1
|
Maahs AC, Borg GC, Ghazzali M, Soldatov DV, Rouzières M, Clérac R, Preuss KE. Supramolecular Spin Chains via Radical-Radical Contacts Stabilizing Ferromagnetic Interactions Between Heisenberg or Ising-Like Spins. Chemistry 2024; 30:e202403220. [PMID: 39352681 DOI: 10.1002/chem.202403220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Indexed: 11/08/2024]
Abstract
A new paramagnetic ligand, 4-(2'-4-(2''-furyl)-pyrimidyl)-1,2,3,5-dithiadiazolyl (furylpymDTDA) and three transition metal coordination complexes, M(hfac)2(furylpymDTDA) M=Mn, Co, Ni; hfac=1,1,1,5,5,5-hexafluoroacetylacetonato-), are reported. The solid-state structures are influenced by the geometry of the coordination sphere of the M(II) centers: trigonal (Mn) vs. octahedral (Co and Ni). While the hs-Mn(II) complex exhibits pairwise multi-centre 2-electron bonds (i. e., pancake bonds) between the planar π radical DTDA moieties, the hs-Co(II) and Ni(II) complexes crystallize with close contacts between coordinated furylpymDTDA radical ligands that define linear 1D arrays of molecular units. The magnetic data for the hs-Co(II) and Ni(II) complexes indicate ferromagnetic (FM) interactions between molecular units, apparently mediated by radical-radical contacts along the supramolecular chains. Computational analysis suggests proximity between regions of large α- and β-spin density on neighbouring molecular sites enabling FM exchange, in accordance with the McConnell I mechanism. The magnetic data for the Ni(II) complex are consistent with a Heisenberg spin chain, whereas the hs-Co(II) complex exhibits Ising-like spin chain behaviour and a magnetic phase transition to an FM ordered state at 4.6 K.
Collapse
Affiliation(s)
- Adam C Maahs
- Department of Chemistry, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Genievieve C Borg
- Department of Chemistry, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Mohamed Ghazzali
- Department of Chemistry, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Dmitriy V Soldatov
- Department of Chemistry, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | | | - Rodolphe Clérac
- Univ. Bordeaux, CNRS, CRPP, UMR 5031, F-33600, Pessac, France
| | - Kathryn E Preuss
- Department of Chemistry, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
2
|
Bhowmik S, Sengupta A, Mukherjee R. Ni(II) and Pd(II) complexes of a new redox-active pentadentate azo-appended 2-aminophenol ligand: Pd(II)-assisted intraligand cyclization forms a phenoxazinyl ring. Dalton Trans 2024; 53:14046-14064. [PMID: 39109537 DOI: 10.1039/d4dt01513d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Square planar complexes of Ni(II) and Pd(II) of a new redox-active pentadentate azo-appended 2-aminophenol ligand (H4L = N,N'-bis(2-hydroxy-3,5-di-tert-butylphenyl)-2,2'-diamino-ortho-azobenzene) in three accessible redox levels [amidophenolate(2-), semiquinonate(1-) π radical, and quinone(0)] were synthesized. The coordinated HL(3-) ligand provides four donor sites [two N(iminophenolates), an N'(azo), and an O(phenolate)], while the phenolic OH group remains free in the three complexes. Cyclic voltammetry on complex [Ni(L)] 1 and its corresponding Pd(II) analogue [Pd(L)] 2 in CH2Cl2 displayed three redox responses (two oxidative at E1/2 = 0.06 V and Epa (anodic peak potential) = 0.80 V and one reductive at -0.77 V for 1 and at E1/2 = 0.08 V and Epa = 0.85 V and at -0.74 V for 2vs. Fc+/Fc). The chemical oxidation of 1 with AgSbF6 afforded [Ni(L)]SbF6·2CH2Cl2 (3·2CH2Cl2). Complex [Pd(L*)] 4, which is coordinated by a phenoxazinyl derivative of L(4-), was obtained via intraligand cyclization in the parent complex 2 under basic oxidizing conditions. The molecular structures of 1, 2, 3·2CH2Cl2 and 4 were elucidated through X-ray crystallography at 100 K. Characterization using 1H NMR, X-band EPR, and UV-VIS-NIR spectroscopy established that the complexes have [NiII{(LISQ)˙2-}] 1, [PdII{(LISQ)˙2-}] 2, [NiII{(LIBQ)-}]SbF6/1+SbF6-(3), and [PdII{(L*AP)˙2-}] 4 electronic states. Complexes 1, 2, and 4 possess paramagnetic St (total spin) = 1/2 ground-state, whereas 3 is diamagnetic (St = 0). Density functional theory (DFT) electronic structural calculations at the B3LYP level rationalized the observed experimental results. Time-dependent (TD)-DFT calculations allowed us to identify the nature of the observed absorption spectra.
Collapse
Affiliation(s)
- Saumitra Bhowmik
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Arunava Sengupta
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad, Jharkhand 826004, India
| | - Rabindranath Mukherjee
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India.
| |
Collapse
|
3
|
Lehtonen A. Metal Complexes of Redox Non-Innocent Ligand N, N'-Bis(3,5-di- tertbutyl-2-hydroxy-phenyl)-1,2-phenylenediamine. Molecules 2024; 29:1088. [PMID: 38474599 DOI: 10.3390/molecules29051088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Redox non-innocent ligands react with metal precursors to form complexes where the oxidation states of the ligand and thus the metal atom cannot be easily defined. A well-known example of such ligands is bis(o-aminophenol) N,N'-bis(3,5-di-tertbutyl-2-hydroxy-phenyl)-1,2-phenylenediamine, previously developed by the Wieghardt group, which has a potentially tetradentate coordination mode and four distinct protonation states, whereas its electrochemical behavior allows for five distinct oxidation states. This rich redox chemistry, as well as the ability to coordinate to various transition metals, has been utilized in the syntheses of metal complexes with M2L, ML and ML2 stoichiometries, sometimes supported with other ligands. Different oxidation states of the ligand can adopt different coordination modes. For example, in the fully oxidized form, two N donors are sp2-hybridized, which makes the ligand planar, whereas in the fully reduced form, the sp3-hybridized N donors allow the formation of more flexible chelate structures. In general, the metal can be reduced during complexation, but redox processes of the isolated complexes typically occur on the ligand. Combination of this non-innocent ligand with redox-active transition metals may lead to complexes with interesting magnetic, electrochemical, photonic and catalytic properties.
Collapse
Affiliation(s)
- Ari Lehtonen
- Intelligent Materials Chemistry Research Group, Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
4
|
Molecular and Electronic Structures, Spectra, Electrochemistry and Anti‐bacterial Efficacy of Novel Heterocyclic Hydrazones of Phenanthrenequinone and Their Nickel(II) Complexes. ChemistrySelect 2022. [DOI: 10.1002/slct.202202151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Mukhopadhyay N, Sengupta A, Vijay AK, Lloret F, Mukherjee R. Ni(II) complexes of a new tetradentate NN'N''O picolinoyl-1,2-phenylenediamide-phenolate redox-active ligand at different redox levels. Dalton Trans 2022; 51:9017-9029. [PMID: 35638812 DOI: 10.1039/d2dt01043g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Three square planar nickel(II) complexes of a new asymmetric tetradentate redox-active ligand H3L2 in its deprotonated form, at three redox levels, open-shell semiquinonate(1-) π radical, quinone(0) and closed-shell dianion of its 2-aminophenolate part, have been synthesized. The coordinated ligand provides N (pyridine) and N' and N'' (carboxamide and 1,2-phenylenediamide, respectively) and O (phenolate) donor sites. Cyclic voltammetry on the parent complex [Ni(L2)] 1 in CH2Cl2 established a three-membered electron-transfer series (oxidative response at E1/2 = 0.57 V and reductive response at -0.32 V vs. SCE) consisting of neutral, monocationic and monoanionic [Ni(L2)]z (z = 0, 1+ and 1-). Oxidation of 1 with AgSbF6 affords [Ni(L2)](SbF6) (2) and reduction of 1 with cobaltocene yields [Co(η5-C5H5)2][Ni(L2)] (3). The molecular structures of 1·CH3CN, 2·0.5CH2Cl2 and 3·C6H6 have been determined by X-ray crystallography at 100 K. Characterization by 1H NMR, X-band EPR (gav = 2.006 (solid); 2.008 (CH2Cl2-C6H5CH3 glass); 80 K) and UV-VIS-NIR spectral properties established that 1, 2 and 3 have [NiII{(L2)˙2-}], [NiII{(L2)-}]+/1+ and [NiII{(L2)3-}]-/1- electronic states, respectively. Thus, the redox processes are ligand-centred. While 1 possesses paramagnetic St (total spin) = 1/2, 2 and 3 possess diamagnetic ground-state St = 0. Interestingly, the variable-temperature (2-300 K) magnetic measurement reveals that 1 with the St = 1/2 ground state attains the antiferromagnetic St = 0 state at a very low temperature, due to weak noncovalent interactions via π-π stacking. Density functional theory (DFT) electronic structural calculations at the B3LYP level of theory rationalized the experimental results. In the UV-VIS-NIR spectra, broad absorptions are recorded for 1 and 2 in the range of 800-1600 nm; however, such an absorption is absent for 3. Time-dependent (TD)-DFT calculations provide a very good fit with the experimental spectra and allow us to identify the observed electronic transitions.
Collapse
Affiliation(s)
- Narottam Mukhopadhyay
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741 246, India
| | - Arunava Sengupta
- Department of Chemistry, Techno India University, West Bengal, Kolkata 700091, India
| | - Aswin Kottapurath Vijay
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741 246, India
| | - Francesc Lloret
- Departament de Química Inorgànica/Instituto de Ciencia Molecular (ICMOL), Universitat de València, Polígono de la Coma, s/n, 46980 Paterna, València, Spain
| | - Rabindranath Mukherjee
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India.
| |
Collapse
|
6
|
Pashanova KI, Poddel'sky AI, Piskunov AV. Complexes of “late” transition metals of the 3d row based on functionalized o-iminobenzoquinone type ligands: Interrelation of molecular and electronic structure, magnetic behaviour. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214399] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
7
|
Ali A, Bhowmik S, Barman SK, Mukhopadhyay N, Glüer Nee Schiewer CE, Lloret F, Meyer F, Mukherjee R. Iron(III) Complexes of a Hexadentate Thioether-Appended 2-Aminophenol Ligand: Redox-Driven Spin State Switchover. Inorg Chem 2022; 61:5292-5308. [PMID: 35312298 DOI: 10.1021/acs.inorgchem.1c03992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A green complex [Fe(L3)] (1), supported by the deprotonated form of a hexadentate noninnocent redox-active thioether-appended 2-aminophenolate ligand (H4L3 = N,N'-bis(2-hydroxy-3,5-di-tert-butylphenyl)-2,2'-diamino(diphenyldithio)ethane), has been synthesized and structurally characterized at 100(2) K and 298(2) K. In CH2Cl2, 1 displays two oxidative and a reductive one-electron redox processes at E1/2 values of -0.52 and 0.20 V, and -0.85 V versus the Fc+/Fc redox couple, respectively. The one-electron oxidized 1+ and one-electron reduced 1- forms, isolated as a blackish-blue solid 1(PF6)·CH2Cl2 (2) and a gray solid [Co(η5-C5H5)2]1·DMF (3), have been structurally characterized at 100(2) K. Structural parameters at 100 K of the ligand backbone and metrical oxidation state values unambiguously establish the electronic states as [FeIII{(LAPO,N)2-}{(LISQO,N)•-}{(LS,S)0}] (1) (two tridentate halves are electronically asymmetric-ligand mixed-valency), [FeIII{(LISQO,N)•-}{(LISQO,N)•-}{(LS,S)0}]+ (1+), and [FeIII{(LAPO,N)2-}{(LAPO,N)2-}{(LS,S)0}]- (1-) [dianionic 2-amidophenolate(2-) (LAPO,N)2- and monoanionic 2-iminobenzosemiquinonate(1-) π-radical (Srad = 1/2) (LISQ)•- redox level]. Mössbauer spectral data of 1 at 295, 200, and 80 K reveal that it has a major low-spin (ls)-Fe(III) and a minor ls-Fe(II) component (redox isomers), and at 7 K, the major component exists exclusively. Thus, in 1, the occurrence of a thermally driven valence-tautomeric (VT) equilibrium (asymmetric) [FeIII{(LAPO,N)2-}{(LISQO,N)•-}{(LS,S)0}] ⇌ (symmetric) [FeII{(LISQO,N)•-}{(LISQO,N)•-}{(LS,S)0}] (80-295 K) is implicated. Mössbauer spectral parameters unequivocally establish that 1+ is a ls-Fe(III) complex. In contrast, the monoanion 1- contains a high-spin (hs)-Fe(III) center (SFe = 5/2), as is deduced from its Mössbauer and EPR spectra. Complexes 1-3 possess total spin ground states St = 0, 1/2, and 5/2, respectively, based on 1H NMR and EPR spectra, the variable-temperature (2-300 K) magnetic behavior of 2, and the μeff value of 3 at 300 K. Broken-symmetry density functional theory (DFT) calculations at the B3LYP-level of theory reveal that the unpaired electron in 1+/2 is due to the (LISQ)•- redox level [ls-Fe(III) (SFe = 1/2) is strongly antiferromagnetically coupled to one of the (LISQ)•- radicals (Srad = 1/2)], and 1-/3 is a hs-Fe(III) complex, supported by (L3)4- with two-halves in the (LAP)2- redox level. Complex 1 can have either a symmetric or asymmetric electronic state. As per DFT calculation, the former state is stabilized by -3.9 kcal/mol over the latter (DFT usually stabilizes electronically symmetric structure). Time-dependent (TD)-DFT calculations shed light on the origin of observed UV-vis-NIR spectral absorptions for 1-3 and corroborate the results of spectroelectrochemical experiments (300-1100 nm) on 1 (CH2Cl2; 298 K). Variable-temperature (218-298 K; CH2Cl2) absorption spectral (400-1000 nm) studies on 1 justify the presence of VT equilibrium in the solution-state.
Collapse
Affiliation(s)
- Akram Ali
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Saumitra Bhowmik
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Suman K Barman
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Narottam Mukhopadhyay
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | | | - Francesc Lloret
- Departament de Quımíca, Inorgànica/Instituto de Ciencia Molecular (ICMOL), Universitat de Valeńcia, Polígono de la Coma, s/n, Paterna, València 46980, Spain
| | - Franc Meyer
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| | | |
Collapse
|
8
|
Switchover from NiIIN2O2 to NiIIN2O2S2 coordination triggered by the redox behaviour of a non-innocent 2-aminophenolate ligand. J CHEM SCI 2021. [DOI: 10.1007/s12039-021-01961-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Molecular S = 2 High-Spin, S = 0 Low-Spin and S = 0 ⇄ 2 Spin-Transition/-Crossover Nickel(II)-Bis(nitroxide) Coordination Compounds. INORGANICS 2021. [DOI: 10.3390/inorganics9020010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Heterospin systems have a great advantage in frontier orbital engineering since they utilize a wide diversity of paramagnetic chromophores and almost infinite combinations and mutual geometries. Strong exchange couplings are expected in 3d–2p heterospin compounds, where the nitroxide (aminoxyl) oxygen atom has a direct coordination bond with a nickel(II) ion. Complex formation of nickel(II) salts and tert-butyl 2-pyridyl nitroxides afforded a discrete 2p–3d–2p triad. Ferromagnetic coupling is favored when the magnetic orbitals, nickel(II) dσ and radical π*, are arranged in a strictly orthogonal fashion, namely, a planar coordination structure is characterized. In contrast, a severe twist around the coordination bond gives an orbital overlap, resulting in antiferromagnetic coupling. Non-chelatable nitroxide ligands are available for highly twisted and practically diamagnetic complexes. Here, the Ni–O–N–Csp2 torsion (dihedral) angle is supposed to be a useful metric to describe the nickel ion dislocated out of the radical π* nodal plane. Spin-transition complexes exhibited a planar coordination structure in a high-temperature phase and a nonplanar structure in a low-temperature phase. The gradual spin transition is described as a spin equilibrium obeying the van’t Hoff law. Density functional theory calculation indicates that the energy level crossing of the high- and low-spin states. The optimized structures of diamagnetic and high-spin states well agreed with the experimental large and small torsions, respectively. The novel mechanism of the present spin transition lies in the ferro-/antiferromagnetic coupling switch. The entropy-driven mechanism is plausible after combining the results of the related copper(II)-nitroxide compounds. Attention must be paid to the coupling parameter J as a variable of temperature in the magnetic analysis of such spin-transition materials. For future work, the exchange coupling may be tuned by chemical modification and external stimulus, because it has been clarified that the parameter is sensitive to the coordination structure and actually varies from 2J/kB = +400 K to −1400 K.
Collapse
|
10
|
Das A, Jobelius H, Schleinitz J, Gamboa-Ramirez S, Creste G, Kervern G, Raya J, Le Breton N, Guénet A, Boubegtiten-Fezoua Z, Grimaud L, Orio M, Rogez G, Hellwig P, Choua S, Ferlay S, Desage-El Murr M. A hybrid bioinspired catechol-alloxazine triangular nickel complex stabilizing protons and electrons. Inorg Chem Front 2021. [DOI: 10.1039/d1qi01131f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A new class of redox-active ligands merging catechol and alloxazine structures is reported. A trimetallic triangular complex is formed upon complexation to nickel.
Collapse
Affiliation(s)
- Agnideep Das
- Université de Strasbourg, Institut de Chimie, CNRS UMR7177, 67000 Strasbourg, France
| | - Hannah Jobelius
- Université de Strasbourg, Institut de Chimie, CNRS UMR7177, 67000 Strasbourg, France
- Université de Strasbourg, Chimie de la Matière Complexe, CNRS UMR7140, 67000 Strasbourg, France
| | - Jules Schleinitz
- Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | | | - Geordie Creste
- Université de Strasbourg, Institut de Chimie, CNRS UMR7177, 67000 Strasbourg, France
| | - Gwendal Kervern
- Université de Lorraine, Faculté des Sciences, boulevard des Aiguillettes, CNRS UMR7036, BP 70239, 54506 Vandoeuvre-les-Nancy Cedex, France
| | - Jesus Raya
- Université de Strasbourg, Institut de Chimie, CNRS UMR7177, 67000 Strasbourg, France
| | - Nolwenn Le Breton
- Université de Strasbourg, Institut de Chimie, CNRS UMR7177, 67000 Strasbourg, France
| | - Aurélie Guénet
- Université de Strasbourg, Institut de Chimie, CNRS UMR7177, 67000 Strasbourg, France
| | | | - Laurence Grimaud
- Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Maylis Orio
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Guillaume Rogez
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS, UMR 7504, F-67000 Strasbourg, France
| | - Petra Hellwig
- Université de Strasbourg, Chimie de la Matière Complexe, CNRS UMR7140, 67000 Strasbourg, France
| | - Sylvie Choua
- Université de Strasbourg, Institut de Chimie, CNRS UMR7177, 67000 Strasbourg, France
| | - Sylvie Ferlay
- Université de Strasbourg, Chimie de la Matière Complexe, CNRS UMR7140, 67000 Strasbourg, France
| | - Marine Desage-El Murr
- Université de Strasbourg, Institut de Chimie, CNRS UMR7177, 67000 Strasbourg, France
| |
Collapse
|
11
|
Saha A, Rajput A, Gupta P, Mukherjee R. Probing the electronic structure of [Ru(L 1) 2] Z ( z = 0, 1+ and 2+) (H 2L 1: a tridentate 2-aminophenol derivative) complexes in three ligand redox levels. Dalton Trans 2020; 49:15355-15375. [PMID: 33135029 DOI: 10.1039/d0dt03074k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aerobic reaction between [RuII(DMSO)4Cl2], a redox-active 2-aminophenol-based ligand (H2L1: 2-[2-(benzylthio)phenylamino]-4,6-di-tert-butylphenol) and Et3N in MeOH under refluxing conditions afforded a purple complex [Ru(L1)2] (S = 0). Structural analysis reveals that the tridentate ligand coordinates in a mer conformation providing a distorted octahedral RuN2O2S2 coordination. Cyclic voltammetry on 1 in CH2Cl2 reveals the accessability of the monocation, dication and monoanion forms. Reddish purple monocation [Ru(L1)2](PF6)·CH2Cl2 ([1OX1](PF6)·CH2Cl2; S = 1/2) and green dication [Ru(L1)2](BF4)2·H2O ([1OX2](BF4)2·H2O; S = 0) have been isolated through the chemical oxidation of 1 in CH2Cl2 by [FeIII(η5-C5H5)2](PF6) and AgBF4, respectively. A structural analysis of the single crystals of the monocation and the dication with the compositions [1OX1](PF6)·CH2Cl2·H2O (2) and [1OX2](BF4)2·1.7H2O (3), respectively, has been done. Metrical (metal-ligand and ligand backbone) parameters, values of metrical oxidation states of coordinated ligands, 1H NMR spectra of 1 and [1OX2](BF4)2·H2O, EPR spectra of [1OX1](PF6)·CH2Cl2, X-ray photoelectron and UV-VIS-NIR spectra of 1-3, spin population analysis from broken-symmetry (BS) density functional theory (DFT) calculations and quasi-restricted orbital (QRO) analysis have allowed us to assign the electronic structure of the complexes. The complexes exhibit highly covalent metal-ligand interactions. The electronic states of 1, [1OX1]1+ and [1OX2]2+ are best described as [RuII{(LISQ)˙-}2] ↔ [RuIII{(LAP)2-}{(LISQ)˙-}] (S = 0), [RuIII{(LISQ)˙-}2]1+ (S = 1/2) and [RuII{(LIBQ)0}2]2+ ↔ [RuIII{(LISQ)˙-}{(LIBQ)0}]2+ (S = 0), respectively. Notably, all redox processes are ligand-centred. Absorption spectral properties have been rationalized based on time-dependent (TD)-DFT calculations. For 1, the appearance of an IVCT band at 1100 nm supports its Class II-III (borderline) ligand-based mixed-valence character.
Collapse
Affiliation(s)
- Anannya Saha
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741 246, India
| | - Amit Rajput
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, India. and Department of Chemistry, School of Basic and Applied Sciences, G. D. Goenka University, Sohna Road, Gurugram 122 103, Haryana, India
| | - Puneet Gupta
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247 667, India
| | | |
Collapse
|
12
|
Mukherjee R. Assigning Ligand Redox Levels in Complexes of 2-Aminophenolates: Structural Signatures. Inorg Chem 2020; 59:12961-12977. [PMID: 32881491 DOI: 10.1021/acs.inorgchem.0c00240] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The purpose of this Viewpoint is to provide a broad-ranging update of advances in the coordination chemistry of redox-active (noninnocent) 2-aminophenolates, with emphasis on two ligand backbone structural parameters, the average of C-O and C-N (C-O/N) bond distances and Δa values, signifying the degree of bond-length alternation in the six-membered ring, in order to identify the redox level of the coordinated ligands. In the absence of magnetic, spectroscopic, and redox results, it has been established that it is possible to assign the electronic ground state of a coordination complex of 2-aminophenolates with consideration of charge, metal-ligand bond distances, and two very promising ligand backbone structural parameters. From a closer look at the sensitive ligand backbone metrical parameters of a diversified group of about 120 transition-metal complexes, a few very useful generalizations have been made.
Collapse
|
13
|
Ito S, Ishida T. Practically Diamagnetic Macrocycle Consisting of Nickel-biradical Heterospins with the Largest Out-of-plane Torsion at Coordination Bonds. CHEM LETT 2020. [DOI: 10.1246/cl.200413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Saki Ito
- Department of Engineering Science, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
| | - Takayuki Ishida
- Department of Engineering Science, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
| |
Collapse
|
14
|
Nickel(II) derivatives based on o-iminobenzoquinone-type ligands: Structural modifications, magnetism and electrochemical peculiarities. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114610] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Ershova IV, Piskunov AV. Complexes of Group III Metals based on o-Iminoquinone Ligands. RUSS J COORD CHEM+ 2020. [DOI: 10.1134/s1070328420030021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Thorarinsdottir AE, Bjornsson R, Harris TD. Insensitivity of Magnetic Coupling to Ligand Substitution in a Series of Tetraoxolene Radical-Bridged Fe 2 Complexes. Inorg Chem 2020; 59:4634-4649. [PMID: 32196317 DOI: 10.1021/acs.inorgchem.9b03736] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The elucidation of magnetostructural correlations between bridging ligand substitution and strength of magnetic coupling is essential to the development of high-temperature molecule-based magnetic materials. Toward this end, we report the series of tetraoxolene-bridged FeII2 complexes [(Me3TPyA)2Fe2(RL)]n+ (Me3TPyA = tris(6-methyl-2-pyridylmethyl)amine; n = 2: OMeLH2 = 3,6-dimethoxy-2,5-dihydroxo-1,4-benzoquinone, ClLH2 = 3,6-dichloro-2,5-dihydroxo-1,4-benzoquinone, Na2[NO2L] = sodium 3,6-dinitro-2,5-dihydroxo-1,4-benzoquinone; n = 4: SMe2L = 3,6-bis(dimethylsulfonium)-2,5-dihydroxo-1,4-benzoquinone diylide) and their one-electron-reduced analogues. Variable-temperature dc magnetic susceptibility data reveal the presence of weak ferromagnetic superexchange between FeII centers in the oxidized species, with exchange constants of J = +1.2(2) (R = OMe, Cl) and +0.3(1) (R = NO2, SMe2) cm-1. In contrast, X-ray diffraction, cyclic voltammetry, and Mössbauer spectroscopy establish a ligand-centered radical in the reduced complexes. Magnetic measurements for the radical-bridged species reveal the presence of strong antiferromagnetic metal-radical coupling, with J = -57(10), -60(7), -58(6), and -65(8) cm-1 for R = OMe, Cl, NO2, and SMe2, respectively. The minimal effects of substituents in the 3- and 6-positions of RLx-• on the magnetic coupling strength is understood through electronic structure calculations, which show negligible spin density on the substituents and associated C atoms of the ring. Finally, the radical-bridged complexes are single-molecule magnets, with relaxation barriers of Ueff = 50(1), 41(1), 38(1), and 33(1) cm-1 for R = OMe, Cl, NO2, and SMe2, respectively. Taken together, these results provide the first examination of how bridging ligand substitution influences magnetic coupling in semiquinoid-bridged compounds, and they establish design criteria for the synthesis of semiquinoid-based molecules and materials.
Collapse
Affiliation(s)
| | - Ragnar Bjornsson
- Department of Inorganic Spectroscopy, Max-Planck-Institut für Chemische Energiekonversion, Mülheim an der Ruhr 45470, Germany
| | - T David Harris
- Department of Chemistry, Northwestern University, Evanston 60208, Illinois, United States.,Department of Chemistry, University of California, Berkeley 94720, California, United States
| |
Collapse
|
17
|
Sarkar P, Ghorai S, Chandra Paul G, Khannam M, Barman S, Mukherjee C. Synthesis, characterization and study on the dissimilar reactivity of a Ni(II)-bis(iminosemiquinone) complex core to ligand-appended hemilabile –CH2OH and –CH2NH2 units. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Kyoden Y, Ishida T. An indication of spin-transition accompanied by an order-disorder structural transformation in [Ni(phpyNO)2(NCS)2] (phpyNO = tert-butyl 5-phenyl-2-pyridyl nitroxide). RSC Adv 2020; 10:16009-16015. [PMID: 35493632 PMCID: PMC9052934 DOI: 10.1039/d0ra02041a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/03/2020] [Indexed: 11/29/2022] Open
Abstract
Reaction of nickel(ii) thiocyanate and tert-butyl 5-phenyl-2-pyridyl nitroxide (phpyNO) afforded a 2p–3d–2p heterospin triad [Ni(phpyNO)2(NCS)2]. The compound crystallizes in the orthorhombic Pbcn space group. The whole molecule is crystallographically independent. The torsion angles around Ni–O–N–C2py are 26.8(4) and 27.3(4)° at 400 K, indicating appreciable orbital overlaps of the radical π* and nickel(ii) 3dx2−y2/3dz2 orbitals. In a low-temperature region, the torsion was enhanced, and the space group changed to monoclinic P21/c with a doubled asymmetric unit volume. The χmT value was practically null below ca. 140 K and, on heating to 400 K, gradually increased and reached 1.30 cm3 K mol−1. A van't Hoff analysis suggests a spin transition at T1/2 = 530(20) K. Density functional theory calculation reproduced ground Stotal = 0 with singlet-triplet gaps of 910 and 1263 K for the 140 K structure, and the gap was reduced to 297 K at 400 K. Consequently, the present compound can be considered as an incomplete spin-crossover material, as a result of T1/2 located above the experimental temperature window. The exchange coupling in [Ni(phpyNO)2(NCS)2] is strongly antiferromagnetic in a low-temperature structure whilst moderately antiferromagnetic in a high-temperature structure.![]()
Collapse
Affiliation(s)
- Yukiya Kyoden
- Department of Engineering Science
- The University of Electro-Communications
- Chofu
- Japan
| | - Takayuki Ishida
- Department of Engineering Science
- The University of Electro-Communications
- Chofu
- Japan
| |
Collapse
|
19
|
Banerjee S, Sheet D, Sarkar S, Halder P, Paine TK. Nickel complexes of ligands derived from (o-hydroxyphenyl) dichalcogenide: delocalised redox states of nickel and o-chalcogenophenolate ligands. Dalton Trans 2019; 48:17355-17363. [PMID: 31730150 DOI: 10.1039/c9dt03413g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Two monoanionic nickel complexes Bu4N[Ni(LSeO)2] (1) and Bu4N[Ni(LSO)2] (2) (H2LSeO = 3,5-di-tert-butyl-2-hydroxyselenophenol and H2LSO = 3,5-di-tert-butyl-2-hydroxythiophenol) were synthesised by reductive cleavage of the respective 2,2'-dichalcogenobis(4,6-di-tert-butylphenol) (H2LX-X; X = Se, S) with nickel(ii) salts. The crystal structures of 1 and 2 confirm the reductive X-X bond cleavage with the concomitant formation of the corresponding monoanionic square planar complex, where quinoidal distortions of the aromatic rings are observed. The monoanionic complexes (1 and 2) are paramagnetic (S = 1/2), exhibiting rhombic EPR signals, and the g anisotropies are well correlated with the spin-orbit coupling of chalcogenides. The spectral data indicate that the ligands H2LXO in 1 and 2 are redox non-innocent and stabilise the square planar S = 1/2 nickel complexes with a highly delocalised unpaired electron. DFT calculations further support the delocalised electronic structures of the nickel complexes.
Collapse
Affiliation(s)
- Sridhar Banerjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A&2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India.
| | | | | | | | | |
Collapse
|
20
|
Kumar K, Kumar Dhara A, Kumar Chaudhary V, Sandip N, Roy P, Verma P, Ghosh K. The influence of the tertiary butyl group in the ligand frame on the catalytic activities, DNA cleavage ability and cytotoxicity of dinuclear nickel(II) complexes. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.118993] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
21
|
Kyoden Y, Homma Y, Ishida T. High-Spin and Incomplete Spin-Crossover Polymorphs in Doubly Chelated [Ni(L) 2Br 2] (L = tert-Butyl 5-Phenyl-2-pyridyl Nitroxide). Inorg Chem 2019; 58:10743-10755. [PMID: 31368687 DOI: 10.1021/acs.inorgchem.9b00885] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Complexation of nickel(II) bromide with tert-butyl 5-phenyl-2-pyridyl nitroxide (phpyNO) gave two morphs of doubly chelated [Ni(phpyNO)2Br2] as a 2p-3d-2p heterospin triad. The α phase crystallizes in the orthorhombic space group Pbcn. An asymmetric unit involves a half-molecule. The torsion angle around Ni-O-N-C2py is as small as 6.5(3)° at 100 K and 7.0(6)° at 400 K, guaranteeing an orthogonal arrangement between the magnetic radical π* and metal 3dx2-y2 and 3dz2 orbitals. Magnetic study revealed the high-spin ground state with the exchange coupling constant 2J/kB = +288(5) K, on the basis of a symmetrical spin Hamiltonian. The β phase crystallizes in the monoclinic space group P21/n. The whole molecule is an independent unit. The Ni-O-N-C2py torsion angles are 24.2(6) and 37.2(5)° at 100 K and 10.4(7) and 25.9(6)° at 400 K. A magnetic study revealed a very gradual and nonhysteretic spin transition. An analysis based on the van't Hoff equation gave a successful fit with the spin-crossover temperature of 134(1) K, although the susceptibility did not reach the theoretical high-spin value at 400 K. Density functional theory calculation on the β phase showed ground Stotal = 0 in the low-temperature structure while Stotal = 2 in the high-temperature structure, supporting the synchronized exchange coupling switch on both sides. Consequently, the β phase can be recognized as an "incomplete spin crossover" material, as a result of conflicting thermal depopulation effects in a high-temperature region.
Collapse
Affiliation(s)
- Yukiya Kyoden
- Department of Engineering Science , The University of Electro-Communications , Chofu, Tokyo 182-8585 , Japan
| | - Yuta Homma
- Department of Engineering Science , The University of Electro-Communications , Chofu, Tokyo 182-8585 , Japan
| | - Takayuki Ishida
- Department of Engineering Science , The University of Electro-Communications , Chofu, Tokyo 182-8585 , Japan
| |
Collapse
|
22
|
van der Vlugt JI. Radical-Type Reactivity and Catalysis by Single-Electron Transfer to or from Redox-Active Ligands. Chemistry 2019; 25:2651-2662. [PMID: 30084211 PMCID: PMC6471147 DOI: 10.1002/chem.201802606] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Indexed: 12/12/2022]
Abstract
Controlled ligand-based redox-activity and chemical non-innocence are rapidly gaining importance for selective (catalytic) processes. This Concept aims to provide an overview of the progress regarding ligand-to-substrate single-electron transfer as a relatively new mode of operation to exploit ligand-centered reactivity and catalysis based thereon.
Collapse
Affiliation(s)
- Jarl Ivar van der Vlugt
- Bio-Inspired Homogeneous and Supramolecular Catalysis Groupvan ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamNetherlands
| |
Collapse
|
23
|
Rajput A, Saha A, Barman SK, Lloret F, Mukherjee R. [Cu II{(L ISQ)˙ -} 2] (H 2L: thioether-appended o-aminophenol ligand) monocation triggers change in donor site from N 2O 2 to N 2O (2)S and valence-tautomerism. Dalton Trans 2019; 48:1795-1813. [PMID: 30644480 DOI: 10.1039/c8dt03778g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Using a potentially tridentate o-aminophenol-based redox-active ligand H2L1 (2-[2-(benzylthio)phenylamino]-4,6-di-tert-butylphenol) in its deprotonated form, [Cu(L1)2] has been synthesized and crystallized as [CuII(L1)2]·CH2Cl2 (1·CH2Cl2). A cyclic voltammetry experiment (in CH2Cl2; V vs. SCE (saturated calomel electrode)) on 1·CH2Cl2 exhibits two oxidative (E = 0.20 V (peak-to-peak separation, ΔEp = 100 mV) and E = 0.90 V (ΔEp = 140 mV)) and two reductive (E = -0.52 V (ΔEp = 110 mV) and E = -0.92 V (ΔEp = 120 mV)) responses. Upon oxidation using a stoichiometric amount of [FeIII(η5-C5H5)2](PF6), 1·CH2Cl2 yielded [Cu(L1)2](PF6) (2). Structural analysis (100 K) reveals that 1·CH2Cl2 is a four-coordinate bis(iminosemiquinonato)copper(ii) complex (CuN2O2 coordination), and that the thioethers remain uncoordinated. The twisted geometry of 1 (distorted tetrahedral) results in considerable changes in the electronic structure, compared to well-known square-planar analogues. Crystallographic analysis of 2 both at 100 K and at 293 K reveals that it is effectively a four-coordinate complex with a CuN2OS coordination; however, a substantial interaction with the other phenolate O is observed. The metal-ligand bond distances and metric parameters associated with the o-aminophenolate rings indicate a valence-tautomeric (VT) equilibrium involving monocationic (iminosemiquinonato)(iminoquinone)copper(ii) and bis(iminoquinone)copper(i). Complex 1·CH2Cl2 is a three-spin system and a magnetic study (4-300 K) established that it has a S = 1/2 ground-state, owing to the strong antiferromagnetic coupling between the unpaired spin of the copper(ii) and the iminosemiquinonate(1-) π-radical anion. Electron paramagnetic resonance (EPR) spectral studies corroborate this result. Complex 2 is diamagnetic and the existence of VT in 2 was probed using variable-temperature (248-328 K) 1H NMR and EPR (100-298 K) spectral measurements and X-ray photoelectron spectroscopic studies at 298 K. Remarkably, modification of the well-studied 2-anilino-4,6-di-tert-butylphenol by incorporation of a benzylthioether arm leads to the occurrence of VT in 2. The electronic structure of 1·CH2Cl2 and 2 has been assigned using density functional theory (DFT) calculations at the B3LYP-D3 level of theory. Time-dependent (TD)-DFT calculations have been performed to elucidate the origin of the observed UV-VIS-NIR absorptions.
Collapse
Affiliation(s)
- Amit Rajput
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, India. and Department of Basic and Applied Sciences, School of Engineering, G. D. Goenka University, Sohna Road, Gurugram 122 103, Haryana, India
| | - Anannya Saha
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741 246, India
| | - Suman K Barman
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, India.
| | - Francesc Lloret
- Departament de Quımíca, Inorgànica/Instituto de Ciencia Molecular (ICMOL), Universitat de Valeńcia, Polígono de la Coma, s/n, 46980-Paterna, València, Spain
| | | |
Collapse
|
24
|
Paul GC, Sarkar P, Mukherjee C. Effect of H-bond and molecular geometry towards innocent and non-innocent behavior of 3,5-di-tert-butyl-2-aminophenol units attached to a piperazine backbone: Co(III) and Cu(II) complexes. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2018.10.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
25
|
Rajput A, Sharma AK, Barman SK, Lloret F, Mukherjee R. Six-coordinate [Co III(L) 2] z (z = 1-, 0, 1+) complexes of an azo-appended o-aminophenolate in amidate(2-) and iminosemiquinonate π-radical (1-) redox-levels: the existence of valence-tautomerism. Dalton Trans 2018; 47:17086-17101. [PMID: 30465680 DOI: 10.1039/c8dt03257b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Aerobic reaction of the ligand H2L1, 2-(2-phenylazo)-anilino-4,6-di-tert-butylphenol, CoCl2·6H2O and Et3N in MeOH under refluxing conditions produces, after work-up and recrystallization, black crystals of [Co(L1)2] (1). When examined by cyclic voltammetry, 1 displays in CH2Cl2 three one-electron redox responses: two oxidative, E11/2 = 0.30 V (peak-to-peak separation, ΔEp = 100 mV) and E21/2 = 1.04 V (ΔEp = 120 mV), and one reductive E1/2 = -0.27 V (ΔEp = 120 mV) vs. SCE. Consequently, 1 is chemically oxidized by 1 equiv. of [FeIII(η5-C5H5)2][PF6], affording the isolation of deep purple crystals of [Co(L1)2][PF6]·2CH2Cl2 (2), and one-electron reduction with [CoII(η5-C5H5)2] yielded bluish-black crystals of [CoIII(η5-C5H5)2][Co(L1)2]·MeCN (3). A solid sample of 1 exhibits temperature-independent (50-300 K) magnetism, revealing the presence of a free radical (S = 1/2), which exhibits an isotropic EPR signal (g = 2.003) at 298 K and at 77 K an eight-line feature characteristic of hyperfine-interaction of the radical with the Co (I = 7/2) nucleus. Based on X-ray structural parameters of 1-3 at 100 K, magnetic and EPR spectral behaviour of 1, and variable-temperature (233-313 K) 1H NMR spectral features of 1-3 and 13C NMR spectra at 298 K of 2 and 3 in CDCl3 point to the electronic structure of the complexes as either [CoIII{(LAP)2-}{(LISQ)}˙-] or [CoIII{(L1)2}˙3-] (delocalized nature favours the latter description) (1), [CoIII{(LISQ)˙-}2][PF6]·2CH2Cl2 (2) and [CoIII(η5-C5H5)2][CoIII{(LAP)2-}2]·MeCN (3) [(LAP)2- and (LISQ)˙- represent the redox-level of coordinated ligands o-amidophenolate(2-) ion and o-iminobenzosemiquinonate(1-) π-radical ion, respectively]. Notably, all the observed redox processes are ligand-centred. To the best of our knowledge, this is the first time that six-coordinate complexes of a common tridentate o-aminophenolate-based ligand have been structurally characterized for the parent 1, its monocation 2 and the monoanion 3 counterparts. Temperature-dependent 1H NMR spectra reveal the existence of valence-tautomeric equilibria in 1-3. Density Functional Theory (DFT) calculations at the B3LYP-level of theory corroborate the electronic structural assignment of 1-3 from experimental data. The origins of the observed UV-VIS-NIR absorptions for 1-3 have been assigned, based on time-dependent (TD)-DFT calculations.
Collapse
Affiliation(s)
- Amit Rajput
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, India.
| | | | | | | | | |
Collapse
|
26
|
Piskunov AV, Pashanova KI, Bogomyakov AS, Smolyaninov IV, Starikov AG, Fukin GK. Cobalt complexes with hemilabile o-iminobenzoquinonate ligands: a novel example of redox-induced electron transfer. Dalton Trans 2018; 47:15049-15060. [PMID: 30303221 DOI: 10.1039/c8dt02733a] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The tetracoordinated square-planar CoIII complex (imSQC(O)Ph)CoIII(APC(O)Ph) (1) bearing a radical anion and the closed-shell o-amidophenolate forms of the functionalized o-aminophenol H2LC(O)Ph were synthesized. The intermediate spin state (SCo = 1) CoIII center was found for compound 1. The cyclic voltammogram of derivative 1 contains two oxidative processes and one reductive redox process as well as an additional multi-electron wave at high negative potentials above -2 V, which can involve both the ligand and metal center. One-electron oxidation of 1 by silver triflate produces the [(imSQC(O)Ph)CoII(imQC(O)Ph)]OTf·2toluene (2) derivative with the trigonal prismatic coordination environment of the metal arising from the additional coordination of -C(O)Ph hemilabile groups. This is a first example of a trigonal prismatic coordination polyhedron in cobalt-based complexes featuring o-iminobenzoquinone ligands. The trigonal prismatic geometry achieved by the unique flexibility of the ligand allows metal-to-ligand redox-induced electron transfer (RIET). Chemical oxidation of complex 1 promotes the reduction of CoIII to CoII in compound 2 due to the redox-active nature of o-iminobenzoquinonate ligands. Remarkably, this is the first example of RIET in cobalt-based derivatives with this type of ligand. The oxidative states of the ligands and cobalt ion in both complexes were unequivocally established according to the X-ray data collection by using the utility of "metric oxidation state" (MOS). The spin states of the metal centers were unambiguously determined by density functional theory. The strong antiferromagnetic exchange via metal-ligand interactions is dominant in compounds 1 and 2, giving the doublet (S = 1/2) and triplet (S = 1) ground spin state, respectively.
Collapse
Affiliation(s)
- Alexandr V Piskunov
- G.A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Laboratory of Organoelement Compounds, 49 Tropinina Street, 603137, Nizhny Novgorod, Russian Federation.
| | | | | | | | | | | |
Collapse
|
27
|
Broere DLJ, Mercado BQ, Bill E, Lancaster KM, Sproules S, Holland PL. Alkali Cation Effects on Redox-Active Formazanate Ligands in Iron Chemistry. Inorg Chem 2018; 57:9580-9591. [PMID: 29629752 PMCID: PMC6116910 DOI: 10.1021/acs.inorgchem.8b00226] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Noncovalent interactions of organic moieties with Lewis acidic alkali cations can greatly affect structure and reactivity. Herein, we describe the effects of interactions with alkali-metal cations within a series of reduced iron complexes bearing a redox-active formazanate ligand, in terms of structures, magnetism, spectroscopy, and reaction rates. In the absence of a crown ether to sequester the alkali cation, dimeric complexes are isolated wherein the formazanate has rearranged to form a five-membered metallacycle. The dissociation of these dimers is dependent on the binding mode and size of the alkali cation. In the dimers, the formazanate ligands are radical dianions, as shown by X-ray absorption spectroscopy, Mössbauer spectroscopy, and analysis of metrical parameters. These experimental measures are complemented by density functional theory calculations that show the spin density on the bridging ligands.
Collapse
Affiliation(s)
- Daniel L J Broere
- Department of Chemistry , Yale University , New Haven , Connecticut 06520 , United States
| | - Brandon Q Mercado
- Department of Chemistry , Yale University , New Haven , Connecticut 06520 , United States
| | - Eckhard Bill
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36 , D-45470 Mülheim an der Ruhr , Germany
| | - Kyle M Lancaster
- Department of Chemistry and Chemical Biology, Baker Laboratory , Cornell University , Ithaca , New York 14853 , United States
| | - Stephen Sproules
- WestCHEM, School of Chemistry , University of Glasgow , Glasgow G12 8QQ , United Kingdom
| | - Patrick L Holland
- Department of Chemistry , Yale University , New Haven , Connecticut 06520 , United States
| |
Collapse
|
28
|
Piskunov AV, Pashanova KI, Ershova IV, Bogomyakov AS, Smolyaninov IV, Starikov AG, Kubrin SP, Fukin GK. Pentacoordinated cloro-bis-o-iminosemiquinonato Mn and Fe complexes. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.03.091] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Das S, Sinha S, Jash U, Sikari R, Saha A, Barman SK, Brandão P, Paul ND. Redox-Induced Interconversion and Ligand-Centered Hemilability in NiII Complexes of Redox-Noninnocent Azo-Aromatic Pincers. Inorg Chem 2018; 57:5830-5841. [DOI: 10.1021/acs.inorgchem.8b00231] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Siuli Das
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, West Bengal, India
| | - Suman Sinha
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, West Bengal, India
| | - Upasona Jash
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, West Bengal, India
| | - Rina Sikari
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, West Bengal, India
| | - Anannya Saha
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Suman K. Barman
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Paula Brandão
- Departamento de Química, CICECO-Instituto de Materiais de Aveiro,Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Nanda D. Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, West Bengal, India
| |
Collapse
|
30
|
Roy S, Pramanik S, Patra SC, Adhikari B, Mondal A, Ganguly S, Pramanik K. Ambient-Stable Bis-Azoaromatic-Centered Diradical [(L •)M(L •)] Complexes of Rh(III): Synthesis, Structure, Redox, and Spin-Spin Interaction. Inorg Chem 2017; 56:12764-12774. [PMID: 29028330 DOI: 10.1021/acs.inorgchem.7b01514] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bis-azoaromatic electron traps, viz. 2-(2-pyridylazo)azoarene 1, have been synthesized by colligating electron-deficient pyridine and azoarene moieties, and they act as apposite proradical templates for the formation of stable open-shell diradical complexes [(1•-)RhIII(1•-)]+ ([2]+), starting from the low-valent electron reservoir [RhI]. The less stable monoradical [RhIII(1•-)Cl2(PPh3)3] (3) has also been isolated as a minor product. These π-radical complexes are multiredox systems, and the electron transfer processes occur exclusively within the pincer-type NNN ligand backbone 1. Molecular and electronic structures of the diradicals and monoradicals have been ascertained with the aid of X-ray diffraction, electrochemical, spectroelectrochemical, and spectral (electronic, IR, NMR, and EPR) studies. In the diradicals [2]+, the orthogonal disposition of two ligand π orbitals linked via a closed-shell metal center (t26) impedes significant coupling between the radicals. Indeed, the observed magnetic moment of [2a]+ lies near ∼2.3 μB over the temperature range 50-300 K. A very weak antiferromagnetic (AF) intramolecular spin-spin interaction between two ligand π arrays in [(1•-)RhIII(1•-)]+ have been found experimentally (J ≈ -5 cm-1), and this is further substantiated by density functional theory (DFT) calculations at the (U)B3LYP/6-31G(d,p) level.
Collapse
Affiliation(s)
- Sima Roy
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University , Kolkata 700032, India
| | - Shuvam Pramanik
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University , Kolkata 700032, India
| | - Sarat Chandra Patra
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University , Kolkata 700032, India
| | - Basab Adhikari
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University , Kolkata 700032, India
| | - Abhishake Mondal
- University of Bordeaux , CRPP, UPR 8641, 33600 Pessac, France.,Solid State and Structural Chemistry Unit, Indian Institute of Science , C. V. Raman Road, 560012, Bangalore, India
| | - Sanjib Ganguly
- Department of Chemistry, St. Xavier's College , Kolkata 700016, India
| | - Kausikisankar Pramanik
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University , Kolkata 700032, India
| |
Collapse
|
31
|
Mondal S, Maity S, Ghosh P. A Redox-Active Cascade Precursor: Isolation of a Zwitterionic Triphenylphosphonio-Hydrazyl Radical and an Indazolo-Indazole Derivative. Inorg Chem 2017; 56:8878-8888. [PMID: 28696110 DOI: 10.1021/acs.inorgchem.7b00818] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A redox-active [ML] unit (M = CoII and MnII; LH2 = N'-(1,4-dioxo-1,4-dihydronaphthalen-2-yl)benzohydrazide) defined as a cascade precursor that undergoes a multicomponent redox reaction comprising of a C-N bond formation, tautomerization, oxidation, C-C coupling, demetalation, and affording 6,14-dibenzoylbenzo[f]benzo[5,6]indazolo[3a,3-c]indazole-5,8,13,16-tetraone (IndL2) is reported. Conversion of LH2 → IndL2 in air is overall a (6H++6e) oxidation reaction, and it opens a route for the syntheses of bioactive diarylindazolo[3a,3-c]indazole derivatives. The reaction occurs via a radical coupling reaction, and the radical intermediate was isolated as a triphenylphosphonio adduct. In presence of PPh3 the [ML] unit promotes a reaction that involves a C-P bond formation, tautomerization, and oxidation to yield a stable zwitterionic triphenylphosphonio-hydrazyl radical (PPh3L±•). Conversion of LH2 → PPh3L±• is a (3H++3e) oxidation reaction. To authenticate the [ML] unit, in addition to the IndL2, a zinc(II) complex, [(L3)ZnII(H2O)Cl]·2MeOH (1·2MeOH), was successfully isolated (L3H = a pyridazine derivative of 1,4 naphthoquinone) from a reaction of LH2 with hydrated ZnCl2. Conversion of 3LH2 → 1 is also a multicomponent (6H++6e) oxidation reaction promoted by zinc(II) ion via a radical intermediate. Facile oxidation of [L2-] to [L•-] that was considered as an intermediate of these conversions was confirmed by isolating a 1,4 naphthoquinone-benzhydrazyl radical (LH•) complex, [(LH•)ZnII(H2O)Cl2] (2H•). The intermediates of LH2 → IndL2, LH2 → PPh3L±•, and 3LH2 → 1 conversions were analyzed by electrospray ionization mass spectroscopy. The molecular and electronic structures of PPh3L±•, IndL2, 1·2MeOH, and 2H• were confirmed by single-crystal X-ray crystallography, electron paramagnetic resonance spectroscopy, and density functional theory calculations.
Collapse
Affiliation(s)
- Sandip Mondal
- Department of Chemistry, R. K. Mission Residential College, Narendrapur , Kolkata 103, West Bengal, India
| | - Suvendu Maity
- Department of Chemistry, R. K. Mission Residential College, Narendrapur , Kolkata 103, West Bengal, India
| | - Prasanta Ghosh
- Department of Chemistry, R. K. Mission Residential College, Narendrapur , Kolkata 103, West Bengal, India
| |
Collapse
|
32
|
Interacting metal and ligand based open shell systems: Challenges for experiment and theory. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2016.12.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
33
|
Poddel'sky AI, Arsenyev MV, Astaf'eva TV, Chesnokov SA, Fukin GK, Abakumov GA. New sterically-hindered 6th-substituted 3,5-di- tert -butylcatechols/ o -quinones with additional functional groups and their triphenylantimony(V) catecholates. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.02.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
34
|
Bagh B, Broere DL, Sinha V, Kuijpers PF, van Leest NP, de Bruin B, Demeshko S, Siegler MA, van der Vlugt JI. Catalytic Synthesis of N-Heterocycles via Direct C(sp 3)-H Amination Using an Air-Stable Iron(III) Species with a Redox-Active Ligand. J Am Chem Soc 2017; 139:5117-5124. [PMID: 28298089 PMCID: PMC5391503 DOI: 10.1021/jacs.7b00270] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Indexed: 12/23/2022]
Abstract
Coordination of FeCl3 to the redox-active pyridine-aminophenol ligand NNOH2 in the presence of base and under aerobic conditions generates FeCl2(NNOISQ) (1), featuring high-spin FeIII and an NNOISQ radical ligand. The complex has an overall S = 2 spin state, as deduced from experimental and computational data. The ligand-centered radical couples antiferromagnetically with the Fe center. Readily available, well-defined, and air-stable 1 catalyzes the challenging intramolecular direct C(sp3)-H amination of unactivated organic azides to generate a range of saturated N-heterocycles with the highest turnover number (TON) (1 mol% of 1, 12 h, TON = 62; 0.1 mol% of 1, 7 days, TON = 620) reported to date. The catalyst is easily recycled without noticeable loss of catalytic activity. A detailed kinetic study for C(sp3)-H amination of 1-azido-4-phenylbutane (S1) revealed zero order in the azide substrate and first order in both the catalyst and Boc2O. A cationic iron complex, generated from the neutral precatalyst upon reaction with Boc2O, is proposed as the catalytically active species.
Collapse
Affiliation(s)
- Bidraha Bagh
- Homogeneous,
Bioinspired and Supramolecular Catalysis, van’t Hoff Institute
for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Daniël L.
J. Broere
- Homogeneous,
Bioinspired and Supramolecular Catalysis, van’t Hoff Institute
for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Vivek Sinha
- Homogeneous,
Bioinspired and Supramolecular Catalysis, van’t Hoff Institute
for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Petrus F. Kuijpers
- Homogeneous,
Bioinspired and Supramolecular Catalysis, van’t Hoff Institute
for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Nicolaas P. van Leest
- Homogeneous,
Bioinspired and Supramolecular Catalysis, van’t Hoff Institute
for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Bas de Bruin
- Homogeneous,
Bioinspired and Supramolecular Catalysis, van’t Hoff Institute
for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Serhiy Demeshko
- Institüt
für Anorganische Chemie, Georg-August-Universität
Göttingen, Tammannstraße
4, 37077 Göttingen, Germany
| | - Maxime A. Siegler
- Small
Molecule X-ray Crystallography, Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jarl Ivar van der Vlugt
- Homogeneous,
Bioinspired and Supramolecular Catalysis, van’t Hoff Institute
for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
35
|
Copper(II) complexes bearing o-iminosemiquinonate ligands with augmented aromatic substituents. Polyhedron 2016. [DOI: 10.1016/j.poly.2016.08.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Sarkar P, Tiwari A, Sarmah A, Bhandary S, Roy RK, Mukherjee C. An elusive vinyl radical isolated as an appended unit in a five-coordinate Co(iii)-bis(iminobenzosemiquinone) complex formed via ligand-centered C-S bond cleavage. Chem Commun (Camb) 2016; 52:10613-6. [PMID: 27439588 DOI: 10.1039/c6cc02751b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Redox-active ligand H4Pra(edt(AP/AP)) experienced C-S bond cleavage during complexation reaction with Co(OAc)2·2H2O in the presence of Et3N in CH3OH in air. Thus, formed complex 1 was composed of two iminobenzosemiquinone radicals in its coordination sphere and an unprecedented stable tethered-vinyl radical. The complex has been characterized by mass, X-ray single crystal, X-band EPR, variable-temperature magnetic moment measurements and DFT based computational study.
Collapse
Affiliation(s)
- Prasenjit Sarkar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Archana Tiwari
- Department of Physics, School of Physical Sciences, Sikkim University, Gangtok-737102, Sikkim, India
| | - Amrit Sarmah
- Department of Chemistry, Birla Institute of Technology and Science (BITS), Pilani-333031, Rajasthan, India
| | - Subhrajyoti Bhandary
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal - 462 066, Madhya Pradesh, India
| | - Ram Kinkar Roy
- Department of Chemistry, Birla Institute of Technology and Science (BITS), Pilani-333031, Rajasthan, India
| | - Chandan Mukherjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|