75005 Paris, France
| | - Philippe Meyer
- Sorbonne Université, PSL, CNRS, UMR8226, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, F-75005 Paris, France
| | - Sylvain Bohic
- Université Grenoble Alpes, INSERM, UA7 STROBE, Synchrotron Radiation for Biomedicine, F-38400 Saint Martin d'Hères, France
| | - Damarys Loew
- Institut Curie, PSL Research University, CurieCoreTech Mass Spectrometry Proteomics, F-75248 Paris, France
| | - Michèle Salmain
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 place Jussieu, F-75005 Paris, France
| | - Joëlle Sobczak-Thépot
- Sorbonne Université, INSERM, Centre de Recherche Saint Antoine, 184 rue du Faubourg Saint Antoine, F-75012 Paris, France
| |
Collapse
|
2
|
Jarre S, Raya I, Prihantono, Santi S. Synthesis, characterization, molecular docking studies of Mn(II)Prolinedithiocarbamate and its potential as anticancer agents. Mol Divers 2024; 28:889-900. [PMID: 36913052 DOI: 10.1007/s11030-023-10627-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/25/2023] [Indexed: 03/14/2023]
Abstract
Breast cancer is a non-communicable disease but dangerous for women, and research on anti-breast cancer drug compounds is being investigated. Mn(II)Prolinedithiocarbamate (MnProDtc) complex was synthesized and characterized in cytotoxicity and in silico assay by molecular docking. Dithiocarbamate ligand plays an important role as an anticancer agent. Melting point determination, conductivity, UV-Vis spectroscopy, FT-IR spectroscopy, XRD, and HOMO-LUMO have been studied. The binding of MnProDtc to cancer cells was examined by molecular docking, showing that the active sites of the MCF-7 strain, namely the protein O(6)-methylguanine-DNA methyltransferase (MGMT), caspase-8, and the estrogen receptor, bind to the complex. The results of the cytotoxic test of MCF-7 cancer cells undergoing apoptosis at a concentration of 37.50 μg/ml with an IC50 value of 453.96 μg/ml showed moderate anticancer activity in MCF-7 cancer cells.
Collapse
Affiliation(s)
- Sulistiani Jarre
- Department of Chemistry, Faculty of Mathematics, and Natural Science, Hasanuddin University Makassar, Makassar, Indonesia, 90245
| | - Indah Raya
- Department of Chemistry, Faculty of Mathematics, and Natural Science, Hasanuddin University Makassar, Makassar, Indonesia, 90245.
| | - Prihantono
- Department of Surgery, Faculty of Medical, Hasanuddin University, Makassar, Indonesia, 90245
| | - Santi Santi
- Medical Laboratory Technology, Faculty of Health Technology, Megarezky University, Makassar, Indonesia, 90234
| |
Collapse
|
3
|
Irfandi R, Raya I, Ahmad A, Fudholi A, Riswandi, Santi S, Azalea WP, Putri SE, Alam MN, Supratman U, Olubode SO, Abdalrazaq EA, Kandeel M, Soekamto NH, Natsir H, Maming, Ramlawati. Design anticancer potential of Zn(II)isoleucinedithiocarbamate complex on MCF-7 cell lines: synthesis, characterization, molecular docking, molecular dynamic, ADMET, and in-vitro studies. Mol Divers 2023:10.1007/s11030-023-10747-y. [PMID: 37884781 DOI: 10.1007/s11030-023-10747-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023]
Abstract
Cisplatin is a cancer medication widely used today, but it still poses some problems due to its toxic properties in the body. To overcome this issue, a new complex has been developed as a potential anticancer drug prospect by minimizing its toxic consequences. A novel Zn(II)IleDTC complex containing isoleucine dithiocarbamate ligands has been produced and analyzed using a range of analytical and spectroscopic methods. The Zn(II) IleDTC complex were characterized using various methods, including UV-Vis spectroscopy, FT-IR, determination of melting point, conductivity, and HOMO-LUMO analysis. Furthermore, computational NMR spectrum analysis was conducted in this study. Molecular docking studies was conducted to evaluate the potential of Zn(II) isoleucine dithiocarbamate as an HIF1 inhibitor. The results showed that the Zn complex exhibited a good docking score of -6.6 and formed hydrogen bonds with ARG 17, VAL264, and GLU15, alkyl bonds with TRP27 and LEU32, and Pi-Alkyl bonds with PRO41 and ARG44. This suggests that the Zn(II) isoleucine dithiocarbamate complex could be a promising candidate for cancer treatment with potential HIF1 inhibition properties. To assess the dynamic stability and efficacy of protein-ligand interactions over time, molecular dynamics simulations was conducted for both individual proteins and protein complexes. The cytotoxicity evaluation of Zn(II) isoleucine dithiocarbamate against MCF-7 cells obtained an IC50 value of 362.70 µg/mL indicating moderate cytotoxicity and morphological changes of cancer cells causing cancer cells to undergo apoptosis. The Zn(II) isoleucine dithiocarbamate complex may have promising potential as an anticancer compound due to its significant inhibitory effect on the breast cancer cell line (MCF7). According to the ADMET study, the complex exhibits drug-like characteristics with low toxicity, further supporting its potential as a viable drug candidate.
Collapse
Affiliation(s)
- Rizal Irfandi
- Doctoral Program, Department of Chemistry, Faculty of Mathematics, and Natural Science, Hasanuddin University, Makassar, 90245, Indonesia
- Department of Biology Education, Faculty of Teacher Training and Education, Universitas Puangrimaggalatung, Sengkang, 90915, Indonesia
| | - Indah Raya
- Department of Chemistry, Faculty of Mathematics, and Natural Science, Hasanuddin University, Makassar, 90245, Indonesia.
| | - Ahyar Ahmad
- Department of Chemistry, Faculty of Mathematics, and Natural Science, Hasanuddin University, Makassar, 90245, Indonesia
| | - Ahmad Fudholi
- Solar Energy Research Institute, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
- Research Centre for Electrical Power and Mechatronics, Institute of Science (LIPI), Bandung, Indonesia
| | - Riswandi
- Department of Chemistry, Faculty of Mathematics, and Natural Science, Hasanuddin University, Makassar, 90245, Indonesia
| | - Santi Santi
- Medical Laboratory Technology, Faculty of Health Technology, Megarezky University, Makassar, 90234, Indonesia
| | - Wynda Puspa Azalea
- District Health Office, Faculty of Pharmacy, Pancasila University, Jakarta, 12620, Indonesia
| | - Suriati Eka Putri
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Negeri Makassar, Makassar, Jalan Daeng Tata Raya, Makassar, 90244, Indonesia
| | - Muhammad Nur Alam
- Doctoral Program, Department of Chemistry, Faculty of Mathematics, and Natural Science, Hasanuddin University, Makassar, 90245, Indonesia
| | - Unang Supratman
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
| | - Samuel Olawale Olubode
- Department of Biochemistry, Adekunle Ajasin University, Akungba Akoko, Ondo State, Nigeria
| | - Eid A Abdalrazaq
- Department of Chemistry, Faculty of Science, Al Hussein Bin Talal University, Ma'an, Jordan
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Nunuk Hariani Soekamto
- Department of Chemistry, Faculty of Mathematics, and Natural Science, Hasanuddin University, Makassar, 90245, Indonesia
| | - Hasnah Natsir
- Department of Chemistry, Faculty of Mathematics, and Natural Science, Hasanuddin University, Makassar, 90245, Indonesia
| | - Maming
- Department of Chemistry, Faculty of Mathematics, and Natural Science, Hasanuddin University, Makassar, 90245, Indonesia
| | - Ramlawati
- Department of Natural Science Education, Faculty of Mathematics and Natural Science, Universitas Negeri Makassar, Makassar, Indonesia
| |
Collapse
|
4
|
Tu J, Veclani D, Monti F, Mazzanti A, Sambri L, Armaroli N, Baschieri A. Unexpected reactivity of cyclometalated iridium(III) dimers. Direct synthesis of a mononuclear luminescent complex. Dalton Trans 2023; 52:14867-14879. [PMID: 37795751 DOI: 10.1039/d3dt02689b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
A new synthetic method has been developed for the preparation of unexpected emissive iridium(III) complexes (A and B), directly obtained from the established [Ir(ppy)2(μ-Cl)]2 dimer, under reaction conditions in which such compounds are usually considered stable. Complex A ([Ir(ppy)2(Oppy)], where Hppy = 2-phenylpyridine and HOppy = 2-(o-hydroxyphenyl)pyridine) was obtained from the dimer without the addition of further ancillary ligands in the reaction environment, but in the presence of a basic water environment in 2-ethoxyethanol as solvent at 165 °C. The complex evidences the unexpected insertion of an oxygen atom between the iridium(III) center and the carbon atom of one ppy moiety. Under specific reaction conditions, the mer-[Ir(ppy)3] complex (B) was obtained. The presence of the right amount of water is important to maximize the formation of A relative to B. Both compounds were fully characterized by NMR spectroscopy and mass spectrometry (MS), and the X-ray structure of A was also determined. DFT calculations were used to shed light on the reaction mechanism leading to the unexpected formation of A, suggesting that the Oppy ligand is generated intramolecularly once the [Ir(ppy)2(μ-OH)]2 dimer is formed. The process is probably assisted by a redox reaction involving the second iridium(III) center in the dimer. The electrochemical and photophysical properties of complexes A and B were investigated in comparison with the well-known fac-[Ir(ppy)3] analogue (C). Complex A displays a green emission (λmax = 545 nm) with a photoluminescence quantum yield (PLQY) of nearly 40%, whereas the oxygen-free counterpart B is poorly emissive, exhibiting an orange emission (λmax = 605 nm) with a PLQY below 10%. These findings may pave the way for the direct synthesis of neutral luminescent complexes with the general formula [Ir(C^N)2(OC^N)], even using dimers with non-commercial or highly substituted C^N ligands, without the need for synthesizing the corresponding hydroxyl-substituted ancillary ligand, which may be hardly obtainable.
Collapse
Affiliation(s)
- Jing Tu
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Via Piero Gobetti 85, 40129 Bologna, Italy
| | - Daniele Veclani
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via Piero Gobetti 101, 40129 Bologna, Italy.
| | - Filippo Monti
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via Piero Gobetti 101, 40129 Bologna, Italy.
| | - Andrea Mazzanti
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Via Piero Gobetti 85, 40129 Bologna, Italy
| | - Letizia Sambri
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Via Piero Gobetti 85, 40129 Bologna, Italy
| | - Nicola Armaroli
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via Piero Gobetti 101, 40129 Bologna, Italy.
| | - Andrea Baschieri
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via Piero Gobetti 101, 40129 Bologna, Italy.
| |
Collapse
|
5
|
Ziółkowska A, Witwicki M. Understanding the Exchange Interaction between Paramagnetic Metal Ions and Radical Ligands: DFT and Ab Initio Study on Semiquinonato Cu(II) Complexes. Int J Mol Sci 2023; 24:ijms24044001. [PMID: 36835412 PMCID: PMC9959031 DOI: 10.3390/ijms24044001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
The exchange coupling, represented by the J parameter, is of tremendous importance in understanding the reactivity and magnetic behavior of open-shell molecular systems. In the past, it was the subject of theoretical investigations, but these studies are mostly limited to the interaction between metallic centers. The exchange coupling between paramagnetic metal ions and radical ligands has hitherto received scant attention in theoretical studies, and thus the understanding of the factors governing this interaction is lacking. In this paper, we use DFT, CASSCF, CASSCF/NEVPT2, and DDCI3 methods to provide insight into exchange interaction in semiquinonato copper(II) complexes. Our primary objective is to identify structural features that affect this magnetic interaction. We demonstrate that the magnetic character of Cu(II)-semiquinone complexes are mainly determined by the relative position of the semiquinone ligand to the Cu(II) ion. The results can support the experimental interpretation of magnetic data for similar systems and can be used for the in-silico design of magnetic complexes with radical ligands.
Collapse
Affiliation(s)
- Aleksandra Ziółkowska
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Maciej Witwicki
- Faculty of Chemistry, Wroclaw University, F. Joliot-Curie 14, 50-283 Wroclaw, Poland
- Correspondence:
| |
Collapse
|
6
|
Irfandi R, Raya I, Ahmad A, Fudholi A, Santi S, Puspa Azalea W, Ratih Tirto Sari D, Jarre S, Eka Putri S, Kartina D. Anticancer potential of Cu(II)prolinedithiocarbamate complex: design, synthesis, spectroscopy, molecular docking, molecular dynamic, ADMET, and in-vitro studies. J Biomol Struct Dyn 2023; 41:12938-12950. [PMID: 36690606 DOI: 10.1080/07391102.2023.2169764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/11/2023] [Indexed: 01/25/2023]
Abstract
Breast cancer continues to be a major health issue for women all over the world. Cancer medications like cisplatin, which are widely used, still have negative side effects. The novel complex was created as a potential anticancer medication candidate that is both effective and safe, with few side effects. The Cu(II) complex using the prolinedithiocarbamate ligands was synthesized in situ. The Cu(II) complexes Characterization by UV-Vis, FT-IR spectroscopy and melting point determination, conductivity, and HOMO-LUMO were studied. Computational NMR spectrum analysis was performed. The interaction of Cu(II)prolineditiocarbamate complex with cancer cell target protein (MCF-7) was confirmed by molecular docking and molecular dynamic. The pharmacokinetic/ADMET properties were also performed on the complex. Results of the cytotoxic complex test against cancer cells (MCF-7) undergoing apoptosis with an IC50 value of 13.64 µg/mL showed high anticancer activity in MCF-7 cancer cells. The in-vivo data for Cu(II)prolineditiocarbamate complex was predicted using the Protox online tool with an LD50 value of 2500 mg/kg and belonging to the GHS toxicity class 5, which means the compound has a low acute toxicity effect. The Cu(II) prolineitiocarbamate complex may pave the way for the development of essential metal-based chemotherapy for the treatment of breast cancer.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rizal Irfandi
- Doctoral Program, Department of Chemistry, Faculty of Mathematics, and Natural Science, Hasanuddin University, Makassar, Indonesia
- Department of Biology Education, Faculty of Teacher Training and Education, Universitas Puangrimaggalatung, Sengkang, Indonesia
| | - Indah Raya
- Department of Chemistry, Faculty of Mathematics, and Natural Science, Hasanuddin University, Makassar, Indonesia
| | - Ahyar Ahmad
- Department of Chemistry, Faculty of Mathematics, and Natural Science, Hasanuddin University, Makassar, Indonesia
| | - Ahmad Fudholi
- Solar Energy Research Institute, Universiti Kebangsaan Malaysia, UKM, Bangi, Selangor, Malaysia
- Research Centre for Electrical Power and Mechatronics, Institute of Science (LIPI), Bandung, Indonesia g Research Center of Smart Molecules and Natural Genetic Resources, Brawijaya University, Malang, Indonesia
| | - Santi Santi
- Medical Laboratory Technology, Faculty of Health Technology, Megarezky University, Makassar, Indonesia
| | - Wynda Puspa Azalea
- OKU Selatan District Health Office, Faculty of Pharmacy, Pancasila University, Jakarta, Indonesia
| | - Dewi Ratih Tirto Sari
- Department of Pharmacy, Faculty of Medicine, Ibrahimy University, Indonesia
- SMONAGENES Research Center, Universitas Brawijaya, Malang, Indonesia
| | - Sulistiani Jarre
- Department of Chemistry, Faculty of Mathematics, and Natural Science, Hasanuddin University, Makassar, Indonesia
| | - Suriati Eka Putri
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Negeri Makassar, Makassar, Indonesia
| | - Desy Kartina
- Department of Chemistry, Faculty of Mathematics, and Natural Science, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
7
|
Raya I, Kartina D, Irfandi R, Sufiandi S, Wijaya RI, Prihantono P, Abdalrazaq EA, Kandeel M, Usman AN. The new potential application for Mg(II) cysteinedithiocarbamate complex with anticancer activity. Breast Dis 2023; 42:177-182. [PMID: 37355882 DOI: 10.3233/bd-239006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2023]
Abstract
OBJECTIVE The new Mg(II) cysteindithiocarbamate complex drug has been synthesized by the in-situ method and tested for its anticancer activity in vitro. METHOD Mg(II) cysteindithiocarbamate complexes were characterized using Ultra Violet Visible, Infra-Red, melting points, and molar conductivity. RESULTS The UV-Vis data of cysteindithiocarbamate Mg(II), shows that at 296 nm and 385 nm was occurred the electronic transitions π → π* and n → π* for CS2 and N =C =S. Whereas the IR data at wavelengths in the 393-540 cm-1 shows that there has coordinated between Mg(II) with Sulfur (S), Nitrogen (N), and Oxygen (O) atoms from cysteinedithiocarbamate ligands. CONCLUSION The cytotoxicity test results showed that the Mg complex's cytotoxicity was higher than that of the cytotoxicity of the Mg metal without ligands, which means that the Mg complex can be developed as a potential new anticancer drug.
Collapse
Affiliation(s)
- Indah Raya
- Department of Chemistry, Faculty of Mathematics, and Natural Science, Hasanuddin University, Makassar, Indonesia
| | - Desy Kartina
- Eijkman Research Center for Molecular Biology, Health Research Organization, BRIN, Jakarta, Indonesia
- Department of Chemistry, Faculty of Mathematics, and Natural Science, Universitas Pakuan Bogor, Jawa Barat, Indonesia
| | - Rizal Irfandi
- Department of Biology Education, Faculty of Teacher Training and Education, Universitas Puangrimaggalatung, Sengkang, Indonesia
| | - Sandi Sufiandi
- Directorate of Laboratory Management, Research Facilities, and Science and Technology Park, Deputy for Research and Innovation Infrastructure - The National Research and Innovation Agency of The Republic of Indonesia, Jakarta, Indonesia
| | - Ronald Ivan Wijaya
- Department of Chemistry, Faculty of Mathematics, and Natural Science, Universitas Pakuan Bogor, Jawa Barat, Indonesia
| | - Prihantono Prihantono
- Department of Surgery, Faculty of Medical, Hasanuddin University, Makassar, Indonesia
| | - Eid A Abdalrazaq
- Department of Chemistry, Faculty of Science, Al Hussein Bin Talal University, Ma'an, Jordan
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | | |
Collapse
|
8
|
Irfandi R, Santi S, Raya I, Ahmad A, Ahmad Fudholi, Sari DRT, Prihantono. Study of new Zn(II)Prolinedithiocarbamate as a potential agent for breast cancer: Characterization and molecular docking. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Computational strategies to model the interaction and the reactivity of biologically-relevant transition metal complexes. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120686] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Ramos R, Zimbron JM, Thorimbert S, Chamoreau LM, Munier A, Botuha C, Karaiskou A, Salmain M, Sobczak-Thépot J. Insights into the antiproliferative mechanism of (C^N)-chelated half-sandwich iridium complexes. Dalton Trans 2021; 49:17635-17641. [PMID: 33226042 DOI: 10.1039/d0dt03414b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Transition metal-based anticancer compounds, as an alternative to platinum derivatives, are raising scientific interest as they may present distinct although poorly understood mechanisms of action. We used a structure-activity relationship-based methodology to investigate the chemical and biological features of a series of ten (C^N)-chelated half-sandwich iridiumIII complexes of the general formula [IrCp*(phox)Cl], where (phox) is a 2-phenyloxazoline ligand forming a 5-membered metallacycle. This series of compounds undergoes a fast exchange of their chlorido ligand once solubilised in DMSO. They were cytotoxic to HeLa cells with IC50 values in the micromolar range and induced a rapid activation of caspase-3, an apoptosis marker. In vitro, the oxidative power of all the complexes towards NADH was highlighted but only the complexes bearing substituents on the oxazoline ring were able to produce H2O2 at the micromolar range. However, we demonstrated using a powerful HyPer protein redox sensor-based flow cytometry assay that most complexes rapidly raised intracellular levels of H2O2. Hence, this study shows that oxidative stress can partly explain the cytotoxicity of these complexes on the HeLa cell line and gives a first entry to their mechanism of action.
Collapse
Affiliation(s)
- Robin Ramos
- Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, CNRS, 4 place Jussieu, F-75005 Paris, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ngo AH, Do LH. Structure–activity relationship study of half-sandwich metal complexes in aqueous transfer hydrogenation catalysis. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01310e] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A systematic structure–activity relationship study was performed to identify the factors that are important to enhancing the transfer hydrogenation efficiency of half-sandwich metal complexes.
Collapse
Affiliation(s)
- Anh H. Ngo
- Department of Chemistry
- University of Houston
- Houston
- USA
| | - Loi H. Do
- Department of Chemistry
- University of Houston
- Houston
- USA
| |
Collapse
|
12
|
Ren Q, An S, Wang Y, Tong W. Density Functional Theory Study of the Mechanisms of Iron‐Catalyzed Regioselective Anti‐Markovnikov Addition of C‐H Bonds in Aromatic Ketones to Alkenes. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Qinghua Ren
- Department of ChemistryShanghai University 99 Shangda Road Shanghai 200444 China
| | - Shanshan An
- Department of ChemistryShanghai University 99 Shangda Road Shanghai 200444 China
| | - Yuling Wang
- Department of ChemistryShanghai University 99 Shangda Road Shanghai 200444 China
| | - Weiqi Tong
- Department of ChemistryShanghai University 99 Shangda Road Shanghai 200444 China
| |
Collapse
|
13
|
Zhang X, Ponte F, Borfecchia E, Martini A, Sanchez-Cano C, Sicilia E, Sadler PJ. Glutathione activation of an organometallic half-sandwich anticancer drug candidate by ligand attack. Chem Commun (Camb) 2019; 55:14602-14605. [DOI: 10.1039/c9cc06725f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Density functional theory calculations and X-ray absorption spectroscopic data suggest an unusual activation mechanism for this potent Os anticancer complex: catalytic attack by intracellular thiol glutathione on the azo bond of the chelated ligand.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Chemistry
- University of Warwick
- Coventry
- UK
| | - Fortuna Ponte
- Dipartimento di Chimica e Tecnologie Chimiche
- Università della Calabria
- Arcavacata di Rende
- Italy
| | - Elisa Borfecchia
- Department of Chemistry
- NIS Center and INSTM Reference Center
- University of Turin
- Turin
- Italy
| | - Andrea Martini
- Department of Chemistry
- NIS Center and INSTM Reference Center
- University of Turin
- Turin
- Italy
| | | | - Emilia Sicilia
- Dipartimento di Chimica e Tecnologie Chimiche
- Università della Calabria
- Arcavacata di Rende
- Italy
| | | |
Collapse
|
14
|
Prejanò M, Marino T, Russo N. On the Inhibition Mechanism of Glutathione Transferase P1 by Piperlongumine. Insight From Theory. Front Chem 2018; 6:606. [PMID: 30619815 PMCID: PMC6296316 DOI: 10.3389/fchem.2018.00606] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/26/2018] [Indexed: 12/14/2022] Open
Abstract
Piperlongumine (PL) is an anticancer compound whose activity is related to the inhibition of human glutathione transferase of pi class (GSTP1) overexpressed in cancerous tumors and implicated in the metabolism of electrophilic compounds. In the present work, the inhibition mechanism of hydrolyzed piperlongumine (hPL) has been investigated employing QM and QM/MM levels of theory. The potential energy surfaces (PESs) underline the contributions of Tyr residue close to G site in the catalytic pocket of the enzyme. The proposed mechanism occurs through a one-step process represented by the nucleophilic addition of the glutathione thiol to electrophilic species giving rise to the simultaneous C-S and H-C bonds formation. Both the used methods give barrier heights (19.8 and 21.5 kcal mol−1 at QM/MM and QM, respectively) close to that experimentally measured for the C-S bond formations (23.8 kcal mol−1).
Collapse
Affiliation(s)
- Mario Prejanò
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende, Italy
| | - Tiziana Marino
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende, Italy
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende, Italy
| |
Collapse
|
15
|
Bezzubov SI, Kalle P, Bilyalova AA, Tatarin SV, Dolzhenko VD. Overcoming the Inertness of Iridium(III) in a Facile Single-Crystal to Single-Crystal Reaction of Iodine Vapor with a Cyclometalated Chloride Monomer. Chemistry 2018; 24:12779-12783. [DOI: 10.1002/chem.201801963] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Stanislav I. Bezzubov
- Kurnakov Institute of General and Inorganic Chemistry; Russian Academy of Sciences; Leninskiy pr. 31 Moscow 119991 Russia
| | - Paulina Kalle
- Kurnakov Institute of General and Inorganic Chemistry; Russian Academy of Sciences; Leninskiy pr. 31 Moscow 119991 Russia
| | - Alfiya A. Bilyalova
- Department of Chemistry; Lomonosov Moscow State University; Lenin's hills 1/3 Moscow 119991 Russia
| | - Sergei V. Tatarin
- Department of Chemistry; Lomonosov Moscow State University; Lenin's hills 1/3 Moscow 119991 Russia
| | - Vladimir D. Dolzhenko
- Department of Chemistry; Lomonosov Moscow State University; Lenin's hills 1/3 Moscow 119991 Russia
| |
Collapse
|
16
|
Clemente M, Polat IH, Albert J, Bosque R, Crespo M, Granell J, López C, Martínez M, Quirante J, Messeguer R, Calvis C, Badía J, Baldomà L, Font-Bardia M, Cascante M. Platinacycles Containing a Primary Amine Platinum(II) Compounds for Treating Cisplatin-Resistant Cancers by Oxidant Therapy. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00206] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
| | - Ibrahim Halil Polat
- Institut de Biomedicina, Universitat de Barcelona, Institut de Recerca Sant Joan de Déu, 08028 Barcelona, Spain
| | | | | | | | | | | | | | | | - Ramon Messeguer
- Biomed Division LEITAT Technological Center, Parc Científic, Edifici Hèlix, Baldiri Reixach, 15-21, 08028 Barcelona, Spain
| | - Carme Calvis
- Biomed Division LEITAT Technological Center, Parc Científic, Edifici Hèlix, Baldiri Reixach, 15-21, 08028 Barcelona, Spain
| | - Josefa Badía
- Institut de Biomedicina, Universitat de Barcelona, Institut de Recerca Sant Joan de Déu, 08028 Barcelona, Spain
| | - Laura Baldomà
- Institut de Biomedicina, Universitat de Barcelona, Institut de Recerca Sant Joan de Déu, 08028 Barcelona, Spain
| | - Mercè Font-Bardia
- Unitat de Difracció de RX, Centres Científics i Tecnològics de la Universitat de Barcelona (CCiTUB), Solé i Sabarís 1-3. 08028 Barcelona, Spain
| | - Marta Cascante
- Institut de Biomedicina, Universitat de Barcelona, Institut de Recerca Sant Joan de Déu, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), 28020 Madrid, Spain
| |
Collapse
|
17
|
Marino T, Parise A, Russo N. The role of arsenic in the hydrolysis and DNA metalation processes in an arsenous acid-platinum(ii) anticancer complex. Phys Chem Chem Phys 2018; 19:1328-1334. [PMID: 27966695 DOI: 10.1039/c6cp06179f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Platinum(ii)-based molecules are the most commonly used anticancer drugs in the chemotherapeutic treatment of tumours but possess serious side effects and some cancer types exhibit resistance with respect to these compounds (e.g. cisplatin). For these reasons, the research of new compounds that can bypass this limitation is in continuous development. Recently, mixed Pt(ii)-As(iii) systems have been synthesized and tested as potential anticancer agents. The mechanism of action of these kinds of drugs is unclear. Since in other platinum(ii) containing drugs, hydrolysis plays an important role in the activation of the compound before it reaches DNA, we have explored the aquation process using density functional theory (DFT), focusing our attention on the arsenoplatin complex, [Pt(μ-NHC(CH3)O)2ClAs(OH)2]. As DNA is believed to be the cellular target for Pt anticancer drugs, the metalation mechanism of DNA purine bases has been also investigated. Also for this new drug it appears that guanine is the preferred site with respect to adenine as with other platinum-containing compounds. A comparison with cisplatin is performed in order to highlight the contribution of arsenic in the anticancer activity of this new proposed anticancer agent.
Collapse
Affiliation(s)
- T Marino
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Cubo 14C, Via P. Bucci, 87036, Arcavacata di Rende, CS, Italy.
| | - A Parise
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Cubo 14C, Via P. Bucci, 87036, Arcavacata di Rende, CS, Italy.
| | - N Russo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Cubo 14C, Via P. Bucci, 87036, Arcavacata di Rende, CS, Italy.
| |
Collapse
|
18
|
Ponte F, Ritacco I, Mazzone G, Russo N, Sicilia E. Theoretical determination of the aquation reaction mechanism of cyclometalated benzimidazole Ru(II) and Ir(III) anticancer complexes. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Tai TB, Nhat PV. A DFT investigation on interactions between asymmetric derivatives of cisplatin and nucleobase guanine. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.05.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Gaiddon C, Pfeffer M. The Fate of Cycloruthenated Compounds: From C-H Activation to Innovative Anticancer Therapy. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201601216] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Christian Gaiddon
- University of Strasbourg; U1113 Inserm; 3 av. Molière 67200 Strasbourg France
| | - Michel Pfeffer
- University of Strasbourg; UMR 7177 CNRS; 4, rue Blaise Pascal 67000 Strasbourg France
| |
Collapse
|
21
|
Marino T, Ponte F, Mazzone G, Sicilia E, Toscano M, Russo N. The ability of a zinc pyrrolidine complex to catalyze the synthesis of cyclic carbonates from carbon dioxide and epoxides: a mechanistic theoretical investigation. Dalton Trans 2017; 46:9030-9035. [DOI: 10.1039/c7dt01642e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction mechanism for the synthesis of cyclic carbonates from carbon dioxide and epoxides catalyzed by a zinc pyrrolidine complex has been elucidated using the density functional level of theory.
Collapse
Affiliation(s)
- Tiziana Marino
- Dipartimento di Chimica e Tecnologie Chimiche
- Università della Calabria
- Rende (CS)
- Italy
| | - Fortuna Ponte
- Dipartimento di Chimica e Tecnologie Chimiche
- Università della Calabria
- Rende (CS)
- Italy
| | - Gloria Mazzone
- Dipartimento di Chimica e Tecnologie Chimiche
- Università della Calabria
- Rende (CS)
- Italy
| | - Emilia Sicilia
- Dipartimento di Chimica e Tecnologie Chimiche
- Università della Calabria
- Rende (CS)
- Italy
| | - Marirosa Toscano
- Dipartimento di Chimica e Tecnologie Chimiche
- Università della Calabria
- Rende (CS)
- Italy
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche
- Università della Calabria
- Rende (CS)
- Italy
| |
Collapse
|
22
|
Ajibola Adeyemo A, Shettar A, Bhat IA, Kondaiah P, Mukherjee PS. Self-Assembly of Discrete Ru II8 Molecular Cages and Their in Vitro Anticancer Activity. Inorg Chem 2016; 56:608-617. [PMID: 27997153 DOI: 10.1021/acs.inorgchem.6b02488] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Four new octanuclear Ru(II) cages (OC-1-OC-4) were synthesized from dinuclear p-cymene ruthenium(II) acceptors [Ru2(μ-η4-C2O4)(CH3OH)2(η6-p-cymene)2](O3SCF3)2 (A1), [Ru2(μ-η4-C6H2O4)(CH3OH)2(η6-p-cymene)2](O3SCF3)2 (A2), [Ru2(dhnq)(H2O)2(η6-p-cymene)2](O3SCF3)2 (A3), and [Ru2(dhtq)(H2O)2(η6-p-cymene)2](O3SCF3)2 (A4) separately with a tetradentate pyridyl ligand (L1) in methanol using coordination-driven self-assembly [L1= N,N,N',N'-tetra(pyridin-4-yl)benzene-1,4-diamine]. The octanuclear cages are fully characterized by various spectroscopic techniques including single-crystal X-ray diffraction analysis of OC-4. The self-assembled cages show strong in vitro anticancer activity against human lung adenocarcinoma A549 and human cervical cancer HeLa cell lines as observed from the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Of all the octanuclear cages, OC-3 exhibits remarkable anticancer activity against both cancer cell lines and is more active than that reported for cisplatin. The excellent anticancer activity of OC-3 and OC-4 highlights the importance of the synergistic effects of the spacer component of the dinuclear p-cymene Ru(II) acceptor clips.
Collapse
Affiliation(s)
- Aderonke Ajibola Adeyemo
- Department of Inorganic and Physical Chemistry and †Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore 560012, India
| | - Abhijith Shettar
- Department of Inorganic and Physical Chemistry and †Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore 560012, India
| | - Imtiyaz Ahmad Bhat
- Department of Inorganic and Physical Chemistry and †Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore 560012, India
| | - Paturu Kondaiah
- Department of Inorganic and Physical Chemistry and †Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore 560012, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry and †Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore 560012, India
| |
Collapse
|
23
|
Abstract
Reduced nicotinamide adenine dinucleotide (NADH) can generate a ruthenium-hydride intermediate that catalyzes the reduction of O2 to H2O2, which endows it with potent anticancer properties. A catalyst that could access a Ru-H intermediate using oxidized nicotinamide adenine dinucleotide (NAD+) as the H- source, however, could draw upon a supply of reducing equivalents 1000-fold more abundant than NADH, which would enable significantly greater H2O2 production. Herein, it is demonstrated, using the reduction of ABTS•- to ABTS2-, that NAD+ can function as a reductant. Mechanistic evidence is presented that suggests a Ru-H intermediate is formed via β-hydride elimination from a ribose subunit in NAD+. The insight gained from the heretofore unknown ability of NAD+ to function as a reductant and H- donor may lead to undiscovered biological carbohydrate oxidation pathways and new chemotherapeutic strategies.
Collapse
Affiliation(s)
| | - Andrew G Tennyson
- Center for Optical Materials Science and Engineering Technologies , Anderson, South Carolina 29625, United States
| |
Collapse
|
24
|
Štarha P, Habtemariam A, Romero-Canelón I, Clarkson GJ, Sadler PJ. Hydrosulfide Adducts of Organo-Iridium Anticancer Complexes. Inorg Chem 2016; 55:2324-31. [DOI: 10.1021/acs.inorgchem.5b02697] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Pavel Štarha
- Regional
Centre of Advanced Technologies and Materials, Department of Inorganic
Chemistry, Faculty of Science, Palacký University, 17. listopadu
12, 77146 Olomouc, Czech Republic
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U. K
| | - Abraha Habtemariam
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U. K
| | - Isolda Romero-Canelón
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U. K
| | - Guy J. Clarkson
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U. K
| | - Peter J. Sadler
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U. K
| |
Collapse
|