1
|
Liu F, Yang N, Chang Y, Yang W, Young DJ, Li HX, Lu C, Ren ZG. A Phosphorescent P/N/S Hybrid Ligand Stabilized Au 2Cu Complex Selectively Senses Ammonia and Amines. Chem Asian J 2024; 19:e202400413. [PMID: 38822713 DOI: 10.1002/asia.202400413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/03/2024]
Abstract
Reaction of a P/N/S hybrid ligand dpppyatc (N,N-bis((diphenylphosphaneyl)methyl)-N-(pyridin-2-yl)-amino-thiocarbamide) with Au(tht)Cl (tht=tetrahydrothiophene) and [Cu(MeCN)4]BF4 afforded cluster complex [Au2Cu(dpppyatc)2](BF4)2Cl (1). Upon excitation at 480 nm, 1 emitted orange phosphorescence at 646 nm, which was red-shifted to ~698 nm selectively in the presence of ammonia or amine vapor. This chromic photoluminescent response toward ammonia was sensitive and reversible. Complex1 could detect ammonia in aqueous solution down to concentrations of 2 ppm (w/w).
Collapse
Affiliation(s)
- Fuyuan Liu
- Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Ningwen Yang
- Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yijia Chang
- Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Wei Yang
- Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- Faculty of Food Science and Technology, Suzhou Polytechnic Institute of Agriculture, Suzhou, 215008, China
| | - David James Young
- Glasgow College, UESTC, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Hong-Xi Li
- Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Chengrong Lu
- Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhi-Gang Ren
- Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
2
|
Osawa M, Soma S, Kobayashi H, Tanaka Y, Hoshino M. Near-white light emission from single crystals of cationic dinuclear gold(I) complexes with bridged diphosphine ligands. Dalton Trans 2023; 52:2956-2965. [PMID: 36648762 DOI: 10.1039/d2dt03785h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Three cationic dinuclear Au(I) complexes containing acetonitrile (AN) as an ancillary ligand were synthesized: [μ-LMe(AuAN)2]·2BF4 (1), [μ-LEt(AuAN)2]·2BF4 (2), and [μ-LiPr(AuAN)2]·2BF4 (3) (LMe = {1,2-bis[bis(2-methylphenyl)phosphino]benzene}, LEt = {1,2-bis[bis(2-ethylphenyl)phosphino]benzene}, and LiPr = {1,2-bis[bis(2-isopropylphenyl)phosphino]benzene}). The unique structures of complexes 1-3 with two P-Au(I)-AN rods bridged by rigid diphosphine ligands were determined through X-ray analysis. The Au(I)-Au(I) distances observed for complexes 1-3 were as short as 2.9804-3.0457 Å, indicating an aurophilic interaction between two Au(I) atoms. Unlike complexes 2 and 3, complex 1 incorporated CH2Cl2 into the crystals as crystalline solvent molecules. Luminescence studies in the crystalline state revealed that complexes 1 and 2 mainly exhibited bluish-purple phosphorescence (PH) at 293 K: the former had a PH peak wavelength at 415 nm with the photoluminescence quantum yield ΦPL = 0.12, and the latter at 430 nm with ΦPL = 0.13. Meanwhile, complex 3 displayed near-white PH, that is dual PH with two PH bands centered at 425 and 580 nm with ΦPL = 0.44. The PH spectra and lifetimes of complexes 2 and 3 were measured in the temperature range of 77-293 K. The two PH bands observed for complex 3 were suggested to originate from the two emissive excited triplet states, which were in thermal equilibrium. From theoretical calculations, the dual PH observed for complex 3 is explained to occur from the two excited triplet states, T1H and T1L: the former exhibits a high-energy PH band (bluish-purple) and the latter exhibits a low-energy PH band (orange). The T1H state is considered 3ILCT with a structure similar to that of the S0-optimized structure. Conversely, the T1L state is assumed to be a 3MLCT with a T1-optimized structure, which has a short Au(I)-Au(I) bond and two bent rods (Au-AN). The thermal equilibrium between the two excited states is discussed based on computational calculations and photophysical data in the temperature range of 77-293 K. With regard to the crystal of complex 1, we were unable to precisely measure the temperature-dependent emission spectra and lifetimes, particularly at low temperatures, because the cooled crystals became irreversibly turbid over time.
Collapse
Affiliation(s)
- Masahisa Osawa
- Department of Applied Chemistry, Nippon Institute of Technology, Gakuendai 4-1, Miyashiro-Machi, Saitama, 345-8501, Japan.
| | - Sakie Soma
- Department of Applied Chemistry, Nippon Institute of Technology, Gakuendai 4-1, Miyashiro-Machi, Saitama, 345-8501, Japan.
| | - Hiroyuki Kobayashi
- Department of Applied Chemistry, Nippon Institute of Technology, Gakuendai 4-1, Miyashiro-Machi, Saitama, 345-8501, Japan.
| | - Yuya Tanaka
- Laboratory for Chemistry and Life Science Institute of Innovative Research, Tokyo Institute of Technology R1-27, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Mikio Hoshino
- Department of Applied Chemistry, Nippon Institute of Technology, Gakuendai 4-1, Miyashiro-Machi, Saitama, 345-8501, Japan.
| |
Collapse
|
3
|
Recent developments of photoactive Cu(I) and Ag(I) complexes with diphosphine and related ligands. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Yu H, Yu B, Song Y. Advances in the development of Cu(I) complexes as optical oxygen-sensitive probes. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2089028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Hongcui Yu
- College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Inner Mongolia Minzu University, Tongliao, Inner Mongolia , China
| | - Bo Yu
- College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Yajiao Song
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Inner Mongolia Minzu University, Tongliao, Inner Mongolia , China
| |
Collapse
|
5
|
Moutier F, Schiller J, Lecourt C, Khalil AM, Delmas V, Calvez G, Costuas K, Lescop C. Impact of Intermolecular Non‐Covalent Interactions in a Cu
I
8
Pd
II
1
Discrete Assembly: Conformers’ Geometries and Stimuli‐Sensitive Luminescence Properties. Chemistry 2022; 28:e202104497. [DOI: 10.1002/chem.202104497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Indexed: 11/10/2022]
Affiliation(s)
- Florent Moutier
- Université Rennes INSA Rennes, CNRS, ISCR – UMR6226 35000 Rennes France
| | - Jana Schiller
- Université Rennes INSA Rennes, CNRS, ISCR – UMR6226 35000 Rennes France
| | - Constance Lecourt
- Université Rennes INSA Rennes, CNRS, ISCR – UMR6226 35000 Rennes France
| | | | - Vincent Delmas
- Université Rennes INSA Rennes, CNRS, ISCR – UMR6226 35000 Rennes France
| | - Guillaume Calvez
- Université Rennes INSA Rennes, CNRS, ISCR – UMR6226 35000 Rennes France
| | - Karine Costuas
- Université Rennes INSA Rennes, CNRS, ISCR – UMR6226 35000 Rennes France
| | - Christophe Lescop
- Université Rennes INSA Rennes, CNRS, ISCR – UMR6226 35000 Rennes France
| |
Collapse
|
6
|
Loftus LM, Olson EC, Stewart DJ, Phillips AT, Arumugam K, Cooper TM, Haley JE, Grusenmeyer TA. Zn Coordination and the Identity of the Halide Ancillary Ligand Dramatically Influence the Excited-State Dynamics and Bimolecular Reactions of 2,3-Di(pyridin-2-yl)benzo[ g]quinoxaline. Inorg Chem 2021; 60:16570-16583. [PMID: 34662517 DOI: 10.1021/acs.inorgchem.1c02484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The optical properties of coordination complexes with ligands containing nitrogen heterocycles have been extensively studied for decades. One subclass of these materials, metal complexes utilizing substituted pyrazines and quinoxalines as ligands, has been employed in a variety of photochemical applications ranging from photodynamic therapy to organic light-emitting diodes. A vast majority of this work focuses on characterization of the metal-to-ligand charge-transfer states in these metal complexes; however, literature reports rarely investigate the photophysics of the parent pyrazine or quinoxaline ligand or perform control experiments utilizing metal complexes that lack low-lying charge-transfer (CT) states in order to determine how metal-atom coordination influences the photophysical properties of the ligand. With this in mind, we examined the steady-state and time-resolved photophysics of 2,3-di(pyridin-2-yl)benzo[g]quinoxaline (dpb) and explored how the coordination of ZnX2 (X = Cl-, Br-, I-) affects the photophysical properties of dpb. In dpb, we find that the dominant mode of deactivation from the singlet excited state is intersystem crossing (ISC). Coordination of ZnX2 perturbs the relative energies of the ππ* and nπ* excited states of dpb, leading to drastically different rates of ISC as well as radiative and nonradiative decay in the [Zn(dpb)X2] complexes compared to dpb. These differences in the rates change the dominant singlet-excited-state decay pathway from ISC in dpb to a mixture of ISC and fluorescence in [Zn(dpb)Cl2] and [Zn(dpb)Br2] and to nonradiative decay in [Zn(dpb)I2]. Coordination of ZnX2 and the choice of the halide ligand also have profound effects on the rate constants for excited-state bimolecular reactions, including triplet-triplet annihilation and oxygen quenching. These results demonstrate that metal coordination, even in complexes lacking low-lying CT states, and the choice of the ancillary ligand can dramatically alter the photophysical properties of chromophores containing nitrogen heterocycles.
Collapse
Affiliation(s)
- Lauren M Loftus
- Materials and Manufacturing Directorate, Functional Materials Division, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433-7750, United States.,General Dynamics Information Technology, 5100 Springfield Pike, Dayton, Ohio 45431, United States
| | - Emma C Olson
- Materials and Manufacturing Directorate, Functional Materials Division, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433-7750, United States.,Southwestern Ohio Council for Higher Education, Dayton, Ohio 45420, United States
| | - David J Stewart
- Materials and Manufacturing Directorate, Functional Materials Division, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433-7750, United States
| | - Alexis T Phillips
- Materials and Manufacturing Directorate, Functional Materials Division, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433-7750, United States.,Southwestern Ohio Council for Higher Education, Dayton, Ohio 45420, United States
| | - Kuppuswamy Arumugam
- Wright State University, Department of Chemistry, 3640 Colonel Glenn Highway, Dayton, Ohio 45435, United States
| | - Thomas M Cooper
- Materials and Manufacturing Directorate, Functional Materials Division, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433-7750, United States
| | - Joy E Haley
- Materials and Manufacturing Directorate, Functional Materials Division, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433-7750, United States
| | - Tod A Grusenmeyer
- Materials and Manufacturing Directorate, Functional Materials Division, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433-7750, United States
| |
Collapse
|
7
|
Beliaeva M, Belyaev A, Grachova EV, Steffen A, Koshevoy IO. Ditopic Phosphide Oxide Group: A Rigidifying Lewis Base to Switch Luminescence and Reactivity of a Disilver Complex. J Am Chem Soc 2021; 143:15045-15055. [PMID: 34491736 DOI: 10.1021/jacs.1c04413] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Heterodentate phosphines containing anionic organophosphorus groups remain virtually unexplored ligands in the coordination chemistry of coinage metals. A hybrid phosphine-phosphine oxide (o-Ph2PC6H4)2P(O)H (HP3O) readily forms the disilver complex [Ag2(P3O)2] (1) upon deprotonation of the (O)P-H fragment. Due to the electron-rich nature, the anionic phosphide oxide unit in 1 takes part in efficient intermolecular hydrogen bonding, which has an unusual and remarkably strong impact on the photoluminescence of 1, changing the emission from red (644 nm) to green-yellow (539 nm) in the solid. The basicity of the R2(O)P- group and its affinity for both inter- and intramolecular donor-acceptor interactions allow converting 1 into hydrohalogenated (2, 3) and boronated (4) derivatives, which reveal a gradual hypsochromic shift of luminescence, reaching the wavelength of 489 nm. Systematic variable-temperature analysis of the excited state properties suggests that thermally activated delayed fluorescence is involved in the emission process. The long-lived excited states for 1-4, the energy of which is largely regulated by means of the phosphide oxide unit, are potentially suitable for triplet energy transfer photocatalysis. With the highest T1 energy among 1-4, complex 4 demonstrates excellent photocatalytic activity in a [2+2] cycloaddition reaction, which has been realized for the first time for silver(I) compounds.
Collapse
Affiliation(s)
- Mariia Beliaeva
- Department of Chemistry, University of Eastern Finland, Joensuu, 80101, Finland
| | - Andrey Belyaev
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany
| | - Elena V Grachova
- Department of Chemistry, St. Petersburg State University, Universitetskii pr. 26, 198504, St. Petersburg, Russia
| | - Andreas Steffen
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany
| | - Igor O Koshevoy
- Department of Chemistry, University of Eastern Finland, Joensuu, 80101, Finland
| |
Collapse
|
8
|
Pandey R, Singh D, Thakur N, Raj KK. Catalytic C-H Bond Activation and Knoevenagel Condensation Using Pyridine-2,3-Dicarboxylate-Based Metal-Organic Frameworks. ACS OMEGA 2021; 6:13240-13259. [PMID: 34056473 PMCID: PMC8158822 DOI: 10.1021/acsomega.1c01155] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/23/2021] [Indexed: 05/08/2023]
Abstract
Three 1D coordination polymers (CPs) [M(pdca)(H2O)2] n (M = Zn, Cd, and Co; 1-3), and a 3D coordination framework {[(CH3)2NH2][CuK(2,3-pdca)(pa)(NO3)2]} n (4) (2,3-pdca = pyridine-2,3-dicarboxylate and pa = picolinic acid), have been synthesized adopting a solvothermal reaction strategy. The CPs have been thoroughly characterized using various spectral techniques, that is, elemental analyses, FT-IR, TGA, DSC, UV/vis, and luminescence. Structural information on 1-4 was obtained by PXRD and X-ray single-crystal analyses, whereas morphological insights were attained through FESEM, AFM, EDX, HRTEM, and BET surface area analyses. Roughness parameters were calculated from AFM analysis, whereas dimensions of small domains and interplanar spacing were defined with the aid of HRTEM. CPs 1-3 are 1D isostructural networks, whereas 4 is a 3D framework. Moreover, 1-4 display moderate luminescence at rt. In addition, 1-4 have been applied as economic and efficient porous catalysts for the Knoevenagel condensation reaction and C-H bond activation under mild conditions with good yields (95-98 and 97-99%), respectively. Notably, 1-3 can be reused up to seven cycles, whereas 4 can be reused up to five catalytic cycles with retained catalytic efficiency. Relative catalytic efficacy toward the Knoevenagel condensation reaction follows in the order 2 > 1 > 3 > 4, whereas 2 > 4 > 1 > 3 for C-H activation. The present result demonstrates synthetic, structural, optical, morphological, and catalytic aspects of 1-4.
Collapse
Affiliation(s)
- Rampal Pandey
- Department
of Chemistry, National Institute of Technology
Uttarakhand, Srinagar, Uttarakhand 246174, India
| | - Durgesh Singh
- Department
of Chemistry, Dr. Harisingh Gour University, Sagar, Madhya Pradesh 470003, India
| | - Neha Thakur
- Department
of Chemistry, National Institute of Technology
Uttarakhand, Srinagar, Uttarakhand 246174, India
| | - Krishna K. Raj
- Department
of Chemistry, Dr. Harisingh Gour University, Sagar, Madhya Pradesh 470003, India
| |
Collapse
|
9
|
Xu K, Chen BL, Yang F, Liu L, Zhong XX, Wang L, Zhu XJ, Li FB, Wong WY, Qin HM. Largely Color-Tuning Prompt and Delayed Fluorescence: Dinuclear Cu(I) Halide Complexes with tert-Amines and Phosphines. Inorg Chem 2021; 60:4841-4851. [PMID: 33711236 DOI: 10.1021/acs.inorgchem.0c03755] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Luminescent copper(I) halide complexes with bi- and tridentate rigid ligands have gained wide research interests. In this paper, six tetracoordinate dinuclear copper(I) halide complexes, Cu2X2(ppda)2 [ppda = 2-[2-(dimethylamino)phenyl(phenyl)phosphino]-N,N-dimethylaniline, X = I (1), Br (2), Cl (3)] and Cu2X2(pfda)2 [pfda = 2-[2-(dimethylamino)-4-(trifluoromethyl)phenyl(phenyl)phosphino]-N,N-dimethyl-5-trifluoromethylaniline, X = I (4), Br (5), Cl (6)], were successfully prepared and systematically characterized on their structures and photophysical properties. Complexes 1-5 have a centrosymmetric form with a planar Cu2X2 unit, and complex 6 has a mirror symmetry form with a butterfly-shaped Cu2X2. Solid complexes 1, 4, and 5 emit delayed fluorescence at room temperature, intense blue to greenish yellow (λmax = 443-570 nm) light, and their peak wavelengths are located at 443-570 nm with microsecond lifetimes (τ = 0.4-19.2 μs, ΦPL = 0.05-0.48). Complexes 2, 3, and 6 show prompt fluorescence, very weak yellowish green to yellow (λmax = 534-595 nm) emission with peak wavelengths at 534-595 nm, and lifetimes in nanoseconds (τ = 4.4-9.3 ns, ΦPL < 0.0001). (Metal + halide) to ligand and intraligand charge transitions are the main origin of the emission of the complexes. Solution-processed, complex-4-based nondoped and doped devices emit yellow green light with CIE coordinated at (0.41, 0.51), a maximum EQE up to 0.17%, and luminance reaching 75.52 cd/m2.
Collapse
Affiliation(s)
- Ke Xu
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei University, Wuhan 430062, P.R. China
| | - Bu-Lin Chen
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei University, Wuhan 430062, P.R. China
| | - Fei Yang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Li Liu
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei University, Wuhan 430062, P.R. China
| | - Xin-Xin Zhong
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei University, Wuhan 430062, P.R. China
| | - Lei Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Xun-Jin Zhu
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, P.R. China
| | - Fa-Bao Li
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei University, Wuhan 430062, P.R. China
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, P.R. China
| | - Hai-Mei Qin
- Department of Chemistry, Xiamen University, Xiamen 361005, P.R. China
| |
Collapse
|
10
|
Sarkar A, Jana AK, Natarajan S. Aliphatic amine mediated assembly of [M 6( mna) 6] (M = Cu/Ag) into extended two-dimensional structures: synthesis, structure and Lewis acid catalytic studies. NEW J CHEM 2021. [DOI: 10.1039/d1nj00544h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
New aliphatic amine directed two-dimensional cadmium coordination polymers were shown to exhibit Lewis-acid catalytic activity for the cyanation of imines.
Collapse
Affiliation(s)
- Anupam Sarkar
- Framework solids Laboratory
- Solid State and Structural Chemistry Unit
- Indian Institute of Science
- Bangalore-560012
- India
| | - Ajay Kumar Jana
- Framework solids Laboratory
- Solid State and Structural Chemistry Unit
- Indian Institute of Science
- Bangalore-560012
- India
| | - Srinivasan Natarajan
- Framework solids Laboratory
- Solid State and Structural Chemistry Unit
- Indian Institute of Science
- Bangalore-560012
- India
| |
Collapse
|
11
|
Khalil AM, Xu C, Delmas V, Calvez G, Costuas K, Haouas M, Lescop C. Coordination-driven supramolecular syntheses of new homo- and hetero-polymetallic Cu( i) assemblies: solid-state and solution characterization. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00937k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New luminescent Cu(i) discrete assemblies D and FM and 1D coordination polymer E are reported. Deep insights of self-assembly processes based on flexible Cu(i) precursors are highlighted together with the preservation in solution of Cu(i) assemblies.
Collapse
Affiliation(s)
- Ali Moustafa Khalil
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226, F-35000 Rennes, France
| | - Chendong Xu
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226, F-35000 Rennes, France
| | - Vincent Delmas
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226, F-35000 Rennes, France
| | - Guillaume Calvez
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226, F-35000 Rennes, France
| | - Karine Costuas
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226, F-35000 Rennes, France
| | - Mohamed Haouas
- Institut Lavoisier de Versailles, UMR 8180 CNRS, UVSQ, Université Paris-Saclay, Versailles, France
| | - Christophe Lescop
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226, F-35000 Rennes, France
| |
Collapse
|
12
|
Xie QY, Liu WX, Zhan SZ, Wei XL. Synthesis and properties of 1,3-bis[(2-bromo)benzene]triazene and its binuclear silver complex. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1723028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Qian-Ya Xie
- College of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Wei-Xia Liu
- College of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Shu-Zhong Zhan
- College of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Xiao-Lan Wei
- College of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
13
|
Evariste S, Khalil AM, Kerneis S, Xu C, Calvez G, Costuas K, Lescop C. Luminescent vapochromic single crystal to single crystal transition in one-dimensional coordination polymer featuring the first Cu(i) dimer bridged by an aqua ligand. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00691b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Vapochromic luminescence caused by included solvent mobility is observed in reversible single-crystal to single-crystal (SC–SC) transitions in a one-dimensional coordination polymer bearing the first reported water molecule bridging two Cu(i) ions.
Collapse
Affiliation(s)
- Sloane Evariste
- Univ Rennes
- INSA Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F-35000 Rennes
| | - Ali Moustafa Khalil
- Univ Rennes
- INSA Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F-35000 Rennes
| | - Sebastien Kerneis
- Univ Rennes
- INSA Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F-35000 Rennes
| | - Chendong Xu
- Univ Rennes
- INSA Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F-35000 Rennes
| | - Guillaume Calvez
- Univ Rennes
- INSA Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F-35000 Rennes
| | - Karine Costuas
- Univ Rennes
- INSA Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F-35000 Rennes
| | - Christophe Lescop
- Univ Rennes
- INSA Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F-35000 Rennes
| |
Collapse
|
14
|
Rajalakshmi P, Jayasudha P, Ciattini S, Chelazzi L, Elango KP. Crystallographic evidence for resonance assisted H-Bonding effect in selective colorimetric detection of cyanide by arylamino-naphthoquinones. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.05.124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
He RY, Tseng HY, Lee HA, Liu YC, Koshevoy IO, Pan SW, Ho ML. Paper-based microfluidic devices based on 3D network polymer hydrogel for the determination of glucose in human whole blood. RSC Adv 2019; 9:32367-32374. [PMID: 35529755 PMCID: PMC9073200 DOI: 10.1039/c9ra04278d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/06/2019] [Indexed: 11/21/2022] Open
Abstract
In this study, optical microfluidic paper analytical devices (μPADs) for glucose detection from whole blood samples with a small sample volume (2 μL) have been developed on a single paper. In the proposed method, a mushroom-shaped analytical device contains a sample inlet zone and a detection zone. When blood is dripped onto the inlet region of a μPAD, the plasma diffuses to the detection region. The detection region is implanted with a metallic three-dimensional (3D) polymer hydrogel vehicle. The gel vehicle consists of a copper complex that responds to oxygen changes and glucose oxidase (GOx) immobilized inside the gel as a bioactivity preservative. The phosphorescence of the copper complex is enhanced by oxygen consumed by detection of glucose with a limit of detection (S/N = 3) of 0.44 mM, and the total analysis of the sample is completed within 1 min. The validity of the proposed research is demonstrated using control samples and real-world whole blood samples of glucose concentrations ranging from 3 to 200 mM, and the detection results are shown to be in agreement with those obtained using a glucometer. Attaining a simple device for analysing glucose in human whole blood without any pretreatment procedures and having a broad sensing range while consuming a small sample volume remain challenging; thus, our new analytical device is of great interest.
Collapse
Affiliation(s)
- Rong-Yu He
- Department of Chemistry, Soochow University No. 70, LinShih Rd., Shih-Lin Taipei 11102 Taiwan
| | - Hsin-Yi Tseng
- Department of Chemistry, Soochow University No. 70, LinShih Rd., Shih-Lin Taipei 11102 Taiwan
| | - Hsia-An Lee
- Department of Chemistry, Soochow University No. 70, LinShih Rd., Shih-Lin Taipei 11102 Taiwan
| | - Yu-Ci Liu
- Department of Chemistry, Soochow University No. 70, LinShih Rd., Shih-Lin Taipei 11102 Taiwan
| | - Igor O Koshevoy
- Department of Chemistry, University of Eastern Finland 80101 Joensuu Finland
| | - Sheng-Wei Pan
- Department of Chest Medicine, Taipei Veterans General Hospital Taipei 11217 Taiwan
- School of Medicine, National Yang-Ming University Taipei 11221 Taiwan
- Institute of Public Health, National Yang-Ming University Taipei 11221 Taiwan
| | - Mei-Lin Ho
- Department of Chemistry, Soochow University No. 70, LinShih Rd., Shih-Lin Taipei 11102 Taiwan
| |
Collapse
|
16
|
Dosen M, Kawada Y, Shibata S, Tsuge K, Sasaki Y, Kobayashi A, Kato M, Ishizaka S, Kitamura N. Control of Emissive Excited States of Silver(I) Halogenido Coordination Polymers by a Solid Solution Approach. Inorg Chem 2019; 58:8419-8431. [DOI: 10.1021/acs.inorgchem.9b00538] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | | | | | - Kiyoshi Tsuge
- Graduate School of Science and Engineering, University of Toyama, Toyama, Toyama 930-8555, Japan
| | | | | | | | - Shoji Ishizaka
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | | |
Collapse
|
17
|
Shamsieva AV, Musina EI, Gerasimova TP, Fayzullin RR, Kolesnikov IE, Samigullina AI, Katsyuba SA, Karasik AA, Sinyashin OG. Intriguing Near-Infrared Solid-State Luminescence of Binuclear Silver(I) Complexes Based on Pyridylphospholane Scaffolds. Inorg Chem 2019; 58:7698-7704. [DOI: 10.1021/acs.inorgchem.8b03474] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Aliia V. Shamsieva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Elvira I. Musina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Tatiana P. Gerasimova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Robert R. Fayzullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Ilya E. Kolesnikov
- Center for Optical and Laser Materials Research, Research Park of St. Petersburg State University, Ulianovskaya Street 5, 198504 St. Petersburg, Russian Federation
| | - Aida I. Samigullina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Sergey A. Katsyuba
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Andrey A. Karasik
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Oleg G. Sinyashin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| |
Collapse
|
18
|
Nicholas AD, Bullard RM, Wheaton AM, Streep M, Nicholas VA, Pike RD, Patterson HH. Synthesis and Luminescence of Optical Memory Active Tetramethylammonium Cyanocuprate(I) 3D Networks. MATERIALS 2019; 12:ma12081211. [PMID: 31013868 PMCID: PMC6514951 DOI: 10.3390/ma12081211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 04/07/2019] [Accepted: 04/10/2019] [Indexed: 11/17/2022]
Abstract
The structures of three tetramethylammonium cyanocuprate(I) 3D networks [NMe4]2[Cu(CN)2]2•0.25H2O (1), [NMe4][Cu3(CN)4] (2), and [NMe4][Cu2(CN)3] (3), (Me4N = tetramethylammonium), and the photophysics of 1 and 2 are reported. These complexes are prepared by combining aqueous solutions of the simple salts tetramethylammonium chloride and potassium dicyanocuprate. Single-crystal X-ray diffraction analysis of complex 1 reveals {Cu2(CN)2(μ2-CN)4} rhomboids crosslinked by cyano ligands and D3h {Cu(CN)3} metal clusters into a 3D coordination polymer, while 2 features independent 2D layers of fused hexagonal {Cu8(CN)8} rings where two Cu(I) centers reside in a linear C∞v coordination sphere. Metallophilic interactions are observed in 1 as close Cu⋯Cu distances, but are noticeably absent in 2. Complex 3 is a simple honeycomb sheet composed of trigonal planar Cu(I) centers with no Cu…Cu interactions. Temperature and time-dependent luminescence of 1 and 2 have been performed between 298 K and 78 K and demonstrate that 1 is a dual singlet/triplet emitter at low temperatures while 2 is a triplet-only emitter. DFT and TD-DFT calculations were used to help interpret the experimental findings. Optical memory experiments show that 1 and 2 are both optical memory active. These complexes undergo a reduction of emission intensity upon laser irradiation at 255 nm although this loss is much faster in 2. The loss of emission intensity is reversible in both cases by applying heat to the sample. We propose a light-induced electron transfer mechanism for the optical memory behavior observed.
Collapse
Affiliation(s)
- Aaron D Nicholas
- Department of Chemistry, University of Maine, Orono, ME 04469, USA.
| | - Rebeka M Bullard
- Department of Chemistry, University of Maine, Orono, ME 04469, USA.
| | - Amelia M Wheaton
- Department of Chemistry, College of William and Mary, Williamsburg, VA 23187-8795, USA.
| | - Michaela Streep
- Department of Chemistry, College of William and Mary, Williamsburg, VA 23187-8795, USA.
| | | | - Robert D Pike
- Department of Chemistry, College of William and Mary, Williamsburg, VA 23187-8795, USA.
| | | |
Collapse
|
19
|
Orsino A, Gutiérrez del Campo M, Lutz M, Moret ME. Enhanced Catalytic Activity of Nickel Complexes of an Adaptive Diphosphine-Benzophenone Ligand in Alkyne Cyclotrimerization. ACS Catal 2019; 9:2458-2481. [PMID: 30854242 PMCID: PMC6400243 DOI: 10.1021/acscatal.8b05025] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/29/2019] [Indexed: 12/15/2022]
Abstract
Adaptive ligands, which can adapt their coordination mode to the electronic structure of various catalytic intermediates, offer the potential to develop improved homogeneous catalysts in terms of activity and selectivity. 2,2'-Diphosphinobenzophenones have previously been shown to act as adaptive ligands, the central ketone moiety preferentially coordinating reduced metal centers. Herein, the utility of this scaffold in nickel-catalyzed alkyne cyclotrimerization is investigated. The complex [( p-tolL1)Ni(BPI)] ( p-tolL1 = 2,2'-bis(di(para-tolyl)phosphino)-benzophenone; BPI = benzophenone imine) is an active catalyst in the [2 + 2 + 2] cyclotrimerization of terminal alkynes, selectively affording 1,2,4-substituted benzenes from terminal alkynes. In particular, this catalyst outperforms closely related bi- and tridentate phosphine-based Ni catalysts. This suggests a reaction pathway involving a hemilabile interaction of the C=O unit with the nickel center. This is further borne out by a comparative study of the observed resting states and DFT calculations.
Collapse
Affiliation(s)
- Alessio
F. Orsino
- Utrecht
University, Organic Chemistry
and Catalysis, Debye Institute for Nanomaterials Science, Faculty
of Science, Universiteitsweg
99, 3584 CG Utrecht, The Netherlands
| | - Manuel Gutiérrez del Campo
- Utrecht
University, Organic Chemistry
and Catalysis, Debye Institute for Nanomaterials Science, Faculty
of Science, Universiteitsweg
99, 3584 CG Utrecht, The Netherlands
| | - Martin Lutz
- Utrecht
University, Crystal and Structural
Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Marc-Etienne Moret
- Utrecht
University, Organic Chemistry
and Catalysis, Debye Institute for Nanomaterials Science, Faculty
of Science, Universiteitsweg
99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
20
|
Chakkaradhari G, Eskelinen T, Degbe C, Belyaev A, Melnikov AS, Grachova EV, Tunik SP, Hirva P, Koshevoy IO. Oligophosphine-thiocyanate Copper(I) and Silver(I) Complexes and Their Borane Derivatives Showing Delayed Fluorescence. Inorg Chem 2019; 58:3646-3660. [PMID: 30793896 PMCID: PMC6727211 DOI: 10.1021/acs.inorgchem.8b03166] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
![]()
The series of chelating phosphine
ligands, which contain bidentate P2 (bis[(2-diphenylphosphino)phenyl] ether, DPEphos; 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene,
Xantphos; 1,2-bis(diphenylphosphino)benzene, dppb), tridentate P3 (bis(2-diphenylphosphinophenyl)phenylphosphine),
and tetradentate P4 (tris(2-diphenylphosphino)phenylphosphine)
ligands, was used for the preparation of the corresponding dinuclear
[M(μ2-SCN)P2]2 (M = Cu, 1, 3, 5; M = Ag, 2, 4, 6) and mononuclear
[CuNCS(P3/P4)] (7, 9) and
[AgSCN(P3/P4)] (8, 10) complexes.
The reactions of P4 with silver
salts in a 1:2 molar ratio produce tetranuclear clusters [Ag2(μ3-SCN)(t-SCN)(P4)]2 (11) and [Ag2(μ3-SCN)(P4)]22+ (12). Complexes 7–11 bearing terminally coordinated SCN ligands were efficiently
converted into derivatives 13–17 with
the weakly coordinating –SCN:B(C6F5)3 isothiocyanatoborate ligand. Compounds 1 and 5–17 exhibit thermally
activated delayed fluorescence (TADF) behavior in the solid state.
The excited states of thiocyanate species are dominated by the ligand
to ligand SCN → π(phosphine) charge transfer transitions
mixed with a variable contribution of MLCT. The boronation of SCN
groups changes the nature of both the S1 and T1 states to (L + M)LCT d,p(M, P) → π(phosphine). The
localization of the excited states on the aromatic systems of the
phosphine ligands determines a wide range of luminescence energies
achieved for the title complexes (λem varies from
448 nm for 1 to 630 nm for 10c). The emission
of compounds 10 and 15, based on the P4 ligand, strongly depends on the
solid-state packing (λem = 505 and 625 nm for two
crystalline forms of 15), which affects structural reorganizations
accompanying the formation of electronically excited states. Copper(I) and silver(I) thiocyanate complexes containing di-, tri-,
and tetraphosphine ligands show efficient TADF in the solid state,
dominated by the ligand to ligand SCN → π(phosphine)
charge transfer, which is changed to d,p(M, P) → π(phosphine)
transitions for the isothiocyanatoborate derivatives. The wide variation
of the emission color from blue (448 nm) to red-orange (630 nm) is
attributed to the nature of the P-donor ligands and the packing effects,
influencing structural distortions in the excited state.
Collapse
Affiliation(s)
| | - Toni Eskelinen
- Department of Chemistry , University of Eastern Finland , 80101 Joensuu , Finland
| | - Cecilia Degbe
- Department of Chemistry , University of Eastern Finland , 80101 Joensuu , Finland
| | - Andrey Belyaev
- Department of Chemistry , University of Eastern Finland , 80101 Joensuu , Finland
| | - Alexey S Melnikov
- Peter the Great St. Petersburg Polytechnic University , Polytechnicheskaya, 29 , 195251 St. Petersburg , Russia
| | - Elena V Grachova
- Institute of Chemistry , St. Petersburg State University , Universitetskiy pr. 26, Petergof , 198504 St. Petersburg , Russia
| | - Sergey P Tunik
- Institute of Chemistry , St. Petersburg State University , Universitetskiy pr. 26, Petergof , 198504 St. Petersburg , Russia
| | - Pipsa Hirva
- Department of Chemistry , University of Eastern Finland , 80101 Joensuu , Finland
| | - Igor O Koshevoy
- Department of Chemistry , University of Eastern Finland , 80101 Joensuu , Finland
| |
Collapse
|
21
|
Nicholas AD, Bullard RM, Pike RD, Patterson HH. Photophysical Investigation of Silver/Gold Dicyanometallates and Tetramethylammonium Networks: An Experimental and Theoretical Investigation. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201801407] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Aaron D. Nicholas
- Department of Chemistry University of Maine 5706 Orono, ME 04469‐ USA
| | - Rebeka M. Bullard
- Department of Chemistry University of Maine 5706 Orono, ME 04469‐ USA
| | - Robert D. Pike
- Department of Chemistry College of William and Mary 8795 Williamsburg, VA 23187‐ USA
| | | |
Collapse
|
22
|
Zhu N, Wang G, Lin S, Li ZF, Xin XL, Yang YP, Liu M, Jin QH. New discovery in crystallography: correlation of terahertz time-domain spectra with crystal structures and photoluminescence properties of mononuclear/binuclear diimine–Cu(i)-phosphine complexes. CrystEngComm 2019. [DOI: 10.1039/c9ce00729f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A method was provided for qualitatively determining the photoluminescence quantum yield of diimine–Cu(i) complex by the waveform of terahertz time-domain spectroscopy.
Collapse
Affiliation(s)
- Ning Zhu
- Department of Chemistry
- Capital Normal University
- Beijing 100048
- China
- State Key Laboratory of Structural Chemistry
| | - Guo Wang
- Department of Chemistry
- Capital Normal University
- Beijing 100048
- China
| | - Sen Lin
- Department of Chemistry
- Capital Normal University
- Beijing 100048
- China
| | - Zhong-Feng Li
- Department of Chemistry
- Capital Normal University
- Beijing 100048
- China
| | - Xiu-Lan Xin
- School of Food and Chemical Engineering
- Beijing Technology and Business University
- Beijing 100048
- China
| | - Yu-Ping Yang
- School of Science
- Minzu University of China
- Beijing 100081
- China
| | - Min Liu
- The College of Materials Science and Engineering
- Beijing Univerity of Technology
- Beijing 100022
- China
| | - Qiong-Hua Jin
- Department of Chemistry
- Capital Normal University
- Beijing 100048
- China
- State Key Laboratory of Structural Chemistry
| |
Collapse
|
23
|
Pan ZB, Wang YC, Chakkaradhari G, Zhu JF, He RY, Liu YC, Hsu CH, Koshevoy IO, Chou PT, Pan SW, Ho ML. A silver metal complex as a luminescent probe for enzymatic sensing of glucose in blood plasma and urine. Dalton Trans 2018; 47:8346-8355. [PMID: 29896594 DOI: 10.1039/c8dt00500a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this work, we present a facile preparation of a paper-based glucose assay for rapid, sensitive, and quantitative measurement of glucose in blood plasma and urine. Two copper phosphorescent complexes [Cu(2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline)(2,6-dimethylphenylisocyanide)2][B(C6H3(CF3)2)4] (Cu1) and [Cu(2,9-dimethyl-1,10-phenanthroline)(2,6-dimethylphenylisocyanide)2][B(C6H3(CF3)2)4] (Cu2) and a new silver congener [Ag(P3)CNAg(P3)][B(C6H3(CF3)2)4] (Ag3) (P3 = PPh2C6H4-PPh-C6H4PPh2 [bis(o-diphenylphosphinophenyl)phenylphosphine]) have been synthesized and their oxygen sensing abilities were investigated. The dimetallic phosphine-based Ag3 complex, having a high oxygen sensing ability, was employed as an efficient signal transducer in enzymatic reactions to recognize blood plasma glucose and urine glucose, which provided a wide linear response for a concentration range between 1.0 and 35 mM and a rapid response, with a limit of detection (LOD) of 0.09 mM for glucose. In practical application, this Ag3 paper-based device offers great analytical reliability and accuracy upon monitoring glucose concentrations in blood plasma.
Collapse
Affiliation(s)
- Zheng-Bang Pan
- Department of Chemistry, Soochow University, No. 70, LinShih Rd, Shih-Lin, Taipei 11102, Taiwan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Bennett MA, Bhargava SK, Mirzadeh N, Privér SH. The use of [2-C 6 R 4 PPh 2 ] − (R = H, F) and related carbanions as building blocks in coordination chemistry. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
25
|
Osawa M, Aino MA, Nagakura T, Hoshino M, Tanaka Y, Akita M. Near-unity thermally activated delayed fluorescence efficiency in three- and four-coordinate Au(i) complexes with diphosphine ligands. Dalton Trans 2018; 47:8229-8239. [PMID: 29756141 DOI: 10.1039/c8dt01097h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The synthesis and photoluminescence properties of three-coordinate Au(i) complexes with rigid diphosphine ligands LMe {1,2-bis[bis(2-methylphenyl)phosphino]benzene}, LEt {1,2-bis[bis(2-ethylphenyl)phosphino]benzene}, and LiPr {1,2-bis[bis(2-isopropylphenyl)phosphino]benzene} are investigated. The LMe and LEt ligands afford two types of complexes: dinuclear complexes [μ-LMe(AuCl)2] (1d) and [μ-LEt(AuCl)2] (2d) with an Au(i)-Au(i) bond and mononuclear three-coordinate Au(i) complexes LMeAuCl (1) and LEtAuCl (2). On the other hand, the bulkiest ligand, LiPr, affords three-coordinate Au(i) complexes, LiPrAuCl (3) and LiPrAuI (4), but no dinuclear complexes. X-ray analysis suggests that both 3 and 4 possess a highly distorted trigonal planar geometry. Moreover, luminescence data reveal that at room temperature, 3 and 4 exhibit yellow-green thermally activated delayed fluorescence in the crystalline state with maximum emission wavelengths at 558 and 549 nm, respectively. The emission yields are close to unity. Quantum chemical calculations suggest that the emission of 4 originates from the (σ + X) → π* excited state that possesses strong intraligand charge-transfer character. The luminescent properties of four-coordinate Au(i) complex (5) possessing a tetrahedral geometry are discussed on the basis of the emission spectra and decay times measured in a temperature range of 309-77 K.
Collapse
Affiliation(s)
- Masahisa Osawa
- Department of Applied Chemistry, Nippon Institute of Technology, Gakuendai 4-1, Miyashiro-Machi, Saitama, 345-8501, Japan.
| | - Masa-Aki Aino
- Department of Applied Chemistry, Nippon Institute of Technology, Gakuendai 4-1, Miyashiro-Machi, Saitama, 345-8501, Japan.
| | - Takaki Nagakura
- Department of Applied Chemistry, Nippon Institute of Technology, Gakuendai 4-1, Miyashiro-Machi, Saitama, 345-8501, Japan.
| | - Mikio Hoshino
- Department of Applied Chemistry, Nippon Institute of Technology, Gakuendai 4-1, Miyashiro-Machi, Saitama, 345-8501, Japan.
| | - Yuya Tanaka
- Laboratory for Chemistry and Life Science Institute of Innovative Research, Tokyo Institute of Technology, R1-27, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Munetaka Akita
- Laboratory for Chemistry and Life Science Institute of Innovative Research, Tokyo Institute of Technology, R1-27, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| |
Collapse
|
26
|
Luo SP, Lei JM, Zhan SZ. Synthesis, characterization, luminescent, and catalytic performance of a dinuclear triazenido–silver complex. J COORD CHEM 2018. [DOI: 10.1080/00958972.2018.1457788] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Su-Ping Luo
- College of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Jia-Mei Lei
- College of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Shu-Zhong Zhan
- College of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
27
|
Luo SP, Lei JM, Zhan SZ. Synthesis, characterization, luminescent and catalytic performance of a dinuclear triazenido‑copper(I) complex. INORG CHEM COMMUN 2018. [DOI: 10.1016/j.inoche.2018.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Chan KC, Cheng SC, Lo LTL, Yiu SM, Ko CC. Luminescent Charge-Neutral Copper(I) Phenanthroline Complexes with Isocyanoborate Ligand. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201701205] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kin-Cheung Chan
- Department of Chemistry; City University of Hong Kong; Tat Chee Avenue Kowloon Hong Kong China
| | - Shun-Cheung Cheng
- Department of Chemistry; City University of Hong Kong; Tat Chee Avenue Kowloon Hong Kong China
| | - Larry Tso-Lun Lo
- Department of Chemistry; City University of Hong Kong; Tat Chee Avenue Kowloon Hong Kong China
| | - Shek-Man Yiu
- Department of Chemistry; City University of Hong Kong; Tat Chee Avenue Kowloon Hong Kong China
| | - Chi-Chiu Ko
- Department of Chemistry; City University of Hong Kong; Tat Chee Avenue Kowloon Hong Kong China
| |
Collapse
|
29
|
Glebko N, Dau TM, Melnikov AS, Grachova EV, Solovyev IV, Belyaev A, Karttunen AJ, Koshevoy IO. Luminescence Thermochromism of Gold(I) Phosphane-Iodide Complexes: A Rule or an Exception? Chemistry 2018; 24:3021-3029. [DOI: 10.1002/chem.201705544] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Nina Glebko
- Department of Chemistry; University of Eastern Finland; Yliopistokatu 7 Joensuu Finland
| | - Thuy Minh Dau
- Department of Chemistry; University of Eastern Finland; Yliopistokatu 7 Joensuu Finland
| | - Alexei S. Melnikov
- Peter the Great St. Petersburg Polytechnic University; Polytechnicheskaya, 29 St. Petersburg Russia
| | - Elena V. Grachova
- Institute of Chemistry; St. Petersburg State University; 26 Universitetskiy pr. Petergof, St. Petersburg Russia
| | - Igor V. Solovyev
- Institute of Chemistry; St. Petersburg State University; 26 Universitetskiy pr. Petergof, St. Petersburg Russia
| | - Andrey Belyaev
- Department of Chemistry; University of Eastern Finland; Yliopistokatu 7 Joensuu Finland
- Institute of Chemistry; St. Petersburg State University; 26 Universitetskiy pr. Petergof, St. Petersburg Russia
| | - Antti J. Karttunen
- Department of Chemistry and Materials Science; Aalto University; 00076 Aalto Finland
| | - Igor O. Koshevoy
- Department of Chemistry; University of Eastern Finland; Yliopistokatu 7 Joensuu Finland
| |
Collapse
|
30
|
Jobbágy C, Baranyai P, Szabó P, Holczbauer T, Rácz B, Li L, Naumov P, Deák A. Unexpected formation of a fused double cycle trinuclear gold(i) complex supported by ortho-phenyl metallated aryl-diphosphine ligands and strong aurophilic interactions. Dalton Trans 2018; 45:12569-75. [PMID: 27439467 DOI: 10.1039/c6dt01528j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first homoleptic trinuclear arylgold(i) complex, [Au3(L')2](NO3) (3), based on an ortho-phenyl metallated aryl-diphosphine ligand (L' = o-C6H4PPh(C15H10O)PPh2), has been obtained through a new thermolytic reaction of the corresponding diauracycle, [Au2(L)2](NO3)2 (L = xantphos). The formation of 3 involves activation of the ortho-phenyl C-H bond of the xantphos ligands. The presence of Au-C bonds in this new gold-diphosphine cluster is not its only remarkable feature, since it also displays two 12-membered rings fused together and a linear {Au3} chain with aurophilic interactions. Complex 3 exhibits strong sky-blue luminescence that can be assigned to a triplet metal-metal ((3)MM) transition partially mixed with a ligand-to-metal-metal charge transfer ((3)LMMCT) transition related to the aurophilic bonding. This [Au3(L')2](+) triauracycle also shows AIEE-activity, and is a selective luminescent chemosensor for metal ions.
Collapse
Affiliation(s)
- Csaba Jobbágy
- Hungarian Academy of Sciences, MTA TTK SZKI, "Lendület" Supramolecular Chemistry Research Group, Magyar Tudósok körútja 2, 1117 Budapest, Hungary.
| | - Péter Baranyai
- Hungarian Academy of Sciences, MTA TTK SZKI, "Lendület" Supramolecular Chemistry Research Group, Magyar Tudósok körútja 2, 1117 Budapest, Hungary.
| | - Pál Szabó
- Hungarian Academy of Sciences, MTA TTK SZKI, MS Metabolomics Research Group, Magyar Tudósok körútja 2, 1117 Budapest, Hungary
| | - Tamás Holczbauer
- Hungarian Academy of Sciences, MTA TTK SZKI, Chemical Crystallography Research Group, Magyar Tudósok körútja 2, 1117 Budapest, Hungary
| | - Barbara Rácz
- Hungarian Academy of Sciences, MTA TTK SZKI, "Lendület" Supramolecular Chemistry Research Group, Magyar Tudósok körútja 2, 1117 Budapest, Hungary.
| | - Liang Li
- New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates.
| | - Panče Naumov
- New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates.
| | - Andrea Deák
- Hungarian Academy of Sciences, MTA TTK SZKI, "Lendület" Supramolecular Chemistry Research Group, Magyar Tudósok körútja 2, 1117 Budapest, Hungary.
| |
Collapse
|
31
|
Neshat A, Varestan S, Halvagar MR. Cu(i) complexes of dihydrobis(2-mercapto-benzimidazolyl)borate and dihydrobis(2-mercapto-benzothiazolyl)borate ligands: structural, photophysical and computational studies. NEW J CHEM 2018. [DOI: 10.1039/c7nj03521g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Thermochromic behavior of complex 3 at 77 K.
Collapse
Affiliation(s)
- Abdollah Neshat
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS)
- Yousef Sobouti Blvd
- Zanjan 45137-66731
- Iran
| | - Solmaz Varestan
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS)
- Yousef Sobouti Blvd
- Zanjan 45137-66731
- Iran
| | - Mohammad Reza Halvagar
- Department of Inorganic Chemistry
- Chemistry and Chemical Engineering Research Center of Iran
- Tehran
- Iran
| |
Collapse
|
32
|
Belyaev A, Eskelinen T, Dau TM, Ershova YY, Tunik SP, Melnikov AS, Hirva P, Koshevoy IO. Cyanide-Assembled d10
Coordination Polymers and Cycles: Excited State Metallophilic Modulation of Solid-State Luminescence. Chemistry 2017; 24:1404-1415. [DOI: 10.1002/chem.201704642] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Andrey Belyaev
- Department of Chemistry; University of Eastern Finland; Yliopistokatu 7 Joensuu Finland
| | - Toni Eskelinen
- Department of Chemistry; University of Eastern Finland; Yliopistokatu 7 Joensuu Finland
| | - Thuy Minh Dau
- Department of Chemistry; University of Eastern Finland; Yliopistokatu 7 Joensuu Finland
| | - Yana Yu. Ershova
- Department of Chemistry; University of Eastern Finland; Yliopistokatu 7 Joensuu Finland
| | - Sergey P. Tunik
- Institute of Chemistry; St.-Petersburg State University; 26 Universitetskiy pr., Petergof St.-Petersburg Russia
| | - Alexei S. Melnikov
- Peter the Great St.-Petersburg Polytechnic University; Polytechnicheskaya, 29 St.-Petersburg Russia
| | - Pipsa Hirva
- Department of Chemistry; University of Eastern Finland; Yliopistokatu 7 Joensuu Finland
| | - Igor O. Koshevoy
- Department of Chemistry; University of Eastern Finland; Yliopistokatu 7 Joensuu Finland
| |
Collapse
|
33
|
Xue D, Luo S, Zhan S. Synthesis, characterization and electrocatalytic performance of a dinuclear triazenidosilver(I) complex for hydrogen production. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.3997] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dan Xue
- College of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou 510640 China
| | - Su‐Ping Luo
- College of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou 510640 China
| | - Shu‐Zhong Zhan
- College of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou 510640 China
| |
Collapse
|
34
|
Hu J, Yang F, Zhao J. Cd and Hg coordination complexes based on a heterocyclic multidentate ligand: Synthesis, structures and photoluminescence properties. JOURNAL OF CHEMICAL RESEARCH 2017. [DOI: 10.3184/174751917x14925986241052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The complexes [Cd(cpbi)Cl2]·(H2O), [Hg2(cpbi)2Cl4] and [Hg(cpbi)Br2] (cpbi = [5-chloro-2-(pyrazin-2-yl)-1H-benzoimidazole]) have been synthesised using solvent evaporation reactions and structurally characterised by single-crystal X-ray diffraction. The first complex displays a one-dimensional (1-D) chain structure, the second has a binuclear structure, while the third is mononuclear. The complexes show different luminescence properties.
Collapse
Affiliation(s)
- Jiyong Hu
- College of Material and Chemical Engineering, Henan University of Urban Construction, Pingdingshan 467036, Henan, P.R. China
| | - Fan Yang
- College of Material and Chemical Engineering, Henan University of Urban Construction, Pingdingshan 467036, Henan, P.R. China
| | - Jin'an Zhao
- College of Material and Chemical Engineering, Henan University of Urban Construction, Pingdingshan 467036, Henan, P.R. China
| |
Collapse
|
35
|
Schneider L, Sivchik V, Chung KY, Chen YT, Karttunen AJ, Chou PT, Koshevoy IO. Cyclometalated Platinum(II) Cyanometallates: Luminescent Blocks for Coordination Self-Assembly. Inorg Chem 2017; 56:4460-4468. [PMID: 28358479 DOI: 10.1021/acs.inorgchem.7b00006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A family of cyanide-bridged heterometallic aggregates has been constructed of the chromophoric cycloplatinated metalloligands and coordinatively unsaturated d10 fragments {M(PPh3)n}. The tetranuclear complexes of general composition [Pt(C^N)(CN)2M(PPh3)2]2 [C^N = ppy, M = Cu (1), Ag (2); C^N = tolpy (Htolpy = 2-(4-tolyl)-pyridine), M = Cu (4), Ag (5); C^N = F2ppy (HF2ppy = 2-(4, 6-difluorophenyl)-pyridine), M = Cu (7), Ag (8)] demonstrate a squarelike arrangement of the molecular frameworks, which is achieved due to favorable coordination geometries of the bridging ligands and the metal ions. Variation of the amount of the ancillary phosphine (for M = Ag) afforded compounds [Pt(C^N)(CN)2Ag(PPh3)]2 (C^N = ppy, 3; C^N = tolpy, 6); for the latter one an alternative cluster topology, stabilized by the Pt-Ag metallophilic and η1-Cipso(C^N)-Ag bonding, was observed. The solid-state structures of all of the title species 1-8 were determined crystallographically. The complexes exhibit moderately strong room-temperature phosphorescence as crystalline powders (Φem = 16-34%, λem = 470-511 nm). The luminescence studies and time-dependent density functional theory computational analysis indicate that the photophysical behavior is dominated by the 3π-π* electronic transitions localized on the cyclometalated fragment and mixed with MPtLCT contribution, while the d10-phosphine motifs have a negligible contribution into the frontier orbitals and therefore show a little influence on the emission performance of the described compounds.
Collapse
Affiliation(s)
- Leon Schneider
- Institut für Anorganische Chemie, Julius-Maximilians-Universität , Würzburg, Germany.,Department of Chemistry, University of Eastern Finland , 80101 Joensuu, Finland
| | - Vasily Sivchik
- Department of Chemistry, University of Eastern Finland , 80101 Joensuu, Finland
| | - Kun-You Chung
- Department of Chemistry, National Taiwan University , Taipei 106, Taiwan
| | - Yi-Ting Chen
- Department of Chemistry, National Taiwan University , Taipei 106, Taiwan
| | | | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University , Taipei 106, Taiwan
| | - Igor O Koshevoy
- Department of Chemistry, University of Eastern Finland , 80101 Joensuu, Finland
| |
Collapse
|
36
|
Gong WJ, Yao R, Li HX, Ren ZG, Zhang JG, Lang JP. Luminescent cadmium(ii) coordination polymers of 1,2,4,5-tetrakis(4-pyridylvinyl)benzene used as efficient multi-responsive sensors for toxic metal ions in water. Dalton Trans 2017; 46:16861-16871. [DOI: 10.1039/c7dt03876c] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
One luminescent cadmium(ii) coordination polymer of 1,2,4,5-tetrakis(4-pyridylvinyl)benzene works as an efficient multi-responsive sensor for Hg2+, CrO42− and Cr2O72− in water.
Collapse
Affiliation(s)
- Wei-Jie Gong
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- People's Republic of China
| | - Rui Yao
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- People's Republic of China
| | - Hong-Xi Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- People's Republic of China
| | - Zhi-Gang Ren
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- People's Republic of China
| | - Jian-Guo Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- People's Republic of China
| | - Jian-Ping Lang
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- People's Republic of China
| |
Collapse
|
37
|
Osawa M, Hashimoto M, Kawata I, Hoshino M. Photoluminescence properties of TADF-emitting three-coordinate silver(i) halide complexes with diphosphine ligands: a comparison study with copper(i) complexes. Dalton Trans 2017; 46:12446-12455. [DOI: 10.1039/c7dt02460f] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A series of three- and four-coordinate silver(i) halide complexes exhibiting efficient blue thermally activated delayed fluorescence have been prepared.
Collapse
Affiliation(s)
| | | | - Isao Kawata
- Luminescent Materials Laboratory
- Wako-Shi 351-0198
- Japan
| | - Mikio Hoshino
- Luminescent Materials Laboratory
- Wako-Shi 351-0198
- Japan
| |
Collapse
|
38
|
Durini S, Ardizzoia GA, Therrien B, Brenna S. Tuning the fluorescence emission in mononuclear heteroleptic trigonal silver(i) complexes. NEW J CHEM 2017. [DOI: 10.1039/c6nj04058f] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mononuclear heteroleptic trigonal planar silver(i) complexes have been prepared and characterized, both in solution and in the solid state. Their luminescent behavior was investigated, showing a tunable emission maxima according to the electronic properties of the phosphorous ligand, in the solid state.
Collapse
Affiliation(s)
- Sara Durini
- Universität Leipzig
- Fakultät für Chemie und Mineralogie
- Institut für Anorganische Chemie
- D-04103 Leipzig
- Germany
| | - G. Attilio Ardizzoia
- Department of Science and High Technology and CIRCC
- University of Insubria
- 22100 Como
- Italy
| | - Bruno Therrien
- Institute of Chemistry
- University of Neuchâtel
- CH-2000 Neuchâtel
- Switzerland
| | - Stefano Brenna
- Department of Science and High Technology and CIRCC
- University of Insubria
- 22100 Como
- Italy
| |
Collapse
|
39
|
Tang LZ, Lin CN, Zhan SZ, Xie XH. Synthesis and properties of an unexpected trinuclear copper(I) complex supported by diphenylphosphinomethane. INORG CHEM COMMUN 2016. [DOI: 10.1016/j.inoche.2016.04.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Dau TM, Asamoah BD, Belyaev A, Chakkaradhari G, Hirva P, Jänis J, Grachova EV, Tunik SP, Koshevoy IO. Adjustable coordination of a hybrid phosphine–phosphine oxide ligand in luminescent Cu, Ag and Au complexes. Dalton Trans 2016; 45:14160-73. [DOI: 10.1039/c6dt02435a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mixed-donor ligand shows variable binding ability with respect to d10 metal ions to afford a series of mono- and dinuclear complexes with tunable photophysical characteristics.
Collapse
Affiliation(s)
- Thuy Minh Dau
- Department of Chemistry
- University of Eastern Finland
- Joensuu
- Finland
| | | | - Andrey Belyaev
- Department of Chemistry
- University of Eastern Finland
- Joensuu
- Finland
| | | | - Pipsa Hirva
- Department of Chemistry
- University of Eastern Finland
- Joensuu
- Finland
| | - Janne Jänis
- Department of Chemistry
- University of Eastern Finland
- Joensuu
- Finland
| | | | | | - Igor O. Koshevoy
- Department of Chemistry
- University of Eastern Finland
- Joensuu
- Finland
| |
Collapse
|
41
|
El Sayed Moussa M, Evariste S, Wong HL, Le Bras L, Roiland C, Le Polles L, Le Guennic B, Costuas K, Yam VWW, Lescop C. A solid state highly emissive Cu(i) metallacycle: promotion of cuprophilic interactions at the excited states. Chem Commun (Camb) 2016; 52:11370-11373. [DOI: 10.1039/c6cc06613e] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The supramolecular synthesis of an original thermochromic metal-rich Cu(i) metallacycle (quantum yield 72% at RT) is reported. Important geometrical changes reinforcing cuprophilic interactions are calculated at the excited states.
Collapse
Affiliation(s)
- M. El Sayed Moussa
- Institut des Sciences Chimiques de Rennes
- UMR 6226 CNRS-Université de Rennes 1
- 35042 Rennes Cedex
- France
| | - S. Evariste
- Institut des Sciences Chimiques de Rennes
- UMR 6226 CNRS-Université de Rennes 1
- 35042 Rennes Cedex
- France
| | - H.-L. Wong
- Institute of Molecular Functional Materials [Areas of Excellencce Scheme, University Grants Committee (Hong Kong)] and Department of Chemistry
- The University of Hong Kong
- P. R. China
| | - L. Le Bras
- Institut des Sciences Chimiques de Rennes
- UMR 6226 CNRS-Université de Rennes 1
- 35042 Rennes Cedex
- France
| | - C. Roiland
- Institut des Sciences Chimiques de Rennes
- UMR 6226 CNRS-ENSCR
- 35708 Rennes
- France
| | - L. Le Polles
- Institut des Sciences Chimiques de Rennes
- UMR 6226 CNRS-ENSCR
- 35708 Rennes
- France
| | - B. Le Guennic
- Institut des Sciences Chimiques de Rennes
- UMR 6226 CNRS-Université de Rennes 1
- 35042 Rennes Cedex
- France
| | - K. Costuas
- Institut des Sciences Chimiques de Rennes
- UMR 6226 CNRS-Université de Rennes 1
- 35042 Rennes Cedex
- France
| | - V. W.-W. Yam
- Institute of Molecular Functional Materials [Areas of Excellencce Scheme, University Grants Committee (Hong Kong)] and Department of Chemistry
- The University of Hong Kong
- P. R. China
| | - C. Lescop
- Institut des Sciences Chimiques de Rennes
- UMR 6226 CNRS-Université de Rennes 1
- 35042 Rennes Cedex
- France
| |
Collapse
|