1
|
Liu G, Zeng B, Liu Y, Cui Q, Wang Y, Li Y, Chen L, Zhao J. A Lanthanide-Incorporated Phospho(III)tungstate Aggregate Constructed from [HP IIIW 8O 31] 10- and [W 11O 39] 12- Building Blocks and Its Nanocomposite with CdS for Ultrasensitive Photoelectrochemical Detection of Oxytetracycline. Inorg Chem 2024; 63:15348-15358. [PMID: 39106517 DOI: 10.1021/acs.inorgchem.4c02174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
A novel tartronic acid decorated hexa-CeIII-incorporated phospho(III)tungstate aggregate (C4H12NO)6Na18H2[(HPW8O31)2[W11O39]2(H2TAD)4(H2O)4W4Ce6H2P2O14]·84H2O (1, H3TAD = tartronic acid) was synthesized by a one-step assembly strategy. Its main skeleton is constructed from two [W11O39]12- fragments, two [HPIIIW8O31]10- segments and one H2TAD--ornamented dodecanuclear heterometallic [W4Ce6H2PIII2O14(H2TAD)4(H2O)4]18+ cluster. In the structure, the [HPIIIO3]2- groups not only work as the heteroatom template to induce the formation of lacunary [HPIIIW8O31]10- segments but also function as the connector to bridge Ce3+ cations. With the help of a reaction strategy of combining ultrasonication treatment with the continuous ion layer adsorption method, the 1/CdS composite was constructed and exhibits prominent photoelectrochemical activity. The 1/CdS composite was used as a photoelectrochemical sensor for oxytetracycline detection at 0 V (vs Ag/AgCl), which displays excellent properties with quick response and low limit of detection (0.042 nM). This work can provide some helpful references in the construction of novel PIII-induced polyoxometalates consisting of different building blocks and can extend the applications of polyoxometalate-based nanocomposites into photoelectrochemical detection for antibiotics as well as biomolecules.
Collapse
Affiliation(s)
- Guoping Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Baoxing Zeng
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yu Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Qingqing Cui
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yanying Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yanzhou Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Lijuan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
2
|
Dunstan MA, Giansiracusa MJ, Calvello S, Sorace L, Krause-Heuer AM, Soncini A, Mole RA, Boskovic C. Ab initio-based determination of lanthanoid-radical exchange as visualised by inelastic neutron scattering. Chem Sci 2024; 15:4466-4477. [PMID: 38516080 PMCID: PMC10952085 DOI: 10.1039/d3sc04229d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 02/12/2024] [Indexed: 03/23/2024] Open
Abstract
Magnetic exchange coupling can modulate the slow magnetic relaxation in single-molecule magnets. Despite this, elucidation of exchange coupling remains a significant challenge for the lanthanoid(iii) ions, both experimentally and computationally. In this work, the crystal field splitting and 4f-π exchange coupling in the erbium-semiquinonate complex [ErTp2dbsq] (Er-dbsq; Tp- = hydro-tris(1-pyrazolyl)borate, dbsqH2 = 3,5-di-tert-butyl-1,2-semiquinone) have been determined by inelastic neutron scattering (INS), magnetometry, and CASSCF-SO ab initio calculations. A related complex with a diamagnetic ligand, [ErTp2trop] (Er-trop; tropH = tropolone), has been used as a model for the crystal field splitting in the absence of coupling. Magnetic and INS data indicate antiferromagnetic exchange for Er-dbsq with a coupling constant of Jex = -0.23 meV (-1.8 cm-1) (-2Jex formalism) and good agreement is found between theory and experiment, with the low energy magnetic and spectroscopic properties well modelled. Most notable is the ability of the ab initio modelling to reproduce the signature of interference between localised 4f states and delocalised π-radical states that is evident in the Q-dependence of the exchange excitation. This work highlights the power of combining INS with EPR and magnetometry for determination of ground state properties, as well as the enhanced capability of CASSCF-SO ab initio calculations and purposely developed ab initio-based theoretical models. We deliver an unprecedentedly detailed representation of the entangled character of 4f-π exchange states, which is obtained via an accurate image of the spin-orbital transition density between the 4f-π exchange coupled wavefunctions.
Collapse
Affiliation(s)
- Maja A Dunstan
- School of Chemistry, The University of Melbourne Parkville VIC 3010 Australia
| | | | - Simone Calvello
- School of Chemistry, The University of Melbourne Parkville VIC 3010 Australia
- Australian Nuclear Science and Technology Organisation, Locked Bag 2001 Kirrawee DC 2232 Australia
| | - Lorenzo Sorace
- INFN Sez. di Firenze, Department of Chemistry, "Ugo Schiff", Università Degli Studi Firenze Via Della Lastruccia, 13 50019 Sesto Fiorentino Italy
| | - Anwen M Krause-Heuer
- Australian Nuclear Science and Technology Organisation, Locked Bag 2001 Kirrawee DC 2232 Australia
| | - Alessandro Soncini
- School of Chemistry, The University of Melbourne Parkville VIC 3010 Australia
- Department of Chemical Sciences, University of Padova Via Marzolo 1 35131 Padova Italy
| | - Richard A Mole
- Australian Nuclear Science and Technology Organisation, Locked Bag 2001 Kirrawee DC 2232 Australia
| | - Colette Boskovic
- School of Chemistry, The University of Melbourne Parkville VIC 3010 Australia
| |
Collapse
|
3
|
Wu DF, Takahashi K, Fujibayashi M, Tsuchiya N, Cosquer G, Huang RK, Xue C, Nishihara S, Nakamura T. Fluoride-bridged dinuclear dysprosium complex showing single-molecule magnetic behavior: supramolecular approach to isolate magnetic molecules. RSC Adv 2022; 12:21280-21286. [PMID: 35975059 PMCID: PMC9344285 DOI: 10.1039/d2ra04119g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/20/2022] [Indexed: 11/21/2022] Open
Abstract
Using Na-encapsulated benzo[18]crown-6 (Na)(B18C6) as a counter cation, we successfully magnetically isolated a fluoride-bridging Dy dinuclear complex {[(PW11O39)Dy(H2O)2]2F} (Dy2POM) with lacunary Keggin ligands. (Na)(B18C6) formed two types of tetramers through C-H⋯O, π⋯π and C-H⋯π interactions, and each tetramer aligned in one dimension along the c-axis to form two types of channels. One channel was partially penetrated by a supramolecular cation from the ±a-axis direction, dividing the channel in the form of a "bamboo node". Dy2POM was spatially divided by this "bamboo node," which magnetically isolated one portion from the other. The temperature dependence of the magnetic susceptibility indicated a weak ferromagnetic interaction between the Dy ions bridged by fluoride. Dy2POM exhibited the magnetic relaxation characteristics of a single-molecule magnet, including the dependence of AC magnetic susceptibility on temperature and frequency. Magnetic relaxation can be described by the combination of thermally active Orbach and temperature-independent quantum tunneling processes. The application of a static magnetic field effectively suppressed the relaxation due to quantum tunneling.
Collapse
Affiliation(s)
- Dong-Fang Wu
- Graduate School of Environmental Science, Hokkaido University N10W5, Kita-Ward Sapporo Hokkaido 060-0810 Japan
| | - Kiyonori Takahashi
- Graduate School of Environmental Science, Hokkaido University N10W5, Kita-Ward Sapporo Hokkaido 060-0810 Japan
- Research Institute for Electronic Science (RIES), Hokkaido University N20W10, Kita-Ward Sapporo Hokkaido 001-0020 Japan
| | - Masaru Fujibayashi
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University Higashi-hiroshima Hiroshima 739-8527 Japan
| | - Naoto Tsuchiya
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University Higashi-hiroshima Hiroshima 739-8527 Japan
| | - Goulven Cosquer
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University Higashi-hiroshima Hiroshima 739-8527 Japan
| | - Rui-Kang Huang
- Graduate School of Environmental Science, Hokkaido University N10W5, Kita-Ward Sapporo Hokkaido 060-0810 Japan
- Research Institute for Electronic Science (RIES), Hokkaido University N20W10, Kita-Ward Sapporo Hokkaido 001-0020 Japan
| | - Chen Xue
- Graduate School of Environmental Science, Hokkaido University N10W5, Kita-Ward Sapporo Hokkaido 060-0810 Japan
- Research Institute for Electronic Science (RIES), Hokkaido University N20W10, Kita-Ward Sapporo Hokkaido 001-0020 Japan
| | - Sadafumi Nishihara
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University Higashi-hiroshima Hiroshima 739-8527 Japan
- JST, PRESTO Honcho 4-1-8 Kawaguchi Saitama 332-0012 Japan
| | - Takayoshi Nakamura
- Graduate School of Environmental Science, Hokkaido University N10W5, Kita-Ward Sapporo Hokkaido 060-0810 Japan
- Research Institute for Electronic Science (RIES), Hokkaido University N20W10, Kita-Ward Sapporo Hokkaido 001-0020 Japan
| |
Collapse
|
4
|
Durrant JP, Day BM, Tang J, Mansikkamäki A, Layfield RA. Dominance of Cyclobutadienyl Over Cyclopentadienyl in the Crystal Field Splitting in Dysprosium Single-Molecule Magnets. Angew Chem Int Ed Engl 2022; 61:e202200525. [PMID: 35108431 PMCID: PMC9302998 DOI: 10.1002/anie.202200525] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Indexed: 01/12/2023]
Abstract
Replacing a monoanionic cyclopentadienyl (Cp) ligand in dysprosium single-molecule magnets (SMMs) with a dianionic cyclobutadienyl (Cb) ligand in the sandwich complexes [(η4 -Cb'''')Dy(η5 -C5 Me4 t Bu)(BH4 )]- (1), [(η4 -Cb'''')Dy(η8 -Pn† )K(THF)] (2) and [(η4 -Cb'''')Dy(η8 -Pn† )]- (3) leads to larger energy barriers to magnetization reversal (Cb''''=C4 (SiMe3 )4 , Pn† =1,4-di(tri-isopropylsilyl)pentalenyl). Short distances to the Cb'''' ligands and longer distances to the Cp ligands in 1-3 are consistent with the crystal field splitting being dominated by the former. Theoretical analysis shows that the magnetic axes in the ground Kramers doublets of 1-3 are oriented towards the Cb'''' ligands. The theoretical axiality parameter and the relative axiality parameter Z and Zrel are introduced to facilitate comparisons of the SMM performance of 1-3 with a benchmark SMM. Increases in Z and Zrel when Cb''' replaces Cp signposts a route to SMMs with properties that could surpass leading systems.
Collapse
Affiliation(s)
- James P. Durrant
- Department of ChemistryUniversity of Sussex FalmerBrightonBN1 9QRUK
| | - Benjamin M. Day
- Department of ChemistryUniversity of Sussex FalmerBrightonBN1 9QRUK
| | - Jinkui Tang
- State Key Laboratory of Rare Earth Resource UtilizationChangchunInstitute of Applied ChemistryChinese Academy of SciencesChangchun130022P.R. China
| | | | | |
Collapse
|
5
|
Durrant JP, Day BM, Tang J, Mansikkamäki A, Layfield RA. Dominance of Cyclobutadienyl Over Cyclopentadienyl in the Crystal Field Splitting in Dysprosium Single‐Molecule Magnets. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- James P. Durrant
- Department of Chemistry University of Sussex Falmer Brighton BN1 9QR UK
| | - Benjamin M. Day
- Department of Chemistry University of Sussex Falmer Brighton BN1 9QR UK
| | - Jinkui Tang
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P.R. China
| | | | | |
Collapse
|
6
|
Liu S, Gil Y, Zhao C, Wu J, Zhu Z, Li XL, Aravena D, Tang J. A conjugated Schiff-base macrocycle weakens the transverse crystal field of air-stable dysprosium single-molecule magnets. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01565j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The dominance of a self-condensed conjugated macrocycle over a [2 + 2] conventional macrocycle in weakening the transverse crystal field and boosting axiality provides a new route to construct high-performance air-stable lanthanide SMMs.
Collapse
Affiliation(s)
- Shuting Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yolimar Gil
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Casilla 233, Santiago, Chile
| | - Chen Zhao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jinjiang Wu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Zhenhua Zhu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Xiao-Lei Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Daniel Aravena
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Santiago, Chile
| | - Jinkui Tang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
7
|
Liu G, Liu L, Gong T, Li Y, Chen L, Zhao J. Nicotinic-Acid-Ornamented Tetrameric Rare-Earth-Substituted Phospho(III)tungstates with the Coexistence of Mixed Keggin/Dawson Building Blocks and Its Honeycomb Nanofilm for Detecting Toxins. Inorg Chem 2021; 60:14457-14466. [PMID: 34499476 DOI: 10.1021/acs.inorgchem.1c02248] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A fascinating class of nicotinic-acid-ornamented tetrameric rare-earth (RE)-substituted phospho(III)tungstates [NH2(CH3)2]10Na4H8[RE2(NA)(HNA)(H2O)6(W2O4)(β-H2P2IIIW13O49)(α-HPIIIW9O33)]2·22 H2O [RE = Nd3+ (1-Nd), Tb3+ (2-Tb), Dy3+ (3-Dy), Ho3+ (4-Ho), HNA = nicotinic acid] were isolated through a one-step reaction method of Na2WO4·2H2O, H3PO3, HNA, NH2(CH3)2·HCl, and RE(NO3)·6H2O. Of meticulous concern is that HPO32- was used as a template to construct tetrameric RE-substituted phospho(III)tungstates including mixed heteropolyoxotungstate building blocks. Their hybrid polyoxoanions are composed of two symmetrical [RE2(NA)(HNA)(H2O)6(W2O4)(β-H2P2IIIW13O49)(α-HPW9O33)]11- units linked by RE-O-W bonds. The symmetrical unit consists of one peculiar heterometal nicotinic-acid-ornamented [RE2(NA)(HNA)(W2O4)]9+ cluster connecting a pentavacant Dawson-like [β-H2P2W13O49]12- and a trivacant Keggin [α-HPW9O33]8- subunits. Furthermore, dimethyldioctadecylammonium chloride (DMDODA·Cl) was used to combine with 1-Nd in the CHCl3-H2O system through electrostatic interactions, leading to the 1-Nd@DMDODA composite material. The honeycomb-patterned film of the 1-Nd @DMDODA composite material was successfully constructed by using the breath figure method on a glassy carbon electrode, which can offer abundant binding sites to Au nanoparticles (nano-Au). Ulteriorly, Au-functionalized 1-Nd@DMDODA-modified electrode was utilized as an electrochemical sensor to detect ochratoxin A, showing a good detection limit of 1.19 pM.
Collapse
Affiliation(s)
- Guoping Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Lulu Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Tiantian Gong
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Yanzhou Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Lijuan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| |
Collapse
|
8
|
Iftikhar T, Izarova NV, van Leusen J, Kögerler P. Trigonal Prismatic Coordination of Discrete Rare Earth Ions, Enforced by the Polyoxotungstate [P 4 W 27 O 99 (H 2 O)] 16. Chemistry 2021; 27:13376-13383. [PMID: 34259354 PMCID: PMC8518533 DOI: 10.1002/chem.202101474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Indexed: 12/03/2022]
Abstract
A family of solution-stable polyanions [Na⊂{LnIII (H2 O)}{WVI O(H2 O)}PV 4 WVI 26 O98 ]12- (Ln=Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Y) represent the first examples of polyoxometalates comprising a single lanthanide(III) or yttrium(III) ion in a rare trigonal prismatic O6 environment. Their synthesis exploits the reactivity of the organophosphonate-functionalized precursor [P4 W24 O92 (C6 H5 PV O)2 ]16- with heterometal ions and yields hydrated potassium or mixed lithium/potassium salts of composition Kx Lny H12-x-y [Na⊂{Ln(H2 O)}{WO(H2 O)}P4 W26 O98 ]⋅nH2 O⋅mLiCl (x=8.5-11; y=0-2; n=24-34; m=0-1.5). The Dy, Ho, Er and Yb derivatives are characterized by slow magnetization relaxation.
Collapse
Affiliation(s)
- Tuba Iftikhar
- Institute of Inorganic ChemistryRWTH Aachen UniversityD-52074AachenGermany
- Jülich-Aachen Research Alliance (JARA-FIT) and Peter Grünberg Institute 6Forschungszentrum JülichD-52425JülichGermany
| | - Natalya V. Izarova
- Institute of Inorganic ChemistryRWTH Aachen UniversityD-52074AachenGermany
- Jülich-Aachen Research Alliance (JARA-FIT) and Peter Grünberg Institute 6Forschungszentrum JülichD-52425JülichGermany
| | - Jan van Leusen
- Institute of Inorganic ChemistryRWTH Aachen UniversityD-52074AachenGermany
| | - Paul Kögerler
- Institute of Inorganic ChemistryRWTH Aachen UniversityD-52074AachenGermany
- Jülich-Aachen Research Alliance (JARA-FIT) and Peter Grünberg Institute 6Forschungszentrum JülichD-52425JülichGermany
| |
Collapse
|
9
|
Han LZ, Jiao CQ, Chen WC, Shao KZ, Jin LY, Su ZM. Assembly of tetra-nuclear Yb III-containing selenotungstate clusters: synthesis, structures, and magnetic properties. Dalton Trans 2021; 50:11535-11541. [PMID: 34350926 DOI: 10.1039/d1dt01282g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Two tetra-nuclear YbIII-incorporated selenotungstate clusters, Keggin (C2H8N)6Na14[Yb4Se6W44O160(H2O)12]·40H2O (1) and Wells-Dawson (C2H8N)4Na14[Yb4Se6W45O159(OH)6(H2O)11]·38H2O (2), have been isolated through a pH-controlled assembly, which exhibit the first YbIII-containing polyoxotungstates with selenium heteroatoms. Their assemblies rely on the structure-directing effects of SeO32- anion templates to give rise to available Se-containing Keggin-/Wells-Dawson-type motifs. Both compounds were characterized by single-crystal X-ray diffraction, IR spectroscopy, power X-ray diffraction (XRD), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) as well as electrospray ionization mass spectrometry (ESI-MS). Furthermore, systematic magnetic studies revealed that 1 exhibits field-induced single-molecule magnetic behavior with a pre-exponential factor of τ0 = 6.60(7) × 10-8 s and a relaxation energy barrier of ΔE/kB = 39.44(2) K, while 2 only displays antiferromagnetic interactions between the ytterbium centers.
Collapse
Affiliation(s)
- Li-Zhi Han
- Department of Chemistry, College of Science, Yanbian University, Yanji 133002, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
10
|
Mayans J, Tesi L, Briganti M, Boulon ME, Font-Bardia M, Escuer A, Sorace L. Single-Ion Anisotropy and Intramolecular Interactions in Ce III and Nd III Dimers. Inorg Chem 2021; 60:8692-8703. [PMID: 34110135 PMCID: PMC8277162 DOI: 10.1021/acs.inorgchem.1c00647] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 12/11/2022]
Abstract
This article reports the syntheses, characterization, structural description, together with magnetic and spectroscopic properties of two isostructural molecular magnets based on the chiral ligand N,N'-bis((1,2-diphenyl-(pyridine-2-yl)methylene)-(R,R/S,S)-ethane-1,2-diamine), L1, of general formula [Ln2(RR-L1)2(Cl6)]·MeOH·1.5H2O, (Ln = Ce (1) or Nd (2)). Multifrequency electron paramagnetic resonance (EPR), cantilever torque magnetometry (CTM) measurements, and ab initio calculations allowed us to determine single-ion magnetic anisotropy and intramolecular magnetic interactions in both compounds, evidencing a more important role of the anisotropic exchange for the NdIII derivative. The comparison of experimental and theoretical data indicates that, in the case of largely rhombic lanthanide ions, ab initio calculations can fail in determining the orientation of the weakest components, while being reliable in determining their principal values. However, they remain of paramount importance to set the analysis of EPR and CTM on sound basis, thus obtaining a very precise picture of the magnetic interactions in these systems. Finally, the electronic structure of the two complexes, as obtained by this approach, is consistent with the absence of zero-field slow relaxation observed in ac susceptibility.
Collapse
Affiliation(s)
- Júlia Mayans
- Departament
de Química Inorgànica i Orgànica, Secció
Inorgànica and Institute of Nanoscience and Nanotechnology
(INUB), Universitat de Barcelona, Martí i Franques 1-11, Barcelona-08028, Spain
| | - Lorenzo Tesi
- Dipartimento
di Chimica “Ugo Schiff” & INSTM RU, Università degli Studi di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino (Firenze), Italy
| | - Matteo Briganti
- Dipartimento
di Chimica “Ugo Schiff” & INSTM RU, Università degli Studi di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino (Firenze), Italy
| | - Marie-Emmanuelle Boulon
- Dipartimento
di Chimica “Ugo Schiff” & INSTM RU, Università degli Studi di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino (Firenze), Italy
| | - Mercè Font-Bardia
- Unitat
de Difracció de R-X, Centre Científic i Tecnològic
de la Universitat de Barcelona (CCiTUB), Universitat de Barcelona, Solé i Sabarís 1-3, 08028 Barcelona, Spain
| | - Albert Escuer
- Departament
de Química Inorgànica i Orgànica, Secció
Inorgànica and Institute of Nanoscience and Nanotechnology
(INUB), Universitat de Barcelona, Martí i Franques 1-11, Barcelona-08028, Spain
| | - Lorenzo Sorace
- Dipartimento
di Chimica “Ugo Schiff” & INSTM RU, Università degli Studi di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino (Firenze), Italy
| |
Collapse
|
11
|
Bone AN, Widener CN, Moseley DH, Liu Z, Lu Z, Cheng Y, Daemen LL, Ozerov M, Telser J, Thirunavukkuarasu K, Smirnov D, Greer SM, Hill S, Krzystek J, Holldack K, Aliabadi A, Schnegg A, Dunbar KR, Xue ZL. Applying Unconventional Spectroscopies to the Single-Molecule Magnets, Co(PPh 3 ) 2 X 2 (X=Cl, Br, I): Unveiling Magnetic Transitions and Spin-Phonon Coupling. Chemistry 2021; 27:11110-11125. [PMID: 33871890 DOI: 10.1002/chem.202100705] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Indexed: 11/11/2022]
Abstract
Large separation of magnetic levels and slow relaxation in metal complexes are desirable properties of single-molecule magnets (SMMs). Spin-phonon coupling (interactions of magnetic levels with phonons) is ubiquitous, leading to magnetic relaxation and loss of memory in SMMs and quantum coherence in qubits. Direct observation of magnetic transitions and spin-phonon coupling in molecules is challenging. We have found that far-IR magnetic spectra (FIRMS) of Co(PPh3 )2 X2 (Co-X; X=Cl, Br, I) reveal rarely observed spin-phonon coupling as avoided crossings between magnetic and u-symmetry phonon transitions. Inelastic neutron scattering (INS) gives phonon spectra. Calculations using VASP and phonopy programs gave phonon symmetries and movies. Magnetic transitions among zero-field split (ZFS) levels of the S=3/2 electronic ground state were probed by INS, high-frequency and -field EPR (HFEPR), FIRMS, and frequency-domain FT terahertz EPR (FD-FT THz-EPR), giving magnetic excitation spectra and determining ZFS parameters (D, E) and g values. Ligand-field theory (LFT) was used to analyze earlier electronic absorption spectra and give calculated ZFS parameters matching those from the experiments. DFT calculations also gave spin densities in Co-X, showing that the larger Co(II) spin density in a molecule, the larger its ZFS magnitude. The current work reveals dynamics of magnetic and phonon excitations in SMMs. Studies of such couplings in the future would help to understand how spin-phonon coupling may lead to magnetic relaxation and develop guidance to control such coupling.
Collapse
Affiliation(s)
- Alexandria N Bone
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - Chelsea N Widener
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - Duncan H Moseley
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - Zhiming Liu
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - Zhengguang Lu
- National High Magnetic Field Laboratory, Tallahassee, Florida, 32310, USA
| | - Yongqiang Cheng
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
| | - Luke L Daemen
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
| | - Mykhaylo Ozerov
- National High Magnetic Field Laboratory, Tallahassee, Florida, 32310, USA
| | - Joshua Telser
- Department of Biological, Physical and Chemical Sciences, Roosevelt University, Chicago, Illinois, 60605, USA
| | | | - Dmitry Smirnov
- National High Magnetic Field Laboratory, Tallahassee, Florida, 32310, USA
| | - Samuel M Greer
- National High Magnetic Field Laboratory, Tallahassee, Florida, 32310, USA.,Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida, 32306, USA
| | - Stephen Hill
- National High Magnetic Field Laboratory, Tallahassee, Florida, 32310, USA.,Department of Physics, Florida State University, Tallahassee, Florida, 32306, USA
| | - J Krzystek
- National High Magnetic Field Laboratory, Tallahassee, Florida, 32310, USA
| | - Karsten Holldack
- Helmholtz-Zentrum Berlin für Materialien und Energie Gmbh, Institut für Methoden und Instrumente der Forschung mit Synchrotronstrahlung, 12489, Berlin, Germany
| | - Azar Aliabadi
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institut für Nanospektroskopie, Berlin Joint EPR Laboratory, 12489, Berlin, Germany
| | - Alexander Schnegg
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institut für Nanospektroskopie, Berlin Joint EPR Laboratory, 12489, Berlin, Germany.,Max Planck Institute for Chemical Energy Conversion, 45470, Mülheim an der Ruhr, Germany
| | - Kim R Dunbar
- Department of Chemistry, Texas A&M University, College Station, Texas, 77842, USA
| | - Zi-Ling Xue
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee, 37996, USA
| |
Collapse
|
12
|
Boudalis AK. Half-Integer Spin Triangles: Old Dogs, New Tricks. Chemistry 2021; 27:7022-7042. [PMID: 33336864 DOI: 10.1002/chem.202004919] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/14/2020] [Indexed: 11/06/2022]
Abstract
Spin triangles, that is, triangular complexes of half-integer spins, are the oldest molecular nanomagnets (MNMs). Their magnetic properties have been studied long before molecular magnetism was delineated as a research field. This Review presents the history of their study, with references to the parallel development of new experimental investigations and new theoretical ideas used for their interpretation. It then presents an indicative list of spin-triangle families to illustrate their chemical diversity. Finally, it makes reference to recent developments in terms of theoretical ideas and new phenomena, as well as to the relevance of spin triangles to spintronic devices and new physics.
Collapse
Affiliation(s)
- Athanassios K Boudalis
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504, Université de Strasbourg, CNRS, 67000, Strasbourg, France.,Institut de Chimie de Strasbourg (UMR 7177, CNRS-Unistra), Université de Strasbourg, 4 rue Blaise Pascal, CS 90032, 67081, Strasbourg, France
| |
Collapse
|
13
|
Bonde NA, Petersen JB, Sørensen MA, Nielsen UG, Fåk B, Rols S, Ollivier J, Weihe H, Bendix J, Perfetti M. Importance of Axial Symmetry in Elucidating Lanthanide-Transition Metal Interactions. Inorg Chem 2020; 59:235-243. [PMID: 31825607 DOI: 10.1021/acs.inorgchem.9b02064] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In this paper, we experimentally study and model the electron donating character of an axial diamagnetic Pd2+ ion in four metalloligated lanthanide complexes of formula [PPh4][Ln{Pd(SAc)4}2] (SAc- = thioacetate, Ln = Tb, Dy, Ho, and Er). A global model encompassing inelastic neutron scattering, torque magnetometry, and dc magnetometry allows to precisely determine the energy level structure of the complexes. Solid state nuclear magnetic resonance reveals a less donating character of Pd2+ compared to the previously reported isostructural Pt2+-based complexes. Consequently, all complexes invariably show a lower crystal field strength compared to their Pt2+-analogues. The dynamic properties show an enhanced single molecule magnet behavior due to the suppression of quantum tunneling, in agreement with our model.
Collapse
Affiliation(s)
- Niels A Bonde
- Department of Chemistry , University of Copenhagen , Universitetsparken 5 , DK-2100 Copenhagen , Denmark.,Institut Laue-Langevin , 71 avenue des Martyrs, CS 20156 , 38042 Grenoble Cedex 9 , France
| | - Jonatan B Petersen
- Department of Chemistry , University of Copenhagen , Universitetsparken 5 , DK-2100 Copenhagen , Denmark
| | - Mikkel A Sørensen
- Department of Chemistry , University of Copenhagen , Universitetsparken 5 , DK-2100 Copenhagen , Denmark
| | - Ulla G Nielsen
- Department of Physics, Chemistry and Pharmacy , University of Southern Denmark , Campusvej 55 , 5230 Odense M , Denmark
| | - Björn Fåk
- Institut Laue-Langevin , 71 avenue des Martyrs, CS 20156 , 38042 Grenoble Cedex 9 , France
| | - Stéphane Rols
- Institut Laue-Langevin , 71 avenue des Martyrs, CS 20156 , 38042 Grenoble Cedex 9 , France
| | - Jacques Ollivier
- Institut Laue-Langevin , 71 avenue des Martyrs, CS 20156 , 38042 Grenoble Cedex 9 , France
| | - Høgni Weihe
- Department of Chemistry , University of Copenhagen , Universitetsparken 5 , DK-2100 Copenhagen , Denmark
| | - Jesper Bendix
- Department of Chemistry , University of Copenhagen , Universitetsparken 5 , DK-2100 Copenhagen , Denmark
| | - Mauro Perfetti
- Department of Chemistry , University of Copenhagen , Universitetsparken 5 , DK-2100 Copenhagen , Denmark
| |
Collapse
|
14
|
Spectroscopic Studies of the Magnetic Excitation and Spin‐Phonon Couplings in a Single‐Molecule Magnet. Chemistry 2019; 25:15846-15857. [DOI: 10.1002/chem.201903635] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Indexed: 12/11/2022]
|
15
|
Chen WC, Jiao CQ, Wang XL, Shao KZ, Su ZM. Self-Assembly of Nanoscale Lanthanoid-Containing Selenotungstates: Synthesis, Structures, and Magnetic Studies. Inorg Chem 2019; 58:12895-12904. [PMID: 31532221 DOI: 10.1021/acs.inorgchem.9b01830] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The reaction of mid-lanthanide (Ln) ions with the preformed {Se6W39} precursor under reasonably acidic aqueous conditions in the presence of organic amine cations results in an unprecedented nanoscale lanthanide-functionalized polyoxotungstate family, which are rare examples of mid-lanthanide-containing selenotungstates. (C4H10NO)9Na3[Dy3Se3.5W30O107.5(H2O)10]·22H2O (1) and (NH4)3(C2H8N)Na2[Dy4Se6W38O132(H2O)26(OH)6]·18H2O (2) reveal a trimeric Keggin assembly and a cyclic {Se6W38}-based chain, respectively, whereas (NH4)4Na8[Gd4Se6W48O166(H2O)20(OH)4]·21H2O (3) and (NH4)9(C2H8N)4Na5[Ln6Se6W58O202(H2O)20(OH)4]·58H2O (4; Ln = Gd, Tb, or Dy) are a few examples of polyoxometalates consisting of both classical Keggin and Wells-Dawson building blocks, and (NH4)4(C2H8N)5Na13[Ln4Se8W56O196(H2O)x(OH)10]·40H2O (5; Ln = Gd, Tb, or Dy; x = 12 for Gd and Tb and 10 for Dy) features the largest "pure" Wells-Dawson selenotungstate {Se8W56} bearing a length of 3.73 nm. A library of Se-templated species involving the first reported Keggin {α-SeW8} and Wells-Dawson {α-Se2W16} building blocks as well as some decisive assembly factors during the synthesis is responsible for these architectures. All of the compounds were structurally characterized in the solid and solution by single-crystal X-ray diffraction, IR, thermogravimetric-differential thermal analysis, and electrospray ionization mass spectrometry. Magnetic properties indicate that 1 and 4-Dy show probable single-molecule-magnet behavior with obvious frequency dependence, whereas 3 and 4-Gd present the antiferromagnetic interactions between the GdIII centers.
Collapse
Affiliation(s)
- Wei-Chao Chen
- Key Laboratory of Polyoxometalate Science of Ministry of Education Institute of Functional Materials Chemistry, Department of Chemistry , Northeast Normal University , Changchun , Jilin 130024 , China
| | - Cheng-Qi Jiao
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian 116024 , China
| | - Xin-Long Wang
- Key Laboratory of Polyoxometalate Science of Ministry of Education Institute of Functional Materials Chemistry, Department of Chemistry , Northeast Normal University , Changchun , Jilin 130024 , China
| | - Kui-Zhan Shao
- Key Laboratory of Polyoxometalate Science of Ministry of Education Institute of Functional Materials Chemistry, Department of Chemistry , Northeast Normal University , Changchun , Jilin 130024 , China
| | - Zhong-Min Su
- Key Laboratory of Polyoxometalate Science of Ministry of Education Institute of Functional Materials Chemistry, Department of Chemistry , Northeast Normal University , Changchun , Jilin 130024 , China.,Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, School of Chemistry and Environmental Engineering , Changchun University of Science and Technology , Changchun 130024 , China
| |
Collapse
|
16
|
Dunstan MA, Mole RA, Boskovic C. Inelastic Neutron Scattering of Lanthanoid Complexes and Single‐Molecule Magnets. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201801306] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Maja A. Dunstan
- School of Chemistry University of Melbourne Parkville, Victoria, 3010 Australia
| | - Richard A. Mole
- Australian Centre for Neutron Scattering Australian Nuclear Science and Technology Organisation Locked Bag 2001, Kirrawee DC, NSW, 2232 Australia
| | - Colette Boskovic
- School of Chemistry University of Melbourne Parkville, Victoria, 3010 Australia
| |
Collapse
|
17
|
Luo ZR, Zou HH, Chen ZL, Li B, Wang K, Liang FP. Triethylamine-templated nanocalix Ln12 clusters of diacylhydrazone: crystal structures and magnetic properties. Dalton Trans 2019; 48:17414-17421. [DOI: 10.1039/c9dt03335a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Three {Ln12} (Ln = Gd (1), Tb (2), Dy (3)) nanocalix clusters with a novel ligand of N,N′-bis(o-vanillidene)-1H-imidazole-4,5-dicarbohydrazide (H5ovih) were synthesized via the amine-templating strategy.
Collapse
Affiliation(s)
- Zhi-Rong Luo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Hua-Hong Zou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Zi-Lu Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Bo Li
- College of Chemistry and Pharmaceutical Engineering
- Nanyang Normal University
- Nanyang 473061
- P. R. China
| | - Kai Wang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials
- College of Chemistry and Bioengineering
- Guilin University of Technology
- Guilin 541004
- P. R. China
| | - Fu-Pei Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| |
Collapse
|
18
|
Stavretis SE, Cheng Y, Daemen LL, Brown CM, Moseley DH, Bill E, Atanasov M, Ramirez-Cuesta AJ, Neese F, Xue ZL. Probing Magnetic Excitations in CoII
Single-Molecule Magnets by Inelastic Neutron Scattering. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201801088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Shelby E. Stavretis
- Department of Chemistry; University of Tennessee; 37996 Knoxville Tennessee USA
| | - Yongqiang Cheng
- Neutron Scattering Division; Oak Ridge National Laboratory; 37831 Oak Ridge Tennessee USA
| | - Luke L. Daemen
- Neutron Scattering Division; Oak Ridge National Laboratory; 37831 Oak Ridge Tennessee USA
| | - Craig M. Brown
- NIST Center for Neutron Research; National Institute of Standards and Technology; 20899 Gaithersburg Maryland USA
- Department of Chemical and Biomolecular Engineering; University of Delaware; 19716 Newark Delaware USA
| | - Duncan H. Moseley
- Department of Chemistry; University of Tennessee; 37996 Knoxville Tennessee USA
| | - Eckhard Bill
- Max Planck Institute for Chemical Energy Conversion; Stiftstraße 34-36 45470 Mülheim an der Ruhr Germany
| | - Mihail Atanasov
- Max Planck Institute for Coal Research; Kaiser-Wilhelm-Platz 1, D -45470 Mülheim an der Ruhr Germany
- Institute of General and Inorganic Chemistry; Bulgarian Academy of Sciences; 1113 Sofia Bulgaria
| | | | - Frank Neese
- Max Planck Institute for Coal Research; Kaiser-Wilhelm-Platz 1, D -45470 Mülheim an der Ruhr Germany
| | - Zi-Ling Xue
- Department of Chemistry; University of Tennessee; 37996 Knoxville Tennessee USA
| |
Collapse
|
19
|
Kaushik R, Khan I, Saini MK, Hussain F, Sadakane M. Synthesis and characterization of carbonate-encapsulated ytterbium- and yttrium-containing polyoxotungstates. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2018; 74:1355-1361. [PMID: 30398188 DOI: 10.1107/s2053229618011841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/21/2018] [Indexed: 11/10/2022]
Abstract
A sandwiched-type carbonate-encapsulated yttrium-containing arsenotungstate(III) has been synthesized under mild reaction conditions. The polyanion [NaCH3COO{Y2(H2O)3(B-α-AsW9O33)2(W2O5)(CO3)}]12- (1) was isolated as a solid crystalline material by the reaction of a YIII salt with the sodium salt of trilacunary [AsW9O33]9- in sodium acetate solution. The sodium salt of the polyanion, i.e. Na12[Na(CH3COO){Y2(AsW9O33)2(W2O5)(CO3)(H3O)3}]·22H2O (1a), was characterized by various analytical techniques, such as FT-IR, single-crystal X-ray diffraction (SC-XRD), TGA (thermogravimetric analysis), 13C NMR and ESI-MS (electrospray ionization mass spectrometry). SC-XRD studies revealed that the polyanion crystallizes in the triclinic space group P-1. The structure showed that the polyanion is a carbonate-encapsulated sandwich-type species, consisting of two trilacunary B-α-[AsW9O33]9-, with a lone-pair-containing AsIII heteroatom, together with two extra tungsten centres and two yttrium cations at the sandwich position, where CH3COO- and Na+ ions act as linkers between the two polyanion units. In addition, we have also synthesized two carbonate-encapsulated germanotungstates(IV), without lone-pair-containing heteroatoms, with the formula [Ln3(A-β-GeW9O34)2(CO3)(H2O)3]13- [Ln = YIII (2) and YbIII (3)], i.e. Y2K3Na4[Y3(A-β-GeW9O34)2(CO3)(H2O)3]·19H2O (2a) and YbK8Na2[Yb(A-β-GeW9O34)2(CO3)(H2O)3]·16H2O (3a), and characterized them by FT-IR, SC-XRD, TGA and ESI-MS. Here, the lanthanide ions act as linkers, extending the structures into higher dimensions. Sodium and potassium ions also play a key role as linkers, further extending the structure. The packing shows the presence of certain hydrophilic pores within the structure.
Collapse
Affiliation(s)
- Reetam Kaushik
- Department of Chemistry, University of Delhi, North Campus, Delhi 110 007, India
| | - Imran Khan
- Department of Chemistry, University of Delhi, North Campus, Delhi 110 007, India
| | - Mukesh Kumar Saini
- Department of Chemistry, University of Delhi, North Campus, Delhi 110 007, India
| | - Firasat Hussain
- Department of Chemistry, University of Delhi, North Campus, Delhi 110 007, India
| | - Masahiro Sadakane
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, 1-4-1, Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| |
Collapse
|
20
|
Maruyama T, Kawabata H, Kikukawa Y, Hayashi Y. Yttrium-Containing Sandwich-, Ring-, and Cage-Type Polyoxovanadates: Synthesis and Characterization. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800540] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Tatsuya Maruyama
- Department of Chemistry; Graduate School of Natural Science and Technology; Kanazawa University; Kakuma, Kanazawa 920-1192 Ishikawa Japan
| | - Hiroko Kawabata
- Department of Chemistry; Graduate School of Natural Science and Technology; Kanazawa University; Kakuma, Kanazawa 920-1192 Ishikawa Japan
| | - Yuji Kikukawa
- Department of Chemistry; Graduate School of Natural Science and Technology; Kanazawa University; Kakuma, Kanazawa 920-1192 Ishikawa Japan
| | - Yoshihito Hayashi
- Department of Chemistry; Graduate School of Natural Science and Technology; Kanazawa University; Kakuma, Kanazawa 920-1192 Ishikawa Japan
| |
Collapse
|
21
|
Giansiracusa MJ, Moreno-Pineda E, Hussain R, Marx R, Martínez Prada M, Neugebauer P, Al-Badran S, Collison D, Tuna F, van Slageren J, Carretta S, Guidi T, McInnes EJL, Winpenny REP, Chilton NF. Measurement of Magnetic Exchange in Asymmetric Lanthanide Dimetallics: Toward a Transferable Theoretical Framework. J Am Chem Soc 2018; 140:2504-2513. [DOI: 10.1021/jacs.7b10714] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
| | - Eufemio Moreno-Pineda
- School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Riaz Hussain
- Dipartimento di Scienze Matematiche, Fisiche ed Informatiche, Università di Parma, Parco Area delle Scienze 7/a, Parma 43124, Italy
| | - Raphael Marx
- Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - María Martínez Prada
- Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Petr Neugebauer
- Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Susan Al-Badran
- School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - David Collison
- School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Floriana Tuna
- School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Joris van Slageren
- Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Stefano Carretta
- Dipartimento di Scienze Matematiche, Fisiche ed Informatiche, Università di Parma, Parco Area delle Scienze 7/a, Parma 43124, Italy
| | - Tatiana Guidi
- ISIS Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0QX, U.K
| | - Eric J. L. McInnes
- School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | | | - Nicholas F. Chilton
- School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| |
Collapse
|
22
|
Upadhyay A, Vignesh KR, Das C, Singh SK, Rajaraman G, Shanmugam M. Influence of the Ligand Field on the Slow Relaxation of Magnetization of Unsymmetrical Monomeric Lanthanide Complexes: Synthesis and Theoretical Studies. Inorg Chem 2017; 56:14260-14276. [DOI: 10.1021/acs.inorgchem.7b02357] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Apoorva Upadhyay
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - Kuduva R. Vignesh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - Chinmoy Das
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - Saurabh Kumar Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - Maheswaran Shanmugam
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| |
Collapse
|
23
|
Abstract
Longstanding and important applications make use of the chemical and physical properties of both rare earth metals and polyoxometalates of early transition metals. The catalytic, optical, and magnetic features of rare earth metal ions are well-known, as are the reversible multielectron redox and photoredox capabilities of polyoxomolybdates and polyoxotungstates. The combination of rare earth ions and polyoxometalates in discrete molecules and coordination polymers is of interest for the unique combination of chemical and physical properties that can arise. This Account surveys our efforts to synthesize and investigate compounds with rare earth ions and polyoxometalates (RE-POMs), sometimes with carboxylate-based organic coligands. Our general synthetic approach is "bottom-up", which affords well-defined nanoscale molecules, typically in crystalline form and amenable to single-crystal X-ray diffraction for structure determination. Our particular focus is on elucidation of the physical properties conferred by the different structural components with a view to ultimately being able to tune these properties chemically. For this purpose, we employ a variety of spectroscopic, magnetochemical, electrochemical, and scattering techniques in concert with theoretical modeling and computation. Studies of RE-POM single-molecule magnets (SMMs) have utilized magnetic susceptibility, inelastic neutron scattering, and ab initio calculations. These investigations have allowed characterization of the crystal field splitting of the rare earth(III) ions that is responsible for the SMM properties of slow magnetic relaxation and magnetization quantum tunneling. Such SMMs are promising for applications in quantum computing and molecular spintronics. Photophysical measurements of a family of hybrid RE-POMs with organic ligands have afforded insights into sensitization of Tb(III) and Eu(III) emission through both organic and polyoxometalate chromophores in the same molecule. Detailed variable-temperature studies have revealed the temperature dependence of the POM-based sensitization, which is relevant for potential applications in phosphor thermometry. Novel RE-POM coordination polymers demonstrate the promise of higher-dimensional materials for catalytic and sensing applications that can make use of either or both rare earth and polyoxometalate capabilities. Finally, structural, electrochemical, and density functional theory studies on a family of modular RE-POMs that incorporate molybdotungstates with amino acid coligands have revealed how closed Mo-oxo loops that are reduced preferentially can act as electron reservoirs in mixed-metal molybdotungstates. This has important implications for mixed-metal polyoxometalates in redox and photoredox catalysis. Notably, these hybrid RE-POMs are stable in solution and maintain the chirality induced by amino acid ligands. The RE-POMs surveyed in this Account provide a glimpse of possible structural features that are accessible with this family of compounds. The studies of the ensuing chemical and physical properties reveal the promise of RE-POMs for diverse and varied applications and lay an excellent foundation for the future development of this new class of functional materials.
Collapse
Affiliation(s)
- Colette Boskovic
- School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
24
|
Huo Y, Chen YC, Liu JL, Jia JH, Chen WB, Wu SG, Tong ML. A wheel-shaped Dy(iii) single-molecule magnet supported by polyoxotungstates. Dalton Trans 2017; 46:16796-16801. [DOI: 10.1039/c7dt03721j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A wheel-shaped Dy(iii) single-molecule magnet with an idealized S6 symmetry is supported by polyoxotungstates. The anisotropic barrier is extracted from AC susceptibilities and the emission spectrum offers insight into the magneto-optical correlation.
Collapse
Affiliation(s)
- Yu Huo
- MOE Key Lab of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Yan-Cong Chen
- MOE Key Lab of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Jun-Liang Liu
- MOE Key Lab of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Jian-Hua Jia
- MOE Key Lab of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Wen-Bin Chen
- MOE Key Lab of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Si-Guo Wu
- MOE Key Lab of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Ming-Liang Tong
- MOE Key Lab of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| |
Collapse
|
25
|
Bartolomé E, Arauzo A, Luzón J, Bartolomé J, Bartolomé F. Magnetic Relaxation of Lanthanide-Based Molecular Magnets. HANDBOOK OF MAGNETIC MATERIALS 2017. [DOI: 10.1016/bs.hmm.2017.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
26
|
Vonci M, Giansiracusa MJ, Van den Heuvel W, Gable RW, Moubaraki B, Murray KS, Yu D, Mole RA, Soncini A, Boskovic C. Magnetic Excitations in Polyoxotungstate-Supported Lanthanoid Single-Molecule Magnets: An Inelastic Neutron Scattering and ab Initio Study. Inorg Chem 2016; 56:378-394. [DOI: 10.1021/acs.inorgchem.6b02312] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Michele Vonci
- School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | - Robert W. Gable
- School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Boujemaa Moubaraki
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Keith S. Murray
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Dehong Yu
- Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, New South Wales 2232, Australia
| | - Richard A. Mole
- Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, New South Wales 2232, Australia
| | - Alessandro Soncini
- School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Colette Boskovic
- School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
27
|
Perspectives on Neutron Scattering in Lanthanide-Based Single-Molecule Magnets and a Case Study of the Tb2(μ-N2) System. MAGNETOCHEMISTRY 2016. [DOI: 10.3390/magnetochemistry2040045] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|