1
|
Pohle MH, Lohmiller T, Böhme M, Rams M, Ziegenbalg S, Görls H, Schnegg A, Plass W. THz-EPR-based Magneto-Structural Correlations for Cobalt(II) Single-Ion Magnets With Bis-Chelate Coordination. Chemistry 2024; 30:e202401545. [PMID: 39136581 DOI: 10.1002/chem.202401545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Indexed: 10/18/2024]
Abstract
New cobalt(II)-based complexes with [N2O2] coordination formed by two bis-chelate ligands were synthesized and characterized by a multi-technique approach. The complexes possess an easy-axis anisotropy (D<0) and magnetic measurements show a field-induced slow relaxation of magnetization. The spin-reversal barriers, i. e., the splitting of the two lowest Kramers doublets (UZFS), have been measured by THz-EPR spectroscopy, which allows to distinguish the two crystallographically independent species present in one of the complexes. Based on these experimental UZFS energies together with those for related complexes reported in literature, it was possible to establish magneto-structural correlations. UZFS linearly depends on the elongation parameter ϵT of the (pseudo-)tetrahedral coordination, which is given by the ratio between the average obtuse and acute angles at the cobalt(II) ion, while UZFS was found to be virtually independent of the twist angle of the chelate planes. With increasing deviation from the orthogonality of the latter, the rhombicity (|E/D|) increases.
Collapse
Affiliation(s)
- Maximilian H Pohle
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 8, 07743, Jena, Germany
| | - Thomas Lohmiller
- EPR4 Energy Joint Lab, Department Spins in Energy Conversion and Quantum Information Science, Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 16, 12489, Berlin, Germany
- Current address: Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Michael Böhme
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 8, 07743, Jena, Germany
| | - Michał Rams
- Institute of Physics, Jagiellonian University, 30-348, Kraków, Poland
| | - Sven Ziegenbalg
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 8, 07743, Jena, Germany
| | - Helmar Görls
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 8, 07743, Jena, Germany
| | - Alexander Schnegg
- EPR Research Group, Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Winfried Plass
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 8, 07743, Jena, Germany
| |
Collapse
|
2
|
Cui HH, Xu H, Zhang T, Chen Q, Luo S, Wang M, Wang J, Chen L, Zhang M, Tang Y. Magnetic Anisotropy and Relaxation in Four-Coordinate Cobalt(II) Single-Ion Magnets with a [Co IIO 4] Core. Inorg Chem 2024; 63:9050-9057. [PMID: 38709957 DOI: 10.1021/acs.inorgchem.4c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
A mononuclear four-coordinate Co(II) complex with a [CoIIO4] core, namely, PPN[Li(MeOH)4][Co(L)2] (1) (PPN = bis(phosphoranediyl)iminium; H2L = perfluoropinacol), has been studied by X-ray crystallography, magnetic characterization, and theoretical calculations. This complex presents a severely distorted coordination geometry. The O-Co-O bite angle is 83.42°/83.65°, and the dihedral twist angle between the O-Co-O chelate planes is 55.6°. The structural distortion results in a large easy-axis magnetic anisotropy with D = -104(1) cm-1 and a transverse component with |E| = +4(2) cm-1. Alternating current (ac) susceptibility measurements demonstrate that 1 exhibits slow relaxation of magnetization at zero static field. However, the frequency-dependent out-of-phase (χ"M) susceptibilities of 1 at 0 Oe do not show a characteristic maximum. Upon the application of a dc field or the dilution with a diamagnetic Zn matrix, the quantum tunneling of magnetization (QTM) process can be successfully suppressed. Notably, after dilution with the Zn matrix, the obtained sample exhibits a structure different from that of the pristine complex. In this altered sample, the asymmetric unit does not contain the Li(MeOH)4+ cation, resulting in an O-Co-O bite angle of 86.05° and a dihedral twist angle of 75.84°, thereby leading to an approximate D2d symmetry. Although such differences are not desirable for magnetic studies, this study still gives some insights. Theoretical calculations reveal that the D parameter is governed by the O-Co-O bite angle, in line with our previous report for other tetrahedral Co(II) complex with a [CoIIN4] core. On the other hand, the rhombic component is found to increase as the dihedral angle deviates from 90°. These findings provide valuable guidelines for fine-tuning the magnetic properties of Co(II) complexes.
Collapse
Affiliation(s)
- Hui-Hui Cui
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Hongjuan Xu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Tengkun Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Qiukai Chen
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Shuchang Luo
- School of Chemical Engineering, Guizhou University of Engineering Science, Bijie 551700, China
| | - Miao Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Jin Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Lei Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Mingxing Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Yanfeng Tang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| |
Collapse
|
3
|
Lococciolo G, Gupta SK, Dechert S, Demeshko S, Duboc C, Atanasov M, Neese F, Meyer F. Oxygen-Donor Metalloligands Induce Slow Magnetization Relaxation in Zero Field for a Cobalt(II) Complex with {CoO 4} Motif. Inorg Chem 2024; 63:5652-5663. [PMID: 38470330 DOI: 10.1021/acs.inorgchem.4c00054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Most 3d metal-based single-molecule magnets (SMMs) use N-ligands or ligands with even softer donors to impart a particular coordination geometry and increase the zero-field splitting parameter |D|, while complexes with hard O-donor ligands showing slow magnetization relaxation are rare. Here, we report that a diamagnetic NiII complex of a tetradentate ligand featuring two N-heterocyclic carbene and two alkoxide-O donors, [LO,ONi], can serve as a {O,O'}-chelating metalloligand to give a trinuclear complex [(LO,ONi)Co(LO,ONi)](OTf)2 (2) with an elongated tetrahedral {CoIIO4} core, D = -74.3 cm-1, and a spin reversal barrier Ueff = 86.9 cm-1 in the absence of an external dc field. The influence of diamagnetic NiII on the electronic structure of the {CoO4} unit in comparison to [Co(OPh)4]2- (A) has been probed with multireference ab initio calculations. These reveal a contrapolarizing effect of the NiII, which forms stronger metal-alkoxide bonds than the central CoII, inducing a change in ligand field splitting and a 5-fold increase in the magnetic anisotropy in 2 compared to A, with an easy magnetization axis along the Ni-Co-Ni vector. This demonstrates a strategy to enhance the SMM properties of 3d metal complexes with hard O-donors by modulating the ligand field character via the coordination of diamagnetic ions and the benefit of robust metalloligands in that regard.
Collapse
Affiliation(s)
- Giuseppe Lococciolo
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstraße 4, Göttingen 37077, Germany
| | - Sandeep K Gupta
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstraße 4, Göttingen 37077, Germany
| | - Sebastian Dechert
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstraße 4, Göttingen 37077, Germany
| | - Serhiy Demeshko
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstraße 4, Göttingen 37077, Germany
| | - Carole Duboc
- Université Grenoble Alpes, CNRS UMR 5250, DCM, Grenoble F-38000, France
| | - Mihail Atanasov
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Akad. Georgi Bontchev Street 11, Sofia 1113, Bulgaria
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Franc Meyer
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstraße 4, Göttingen 37077, Germany
| |
Collapse
|
4
|
Giraldo JN, Hrubý J, Vavrečková Š, Fellner OF, Havlíček L, Henry D, de Silva S, Herchel R, Bartoš M, Šalitroš I, Santana VT, Barbara P, Nemec I, Neugebauer P. Tetracoordinate Co(II) complexes with semi-coordination as stable single-ion magnets for deposition on graphene. Phys Chem Chem Phys 2023; 25:29516-29530. [PMID: 37901907 PMCID: PMC10631493 DOI: 10.1039/d3cp01426f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 10/03/2023] [Indexed: 10/31/2023]
Abstract
We present a theoretical and experimental study of two tetracoordinate Co(II)-based complexes with semi-coordination interactions, i.e., non-covalent interactions involving the central atom. We argue that such interactions enhance the thermal and structural stability of the compounds, making them appropriate for deposition on substrates, as demonstrated by their successful deposition on graphene. DC magnetometry and high-frequency electron spin resonance (HF-ESR) experiments revealed an axial magnetic anisotropy and weak intermolecular antiferromagnetic coupling in both compounds, supported by theoretical predictions from complete active space self-consistent field calculations complemented by N-electron valence state second-order perturbation theory (CASSCF-NEVPT2), and broken-symmetry density functional theory (BS-DFT). AC magnetometry demonstrated that the compounds are field-induced single-ion magnets (SIMs) at applied static magnetic fields, with slow relaxation of magnetization governed by a combination of quantum tunneling, Orbach, and direct relaxation mechanisms. The structural stability under ambient conditions and after deposition was confirmed by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. Theoretical modeling by DFT of different configurations of these systems on graphene revealed n-type doping of graphene originating from electron transfer from the deposited molecules, confirmed by electrical transport measurements and Raman spectroscopy.
Collapse
Affiliation(s)
- Jorge Navarro Giraldo
- Central European Institute of Technology, CEITEC BUT, Purkyňova 656/123, 61200 Brno, Czech Republic.
| | - Jakub Hrubý
- Central European Institute of Technology, CEITEC BUT, Purkyňova 656/123, 61200 Brno, Czech Republic.
| | - Šárka Vavrečková
- Central European Institute of Technology, CEITEC BUT, Purkyňova 656/123, 61200 Brno, Czech Republic.
- Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2, 61669 Brno, Czech Republic
| | - Ondřej F Fellner
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77147 Olomouc, Czech Republic
| | - Lubomír Havlíček
- Central European Institute of Technology, CEITEC BUT, Purkyňova 656/123, 61200 Brno, Czech Republic.
- Institute of Physics of Materials, Czech Academy of Sciences, Žižkova 22, 61662 Brno, Czech Republic
| | - DaVonne Henry
- Department of Physics, Georgetown University, Washington, DC, USA
| | - Shehan de Silva
- Department of Physics, Georgetown University, Washington, DC, USA
| | - Radovan Herchel
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77147 Olomouc, Czech Republic
| | - Miroslav Bartoš
- Central European Institute of Technology, CEITEC BUT, Purkyňova 656/123, 61200 Brno, Czech Republic.
| | - Ivan Šalitroš
- Central European Institute of Technology, CEITEC BUT, Purkyňova 656/123, 61200 Brno, Czech Republic.
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava SK-81237, Slovakia
| | - Vinicius T Santana
- Central European Institute of Technology, CEITEC BUT, Purkyňova 656/123, 61200 Brno, Czech Republic.
| | - Paola Barbara
- Department of Physics, Georgetown University, Washington, DC, USA
| | - Ivan Nemec
- Central European Institute of Technology, CEITEC BUT, Purkyňova 656/123, 61200 Brno, Czech Republic.
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77147 Olomouc, Czech Republic
| | - Petr Neugebauer
- Central European Institute of Technology, CEITEC BUT, Purkyňova 656/123, 61200 Brno, Czech Republic.
| |
Collapse
|
5
|
Gupta SK, Rao SV, Demeshko S, Dechert S, Bill E, Atanasov M, Neese F, Meyer F. Air-stable four-coordinate cobalt(ii) single-ion magnets: experimental and ab initio ligand field analyses of correlations between dihedral angles and magnetic anisotropy. Chem Sci 2023; 14:6355-6374. [PMID: 37325133 PMCID: PMC10266464 DOI: 10.1039/d3sc00813d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/12/2023] [Indexed: 06/17/2023] Open
Abstract
For single-ion magnets (SIMs), understanding the effects of the local coordination environment and ligand field on magnetic anisotropy is key to controlling their magnetic properties. Here we present a series of tetracoordinate cobalt(ii) complexes of the general formula [FL2Co]X2 (where FL is a bidentate diamido ligand) whose electron-withdrawing -C6F5 substituents confer stability under ambient conditions. Depending on the cations X, these complexes adopt structures with greatly varying dihedral twist angle δ between the N-Co-N' chelate planes in the solid state (48.0 to 89.2°). AC and DC field magnetic susceptibility measurements show this to translate into very different magnetic properties, the axial zero-field splitting (ZFS) parameter D ranging from -69 cm-1 to -143 cm-1 with substantial or negligible rhombic component E, respectively. A close to orthogonal arrangement of the two N,N'-chelating σ- and π-donor ligands at the Co(ii) ion is found to raise the energy barrier for magnetic relaxation to above 400 K. Multireference ab initio methods were employed to describe the complexes' electronic structures, and the results were analyzed within the framework of ab initio ligand field theory to probe the nature of the metal-ligand bonding and spin-orbit coupling. A relationship between the energy gaps of the first few electronic transitions and the ZFS was established, and the ZFS was correlated with the dihedral angle δ as well as with the metal-ligand bonding variations, viz. the two angular overlap parameters eσ and eπs. These findings not only give rise to a Co(ii) SIM showing open hysteresis up to 3.5 K at a sweep rate of 30 Oe s-1, but they also provide design guidelines for Co(ii) complexes with favorable SIM signatures or even switchable magnetic relaxation properties.
Collapse
Affiliation(s)
- Sandeep K Gupta
- Institut für Anorganische Chemie, Universität Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Shashank V Rao
- Max Planck Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Serhiy Demeshko
- Institut für Anorganische Chemie, Universität Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Sebastian Dechert
- Institut für Anorganische Chemie, Universität Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Eckhard Bill
- Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34-36 45470 Mülheim an der Ruhr Germany
| | - Mihail Atanasov
- Max Planck Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences Akad. Georgi Bontchev Street 11 1113 Sofia Bulgaria
| | - Frank Neese
- Max Planck Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Franc Meyer
- Institut für Anorganische Chemie, Universität Göttingen Tammannstrasse 4 37077 Göttingen Germany
| |
Collapse
|
6
|
Pohle MH, Böhme M, Lohmiller T, Ziegenbalg S, Blechschmidt L, Görls H, Schnegg A, Plass W. Magnetic Anisotropy and Relaxation of Pseudotetrahedral [N 2 O 2 ] Bis-Chelate Cobalt(II) Single-Ion Magnets Controlled by Dihedral Twist Through Solvomorphism. Chemistry 2023; 29:e202202966. [PMID: 36468847 DOI: 10.1002/chem.202202966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/07/2022]
Abstract
The methanol solvomorph 1 ⋅ 2MeOH of the cobalt(II) complex [Co(LSal,2-Ph )2 ] (1) with the sterically demanding Schiff-base ligand 2-(([1,1'-biphenyl]-2-ylimino)methyl)phenol (HLSal,2-Ph ) shows the thus far largest dihedral twist distortion between the two chelate planes compared to an ideal pseudotetrahedral arrangement. The cobalt(II) ion in 1 ⋅ 2MeOH exhibits an easy-axis anisotropy leading to a spin-reversal barrier of 55.3 cm-1 , which corresponds to an increase of about 17 % induced by the larger dihedral twist compared to the solvent-free complex 1. The magnetic relaxation for 1 ⋅ 2MeOH is significantly slower compared to 1. An in-depth frequency-domain Fourier-transform (FD-FT) THz-EPR study not only allowed the direct measurement of the magnetic transition between the two lowest Kramers doublets for the cobalt(II) complexes, but also revealed the presence of spin-phonon coupling. Interestingly, a similar dihedral twist correlation is also observed for a second pair of cobalt(II)-based solvomorphs, which could be benchmarked by FD-FT THz-EPR.
Collapse
Affiliation(s)
- Maximilian H Pohle
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 8, 07743, Jena, Germany
| | - Michael Böhme
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 8, 07743, Jena, Germany
| | - Thomas Lohmiller
- EPR4Energy Joint Lab, Department Spins in Energy Conversion and Quantum Information Science, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 16, 12489, Berlin, Germany.,present address: Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Sven Ziegenbalg
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 8, 07743, Jena, Germany
| | - Louis Blechschmidt
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 8, 07743, Jena, Germany
| | - Helmar Görls
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 8, 07743, Jena, Germany
| | - Alexander Schnegg
- EPR4Energy Joint Lab, Department Spins in Energy Conversion and Quantum Information Science, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 16, 12489, Berlin, Germany.,EPR Research Group, MPI for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Winfried Plass
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 8, 07743, Jena, Germany
| |
Collapse
|
7
|
Kumar Sahu P, Kharel R, Shome S, Goswami S, Konar S. Understanding the unceasing evolution of Co(II) based single-ion magnets. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Milani JLS, da Mata ÁFA, Oliveira IS, Valdo AKSM, Martins FT, Rabelo R, Cangussu D, Cano J, Lloret F, Julve M, das Chagas RP. Single-molecule magnet behaviour and catalytic properties of tetrahedral Co(II) complexes bearing chloride and 1,2-disubstituted benzimidazole as ligands. Dalton Trans 2022; 51:12258-12270. [PMID: 35895288 DOI: 10.1039/d2dt01440h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Five cobalt(II) complexes of formula [CoCl2(Ln)2] [1 with L1 = 1-benzyl-2-phenyl-1H-benzimidazole, 2 with L2 = 2-(furan-2-yl)-1-(furan-2-ylmethyl)-1H-benzimidazole, 3 with L3 = 1-(4-chlorobenzyl)-2-(4-chlorophenyl)-1H-benzimidazole, 4 with L4 = 1-(2-methoxybenzyl)-2-(2-methoxyphenyl)-1H-benzimidazole and 5 with L5 = 2-(thiophen-2-yl)-1-(thiophen-2-ylmethyl)-1H-benzimidazole] have been synthesised, spectroscopically characterised and cryomagnetically investigated. The crystal structures of 1, 3, 4 and 5 have been determined by X-ray diffraction on single crystals. Each cobalt(II) ion is four-coordinate in a distorted tetrahedral environment built by two chloride anions and two benzimidazole ligands. The neutral molecules are well separated from each other, shortest intermolecular cobalt⋯cobalt distances being greater than 9.0 Å. Static (dc) magnetic susceptibility measurements in the temperature range 2.0-300 K of 1-5 reveal the occurrence of a Curie law behaviour of magnetically non-interacting spin quadruplets in the high-temperature domain with a downturn at low temperatures due to magnetic anisotropy. The values of the D and E/D parameters for these compounds vary in the ranges -8.75 to +8.96 cm-1 and 0.00140 to 0.23, respectively. Dynamic (ac) magnetic susceptibility measurements of 1-5 show slow magnetic relaxation in the lack (1) or under the presence (1-5) of applied dc magnetic fields, a feature which is typical of single-molecule magnet behaviour (SMM). The analysis of the ac data shows that a thermally activated Orbach relaxation mechanism dominates this behaviour. Complexes 1-5 also act as efficient and highly selective eco-friendly catalysts in the coupling reaction between CO2 and epoxides to produce cyclic carbonates under solvent-free conditions. Under optimized reaction conditions, different epoxides were converted to the respective cyclic carbonate, with excellent conversions, using catalyst 4.
Collapse
Affiliation(s)
- Jorge Luiz Sônego Milani
- Instituto de Química, Universidade Federal de Goiás - UFG, Goiânia, GO, Brazil. .,Departamento de Química, Universidade Federal de Juiz de Fora - UFJF, Juiz de Fora, MG, Brazil.
| | | | | | - Ana Karoline Silva Mendanha Valdo
- Instituto de Química, Universidade Federal de Goiás - UFG, Goiânia, GO, Brazil. .,Instituto Federal Goiano, IF Goiano, Iporá, GO, Brazil
| | | | - Renato Rabelo
- Universitat de València, Departament de Química Inorgánica/Instituto de Ciencia Molecular (ICMol), Paterna, València, Spain.
| | - Danielle Cangussu
- Instituto de Química, Universidade Federal de Goiás - UFG, Goiânia, GO, Brazil.
| | - Joan Cano
- Universitat de València, Departament de Química Inorgánica/Instituto de Ciencia Molecular (ICMol), Paterna, València, Spain.
| | - Francesc Lloret
- Universitat de València, Departament de Química Inorgánica/Instituto de Ciencia Molecular (ICMol), Paterna, València, Spain.
| | - Miguel Julve
- Universitat de València, Departament de Química Inorgánica/Instituto de Ciencia Molecular (ICMol), Paterna, València, Spain.
| | | |
Collapse
|
9
|
Lv W, Cui HH, Chen L, Zhang YQ, Chen XT, Wang Z, Ouyang ZW, Xue ZL. Magnetic anisotropy of two tetrahedral Co(II)-halide complexes with triphenylphosphine ligands. Dalton Trans 2022; 51:7530-7538. [PMID: 35506535 DOI: 10.1039/d2dt00121g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recently, the choice of ligand and geometric control of mononuclear complexes, which can affect the relaxation pathways and blocking temperature, have received wide attention in the field of single-ion magnets (SIMs). To find out the influence of the coordination environment on SIMs, two four-coordinate mononuclear Co(II) complexes [NEt4][Co(PPh3)X3] (X = Cl-, 1; Br-, 2) have been synthesized and studied by X-ray single crystallography, magnetic measurements, high-frequency and -field EPR (HF-EPR) spectroscopy and theoretical calculations. Both complexes are in a cubic space group Pa3̄ (No. 205), containing a slightly distorted tetrahedral moiety with crystallographically imposed C3v symmetry through the [Co(PPh3)X3]- anion. The direct-current (dc) magnetic data and HF-EPR spectroscopy indicated the anisotropic S = 3/2 spin ground states of the Co(II) ions with the easy-plane anisotropy for 1 and 2. Ab initio calculations were performed to confirm the positive magnetic anisotropies of 1 and 2. Frequency- and temperature-dependent alternating-current (ac) magnetic susceptibility measurements revealed slow magnetic relaxation for 1 and 2 at an applied dc field. Finally, the magnetic properties of 1 and 2 were compared to those of other Co(II) complexes with a [CoAB3] moiety.
Collapse
Affiliation(s)
- Wei Lv
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Hui-Hui Cui
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Lei Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, China
| | - Xue-Tai Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Zhenxing Wang
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhong-Wen Ouyang
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zi-Ling Xue
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA
| |
Collapse
|
10
|
Mills LR, Gygi D, Ludwig JR, Simmons EM, Wisniewski SR, Kim J, Chirik PJ. Cobalt-Catalyzed C(sp 2)-C(sp 3) Suzuki-Miyaura Cross-Coupling Enabled by Well-Defined Precatalysts with L,X-Type Ligands. ACS Catal 2022; 12:1905-1918. [PMID: 36034100 PMCID: PMC9400687 DOI: 10.1021/acscatal.1c05586] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cobalt(II) halides in combination with phenoxy-imine (FI) ligands generated efficient precatalysts in situ for the C(sp2)-C(sp3) Suzuki-Miyaura cross coupling between alkyl bromides and neopentylglycol (hetero)arylboronic esters. The protocol enabled efficient C-C bond formation with a host of nucleophiles and electrophiles (36 examples, 34-95%) with precatalyst loadings of 5 mol%. Studies with alkyl halide electrophiles that function as radical clocks support the intermediacy of alkyl radicals during the course of the catalytic reaction. The improved performance of the FI-cobalt catalyst was correlated with decreased lifetimes of cage-escaped radicals as compared to diamine-type ligands. Studies of the phenoxy(imine)-cobalt coordination chemistry validate the L,X interaction leading to the discovery of an optimal, well defined, air-stable mono-FI cobalt(II) precatalyst structure.
Collapse
Affiliation(s)
- L. Reginald Mills
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - David Gygi
- Chemical Process Development, Bristol Myers Squibb Company, New Brunswick, New Jersey 08903, USA
| | - Jacob R. Ludwig
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Eric M. Simmons
- Chemical Process Development, Bristol Myers Squibb Company, New Brunswick, New Jersey 08903, USA
| | - Steven R. Wisniewski
- Chemical Process Development, Bristol Myers Squibb Company, New Brunswick, New Jersey 08903, USA
| | - Junho Kim
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Paul J. Chirik
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
11
|
Legendre CM, Lüert D, Herbst-Irmer R, Stalke D. Benchmarking magnetic and spectroscopic properties on highly stable 3d metal complexes with tuneable bis(benzoxazol-2-yl)methanide ligands. Dalton Trans 2021; 50:16810-16818. [PMID: 34766963 DOI: 10.1039/d1dt03230e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two series a and b of 3d metal based complexes 1-4 [MII{(4-R-NCOC6H4)2CH}2], (with M = Mn (1), Fe (2), Co (3), Ni (4) and R = H (a) or Me (b)) were synthesised and structurally characterized. The complexes were found to crystallize differently depending on the dication ionic radius and the ligand substitution. All complexes showed remarkable X-ray diffraction resolution that will allow further advanced diffraction experiments. Subsequently, their spectroscopic and magnetic properties were analysed. Complexes 3a and 3b notably show slow magnetic relaxation of their magnetization and represent simple model systems relaxing through a phonon-bottleneck process (3a) or as a field-induced single-molecule magnet (3b, Ueff = 45.0 cm-1). Remarkably, the magnetic anisotropy in the manganese complex 1b results in induced slow magnetic relaxation. The influence of the dual 4-methylation of the ligands was investigated and found to generate important variations in the physical features of the corresponding complexes. Accessible via one-pot synthesis, these are highly robust against oxidation and moisture. Through smart ligand engineering, they represent stable and tuneable compounds for benchmarking purposes through standard and less-standard characterization methods.
Collapse
Affiliation(s)
- Christina M Legendre
- Institute for Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany.
| | - Daniel Lüert
- Institute for Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany.
| | - Regine Herbst-Irmer
- Institute for Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany.
| | - Dietmar Stalke
- Institute for Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany.
| |
Collapse
|
12
|
Chen Y, Yang Q, Peng G, Zhang YQ, Ren XM. Influence of F-position and solvent on coordination geometry and single ion magnet behavior of Co(II) complexes. Dalton Trans 2021; 50:13830-13840. [PMID: 34522941 DOI: 10.1039/d1dt02148f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Three mononuclear Co(II) complexes with the compositions of [Co(L1)2] (1), [Co(L2)2(CH3CN)] (2) and [Co(L3)2] (3) (HL1 = 2-((E)-(2-fluorobenzylimino)methyl)-4,6-dibromophenol, HL2 = 2-((E)-(3-fluorobenzylimino)methyl)-4,6-dibromophenol and HL3 = 2-((E)-(4-fluorobenzylimino)methyl)-4,6-dibromophenol) were prepared and structurally determined. The changes in the F-positions in the ligands and solvents led to the formation of these products with various coordination geometries. Both complexes 1 and 3 are four-coordinated and their coordination geometries can be described as tetrahedron and seesaw, whereas complex 2 is five coordinated with a coordination configuration in between trigonal bipyramid and square pyramid. Static magnetic studies reveal that all these complexes exhibit considerable easy-axis magnetic anisotropy. The easy-axis magnetic anisotropy of 1 and 3 mainly derives from the first quartet excited state, whereas that of 2 primarily originates from the first, third and fourth quartet excited states established by theoretical calculations. All the resulting complexes display field-induced slow magnetic relaxation. Complex 3 represents the first Co(II) single ion magnet with a seesaw coordination geometry. Ab initio calculations predict that the magnetic anisotropy will enhance when the seesaw coordination geometry varies from distortion to regulation.
Collapse
Affiliation(s)
- Yue Chen
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Qi Yang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Guo Peng
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Xiao-Ming Ren
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| |
Collapse
|
13
|
Bhowmick I, Newell BS, Shores MP. A systematic study of the influence of ligand field on the slow magnetic dynamics of Co(ii)-diimine compounds. Dalton Trans 2021; 50:10737-10748. [PMID: 34269774 DOI: 10.1039/d0dt01597k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we report heteroleptic Co(ii) diimine complexes [Co(H2bip)2Cl2] (1), [Co(H2bip)2Br2] (2), [Co(H2bip)3]Br2·1MeOH (3) and [Co(H2bip)2(Me2bpy)]Br2·(MeCN)0.5·(H2O)0.25 (4) (H2bip = 2,2'-bi-1,4,5,6-tetrahydropyrimidine, bpy = 2,2'-dipyridyl, Me2bpy = 4,4'-Me-2,2'-dipyridyl), purposefully prepared to enable a systematic study of magnetic property changes arising from the increase of overall ligand field from σ/π-donor chlorido (1) to π-acceptor 4,4'Me-2,2'bpy (4). The presence of axial and rhombic anisotropy (D and E) of these compounds is sufficient to allow 1-4 to show field-induced slow relaxation of magnetization. Interestingly, we found as the effective ligand field is increased in the series, rhombicity (E/D) decreases, and the magnetic relaxation profile changes significantly, where relaxation of magnetization at a specific temperature becomes gradually faster. We performed mechanistic analyses of the temperature dependence of magnetic relaxation times considering Orbach relaxation processes, Raman-like relaxation and quantum tunnelling of magnetization (QTM). The effective energy barrier of the Orbach relaxation process (Ueff) is largest in compound 1 (19.2 cm-1) and gradually decreases in the order 1 > 2 > 3 > 4 giving a minimum value in compound 4 (8.3 cm-1), where the Raman-like mechanism showed the possibility of different types of phonon activity below and above ∼2.5 K. As a precursor of 1, the tetrahedral complex [Co(H2bip)Cl2] (1a) was also synthesized and structurally and magnetically characterized: this compound exhibits slow relaxation of magnetization under an applied dc field (1800 Oe) with a record slow relaxation time of 3.39 s at 1.8 K.
Collapse
Affiliation(s)
- Indrani Bhowmick
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA.
| | - Brian S Newell
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA. and Analytical Resources Core, Center for Materials and Molecular Analysis, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Matthew P Shores
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA.
| |
Collapse
|
14
|
Ishizaki T, Karasaki H, Kage Y, Kamioka M, Wang Y, Mori S, Ishikawa N, Fukuda T, Furuta H, Shimizu S. Janus Pyrrolopyrrole Aza-dipyrrin: Hydrogen-Bonded Assemblies and Slow Magnetic Relaxation of the Cobalt(II) Complex in the Solid State. Chemistry 2021; 27:12686-12692. [PMID: 34137468 DOI: 10.1002/chem.202101755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Indexed: 11/12/2022]
Abstract
A novel pyrrolopyrrole azadipyrrin (Janus-PPAD) with Janus duality was synthesized by a Schiff base-forming reaction of diketopyrrolopyrrole. The orthogonal interactions of the hydrogen-bonding ketopyrrole and metal-coordinating azadipyrrin moieties in Janus-PPAD enabled the metal ions to be arranged at regular intervals: zinc(II) and cobalt(II) coordination provided metal-coordinated Janus-PPAD dimers, which can subsequently form hydrogen-bonded one-dimensional arrays both in solution and in the solid state. The supramolecular assembly of the zinc(II) complex in solution was investigated by 1 H NMR spectroscopy based on the isodesmic model, in which a binding constant for the elongation of assemblies is constant. Owing to the tetrahedral coordination, in the solid state, the cobalt(II) complex exhibited a slow magnetic relaxation due to the negative D value of -27.1 cm-1 with an effective relaxation energy barrier Ueff of 38.0 cm-1 . The effect of magnetic dilution on the relaxation behavior is discussed. The relaxation mechanism at low temperature was analyzed by considering spin lattice interactions and quantum tunneling effects. The easy-axis magnetic anisotropy was confirmed, and the relevant wave functions were obtained by ab initio CASSCF calculations.
Collapse
Affiliation(s)
- Toshiharu Ishizaki
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, 560-0043, Japan.,Current address: Department of Chemistry, College of Humanities and Sciences, Nihon University, Tokyo, 156-8550, Japan
| | - Hideaki Karasaki
- Department of Chemistry and Biochemistry, Graduate School of Engineering and, Center for Molecular Systems (CMS), Kyushu University, Fukuoka, 819-0395, Japan
| | - Yuto Kage
- Department of Chemistry and Biochemistry, Graduate School of Engineering and, Center for Molecular Systems (CMS), Kyushu University, Fukuoka, 819-0395, Japan
| | - Misaki Kamioka
- Department of Chemistry and Biochemistry, Graduate School of Engineering and, Center for Molecular Systems (CMS), Kyushu University, Fukuoka, 819-0395, Japan
| | - Yitong Wang
- Department of Chemistry and Biochemistry, Graduate School of Engineering and, Center for Molecular Systems (CMS), Kyushu University, Fukuoka, 819-0395, Japan
| | - Shigeki Mori
- Advanced Research Support Center (ADRES), Ehime University, Matsuyama, 790-8577, Japan
| | - Naoto Ishikawa
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, 560-0043, Japan
| | - Takamitsu Fukuda
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, 560-0043, Japan
| | - Hiroyuki Furuta
- Department of Chemistry and Biochemistry, Graduate School of Engineering and, Center for Molecular Systems (CMS), Kyushu University, Fukuoka, 819-0395, Japan
| | - Soji Shimizu
- Department of Chemistry and Biochemistry, Graduate School of Engineering and, Center for Molecular Systems (CMS), Kyushu University, Fukuoka, 819-0395, Japan
| |
Collapse
|
15
|
Wang M, Xu H, Sun T, Cui H, Zhang YQ, Chen L, Tang Y. Optimal N–Co–N bite angle for enhancing the magnetic anisotropy of zero-field Co(II) single-ion magnets in tetrahedral [N4] coordination environment. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
16
|
Akintola O, Buchholz A, Görls H, Plass W. Modulator Induced Formation of a Neutral Framework Based on Trinuclear Cobalt(II) Clusters and Nitrilotribenzoic Acid: Synthesis, Magnetism, and Sorption Properties. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Oluseun Akintola
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller-Universität Jena Humboldtstr. 8 07743 Jena Germany
| | - Axel Buchholz
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller-Universität Jena Humboldtstr. 8 07743 Jena Germany
| | - Helmar Görls
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller-Universität Jena Humboldtstr. 8 07743 Jena Germany
| | - Winfried Plass
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller-Universität Jena Humboldtstr. 8 07743 Jena Germany
| |
Collapse
|
17
|
Vrankić M, Šarić A, Bosnar S, Barišić D, Pajić D, Lützenkirchen-Hecht D, Badovinac IJ, Petravić M, Altomare A, Rizzi R, Klaser T. Structural Behavior and Spin-State Features of BaAl 2O 4 Scaled through Tuned Co 3+ Doping. Inorg Chem 2021; 60:8475-8488. [PMID: 34060812 DOI: 10.1021/acs.inorgchem.0c03475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pure and Co3+-doped BaAl2O4 [Ba(Al1-xCox)2O4, x = 0, 0.0077, 0.0379] powder samples were prepared by a facile hydrothermal route. Elemental analyses by static secondary ion mass spectrometry (SIMS), X-ray absorption spectroscopy (XAS) measurements at the Co K-edge, and X-ray diffraction studies were fully correlated, thus addressing a complete description of the structural complexity of Co3+-doped BaAl2O4 powder. Powder X-ray diffraction (PXRD) patterns indicated that prepared samples were nanocrystalline with a hexagonal P63 symmetry. The X-ray absorption near-edge structure (XANES) measurements revealed the presence of cobalt in a +3 oxidation state, while the rarely documented, tetrahedral symmetry around Co3+ was extracted from the extended X-ray absorption fine structure (EXAFS) oscillation patterns. Rietveld structure refinements showed that Co3+ preferentially substitutes Al3+ at tetrahedral Al3 sites of the BaAl2O4 host lattice, whereas the (Al3)O4 tetrahedra remain rather regular with Co3+-O distances ranging from 1.73(9) to 1.74(9) Å. The underlying magneto-structural features were unraveled through axial and rhombic zero-field splitting (ZFS) terms. The increased substitution of Al3+ by Co3+ at Al3 sites leads to an increase of the axial ZFS terms in Co3+-doped BaAl2O4 powder from 10.8 to 26.3 K, whereas the rhombic ZFS parameters across the series change in the range from 2.7 to 10.4 K, showing a considerable increase of anisotropy together with the values of the anisotropic g-tensor components flowing from 1.7 to 2.5. We defined the line between the Co3+ doping limit and influenced magneto-structural characteristics, thus enabling the design of strategy to control the ZFS terms' contributions to magnetic anisotropy within Co3+-doped BaAl2O4 powder.
Collapse
Affiliation(s)
- Martina Vrankić
- Division of Materials Physics and Center of Excellence for Advanced Materials and Sensing Devices, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Ankica Šarić
- Division of Materials Physics and Center of Excellence for Advanced Materials and Sensing Devices, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Sanja Bosnar
- Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Dario Barišić
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička 32, 10000 Zagreb, Croatia
| | - Damir Pajić
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička 32, 10000 Zagreb, Croatia
| | | | - Ivana Jelovica Badovinac
- Department of Physics and Centre for Micro- and Nanosciences and Technologies, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia
| | - Mladen Petravić
- Department of Physics and Centre for Micro- and Nanosciences and Technologies, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia
| | - Angela Altomare
- Institute of Crystallography-CNR, via Amendola 122/o, 70126 Bari, Italy
| | - Rosanna Rizzi
- Institute of Crystallography-CNR, via Amendola 122/o, 70126 Bari, Italy
| | - Teodoro Klaser
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička 32, 10000 Zagreb, Croatia
| |
Collapse
|
18
|
Legendre CM, Damgaard‐Møller E, Overgaard J, Stalke D. The Quest for Optimal 3 d Orbital Splitting in Tetrahedral Cobalt Single‐Molecule Magnets Featuring Colossal Anisotropy and Hysteresis. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100465] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Christina M. Legendre
- Institut für Anorganische Chemie Georg-August-Universität Göttingen Tammannstraβe 4 37077 Göttingen Germany
| | - Emil Damgaard‐Møller
- Department of Chemistry Aarhus University Langelandsgade 140 Aarhus C 8000 Denmark
| | - Jacob Overgaard
- Department of Chemistry Aarhus University Langelandsgade 140 Aarhus C 8000 Denmark
| | - Dietmar Stalke
- Institut für Anorganische Chemie Georg-August-Universität Göttingen Tammannstraβe 4 37077 Göttingen Germany
| |
Collapse
|
19
|
Świtlicka A, Machura B, Cano J, Lloret F, Julve M. A Study of the Lack of Slow Magnetic Relaxation in Mononuclear Trigonal Bipyramidal Cobalt(II) Complexes. ChemistrySelect 2021. [DOI: 10.1002/slct.202100061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Anna Świtlicka
- Department Of Crystallography, Institute of Chemistry University of Silesia 9th Szkolna St., 40–006 Katowice Poland
| | - Barbara Machura
- Department Of Crystallography, Institute of Chemistry University of Silesia 9th Szkolna St., 40–006 Katowice Poland
| | - Joan Cano
- Department of Química Inorgànica/Instituto de Ciencia Molecular (ICMol) Facultat de Quimica de la Universitat de València C/ Catedrático Jose Beltrán 2 46980 Paterna, València Spain
| | - Francesc Lloret
- Department of Química Inorgànica/Instituto de Ciencia Molecular (ICMol) Facultat de Quimica de la Universitat de València C/ Catedrático Jose Beltrán 2 46980 Paterna, València Spain
| | - Miguel Julve
- Department of Química Inorgànica/Instituto de Ciencia Molecular (ICMol) Facultat de Quimica de la Universitat de València C/ Catedrático Jose Beltrán 2 46980 Paterna, València Spain
| |
Collapse
|
20
|
Chen SY, Lv W, Cui HH, Chen L, Zhang YQ, Chen XT, Wang Z, Ouyang ZW, Yan H, Xue ZL. Magnetic anisotropies and slow magnetic relaxation of three tetrahedral tetrakis(pseudohalido)–cobalt( ii) complexes. NEW J CHEM 2021. [DOI: 10.1039/d1nj01916c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Magnetic anisotropies and slow magnetic relaxation of three homoleptic cobalt(ii) complexes with different pseudohalide ligands were studied via magnetometry, HFEPR and theoretical calculations.
Collapse
Affiliation(s)
- Shu-Yang Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei Lv
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hui-Hui Cui
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Lei Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, China
| | - Xue-Tai Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhenxing Wang
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhong-Wen Ouyang
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zi-Ling Xue
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee, 37996, USA
| |
Collapse
|
21
|
Wu CM, Tsai JE, Lee GH, Yang EC. Slow magnetization relaxation in a tetrahedrally coordinated mononuclear Co(II) complex exclusively ligated with phenanthroline ligands. Dalton Trans 2020; 49:16813-16820. [PMID: 33180075 DOI: 10.1039/d0dt03481a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper describes a tetrahedral mononuclear Co(ii) complex [CoL2](ClO4)2 (1) in which L = 2,9-diphenyl-1,10-phenanthroline. The structure of 1, which was determined by single crystal X-ray diffraction, indicates that it exists in the triclinic space group P1[combining macron]. Magnetic property studies were conducted by reduced magnetization measurements, ab initio calculations and X-band EPR experiments, the results of which revealed a large zero-field splitting, with D ∼ -45.9 cm-1. The Arrhenius equation indicates that the kinetic energy barrier of 1 is Ueff = 46.9 cm-1. This study describes a very rare case of a Co(ii) single ion magnet (SIM) that is purely tetrahedrally coordinated by pyridine like ligands.
Collapse
Affiliation(s)
- Chen-Ming Wu
- Department of Chemistry, Fu-Jen Catholic University, Hsinchuang, New Taipei City, 24205, Taiwan, Republic of China.
| | | | | | | |
Collapse
|
22
|
Jochim A, Rams M, Böhme M, Ceglarska M, Plass W, Näther C. Thermodynamically metastable chain and stable layered Co(NCS) 2 coordination polymers: thermodynamic relations and magnetic properties. Dalton Trans 2020; 49:15310-15322. [PMID: 33118568 DOI: 10.1039/d0dt03227a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Reaction of Co(NCS)2 with 4-bromopyridine leads to the formation of discrete complexes with the composition Co(NCS)2(4-bromopyridine)4·(CH3CN)0.67 (1), Co(NCS)2(4-bromopyridine)2(H2O)2 (2), Co(NCS)2(4-bromopyridine)2(CH3OH)2 (3) and Co(NCS)2(4-bromopyridine)2(CH3CN)2 (4). Upon heating compounds 2 and 4 transform into a crystalline product with the composition Co(NCS)2(4-bromopyridine)2 (5-I) that also can easily be obtained from solution. In this compound, the Co cations are linked by single μ-1,3-bridging thiocyanate anions into layers. Thermal decomposition of 3 leads to a second isomer (5-II), which is thermodynamically metastable and can also be synthesized from solution under kinetic control. In contrast to 5-I, the Co cations are linked by pairs of anionic ligands into linear chains. The magnetic exchange is very weak in 5-I, but much stronger and ferromagnetic along the linear chains in 5-II. AF ordering in 5-II is reached at 3.05 K, and magnetic relaxation is observed at the metamagnetic transition with an Arrhenius barrier of 17.1(3) cm-1. Ab initio computational studies reveal a different type of magnetic anisotropy to be present in the two crystallographically - independent Co centers in 5-II.
Collapse
Affiliation(s)
- Aleksej Jochim
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Straße 2, 24118 Kiel, Germany.
| | - Michał Rams
- Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Krakow, Poland
| | - Michael Böhme
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743 Jena, Germany
| | - Magdalena Ceglarska
- Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Krakow, Poland
| | - Winfried Plass
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743 Jena, Germany
| | - Christian Näther
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Straße 2, 24118 Kiel, Germany.
| |
Collapse
|
23
|
Hrubý J, Dvořák D, Squillantini L, Mannini M, van Slageren J, Herchel R, Nemec I, Neugebauer P. Co(II)-Based single-ion magnets with 1,1'-ferrocenediyl-bis(diphenylphosphine) metalloligands. Dalton Trans 2020; 49:11697-11707. [PMID: 32789384 DOI: 10.1039/d0dt01512a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Herein, we report on investigations of magnetic and spectroscopic properties of three heterobimetallic Fe(ii)-Co(ii) coordination compounds based on the tetracoordinate {CoP2X2} core encapsulated by dppf metalloligand, where X = Cl (1), Br (2), I (3), dppf = 1,1'-ferrocenediyl -bis(diphenylphosphine). The analysis of static magnetic data has revealed the presence of axial magnetic anisotropy in compounds (1) and (2) and this was further confirmed by high-frequency electron spin resonance (HF-ESR) spectroscopy. Dynamic magnetic data confirmed that (1) and (2) behave as field-induced Single-Ion Magnets (SIMs). Together with bulk studies, we have also tested the possibility of depositing (2) as thick films on Au(111), glass, and polymeric acetate by drop-casting as well as thermal sublimation, a key aspect for the development of future devices embedding these magnetic objects.
Collapse
Affiliation(s)
- J Hrubý
- Central European Institute of Technology, CEITEC BUT, Purkyňova 656/123, 61200 Brno, Czech Republic.
| | - D Dvořák
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77147 Olomouc, Czech Republic
| | - L Squillantini
- Department of Chemistry "Ugo Schiff", University of Florence and INSTM Research Unit of Florence, via Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - M Mannini
- Department of Chemistry "Ugo Schiff", University of Florence and INSTM Research Unit of Florence, via Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - J van Slageren
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - R Herchel
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77147 Olomouc, Czech Republic
| | - I Nemec
- Central European Institute of Technology, CEITEC BUT, Purkyňova 656/123, 61200 Brno, Czech Republic. and Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77147 Olomouc, Czech Republic
| | - P Neugebauer
- Central European Institute of Technology, CEITEC BUT, Purkyňova 656/123, 61200 Brno, Czech Republic.
| |
Collapse
|
24
|
Peng G, Chen Y, Li B, Zhang YQ, Ren XM. Bulky Schiff-base ligand supported Co(ii) single-ion magnets with zero-field slow magnetic relaxation. Dalton Trans 2020; 49:5798-5802. [PMID: 32338258 DOI: 10.1039/d0dt00790k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two mononuclear Co(ii) complexes with tetrahedral coordination geometry have been constructed from different bulky Schiff-base ligands. Both complexes exhibit slow magnetic relaxation without a static field and their relaxation behaviors can be tuned by ligand substitution. Clear magnetic hysteresis loops were observed for both complexes at 2 K.
Collapse
Affiliation(s)
- Guo Peng
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | | | | | | | | |
Collapse
|
25
|
Rams M, Jochim A, Böhme M, Lohmiller T, Ceglarska M, Rams MM, Schnegg A, Plass W, Näther C. Single-Chain Magnet Based on Cobalt(II) Thiocyanate as XXZ Spin Chain. Chemistry 2020; 26:2837-2851. [PMID: 31702081 PMCID: PMC7078958 DOI: 10.1002/chem.201903924] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Indexed: 11/11/2022]
Abstract
The cobalt(II) in [Co(NCS)2 (4-methoxypyridine)2 ]n are linked by pairs of thiocyanate anions into linear chains. In contrast to a previous structure determination, two crystallographically independent cobalt(II) centers have been found to be present. In the antiferromagnetic state, below the critical temperature (Tc =3.94 K) and critical field (Hc =290 Oe), slow relaxations of the ferromagnetic chains are observed. They originate mainly from defects in the magnetic structure, which has been elucidated by micromagnetic Monte Carlo simulations and ac measurements using pristine and defect samples. The energy barriers of the relaxations are Δτ1 =44.9(5) K and Δτ2 =26.0(7) K for long and short spin chains, respectively. The spin excitation energy, measured by using frequency-domain EPR spectroscopy, is 19.1 cm-1 and shifts 0.1 cm-1 due to the magnetic ordering. Ab initio calculations revealed easy-axis anisotropy for both CoII centers, and also an exchange anisotropy Jxx /Jzz of 0.21. The XXZ anisotropic Heisenberg model (solved by using the density renormalization matrix group technique) was used to reconcile the specific heat, susceptibility, and EPR data.
Collapse
Affiliation(s)
- Michał Rams
- Institute of PhysicsJagiellonian UniversityŁojasiewicza 1130348KrakówPoland
| | - Aleksej Jochim
- Institut für Anorganische ChemieChristian-Albrechts-Universität zu KielMax-Eyth-Straße 224118KielGermany
| | - Michael Böhme
- Institut für Anorganische und Analytische ChemieFriedrich-Schiller-Universität JenaHumboldtstr. 807743JenaGermany
| | - Thomas Lohmiller
- EPR4Energy Joint LabInstitut für NanospektroskopieHelmholtz-Zentrum Berlin für Materialien und Energie GmbHKekuléstr. 512489BerlinGermany
| | | | - Marek M. Rams
- Institute of PhysicsJagiellonian UniversityŁojasiewicza 1130348KrakówPoland
| | - Alexander Schnegg
- EPR4Energy Joint LabInstitut für NanospektroskopieHelmholtz-Zentrum Berlin für Materialien und Energie GmbHKekuléstr. 512489BerlinGermany
- EPR Research GroupMPI for Chemical Energy ConversionStiftstraße 34–3645470Mülheim an der RuhrGermany
| | - Winfried Plass
- Institut für Anorganische und Analytische ChemieFriedrich-Schiller-Universität JenaHumboldtstr. 807743JenaGermany
| | - Christian Näther
- Institut für Anorganische ChemieChristian-Albrechts-Universität zu KielMax-Eyth-Straße 224118KielGermany
| |
Collapse
|
26
|
Wang J, Chen NN, Pan CD, Zhang C, Fan L. Selective fluorescence sensing properties of a novel two-fold interpenetrating coordination polymer. NEW J CHEM 2020. [DOI: 10.1039/d0nj01750g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
One novel 3D interpenetrated Zn(ii) CP acts as multi-functional chemosensors in detection of acetone, Fe3+, Cu2+, Cr2O72−, CrO42− and nitrofurantoin (NFT).
Collapse
Affiliation(s)
- Jun Wang
- School of Chemistry & Environmental Engineering
- Yancheng Teachers University
- Yancheng 224007
- China
| | - Ning-Ning Chen
- School of Chemistry & Environmental Engineering
- Yancheng Teachers University
- Yancheng 224007
- China
| | - Chen-Dong Pan
- School of Chemistry & Environmental Engineering
- Yancheng Teachers University
- Yancheng 224007
- China
| | - Chen Zhang
- School of Chemistry & Environmental Engineering
- Yancheng Teachers University
- Yancheng 224007
- China
| | - Liming Fan
- Department of Chemistry
- College of Science
- North University of China
- Taiyuan 030051
- China
| |
Collapse
|
27
|
Wang J, Chen NN, Zhang C, Jia LY, Fan L. Functional group induced structural diversities and photocatalytic, magnetic and luminescence sensing properties of four cobalt(ii) coordination polymers based on 1,3,5-tris(2-methylimidazol-1-yl)benzene. CrystEngComm 2020. [DOI: 10.1039/c9ce01474h] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Based on the designed tripodal linker timb, four cobalt(ii) coordination polymers, {[Co4(timb)2(Br–IPA)4]·5H2O}n (1), {[Co(timb)0.5(NH2–IPA)]·4H2O}n (2), {[Co5(timb)4(OH–IPA)4]·2NO3·2DMA·2H2O}n (3), and {[Co3(timb)2(SO3–IPA)2(H2O)2]·8H2O}n (4), have been obtained.
Collapse
Affiliation(s)
- Jun Wang
- School of Chemistry & Environmental Engineering
- Yancheng Teachers University
- Yancheng 224007
- China
| | - Ning-Ning Chen
- School of Chemistry & Environmental Engineering
- Yancheng Teachers University
- Yancheng 224007
- China
| | - Chen Zhang
- School of Chemistry & Environmental Engineering
- Yancheng Teachers University
- Yancheng 224007
- China
| | - Li-Yong Jia
- School of Chemistry & Environmental Engineering
- Yancheng Teachers University
- Yancheng 224007
- China
| | - Liming Fan
- Department of Chemistry
- College of Science
- North University of China
- Taiyuan 030051
- China
| |
Collapse
|
28
|
Świtlicka A, Machura B, Kruszynski R, Moliner N, Carbonell JM, Cano J, Lloret F, Julve M. Magneto-structural diversity of Co(ii) compounds with 1-benzylimidazole induced by linear pseudohalide coligands. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00752h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The magneto-structural diversity of 1-benzylimidazole-containing cobalt(ii) compounds with linear pseudohalide ions (NCS−, NCO−, and N3−) is explored.
Collapse
Affiliation(s)
- Anna Świtlicka
- Department of Crystallography
- Institute of Chemistry
- University of Silesia
- 40-006 Katowice
- Poland
| | - Barbara Machura
- Department of Crystallography
- Institute of Chemistry
- University of Silesia
- 40-006 Katowice
- Poland
| | - Rafał Kruszynski
- Department of X-ray Crystallography and Crystal Chemistry
- Institute of General and Ecological Chemistry
- Lodz University of Technology
- 90-924 Łodz
- Poland
| | - Nicolás Moliner
- Department of Química Inorgànica/Instituto de Ciencia Molecular (ICMol)
- Facultat de Quimica de la Universitat de València
- 46980 Paterna
- Spain
| | - José Miguel Carbonell
- Department of Química Inorgànica/Instituto de Ciencia Molecular (ICMol)
- Facultat de Quimica de la Universitat de València
- 46980 Paterna
- Spain
| | - Joan Cano
- Department of Química Inorgànica/Instituto de Ciencia Molecular (ICMol)
- Facultat de Quimica de la Universitat de València
- 46980 Paterna
- Spain
| | - Francesc Lloret
- Department of Química Inorgànica/Instituto de Ciencia Molecular (ICMol)
- Facultat de Quimica de la Universitat de València
- 46980 Paterna
- Spain
| | - Miguel Julve
- Department of Química Inorgànica/Instituto de Ciencia Molecular (ICMol)
- Facultat de Quimica de la Universitat de València
- 46980 Paterna
- Spain
| |
Collapse
|
29
|
Wei XQ, Shao D, Xue CL, Qu XY, Chai J, Li JQ, Du YE, Chen YQ. Field-induced slow magnetic relaxation in two interpenetrated cobalt( ii) metal–organic framework isomers. CrystEngComm 2020. [DOI: 10.1039/d0ce00979b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two interpenetrated cobalt(ii) metal–organic framework (MOF) isomers were successfully synthesized and magnetically characterized. These compounds are the first example of MOF isomers showing field-induced single-ion magnet behavior.
Collapse
Affiliation(s)
- Xiao-Qin Wei
- Department of Chemistry and Chemical Engineering
- Jinzhong University
- Jinzhong
- China
| | - Dong Shao
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
- China
| | - Cai-Long Xue
- Department of Chemistry and Chemical Engineering
- Jinzhong University
- Jinzhong
- China
| | - Xing-Yu Qu
- Department of Chemistry and Chemical Engineering
- Jinzhong University
- Jinzhong
- China
| | - Jie Chai
- Department of Chemistry and Chemical Engineering
- Jinzhong University
- Jinzhong
- China
| | - Jian-Qing Li
- Department of Chemistry and Chemical Engineering
- Jinzhong University
- Jinzhong
- China
| | - Yi-En Du
- Department of Chemistry and Chemical Engineering
- Jinzhong University
- Jinzhong
- China
| | - Yong-Qiang Chen
- Department of Chemistry and Chemical Engineering
- Jinzhong University
- Jinzhong
- China
| |
Collapse
|
30
|
Das M, Basak D, Trávníček Z, Vančo J, Ray D. Entrapment of a Pseudo-Tetrahedral Co II Center by Thioether Sulfur Bound {Co 2 (μ-L)} Fragments: Synthesis, Field-Induced Single-Ion Magnetism and Catechol Oxidase Mimicking Activity. Chem Asian J 2019; 14:3898-3914. [PMID: 31545553 DOI: 10.1002/asia.201901109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/22/2019] [Indexed: 11/06/2022]
Abstract
Simultaneous incorporation of both CoII and CoIII ions within a new thioether S-bearing phenol-based ligand system, H3 L (2,6-bis-[{2-(2-hydroxyethylthio)ethylimino}methyl]-4-methylphenol) formed [Co5 ] aggregates [CoII CoIII 4 L2 (μ-OH)2 (μ1,3 -O2 CCH3 )2 ](ClO4 )4 ⋅H2 O (1) and [CoII CoIII 4 L2 (μ-OH)2 (μ1,3 -O2 CC2 H5 )2 ](ClO4 )4 ⋅H2 O (2). The magnetic studies revealed axial zero-field splitting (ZFS) parameter, D/hc=-23.6 and -24.3 cm-1 , and E/D=0.03 and 0.00, respectively for 1 and 2. Dynamic magnetic data confirmed the complexes as SIMs with Ueff /kB =30 K (1) and 33 K (2), and τ0 =9.1×10-8 s (1), and 4.3×10-8 s (2). The larger atomic radius of S compared to N gave rise to less variation in the distortion of tetrahedral geometry around central CoII centers, thus affecting the D and Ueff /kB values. Theoretical studies also support the experimental findings and reveal the origin of the anisotropy parameters. In solutions, both 1 and 2 which produce {CoIII 2 (μ-L)} units, display solvent-dependent catechol oxidation behavior toward 3,5-di-tert-butylcatechol in air. The presence of an adjacent CoIII ion tends to assist the electron transfer from the substrate to the metal ion center, enhancing the catalytic oxidation rate.
Collapse
Affiliation(s)
- Manisha Das
- Department of Chemistry, Indian Institute of Technology, Kharagpur, 721 302, India
| | - Dipmalya Basak
- Department of Chemistry, Indian Institute of Technology, Kharagpur, 721 302, India
| | - Zdeněk Trávníček
- Division of Biologically Active Complexes and Molecular Magnets, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Ján Vančo
- Division of Biologically Active Complexes and Molecular Magnets, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Debashis Ray
- Department of Chemistry, Indian Institute of Technology, Kharagpur, 721 302, India
| |
Collapse
|
31
|
Böhme M, Plass W. How to link theory and experiment for single-chain magnets beyond the Ising model: magnetic properties modeled from ab initio calculations of molecular fragments. Chem Sci 2019; 10:9189-9202. [PMID: 32055306 PMCID: PMC6979495 DOI: 10.1039/c9sc02735a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/15/2019] [Indexed: 12/23/2022] Open
Abstract
Magnetic properties of coordination polymers like single-chain magnets (SCMs) are based on magnetic domains, which are formed due to magnetic exchange between neighboring anisotropic spin centers. However, the computational restrictions imposed by the high level of theory needed for an adequate ab initio quantum mechanical treatment on the basis of multi-reference methods for these systems limit the feasibility of such calculations to mononuclear fragments as appropriate structural cutouts for the metal centers along the chains. Hence, results from such calculations describe single-ion properties and cannot be directly correlated with experimental data representing magnetic domains. We present a theoretical approach based on n-membered Ising-spin rings with n = 3-12, which allows us to simulate magnetic domains and to derive important magnetic properties for SCM compounds. Magnetic exchange, which is not provided by calculations of mononuclear fragments, is obtained by fitting the theoretical magnetic susceptibility against experimental data. The presented approach is tested for cobalt(ii)-based SCMs with three types of repeating sequences, which differ in nuclearity and symmetry. The magnetic parameters derived using the presented approach were found to be in good agreement with the experimental data. Moreover, the energy spectra obtained for the three test cases using the presented approach are characteristic of a deviation of the individual systems from the ideal Ising behavior. An extrapolation technique towards larger systems (n > 12) is presented which can provide information on the statistical mean length of the magnetic domains in the three investigated SCM compounds.
Collapse
Affiliation(s)
- Michael Böhme
- Institut für Anorganische und Analytische Chemie , Friedrich-Schiller-Universität Jena , Humboldtstraße 8 , 07743 Jena , Germany . ; ; Tel: +49 3641 948130
| | - Winfried Plass
- Institut für Anorganische und Analytische Chemie , Friedrich-Schiller-Universität Jena , Humboldtstraße 8 , 07743 Jena , Germany . ; ; Tel: +49 3641 948130
| |
Collapse
|
32
|
Wu T, Zhai YQ, Deng YF, Chen WP, Zhang T, Zheng YZ. Correlating magnetic anisotropy with the subtle coordination geometry variation of a series of cobalt(ii)-sulfonamide complexes. Dalton Trans 2019; 48:15419-15426. [PMID: 31065655 DOI: 10.1039/c9dt01296f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Systematic substitution on the N-(pyridine-2-ylmethyl)-sulfonamide ligand leads to the subtle variation of the CoN4 coordination geometry in a series of cobalt(ii) complexes sharing the common formula of Co[R1(C6N2H5)R2]2, where R1 = H, R2 = 4-tert-butylphenylsulfonyl (tBuphs) 1, R2 = 5-(dimethylamino)naphthalen-1-ylsulfonyl (DNps) 2, R2 = mesitylsulfonyl (Ms) 3, R2 = tosyl (Tos) 4, and R2 = naphthalen-1-ylsulfonyl (Nps) 5; R1 = Me, R2 = tBuphs 6. Magnetic studies show that the axial zero-field splitting parameter (D) is subtlely correlated with the coordination geometric variation subjected to the peripheral substituted groups. Specifically, the distortion from the ideal tetrahedral geometry (Td symmetry) to the seesaw geometry (D2d symmetry) increases uniaxial magnetic anisotropy. The degree of distortion measured by the continuous symmetry measure (CSM) shows that a narrow interval of CSM (6-7), which corresponds to 14-15 degree deviation from the standard tetrahedron, is ideal for maximising the D value in this coordination geometry, while the direction of the D tensor is less sensitive to such a structural variation.
Collapse
Affiliation(s)
- Tao Wu
- Frontier Institute of Science and Technology (FIST), State Key Laboratory for Mechanical Behavior of Materials, MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry and School of Science Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi 710054, P. R. China.
| | | | | | | | | | | |
Collapse
|
33
|
Yang H, Liu SS, Meng YS, Zhang YQ, Pu L, Yu XQ. Magnetic properties and theoretical calculations of mononuclear lanthanide complexes with a Schiff base coordinated to Ln(III) ion in a monodentate coordination mode. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.04.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
34
|
Tripathi S, Vaidya S, Ansari KU, Ahmed N, Rivière E, Spillecke L, Koo C, Klingeler R, Mallah T, Rajaraman G, Shanmugam M. Influence of a Counteranion on the Zero-Field Splitting of Tetrahedral Cobalt(II) Thiourea Complexes. Inorg Chem 2019; 58:9085-9100. [DOI: 10.1021/acs.inorgchem.9b00632] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shalini Tripathi
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Shefali Vaidya
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Kamal Uddin Ansari
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Naushad Ahmed
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Eric Rivière
- Institut de Chimie Moléculaire et des Matériaux d’Orsay, CNRS, Université Paris Sud, Université Paris Saclay, 91405 Orsay Cedex, France
| | | | | | | | - Talal Mallah
- Institut de Chimie Moléculaire et des Matériaux d’Orsay, CNRS, Université Paris Sud, Université Paris Saclay, 91405 Orsay Cedex, France
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Maheswaran Shanmugam
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India
| |
Collapse
|
35
|
Ishizaki T, Fukuda T, Akaki M, Fuyuhiro A, Hagiwara M, Ishikawa N. Synthesis of a Neutral Mononuclear Four-Coordinate Co(II) Complex Having Two Halved Phthalocyanine Ligands That Shows Slow Magnetic Relaxations under Zero Static Magnetic Field. Inorg Chem 2019; 58:5211-5220. [DOI: 10.1021/acs.inorgchem.9b00286] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Toshiharu Ishizaki
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Takamitsu Fukuda
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Mitsuru Akaki
- Center for Advanced High Magnetic Field Science (AHMF), Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Akira Fuyuhiro
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Masayuki Hagiwara
- Center for Advanced High Magnetic Field Science (AHMF), Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Naoto Ishikawa
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
36
|
Kong JJ, Shao D, Zhang JC, Jiang YX, Ji CL, Huang XC. From mononuclear to two-dimensional cobalt(ii) complexes based on a mixed benzimidazole–dicarboxylate strategy: syntheses, structures, and magnetic properties. CrystEngComm 2019. [DOI: 10.1039/c8ce01931b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Three cobalt(ii) complexes with diverse structure dimensions based on a mixed benzimidazole–dicarboxylate strategy have been synthesized hydrothermally and characterized structurally and magnetically.
Collapse
Affiliation(s)
- Jiao-Jiao Kong
- School of Chemistry and Environmental Engineering
- Yancheng Teachers University
- Yancheng
- China
| | - Dong Shao
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
- China
| | - Jia-Chen Zhang
- School of Chemistry and Environmental Engineering
- Yancheng Teachers University
- Yancheng
- China
| | - Yu-Xuan Jiang
- School of Chemistry and Environmental Engineering
- Yancheng Teachers University
- Yancheng
- China
| | - Cheng-Long Ji
- School of Chemistry and Environmental Engineering
- Yancheng Teachers University
- Yancheng
- China
| | - Xing-Cai Huang
- School of Chemistry and Environmental Engineering
- Yancheng Teachers University
- Yancheng
- China
| |
Collapse
|
37
|
Świtlicka A, Palion-Gazda J, Machura B, Cano J, Lloret F, Julve M. Field-induced slow magnetic relaxation in pseudooctahedral cobalt(ii) complexes with positive axial and large rhombic anisotropy. Dalton Trans 2019; 48:1404-1417. [DOI: 10.1039/c8dt03965h] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The preparation, X-ray crystal structure, spectroscopic and variable-temperature dc and ac magnetic properties of two six-coordinate cobalt(ii) complexes of formula [Co(bim)4(tcm)2] (1) and [Co(bmim)4(tcm)2] (2) are reported.
Collapse
Affiliation(s)
- Anna Świtlicka
- Department of Crystallography
- Institute of Chemistry
- University of Silesia
- 40-006 Katowice
- Poland
| | - Joanna Palion-Gazda
- Department of Crystallography
- Institute of Chemistry
- University of Silesia
- 40-006 Katowice
- Poland
| | - Barbara Machura
- Department of Crystallography
- Institute of Chemistry
- University of Silesia
- 40-006 Katowice
- Poland
| | - Joan Cano
- Department of Química Inorgànica/Instituto de Ciencia Molecular (ICMol)
- Facultat de Quimica de la Universitat de València
- 46980 Paterna
- Spain
- Fundació General de la Universitat de València (FGUV)
| | - Francesc Lloret
- Department of Química Inorgànica/Instituto de Ciencia Molecular (ICMol)
- Facultat de Quimica de la Universitat de València
- 46980 Paterna
- Spain
| | - Miguel Julve
- Department of Química Inorgànica/Instituto de Ciencia Molecular (ICMol)
- Facultat de Quimica de la Universitat de València
- 46980 Paterna
- Spain
| |
Collapse
|
38
|
Nehrkorn J, Veber SL, Zhukas LA, Novikov VV, Nelyubina YV, Voloshin YZ, Holldack K, Stoll S, Schnegg A. Determination of Large Zero-Field Splitting in High-Spin Co(I) Clathrochelates. Inorg Chem 2018; 57:15330-15340. [PMID: 30495930 DOI: 10.1021/acs.inorgchem.8b02670] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Joscha Nehrkorn
- Department of Chemistry, Institute for Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg, Germany
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
- Berlin Joint EPR Laboratory, Institut für Nanospektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Kekuléstr. 5, D-12489 Berlin, Germany
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Sergey L. Veber
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Institutskaya str. 3a, 630090 Novosibirsk, Russia
- Novosibirsk State University, Pirogova str. 1, 630090 Novosibirsk, Russia
| | - Liudmila A. Zhukas
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Institutskaya str. 3a, 630090 Novosibirsk, Russia
- Novosibirsk State University, Pirogova str. 1, 630090 Novosibirsk, Russia
| | - Valentin V. Novikov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova str. 28, 119991 Moscow, Russia
| | - Yulia V. Nelyubina
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova str. 28, 119991 Moscow, Russia
| | - Yan Z. Voloshin
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova str. 28, 119991 Moscow, Russia
| | - Karsten Holldack
- Institut für Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, D-12489 Berlin, Germany
| | - Stefan Stoll
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Alexander Schnegg
- Berlin Joint EPR Laboratory, Institut für Nanospektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Kekuléstr. 5, D-12489 Berlin, Germany
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
39
|
Zhai YQ, Deng YF, Zheng YZ. Pseudotetrahedral cobalt(ii) complexes with PNP-ligands showing uniaxial magnetic anisotropy. Dalton Trans 2018; 47:8874-8878. [PMID: 29922787 DOI: 10.1039/c8dt01683f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Two mononuclear pseudotetrahedral cobalt(ii) complexes with the formula Co(PNP)X2, where X = Cl (1) or X = SCN (2) and PNP = bis(2-(diphenylphosphaneyl)-4-methylphenyl)amine, have been synthesised. Magnetic and high-frequency/field electron paramagnetic resonance (HF-EPR) spectroscopy and ab initio calculation studies reveal that both complexes show uniaxial magnetic anisotropy.
Collapse
Affiliation(s)
- Yuan-Qi Zhai
- Frontier Institute of Science and Technology (FIST), State Key Laboratory for Mechanical Behavior of Materials, MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry and School of Science, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi 710054, P. R. China.
| | | | | |
Collapse
|
40
|
Yang H, Li R, Li D, Zeng S, Dou J. A Pentanuclear Cobalt Complex with two [CoII
(CH3
O)3
]-
Units Wrapping a Triangular [CoIII
3
O]7+
Core: Synthesis, Structure, and Magnetic Properties. Z Anorg Allg Chem 2018. [DOI: 10.1002/zaac.201800138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hua Yang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology; School of Chemistry and Chemical Engineering; Liaocheng University; 252000 Liaocheng P. R. China
| | - Ruiling Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology; School of Chemistry and Chemical Engineering; Liaocheng University; 252000 Liaocheng P. R. China
| | - Dacheng Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology; School of Chemistry and Chemical Engineering; Liaocheng University; 252000 Liaocheng P. R. China
| | - Suyuan Zeng
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology; School of Chemistry and Chemical Engineering; Liaocheng University; 252000 Liaocheng P. R. China
| | - Jianmin Dou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology; School of Chemistry and Chemical Engineering; Liaocheng University; 252000 Liaocheng P. R. China
| |
Collapse
|
41
|
Lou H, Yin L, Zhang B, Ouyang ZW, Li B, Wang Z. Series of Single-Ion and 1D Chain Complexes Based on Quinolinic Derivative: Synthesis, Crystal Structures, HF-EPR, and Magnetic Properties. Inorg Chem 2018; 57:7757-7762. [PMID: 29905464 DOI: 10.1021/acs.inorgchem.8b00812] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
By utilizing the quinolinic derivative, 8-carboxymethoxy-2-carboxylicquinoline (L), five transition metal coordination complexes, [M(L)(H2O)3]·H2O] (M = Mn (1), Co (2)), [Ni(L)(H2O)2] (3), and {[M(L)](H2O)} n (M = Ni (4), Cu (5)), were synthesized by hydrothermal methods employing similar synthetic strategies. The crystal structures, magnetism and high-field EPR were characterized for the obtained compounds. 1-3 are mononuclear compounds. 1 and 2 have pentagonal bipyramidal geometry, while 4 and 5 exhibit one-dimensional zig-zag chain. Direct current magnetic and EPR studies demonstrate that compound 2 has large and positive D value (∼70.4 cm-1), indicating the easy plane magnetic anisotropies of 2. This D value is the largest one in the reported Co(II) complexes with pentagonal bipyramidal geometry. Field-induced slow magnetic relaxation behavior was observed for 2 by the dynamic ac magnetic susceptibility measurements. The dc magnetic susceptibility studies of 4 and 5 give similar weak MII-MII antiferromagnetic interactions ( J = -1.50 and -3.55 K for 4 and 5, respectively). High-field EPR results show that 4 can be considered as a quantum antiferromagnet.
Collapse
|
42
|
Switlicka A, Machura B, Kruszynski R, Cano J, Toma LM, Lloret F, Julve M. The influence of pseudohalide ligands on the SIM behaviour of four-coordinate benzylimidazole-containing cobalt(ii) complexes. Dalton Trans 2018; 47:5831-5842. [PMID: 29648565 DOI: 10.1039/c7dt04735e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three, mononuclear complexes of the formula [Co(bmim)2(SCN)2] (1), [Co(bmim)2(NCO)2] (2) and [Co(bmim)2(N3)2] (3) [bmim = 1-benzyl-2-methylimidazole] were prepared and structurally analyzed by single-crystal X-ray crystallography. The cobalt(ii) ions in 1-3 are tetrahedrally coordinated with two bmim molecules and two pseudohalide anions. The angular distortion parameter δ was calculated and the SHAPE program (based on the CShM concept) was used for 1-3 to estimate the angular distortion from an ideal tetrahedron. The molecules of 1-3 are effectively separated, and the values of the shortest distance of cobalt-cobalt are 8.442(6) and 6.774(8) Å for 1, 10.349(8) and 10.716(8) Å for 2 and 6.778(1) and 9.232(1) Å for 3. Direct current (dc) magnetic susceptibility measurements on the crushed crystals of 1-3 were carried out in the temperature range 1.9-295 K. The variable-temperature magnetic data of 1-3 mainly obey the zero-field splitting effect (D) of the 4A2 ground term of the tetrahedral cobalt(ii) complexes (2D being the energy gap between the |±1/2 and |±3/2 levels of the spin). The analysis of their magnetic data through the Hamiltonian H = D[S2z - S(S + 1)/3] + E(Sx2 - Sy2) + gβHS led to the following best-fit parameters: g = 2.29, D = -7.5 cm-1 and E/D = 0.106 (1), g = 2.28, D = + 6.3 cm-1 and E/D = 0.007 (2) and g = 2.36, D = + 6.7 cm-1 and E/D = 0.090 (3). The signs of D for 1-3 were confirmed by Q-band EPR spectra on powdered samples in the temperature range 4.0-20 K. Field-induced SIM behaviour was observed for 1-3 below 4.0 K, and the frequency-dependent maxima of χ''M were observed for 1 and only incipient signals of χ''M occurred for 2 and 3. The values of the exponential factor (τ0) and activation energy (Ea) for 1-3 which were obtained from the Arrhenius plot suggest a single relaxation process characteristic of an Orbach mechanism.
Collapse
Affiliation(s)
- A Switlicka
- Department of Crystallography, Institute of Chemistry, University of Silesia, 9th Szkolna St., 40-006 Katowice, Poland.
| | | | | | | | | | | | | |
Collapse
|
43
|
Hazra S, Martins NMR, Kuznetsov ML, Guedes da Silva MFC, Pombeiro AJL. Flexibility and lability of a phenyl ligand in hetero-organometallic 3d metal-Sn(iv) compounds and their catalytic activity in Baeyer-Villiger oxidation of cyclohexanone. Dalton Trans 2018; 46:13364-13375. [PMID: 28829081 DOI: 10.1039/c7dt02534c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The single compartmental Schiff base N,N'-ethylenebis(salicylaldimine) (H2L) and [SnPh2Cl2] were utilized to synthesize heterobimetallic 3d metal-Sn complexes, the CoIIISnIV compound [{SnPhCl2}(1κO2N2,2κO2-μ-L)(μ-OMe){CoPh}] (1), the NiIISnIV compound [{SnPh2Cl2}(1κO2N2,2κO2-μ-L)Ni] (2) and the CuIISnIV compound [{SnPh2Cl2}(1κO2N2,2κO2-μ-L)Cu] (3). Attempting to prepare the ethoxido bridged compound analogous to 1 (in ethanol) gives the phenylcobalt(iii) complex [Co(κO2N2)Ph(H2O)] (1A). Single crystal X-ray structure analyses reveal that 1 is derived from an intermetallic (Sn to Co) phenyl shift and that 1A is a transmetallated product; in compounds 2 and 3, the phenyl groups remain coordinated to SnIV but one of the π rings interacts with the 3d-metal. Thus, while systems 1 and 1A show the lability of the phenyl ligand, 2 and 3 reveal its flexible nature. Theoretical DFT calculations demonstrate that the conceivable Ph group shift occurs in the oxidized CoIII intermediate [{SnIVPh2Cl2}(κO2N2-μ-L){CoIII(MeO)}] (5) rather than in the corresponding CoII species [{SnIVPh2Cl2}(κO2N2-μ-L){CoII(MeOH)}] (4). Their catalytic studies in the Baeyer-Villiger oxidation of cyclohexanone into ε-caprolactone with two different oxidants reveal that the sacrificial aldehyde method (with dioxygen/benzaldehyde) is better than that with aqueous H2O2 (30%). The effects of various reaction parameters such as solvent, catalyst amount, temperature, time and heating method were studied allowing the achievement of yields up to 83% with 89% selectivity.
Collapse
Affiliation(s)
- Susanta Hazra
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal.
| | | | | | | | | |
Collapse
|
44
|
Kalinke LHG, Cardoso JCO, Rabelo R, Valdo AK, Martins FT, Cano J, Julve M, Lloret F, Cangussu D. From Paramagnetic to Single‐Molecule Magnet Behaviour in Heterobimetallic Compounds Containing the Tetrakis(thiocyanato‐
κN
)cobaltate(II) Anion. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201701177] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Lucas H. G. Kalinke
- IFG Instituto Federal Goiás Av. Pedro Ludovico, s/n, Reny Cury 75131‐457 Anápolis GO Brazil
- Instituto de Química Universidade Federal de Goiás Av. Esperança, s/n Campus Samabaia 74690‐900 Goiânia GO Brazil
| | - Jocielle C. O. Cardoso
- IFG Instituto Federal Goiás Av. Pedro Ludovico, s/n, Reny Cury 75131‐457 Anápolis GO Brazil
| | - Renato Rabelo
- Instituto de Química Universidade Federal de Goiás Av. Esperança, s/n Campus Samabaia 74690‐900 Goiânia GO Brazil
| | - Ana K. Valdo
- Instituto de Química Universidade Federal de Goiás Av. Esperança, s/n Campus Samabaia 74690‐900 Goiânia GO Brazil
| | - Felipe T. Martins
- Instituto de Química Universidade Federal de Goiás Av. Esperança, s/n Campus Samabaia 74690‐900 Goiânia GO Brazil
| | - Joan Cano
- Departament de Química Inorgànica, Instituto de Ciencia Molecular (ICMol) C/ Catedrático José Beltrán 2 46980 Paterna,Valencia Spain
| | - Miguel Julve
- Departament de Química Inorgànica, Instituto de Ciencia Molecular (ICMol) C/ Catedrático José Beltrán 2 46980 Paterna,Valencia Spain
| | - Francesc Lloret
- Departament de Química Inorgànica, Instituto de Ciencia Molecular (ICMol) C/ Catedrático José Beltrán 2 46980 Paterna,Valencia Spain
| | - Danielle Cangussu
- Instituto de Química Universidade Federal de Goiás Av. Esperança, s/n Campus Samabaia 74690‐900 Goiânia GO Brazil
| |
Collapse
|
45
|
Böhme M, Ziegenbalg S, Aliabadi A, Schnegg A, Görls H, Plass W. Magnetic relaxation in cobalt(ii)-based single-ion magnets influenced by distortion of the pseudotetrahedral [N2O2] coordination environment. Dalton Trans 2018; 47:10861-10873. [DOI: 10.1039/c8dt01530a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cobalt(ii) complexes with different dihedral angles between the bidentate ligands show a significant variation in their magnetic relaxation behavior.
Collapse
Affiliation(s)
- Michael Böhme
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität Jena
- 07745 Jena
- Germany
| | - Sven Ziegenbalg
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität Jena
- 07745 Jena
- Germany
| | - Azar Aliabadi
- Berlin Joint EPR Lab
- Institute for Nanospectroscopy
- Helmholtz-Zentrum Berlin für Materialien und Energie
- 12489 Berlin
- Germany
| | - Alexander Schnegg
- Berlin Joint EPR Lab
- Institute for Nanospectroscopy
- Helmholtz-Zentrum Berlin für Materialien und Energie
- 12489 Berlin
- Germany
| | - Helmar Görls
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität Jena
- 07745 Jena
- Germany
| | - Winfried Plass
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität Jena
- 07745 Jena
- Germany
| |
Collapse
|
46
|
Doroshenko I, Babiak M, Buchholz A, Görls H, Plass W, Pinkas J. New molecular heptanuclear cobalt phosphonates: synthesis, structures and magnetic properties. NEW J CHEM 2018. [DOI: 10.1039/c8nj00902c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Synthesis, structures and magnetic properties (strong anisotropy, ferromagnetic and antiferromagnetic interactions) of novel {Co7} homoleptic molecular cobalt phosphonates with a similar structure motif are described.
Collapse
Affiliation(s)
- Iaroslav Doroshenko
- Department of Chemistry
- Masaryk University
- CZ-61137 Brno
- Czech Republic
- CEITEC MU
| | - Michal Babiak
- Department of Chemistry
- Masaryk University
- CZ-61137 Brno
- Czech Republic
- CEITEC MU
| | - Axel Buchholz
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität Jena
- 07743 Jena
- Germany
| | - Helmar Görls
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität Jena
- 07743 Jena
- Germany
| | - Winfried Plass
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität Jena
- 07743 Jena
- Germany
| | - Jiri Pinkas
- Department of Chemistry
- Masaryk University
- CZ-61137 Brno
- Czech Republic
- CEITEC MU
| |
Collapse
|
47
|
|
48
|
Nemec I, Herchel R, Trávníček Z. Two polymorphic Co(ii) field-induced single-ion magnets with enormous angular distortion from the ideal octahedron. Dalton Trans 2018; 47:1614-1623. [DOI: 10.1039/c7dt03992a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A mononuclear complex [Co(neo)(PhCOO)2] was prepared in two polymorphic forms, which both possess large magnetic anisotropy with different degrees of rhombicity. Furthermore, both polymorphs behave as field-induced single-ion magnets.
Collapse
Affiliation(s)
- I. Nemec
- Regional Centre of Advanced Technologies and Materials
- Department of Inorganic Chemistry
- Faculty of Science
- Palacký University
- CZ-771 46 Olomouc
| | - R. Herchel
- Regional Centre of Advanced Technologies and Materials
- Department of Inorganic Chemistry
- Faculty of Science
- Palacký University
- CZ-771 46 Olomouc
| | - Z. Trávníček
- Regional Centre of Advanced Technologies and Materials
- Department of Inorganic Chemistry
- Faculty of Science
- Palacký University
- CZ-771 46 Olomouc
| |
Collapse
|
49
|
Plaul D, Böhme M, Ostrovsky S, Tomkowicz Z, Görls H, Haase W, Plass W. Modeling Spin Interactions in a Triangular Cobalt(II) Complex with Triaminoguanidine Ligand Framework: Synthesis, Structure, and Magnetic Properties. Inorg Chem 2017; 57:106-119. [DOI: 10.1021/acs.inorgchem.7b02229] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daniel Plaul
- Institut für
Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743 Jena, Germany
| | - Michael Böhme
- Institut für
Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743 Jena, Germany
| | - Serghei Ostrovsky
- Institute of Applied Physics, Academy of Sciences of Moldova, Academiei str.5, MD-2028, Chisinau, Moldova
| | - Zbigniew Tomkowicz
- Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Krakow, Poland
| | - Helmar Görls
- Institut für
Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743 Jena, Germany
| | - Wolfgang Haase
- Eduard-Zintl-Institute
of Inorganic and Physical Chemistry, Darmstadt University of Technology, Alarich-Weiss-Str. 4, 64287 Darmstadt, Germany
| | - Winfried Plass
- Institut für
Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743 Jena, Germany
| |
Collapse
|
50
|
Kharabayev NN. Quantum chemical modeling of the mechanism of formation of bis-ligand Co(II) complexes based on polydentate heterocyclic azomethine derivatives: Competition between four-, five-, and six-coordination. RUSS J COORD CHEM+ 2017. [DOI: 10.1134/s107032841712003x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|