1
|
Li X, Bezrukov AA, Graham W, Sensharma D, Kong XJ, Thonhauser T, Zaworotko MJ. Modulation of Water Vapor Sorption by Pore Engineering in Isostructural Square Lattice Topology Coordination Networks. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34402-34408. [PMID: 38902851 PMCID: PMC11232023 DOI: 10.1021/acsami.4c06412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
We report a crystal-engineering study conducted upon a platform of three mixed-linker square lattice (sql) coordination networks of general formula [Zn(Ria)(bphy)] [bphy = 1,2-bis(pyridin-4-yl)hydrazine, H2Ria = 5-position-substituted isophthalic acid, and R = -Br, -NO2, and -OH; compounds 1-3]. Analysis of single-crystal X-ray diffraction data of 1-2 and the simulated crystal structure of 3 revealed that 1-3 are isomorphous and sustained by bilayers of sql networks linked by hydrogen bonds. Although similar pore shapes and sizes exist in 1-3, distinct isotherm shapes (linear and S shape) and uptakes (2.4, 11.6, and 13.3 wt %, respectively) were observed. Ab initio calculations indicated that the distinct water sorption properties can be attributed to the R groups, which offer a range of hydrophilicity. Calculations indicated that the significantly lower experimental uptake in compound 1 can be attributed to a constricted channel. The calculated water-binding sites provide insights into how adsorbed water molecules bond to the pore walls, with the strongest interactions, water-hydroxyl hydrogen bonding, observed for 3. Overall, this study reveals how pore engineering can result in large variations in water sorption properties in an isomorphous family of rigid porous coordination networks.
Collapse
Affiliation(s)
- Xia Li
- Department
of Chemical Science, Bernal Institute, University
of Limerick, Limerick V94 T9PX, Republic
of Ireland
| | - Andrey A. Bezrukov
- Department
of Chemical Science, Bernal Institute, University
of Limerick, Limerick V94 T9PX, Republic
of Ireland
| | - Wells Graham
- Department
of Physics and Center for Functional Materials, Wake Forest University, Winston–Salem, North Carolina 27109, United States
| | - Debobroto Sensharma
- Department
of Chemical Science, Bernal Institute, University
of Limerick, Limerick V94 T9PX, Republic
of Ireland
| | - Xiang-Jing Kong
- Department
of Chemical Science, Bernal Institute, University
of Limerick, Limerick V94 T9PX, Republic
of Ireland
| | - Timo Thonhauser
- Department
of Physics and Center for Functional Materials, Wake Forest University, Winston–Salem, North Carolina 27109, United States
| | - Michael J. Zaworotko
- Department
of Chemical Science, Bernal Institute, University
of Limerick, Limerick V94 T9PX, Republic
of Ireland
| |
Collapse
|
2
|
Guo YY, Wang RD, Wei WM, Fang F, Wang L, Zhang SS, Zhang J, Du L, Zhao QH. Comparative Analysis of Proton Conductivity in Two Zn-Based MOFs Featuring Sulfate and Sulfonate Functional Groups. Inorg Chem 2024; 63:3870-3881. [PMID: 38356223 DOI: 10.1021/acs.inorgchem.3c04228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Metal-organic frameworks (MOFs) have shown promising potential as proton-conducting materials due to their tunable structures and high porosity. In this study, two novel MOFs had been successfully synthesized, one containing sulfate groups (MOF-1; [Zn4(TIPE)2(SO4)4(H2O)]·5H2O) and the other containing sulfonate groups (MOF-2; [Zn2(TIPE)(5-sip)(NO3)0.66]·0.34NO3·17.5H2O) (TIPE = 1,1,2,2-tetrakis(4-(1H-imidazole-1-yl)phenyl)ethene, H35-sip = 5-sulfoisophthalicacid), and the effect of the two groups on the proton conductivity of Zn-based MOFs had been investigated and compared for the first time. The proton conductivity of these MOFs was systematically measured at different temperatures and humidity conditions. Remarkably, the results revealed significant differences in proton conductivity between the two sets of MOFs. At 90 °C and 98% RH, MOF-1 and MOF-2 achieved optimal proton conductivity of 4.48 × 10-3 and 5.69 × 10-2 S·cm-1, respectively. This was due to the structural differences arising from the presence of different functional groups, which subsequently affected the porosity and hydrophilicity, thereby influencing the proton conductivity. Overall, this comparative study revealed the influence of sulfate and sulfonate groups on the proton conductivity of Zn-based MOFs. This research provided a feasible idea for the development of advanced MOF materials with enhanced proton conductivity and opened up new possibilities for their application in proton devices.
Collapse
Affiliation(s)
- Yuan-Yuan Guo
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, School of Pharmacy, Yunnan University, Kunming 650500, People's Republic of China
| | - Rui-Dong Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, School of Pharmacy, Yunnan University, Kunming 650500, People's Republic of China
| | - Wei-Ming Wei
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, School of Pharmacy, Yunnan University, Kunming 650500, People's Republic of China
| | - Fang Fang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, School of Pharmacy, Yunnan University, Kunming 650500, People's Republic of China
| | - Lei Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, School of Pharmacy, Yunnan University, Kunming 650500, People's Republic of China
| | - Suo-Shu Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, School of Pharmacy, Yunnan University, Kunming 650500, People's Republic of China
| | - Jun Zhang
- New Energy Photovoltaic Industry Research Center, Qinghai University, Xining 810016, People's Republic of China
| | - Lin Du
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, School of Pharmacy, Yunnan University, Kunming 650500, People's Republic of China
| | - Qi-Hua Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, School of Pharmacy, Yunnan University, Kunming 650500, People's Republic of China
| |
Collapse
|
3
|
Khalaf M, Saeed AM, Ali AI, Kamoun EA, Fahmy A. Polyelectrolyte membranes based on phosphorylated-PVA/cellulose acetate for direct methanol fuel cell applications: synthesis, instrumental characterization, and performance testing. Sci Rep 2023; 13:13011. [PMID: 37563208 PMCID: PMC10415303 DOI: 10.1038/s41598-023-40035-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023] Open
Abstract
Designing and synthesis of cost-effective and improved methanol permeable and proton conductive membranes are the main challenges for preparation of polymeric electrolyte membrane (PEM). Herein, a cost-effective PEM membrane based on phosphorylated polyvinyl alcohol (PVA)-grafted-cellulose acetate (CA) was prepared by a solution-casting technique. Water and methanol uptakes of phosphorylated PVA/CA membranes were characterized as function with the molar ratio of CA. Additionally, structure and morphology of phosphorylated PVA/CA (Ph-PVA/CA) membranes were verified by FT-IR analysis, SEM investigation. Furthermore, ion exchange capacity (IEC), proton conductivity and methanol permeation of Ph-PVA/CA membranes were examined based on the concentration of OPA basically. The results manifested a perceptible improvement in proton conductivity from 0.035 to 0.05 S/cm at 25 and 70 °C, respectively using 600 μL of OPA, and IEC of 2.1 meq/g using 400 μL of OPA at ambient temperature. On the other hand, methanol permeability (P = 1.08 × 10-10 cm2/s) was lower than Nafion 117 admirably. The optimum OPA concentration was 200 μL according to conductivity measurements (at 10% PVA, 150 μL GA, and CA 7%). Finally, prepared Ph-PVA/CA membranes exhibited enhancement in critical natures such as proton conductivity and IEC combined with its low-cost materials, which make them excellent candidate as PEM for DMFCs application.
Collapse
Affiliation(s)
- Mahmoud Khalaf
- Chemistry Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Ahmed M Saeed
- Chemistry Department, Faculty of Science, Al-Azhar University, Cairo, Egypt.
| | - Ahmed I Ali
- Basic Science Department, Faculty of Technology and Education, Helwan University, Saray-El Qoupa, El Sawah Street, Cairo, 11281, Egypt
| | - Elbadawy A Kamoun
- Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab, 21934, Alexandria, Egypt
- Nanotechnology Research Center (NTRC), The British University in Egypt (BUE), El-Sherouk City, Cairo, 11837, Egypt
| | - Alaa Fahmy
- Chemistry Department, Faculty of Science, Al-Azhar University, Cairo, Egypt.
| |
Collapse
|
4
|
Akhmetova I, Rautenberg M, Das C, Bhattacharya B, Emmerling F. Synthesis and In Situ Monitoring of Mechanochemical Preparation of Highly Proton Conductive Hydrogen-Bonded Metal Phosphonates. ACS OMEGA 2023; 8:16687-16693. [PMID: 37214731 PMCID: PMC10193405 DOI: 10.1021/acsomega.2c07883] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/23/2023] [Indexed: 05/24/2023]
Abstract
Crystalline porous materials are recognized as promising proton conductors for the proton exchange membrane (PEM) in fuel cell technology owing to their tunable framework structure. However, it is still a challenging bulk synthesis for real-world applications of these materials. Herein, we report the mechanochemical gram-scale synthesis of two isostructural metal hydrogen-bonded organic frameworks (MHOFs) of Co(II) and Ni(II) based on 1-hydroxyethylidenediphosphonic acid (HEDPH4) with 2,2'-bipyridine (2,2'-bipy): Co(HEDPH3)2(2,2'-bipy)·H2O (1) and Ni(HEDPH3)2(2,2'-bipy)·H2O (2). In situ monitoring of the mechanochemical synthesis using different synchrotron-based techniques revealed a one-step mechanism - the starting materials are directly converted to the product. With the existence of extensive hydrogen bonds with amphiprotic uncoordinated phosphonate hydroxyl and oxygen atoms, both frameworks exhibited proton conduction in the range of 10-4 S cm-1 at room temperature under humid conditions. This study demonstrates the potential of green mechanosynthesis for bulk material preparation of framework-based solid-state proton conductors.
Collapse
Affiliation(s)
- Irina Akhmetova
- BAM
Federal Institute for Materials Research and Testing, Richard-Willstätter-Str.
11, 12489 Berlin, Germany
- Department
of Chemistry, Humboldt-Universität
zu Berlin, Brook-Taylor-Str.
2, 12489 Berlin, Germany
| | - Max Rautenberg
- BAM
Federal Institute for Materials Research and Testing, Richard-Willstätter-Str.
11, 12489 Berlin, Germany
- Department
of Chemistry, Humboldt-Universität
zu Berlin, Brook-Taylor-Str.
2, 12489 Berlin, Germany
| | - Chayanika Das
- BAM
Federal Institute for Materials Research and Testing, Richard-Willstätter-Str.
11, 12489 Berlin, Germany
| | - Biswajit Bhattacharya
- BAM
Federal Institute for Materials Research and Testing, Richard-Willstätter-Str.
11, 12489 Berlin, Germany
| | - Franziska Emmerling
- BAM
Federal Institute for Materials Research and Testing, Richard-Willstätter-Str.
11, 12489 Berlin, Germany
- Department
of Chemistry, Humboldt-Universität
zu Berlin, Brook-Taylor-Str.
2, 12489 Berlin, Germany
| |
Collapse
|
5
|
|
6
|
Proton conduction and electrochemical enzyme-free glucose sensitive sensing based on a newly constructed Co-MOF and its composite with hydroxyl carbon nanotubes. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Maiti A, Halder A, Dinda S, Pahari G, Ghoshal D. Construction of four new d10 metal ion coordination polymers: Synthesis, characterization and structural diversity. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Xu X, Xu F. A Heniconuclear {Mn 21} Cluster-Based Coordination Polymer with Manganese(II) Linkers Showing High Proton Conductivity. Inorg Chem 2022; 61:16038-16044. [PMID: 36166315 DOI: 10.1021/acs.inorgchem.2c02441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An unprecedented metal-linked cluster-based coordination polymer, composed of heniconuclear {Mn21} clusters and Mn(II) ions as the nodes and linkers, respectively, was self-assembled from a facile aqueous synthesis. The structural analysis reveals that the compound possesses a rare 3D 8-connected hex framework topology. Significantly, the compound demonstrates a high proton conductivity of 1.06 mS cm-1 at 373 K and 98% RH and exhibits a magnetocaloric effect with a magnetic entropy change of -9.94 J kg-1 K-1 at H = 80 kOe and T = 6.0 K.
Collapse
Affiliation(s)
- Xiongli Xu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry & Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Feng Xu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry & Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
9
|
Liu Z, Wang W, Zhao Y, Jing Z, Wan R, Li H, Ma P, Niu J, Wang J. Synthesis, Structure, and Catalytic Activities of Two Multi-Rh-Decorated Polyoxometalates. Inorg Chem 2022; 61:15310-15314. [PMID: 36129305 DOI: 10.1021/acs.inorgchem.2c02220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two multi-Rh-incorporated polyoxometalates [NH2(CH3)2]10[Na4(H2O)8]H3[As4W42O142(OH)4(CH3COO)2Rh3(H2O)4]·13H2O·4[NH(CH3)2] (1) and [K4Na(H2O)6]KH10[As4W40O140Rh4(H2O)4]·34H2O (2) have been synthesized in acetate buffer solution. Polyanion 1a is built up atop of an acetate-modified rectangular framework [As4W42O142(OH)4(CH3COO)2]26-, while polyanion 2a contains a pure inorganic cryptand [As4W40O140]28-. All Rh atoms of these two compounds share the same hexa-coordinate distorted-octahedral geometry and are embedded into their cavities through As-Rh bonding with a bond length around 2.304(4)-2.436(5) Å. Besides, they not only represent structural novelty but also demonstrate controllable proton conduction properties. Catalysts 1 and 2 can catalyze cycloaddition of epoxides with CO2 in a solvent-free system in conjunction with 1-ethyl-1-methylpyrrolidinium bromide.
Collapse
Affiliation(s)
- Zhen Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, P. R. China
| | - Wenyu Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, P. R. China
| | - Yujie Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, P. R. China
| | - Zhen Jing
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, P. R. China
| | - Rong Wan
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, P. R. China
| | - Huafeng Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, P. R. China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, P. R. China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, P. R. China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, P. R. China
| |
Collapse
|
10
|
Zhang GG, Duan XY, Zhao Y, Wei M. Three Proton‐conductors Based‐on Keggin‐type Polyoxometalates Well‐arranged in the Networks of Dinuclear‐Cu(II)‐mixed‐organic‐ligand Clusters. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Guang-Guang Zhang
- Henan Normal University School of Chemistry and Chemical Engineering CHINA
| | | | - Yan Zhao
- Henan Normal University School of Chemistry and Chemical Engineering CHINA
| | - Meilin Wei
- - - 46# East of Construction Road 453007 Xinxiang CHINA
| |
Collapse
|
11
|
Rautenberg M, Bhattacharya B, Das C, Emmerling F. Mechanochemical Synthesis of Phosphonate-Based Proton Conducting Metal-Organic Frameworks. Inorg Chem 2022; 61:10801-10809. [PMID: 35776665 DOI: 10.1021/acs.inorgchem.2c01023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Water-stable metal-organic frameworks (MOFs) with proton-conducting behavior have attracted great attention as promising materials for proton-exchange membrane fuel cells. Herein, we report the mechanochemical gram-scale synthesis of three new mixed-ligand phosphonate-based MOFs, {Co(H2PhDPA)(4,4'-bipy)(H2O)·2H2O}n (BAM-1), {Fe(H2PhDPA)(4,4'-bipy) (H2O)·2H2O}n (BAM-2), and {Cu(H2PhDPA)(dpe)2(H2O)2·2H2O}n (BAM-3) [where H2PhDPA = phenylene diphosphonate, 4,4'-bipy = 4,4'-bipyridine, and dpe = 1,2-di(4-pyridyl)ethylene]. Single-crystal X-ray diffraction measurements revealed that BAM-1 and BAM-2 are isostructural and possess a three-dimensional (3D) network structure comprising one-dimensional (1D) channels filled with guest water molecules. Instead, BAM-3 displays a 1D network structure extended into a 3D supramolecular structure through hydrogen-bonding and π-π interactions. In all three structures, guest water molecules are interconnected with the uncoordinated acidic hydroxyl groups of the phosphonate moieties and coordinated water molecules by means of extended hydrogen-bonding interactions. BAM-1 and BAM-2 showed a gradual increase in proton conductivity with increasing temperature and reached 4.9 × 10-5 and 4.4 × 10-5 S cm-1 at 90 °C and 98% relative humidity (RH). The highest proton conductivity recorded for BAM-3 was 1.4 × 10-5 S cm-1 at 50 °C and 98% RH. Upon further heating, BAM-3 undergoes dehydration followed by a phase transition to another crystalline form which largely affects its performance. All compounds exhibited a proton hopping (Grotthuss model) mechanism, as suggested by their low activation energy.
Collapse
Affiliation(s)
- Max Rautenberg
- BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Str. 11, Berlin 12489, Germany.,Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, Berlin 12489, Germany
| | - Biswajit Bhattacharya
- BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Str. 11, Berlin 12489, Germany
| | - Chayanika Das
- BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Str. 11, Berlin 12489, Germany
| | - Franziska Emmerling
- BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Str. 11, Berlin 12489, Germany.,Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, Berlin 12489, Germany
| |
Collapse
|
12
|
Designing of three mixed ligand MOFs in searching of length induced flexibility in ligand for the creation of interpenetration. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Ho TE, Datta A, Lee HM. Proton-conducting metal–organic frameworks with linkers containing anthracenyl and sulfonate groups. CrystEngComm 2022. [DOI: 10.1039/d2ce00747a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Co(dia)1.5(Hsip)(H2O)·H2O (1) and Zn2(μ-OH)(dia)2(sip)·2H2O (2) were prepared from the same set of ligand precursors. They exhibited bnn and dia topologies, respectively. Factors that contributed to the higher proton conductivity of 1 were presented.
Collapse
Affiliation(s)
- Tsai-En Ho
- Department of Chemistry, National Changhua University of Education, Changhua 500, Taiwan
| | - Amitabha Datta
- Department of Chemistry, National Changhua University of Education, Changhua 500, Taiwan
| | - Hon Man Lee
- Department of Chemistry, National Changhua University of Education, Changhua 500, Taiwan
| |
Collapse
|
14
|
Wang BC, Li XP, Hao BB, Zhang CX, Wang QL. Dual-Functional Coordination Polymer with High Proton Conductivity and a Low-Detection-Limit Fluorescent Probe. J Phys Chem B 2021; 125:12627-12635. [PMID: 34747620 DOI: 10.1021/acs.jpcb.1c08304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A coordination polymer with dual functions of high proton conductivity and highly sensitive fluorescent sensors demonstrates a great application potential. In this work, a cadmium-based coordination polymer (denoted as CP 1) with hydrothermal stability was synthesized. The abundant coordination water, lattice water, and amino groups make an extended hydrogen-bonding pathway for efficient proton migration, which endows CP 1 with the highest proton conductivity of 2.41 × 10-3 S·cm-1 at 353 K and 98% RH. Especially, the proton conductivity of the chitosan (CS) hybrid membrane containing CP 1 reaches a maximum value of 2.62 × 10-2 S·cm-1 under 343 K and 98% RH, which increases almost 7 times higher than that of the pure CS membrane due to the host-guest collaboration. Furthermore, luminescence studies revealed that CP 1 is a high-sensitivity and good-selectivity fluorescent probe for the detection of trace amounts of l-histidine with a lowest detection limit of 1.0 × 10-8 M.
Collapse
Affiliation(s)
- Bin-Cheng Wang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, P. R. China.,College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, P. R. China
| | - Xiu-Ping Li
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Biao-Biao Hao
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Chen-Xi Zhang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, P. R. China.,Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin 300457, P. R. China
| | - Qing-Lun Wang
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
15
|
Wang X, Huang L, Jiao S, Li H, Yang Y, Jiang X, Bi Y. Construction of a 2D layered zinc sulfite with proton conductivity. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Hu H, Quan J, Tan Z, Fu JH, Liang YJ, Li JX. Synthesis and Properties of Dimercury(I) Crystal Network Constructed with Functionalized Pyrazine Sulfonate and Nitrate Linkers. RUSS J GEN CHEM+ 2021. [DOI: 10.1134/s1070363221050224] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Yang T, Niu SL, Wang GD, Tong M, Fu G, Chen ZH, Hou BB. Two mixed ligand Co(II)-coordination polymers: treatment ability on skin necrosis after fracture and internal fixation by reducing MCSF and TNF-α. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2020.1789999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Tao Yang
- Department of Spine Surgery (II), The Fourth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Shu-Liang Niu
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Guang-Dong Wang
- Department of Orthopaedics (III), The Fourth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Min Tong
- Department of Traumatic Orthopaedics (I), The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Gang Fu
- Department of Spine Surgery (II), The Fourth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Zhi-Hui Chen
- Department of Traumatic Orthopaedics (I), The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Bin-Bin Hou
- Department of Medicine, Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
18
|
|
19
|
Long QP, Li MN, Zhang W, Zeng DH, Zhang B, Yang B, Liu W. Two mixed-ligand Cu(II) coordination polymers: Magnetic properties and inhibitory activity on the osteosarcoma by reducing the expression of the estrogen receptor. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Xin L, Ju F, Zheng L, Liu G. Syntheses, structural diversity, and selective luminescence sensing of three Co(
II
)/Cd(
II
) metal–organic frameworks composed of carboxylic acids and nitrogen‐rich mixed ligands. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202000458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Lingyun Xin
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function‐Oriented Porous Materials Luoyang Normal University Luoyang P. R. China
| | - Fengyang Ju
- School of Food and Drug Luoyang Normal University Luoyang P. R. China
| | - Lei Zheng
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function‐Oriented Porous Materials Luoyang Normal University Luoyang P. R. China
- School of Food and Drug Luoyang Normal University Luoyang P. R. China
| | - Guang‐Zhen Liu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function‐Oriented Porous Materials Luoyang Normal University Luoyang P. R. China
- School of Food and Drug Luoyang Normal University Luoyang P. R. China
| |
Collapse
|
21
|
Tseng TW, Luo TT, Tseng KY, Hong YX, Huang GC. Bent-bis(triazolyl)-based coordination polymers tuned by dicarboxylate ligands: syntheses, structures and properties. CrystEngComm 2021. [DOI: 10.1039/d1ce00780g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Seven new coordination polymers based on the bent 1,1'-(oxybis(1,4-phenylene))-bis(1H-1,2,4-triazole) ligand, with diverse structures and novel topologies, that are directed by the dicarboxylate ligands.
Collapse
Affiliation(s)
- Tien-Wen Tseng
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Taiwan
| | - Tzuoo-Tsair Luo
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Taiwan
| | - Kuo-Yang Tseng
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Taiwan
| | - Yu-Xian Hong
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Taiwan
| | - Guang-Cheng Huang
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Taiwan
| |
Collapse
|
22
|
Singha S, Khanra B, Goswami S, Mondal R, Jana R, Dey A, Dey SK, Ray PP, Rizzoli C, Saha R, Kumar S. Structural, optical, dielectric and electrical transport properties of a [Mg(H 2O) 6] 2+-templated proton conducting, semiconducting and photoresponsive 3D hydrogen bonded supramolecular framework. NEW J CHEM 2021. [DOI: 10.1039/d1nj04237h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
{[Co(2,5-Pdc)2,(H2O)2]2−·[Mg(H2O)6]2+·4(H2O)} (where 2,5-pdc = 2,5-pyridinedicarboxylate): a proton conducting semiconducting photoresponsive [Mg(H2O)6]2+ templated 3D hydrogen bonded supramolecular framework (HSF).
Collapse
Affiliation(s)
- Soumen Singha
- Department of Physics, Jadavpur University, Jadavpur, Kolkata-700032, WB, India
| | - Bhaskar Khanra
- Department of Physics, Jadavpur University, Jadavpur, Kolkata-700032, WB, India
| | - Somen Goswami
- Department of Physics, Jadavpur University, Jadavpur, Kolkata-700032, WB, India
| | - Rituparna Mondal
- Department of Electronics, Barrackpore Rastraguru Surendranath College, Barrackpore, West Bengal 700120, India
| | - Rajkumar Jana
- Department of Physics, Jadavpur University, Jadavpur, Kolkata-700032, WB, India
- Department of Physics, Techno India University, EM-4, Sector-V, Salt lake, Kolkata-700091, India
| | - Arka Dey
- Department of Physics, Jadavpur University, Jadavpur, Kolkata-700032, WB, India
| | - Sanjoy Kumar Dey
- Purulia Polytechnic, Vivekananda Nagar, Purulia, 723147, WB, India
| | - Partha Pratim Ray
- Department of Physics, Jadavpur University, Jadavpur, Kolkata-700032, WB, India
| | - Corrado Rizzoli
- Dipartimento SCVSA, Università di Parma, Parco Area delle Scienze 17/A, Parma, Italy
| | - Rajat Saha
- Department of Chemistry, Kazi Nazrul University, Asansol-713340, WB, India
| | - Sanjay Kumar
- Department of Physics, Jadavpur University, Jadavpur, Kolkata-700032, WB, India
| |
Collapse
|
23
|
Tseng TW, Luo TT, Kan SJ, Nguyen DDA. Auxiliary ligand-modulated trisimidazole-based coordination polymers: syntheses, structures and photoluminescence properties. CrystEngComm 2021. [DOI: 10.1039/d1ce00068c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Five coordination polymers having 1,3,5-tris(1-imidazolyl)benzene and the varied O-donor auxiliary ligands were designed and synthesized. Further, the auxiliary ligands modulated these complexes with structural diversities and novel topologies.
Collapse
Affiliation(s)
- Tien-Wen Tseng
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Taiwan
| | - Tzuoo-Tsair Luo
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Taiwan
| | - Shou-Ju Kan
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Taiwan
| | - Doan Duy-An Nguyen
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Taiwan
| |
Collapse
|
24
|
Wu YB, Zeng XY, Wang YL, Liu QY. Two coordination polymers constructed from diphenylsulfone-3,3′-disulfo-4,4′-dicarboxylate ligand: syntheses, structures, and proton conduction. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1832996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Yuan-Bo Wu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi, P. R. China
| | - Xue-Yun Zeng
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi, P. R. China
| | - Yu-Ling Wang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi, P. R. China
| | - Qing-Yan Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi, P. R. China
| |
Collapse
|
25
|
Zeng XY, Wang YL, Lin ZT, Liu QY. Proton-Conductive Coordination Polymers Based on Diphenylsulfone-3,3'-disulfo-4,4'-dicarboxylate with Well-Defined Hydrogen Bonding Networks. Inorg Chem 2020; 59:12314-12321. [PMID: 32805987 DOI: 10.1021/acs.inorgchem.0c01419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The diphenylsulfone-3,3'-disulfo-4,4'-dicarboxylic acid (H4-DPSDSDC) ligand and its coordination polymers, [K2Zn(C14H6S3O12)(H2O)4]n (1) and {[Cu3(μ3-OH)2(C14H6S3O12)(H2O)3(DMF)]·3(H2O)}n (2) (C14H6S3O12 = diphenylsulfone-3,3'-disulfo-4,4'-dicarboxylate), were synthesized. The Zn(H2O)4 units in 1 are connected by DPSDSDC4- ligands to generate a one-dimensional (1D) chain, which is bridged by K-O bonds associated with bridging water molecules and sulfonate groups to yield a two-dimensional (2D) layer. In 2, the 1D hydroxyl-bridging Cu(II) chains are connected by DPSDSDC4- ligands to give a 2D layer. The 2D layers in 1 and 2 are further connected by interlayered hydrogen bonds to give three-dimensional (3D) frameworks. Compounds 1 and 2 have good conductivities of 1.57 × 10-4 and 5.32 × 10-5 S cm-1, respectively. Continuous well-defined hydrogen bonding networks associated with water molecules, sulfonate groups, and carboxylate groups were observed in compounds 1 and 2. Such hydrogen bonding networks provide hydrophilic domains and effective transfer pathways for protons. Here, we present elegant examples of a precise determination of the pathways for proton transport.
Collapse
Affiliation(s)
- Xue-Yun Zeng
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, Jiangxi, P. R. China
| | - Yu-Ling Wang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, Jiangxi, P. R. China
| | - Zhao-Ting Lin
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, Jiangxi, P. R. China
| | - Qing-Yan Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, Jiangxi, P. R. China
| |
Collapse
|
26
|
Affiliation(s)
- Dae-Woon Lim
- Department of Chemistry and Medical Chemistry, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwondo 26493, Republic of Korea
| | - Hiroshi Kitagawa
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
27
|
Xu MY, Wang YL, Liu Q, Lin ZT, Liu QY. Lanthanide 5,7-Disulfonate-1,4-naphthalenedicarboxylate Frameworks Constructed from Trinuclear and Tetranuclear Lanthanide Carboxylate Clusters: Proton Conduction and Selective Fluorescent Sensing of Fe3+. Inorg Chem 2020; 59:7265-7273. [DOI: 10.1021/acs.inorgchem.0c00680] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Meng-Ye Xu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, Jiangxi, People’s Republic of China
| | - Yu-Ling Wang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, Jiangxi, People’s Republic of China
| | - Qingyou Liu
- Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, Guizhou, People’s Republic of China
| | - Zhao-Ting Lin
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, Jiangxi, People’s Republic of China
| | - Qing-Yan Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, Jiangxi, People’s Republic of China
| |
Collapse
|
28
|
Two mixed-ligand coordination polymers based on 2,5-thiophenedicarboxylic acid and flexible N-donor ligands: the protective effect on periodontitis via reducing the release of IL-1β and TNF-α. OPEN CHEM 2020. [DOI: 10.1515/chem-2020-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractTwo novel mixed-ligand coordination polymers, {[Co(tdc)(btrp)]·0.67DMF}n (1) and
{[Zn2(bimb)2(tdc)2]·2H2O}n (2) involving 2,5-thiophenedicarboxylate (H2tdc), and bitopic
flexible N-donor ligands, 1,3-bis(1,2,4-triazol-1-yl)propane (btrp) and
1,4-bis((1H-benzo[d]imidazol-1-yl)methyl)benzene
(bimb), have been synthesized by the hydrothermal method and characterized via IR,
elemental analysis, thermal analysis, and powder X-ray diffraction. The biological
functional studies were performed; the treatment activity of the compounds on
periodontitis and the specific mechanism was explored. First, the real-time RT-PCR
was carried out to determine the inflammatory genes nf-κb and
p53 relative expression in periodontal mucosal cells after
treating with compounds 1 and 2. Then, the level of the
inflammatory cytokine in the gingival crevicular fluid after treating with compounds
was also determined by the ELISA detection kit.
Collapse
|
29
|
Huo WX, Liu XT, Zhang ZF, Zhao M, Zhang QS. A New Co(II)-Containing Coordination Polymer Constructed by the Mixed-Ligand Approach: Crystal Structure and Alleviation of CVB3-Induced Myocarditis by Inhibiting Inflammatory Cytokines Production. J STRUCT CHEM+ 2020. [DOI: 10.1134/s0022476620030166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Das A, Halder A, Bhattacharya B, Pahari G, Ghoshal D. Mixed ligand coordination complexes by using multicomponent ligand: Syntheses, characterization and effect of non-covalent interactions on their framework structures. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Liu H, Li R, Lu J, Liu Z, Wang S, Tian H. Proton conduction studies on four porous and nonporous coordination polymers with different acidities and water uptake. CrystEngComm 2020. [DOI: 10.1039/d0ce01197e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Acidity and water absorption ability are important influencing factors on proton conducting behavior, which are determined by the protonation degree and amount of hydrophilic groups in the crystal structures, respectively.
Collapse
Affiliation(s)
- Houting Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials
- School of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- P.R. China
| | - Rongyun Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Cell Technology
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng 252059
- P. R. China
| | - Jing Lu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Cell Technology
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng 252059
- P. R. China
| | - Zhiliang Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials
- School of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- P.R. China
| | - Suna Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Cell Technology
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng 252059
- P. R. China
| | - Haiquan Tian
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Cell Technology
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng 252059
- P. R. China
| |
Collapse
|
32
|
Zhou CC, Yan H, Liu HT, Li RY, Lu J, Wang SN, Li YW. Proton conductivity studies on five isostructural MOFs with different acidity induced by metal cations. NEW J CHEM 2020. [DOI: 10.1039/d0nj04179c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Five isostructural MOFs display very different proton conductivities despite the same proton transfer pathway. This difference is caused by the different coordination ability between the metal cations and the ligand.
Collapse
Affiliation(s)
- Chuan-Cong Zhou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- P. R. China
| | - Hui Yan
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- P. R. China
| | - Hou-Ting Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- P. R. China
| | - Rong-Yun Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- P. R. China
| | - Jing Lu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- P. R. China
| | - Su-Na Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- P. R. China
| | - Yun-Wu Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- P. R. China
| |
Collapse
|
33
|
Jhariat P, Kumari P, Panda T. Structural features of proton-conducting metal organic and covalent organic frameworks. CrystEngComm 2020. [DOI: 10.1039/d0ce00902d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Proton conductivity in MOFs and COFs have been attracted due to their applicability as electrolytes in proton exchange membrane fuel cells. A short overview with recent updates on the structural features of MOFs and COFs for proton conduction are presented here.
Collapse
Affiliation(s)
- Pampa Jhariat
- Department of Chemistry
- School of Advanced Science
- Vellore Institute of Technology
- Vellore 632014
- India
| | - Priyanka Kumari
- Department of Chemistry
- School of Advanced Science
- Vellore Institute of Technology
- Vellore 632014
- India
| | - Tamas Panda
- Department of Chemistry
- School of Advanced Science
- Vellore Institute of Technology
- Vellore 632014
- India
| |
Collapse
|
34
|
Zhao L, Meng L, Liu X, Guo G, Xiao C, Liu H. Syntheses, characterization and properties of three coordination polymers with interpenetrating structures comprising 4,4'-(1 H-1,2,4-triazol-1-yl)methylene-bis(benzonic acid). RSC Adv 2019; 9:40203-40212. [PMID: 35542645 PMCID: PMC9076195 DOI: 10.1039/c9ra08559a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 11/20/2019] [Indexed: 11/21/2022] Open
Abstract
Three new coordination polymers (CPs), {[Pb(tmdb)](H2O)} n (1), {[Zn(tmdb)(bimb)0.5]} n (2) and {[Zn3(tmdb)3(bpmb)1.5](H2O)6} n (3) (H2tmdb = 4,4'-(1H-1,2,4-triazol-1-yl)methylene-bis(benzonic acid), where bpmb = 1,4-bis(pyridin-4-ylmethoxy)benzene and bimb = 1,4-bis(imidazoly-1-yl)benzene), have been solvothermally or hydrothermally synthesized. Compound 1 is a 2D network with the point symbol (4·6·8)(4·62) and compound 2 is a 4-fold interpenetrating 3D network with spiral chains. The topological type of 2 is dmc (topos&RCSR.ttd) with the point symbol (4·82)(4·85). Compound 3 is a 3-fold interpenetrating 3D network with the point symbol (63)2(8·65)2(10·62)(8·10·64). The electrochemiluminescence (ECL) behaviors of 2 and 3 were studied. The applications of CP 2 and 3 in detecting ions were explored, and the results show that they can be used as fluorescent probes to selectively detect and identify Fe3+ ions in water. In addition, the applications of CP 2 and 3 in the adsorption and separation of dyes were researched. Furthermore, the gas adsorption of 3 was studied.
Collapse
Affiliation(s)
- Lun Zhao
- College of Chemistry, Changchun Normal University Changchun 130032 Jilin P. R. China +86-431-86168903
| | - Lingshu Meng
- College of Chemistry, Changchun Normal University Changchun 130032 Jilin P. R. China +86-431-86168903
| | - Xin Liu
- College of Chemistry, Changchun Normal University Changchun 130032 Jilin P. R. China +86-431-86168903
| | - Guanlin Guo
- College of Chemistry, Changchun Normal University Changchun 130032 Jilin P. R. China +86-431-86168903
| | - Congcong Xiao
- College of Chemistry, Changchun Normal University Changchun 130032 Jilin P. R. China +86-431-86168903
| | - Haibing Liu
- College of Chemistry, Changchun Normal University Changchun 130032 Jilin P. R. China +86-431-86168903
| |
Collapse
|
35
|
Garai A, Kumar AG, Banerjee S, Biradha K. Proton‐Conducting Hydrogen‐Bonded 3D Frameworks of Imidazo‐Pyridine‐Based Coordination Complexes Containing Naphthalene Disulfonates in Rhomboid Channels. Chem Asian J 2019; 14:4389-4394. [DOI: 10.1002/asia.201901338] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/28/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Abhijit Garai
- Department of ChemistryIndian Institute of Technology Kharagpur Kharagpur- 721302 India
| | - Anaparthi Ganesh Kumar
- Materials Science CentreIndian Institute of Technology Kharagpur Kharagpur- 721302 India
| | - Susanta Banerjee
- Materials Science CentreIndian Institute of Technology Kharagpur Kharagpur- 721302 India
| | - Kumar Biradha
- Department of ChemistryIndian Institute of Technology Kharagpur Kharagpur- 721302 India
| |
Collapse
|
36
|
Synthesis and Applications of Porous Organosulfonate-Based Metal-Organic Frameworks. Top Curr Chem (Cham) 2019; 377:32. [PMID: 31654264 DOI: 10.1007/s41061-019-0259-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/12/2019] [Indexed: 10/25/2022]
Abstract
Metal-organic frameworks (MOFs) are an emerging class of porous crystalline materials attracting attention for their vast array of topologies as well as potential applications in gas storage, heterogeneous catalysis, and molecular sensing. In most cases, organocarboxylates (or corresponding carboxylic acids) are the most common building block, achieving well-defined metal-carboxylate coordination motifs in MOF structures. However, organosulfonates (or corresponding sulfonic acids) have been less well studied in MOF chemistry, probably owing to the weak coordination tendency of the sulfonate oxygens toward metal centers. This review summarizes the research on organosulfonate-based porous crystalline MOFs in recent years. The construction of most porous organosulfonate MOFs relies on using either a second N-donor ligand or carboxylate-sulfonate bifunctional ligands. Despite occupying more confined porosity than the carboxylate counterpart, the permanent porosity in organosulfonate MOFs is often highly polar and hydrophilic. Thus, organosulfonate MOFs often exhibit improved proton/Li+ conductivity as well as CO2 affinity compared with their carboxylate-based counterparts. In addition, the application of organosulfonate MOFs in molecular sensing, molecular sieving, catalysis, and anion exchange are discussed in this review as well.
Collapse
|
37
|
Maity DK, Ghosh S, Otake KI, Kitagawa H, Ghoshal D. Proton Conductivity and Sorption Study in Three Sulfonic Group Functionalized Mixed Ligand Coordination Polymers and the Impact of Structural Dynamicity on Their Property. Inorg Chem 2019; 58:12943-12953. [DOI: 10.1021/acs.inorgchem.9b01897] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Dilip Kumar Maity
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata, 700 032, India
| | - Saheli Ghosh
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata, 700 032, India
| | - Ken-ichi Otake
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University Institute for Advanced Study (KUIAS), Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroshi Kitagawa
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Debajyoti Ghoshal
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata, 700 032, India
| |
Collapse
|
38
|
Devautour‐Vinot S, Sanil ES, Geneste A, Ortiz V, Yot PG, Chang J, Maurin G. Guest‐Assisted Proton Conduction in the Sulfonic Mesoporous MIL‐101 MOF. Chem Asian J 2019; 14:3561-3565. [DOI: 10.1002/asia.201900608] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Sabine Devautour‐Vinot
- Institut Charles Gerhardt MontpellierUMR 5253 CNRS UM ENSCMUniversité Montpellier Pl. E. Bataillon 34095 Montpellier cedex 05 France
| | - Eriyakkadan S. Sanil
- Research Group for NanocatalystKorea Research Institute of Chemical Technology (KRICT) Gajeongro 141 Yuseong Daejeon 305-606 South Korea
| | - Amine Geneste
- Institut Charles Gerhardt MontpellierUMR 5253 CNRS UM ENSCMUniversité Montpellier Pl. E. Bataillon 34095 Montpellier cedex 05 France
| | - Vanessa Ortiz
- Institut Charles Gerhardt MontpellierUMR 5253 CNRS UM ENSCMUniversité Montpellier Pl. E. Bataillon 34095 Montpellier cedex 05 France
| | - Pascal G. Yot
- Institut Charles Gerhardt MontpellierUMR 5253 CNRS UM ENSCMUniversité Montpellier Pl. E. Bataillon 34095 Montpellier cedex 05 France
| | - Jong‐San Chang
- Research Group for NanocatalystKorea Research Institute of Chemical Technology (KRICT) Gajeongro 141 Yuseong Daejeon 305-606 South Korea
- Department of ChemistrySungkyunkwan University Suwon 440-476 South Korea
| | - Guillaume Maurin
- Institut Charles Gerhardt MontpellierUMR 5253 CNRS UM ENSCMUniversité Montpellier Pl. E. Bataillon 34095 Montpellier cedex 05 France
| |
Collapse
|
39
|
Zhang Y, Shi DW, Ma YQ, Li HY, Bian HD, Liu HF, Tang J, Huang FP. Crystal structures and fluorescence properties of two architecture-correlated Zn(II)/Cd(II) MOFs constructed from an unprecedented tri-triazole ligand. J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1580363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Yan Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin, P.R. China
| | - Dong-Wei Shi
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin, P.R. China
| | - Yu-Qi Ma
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin, P.R. China
| | - Hai-Ye Li
- School of Chemistry and Pharmacy, Guangxi Normal University, Guilin, P.R. China
| | - He-Dong Bian
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin, P.R. China
| | - Han-Fu Liu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin, P.R. China
| | - Jie Tang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin, P.R. China
| | - Fu-Ping Huang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin, P.R. China
| |
Collapse
|
40
|
Zheng LN, Cheng Y, Hu HM, Bai C, Wang X, Xue G. Syntheses, structures and magnetic properties for transition metal coordination polymers based on polycarboxylate and isomeric terpyridyl carboxylate ligands. J SOLID STATE CHEM 2019. [DOI: 10.1016/j.jssc.2019.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
41
|
Yang H, Duan XY, Lai JJ, Wei ML. Proton-Conductive Keggin-Type Clusters Decorated by the Complex Moieties of Cu(II) 2,2′-Bipyridine-4,4′-dicarboxylate/Diethyl Analogues. Inorg Chem 2019; 58:1020-1029. [DOI: 10.1021/acs.inorgchem.8b00667] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hui Yang
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, People’s Republic of China
| | - Xian-Ying Duan
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450002, People’s Republic of China
| | - Jia-Jia Lai
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, People’s Republic of China
| | - Mei-Lin Wei
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, People’s Republic of China
| |
Collapse
|
42
|
Konavarapu SK, Goswami A, Kumar AG, Banerjee S, Biradha K. MOFs containing a linear bis-pyridyl-tris-amide and angular carboxylates: exploration of proton conductivity, water vapor and dye sorptions. Inorg Chem Front 2019. [DOI: 10.1039/c8qi01055b] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Four new MOFs were shown to have appreciable proton conductivities, selective adsorption of water vapor over nitrogen and a tendency to selectively adsorb cationic dyes such as methylene blue and crystal violet.
Collapse
Affiliation(s)
- Satyanarayana K. Konavarapu
- Satyanarayana K. Konavarapu
- A. Goswami
- Prof. Kumar Biradha
- Department of Chemistry
- Indian Institute of Technology
| | - Anindita Goswami
- Satyanarayana K. Konavarapu
- A. Goswami
- Prof. Kumar Biradha
- Department of Chemistry
- Indian Institute of Technology
| | | | - Susanta Banerjee
- Anaparthi G. Kumar
- Prof. Susanta Banerjee
- Materials Science Centre
- IIT
- Kharagpur-721302
| | - Kumar Biradha
- Satyanarayana K. Konavarapu
- A. Goswami
- Prof. Kumar Biradha
- Department of Chemistry
- Indian Institute of Technology
| |
Collapse
|
43
|
Altaf F, Gill R, Batool R, Drexler M, Alamgir F, Abbas G, Jacob K. Proton conductivity and methanol permeability study of polymer electrolyte membranes with range of functionalized clay content for fuel cell application. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2018.11.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
44
|
Yang SL, Yuan YY, Ren F, Zhang CX, Wang QL. High proton conductivity in a nickel(ii) complex and its hybrid membrane. Dalton Trans 2019; 48:2190-2196. [DOI: 10.1039/c8dt04171g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel 2D nickel(ii) complex (1) has been successfully synthesized using a 2,2′-bipyridyl, polycarboxylsulfonate ligand H4SBTC and Ni2+ ions. Owing to the presence of abundant water molecules, hydrogen bond networks and other protons, 1 and its hybrid membranes demonstrate high proton conductivity.
Collapse
Affiliation(s)
- Shuai-Liang Yang
- College of Chemical Engineering and Materials Science
- Tianjin University of Science and Technology
- Tianjin 300457
- P. R. China
| | - Yue-Ying Yuan
- College of Chemical Engineering and Materials Science
- Tianjin University of Science and Technology
- Tianjin 300457
- P. R. China
| | - Fei Ren
- College of Chemical Engineering and Materials Science
- Tianjin University of Science and Technology
- Tianjin 300457
- P. R. China
| | - Chen-Xi Zhang
- College of Chemical Engineering and Materials Science
- Tianjin University of Science and Technology
- Tianjin 300457
- P. R. China
- Key Laboratory of Marine Resources and Chemistry
| | - Qing-Lun Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)
- Nankai University
- Tianjin 300071
- P. R. China
- College of Chemistry
| |
Collapse
|
45
|
Cui Z, Zhang X, Liu S, Zhou L, Li W, Zhang J. Anionic Lanthanide Metal–Organic Frameworks: Selective Separation of Cationic Dyes, Solvatochromic Behavior, and Luminescent Sensing of Co(II) Ion. Inorg Chem 2018; 57:11463-11473. [DOI: 10.1021/acs.inorgchem.8b01319] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zheng Cui
- Advanced Energy Materials Research Center, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Xiaoying Zhang
- Advanced Energy Materials Research Center, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Shuang Liu
- Advanced Energy Materials Research Center, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Lei Zhou
- Advanced Energy Materials Research Center, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Wenliang Li
- Advanced Energy Materials Research Center, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Jingping Zhang
- Advanced Energy Materials Research Center, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| |
Collapse
|
46
|
Ghosh S, Pahari G, Maity DK, Halder A, Ghoshal D. Five Diverse Multidimensional Polycarboxylate-Based Mixed-Ligand Coordination Polymers with Different N,N′-Donor Ligands: Synthesis, Characterization and Their Sorption Study. ChemistrySelect 2018. [DOI: 10.1002/slct.201801720] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Saheli Ghosh
- Department of Chemistry; Jadavpur University, Jadavpur, Kolkata; 700 032 India
| | - Goutam Pahari
- Department of Chemistry; Jadavpur University, Jadavpur, Kolkata; 700 032 India
| | - Dilip K. Maity
- Department of Chemistry; Jadavpur University, Jadavpur, Kolkata; 700 032 India
| | - Arijit Halder
- Department of Chemistry; Jadavpur University, Jadavpur, Kolkata; 700 032 India
| | - Debajyoti Ghoshal
- Department of Chemistry; Jadavpur University, Jadavpur, Kolkata; 700 032 India
| |
Collapse
|
47
|
Tayade SB, Bhat SS, Illathvalappil R, Dhavale VM, Kawade VA, Kumbhar AS, Kurungot S, Näther C. Water mediated proton conductance in a hydrogen-bonded Ni(ii)-bipyridine-glycoluril chloride self-assembled framework. CrystEngComm 2018. [DOI: 10.1039/c7ce01814b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Proton conducting properties have been investigated in a new Ni(ii)-based hydrogen-bonded porous framework synthesized using bipyridine-glycoluril (BPG) tecton.
Collapse
Affiliation(s)
| | - Satish S. Bhat
- Department of Chemistry
- Savitribai Phule Pune University
- Pune-411007
- India
| | - Rajith Illathvalappil
- Physical & Materials Chemistry Division
- National Chemical Laboratory
- Pune-411008
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Vishal M. Dhavale
- Physical & Materials Chemistry Division
- National Chemical Laboratory
- Pune-411008
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Vitthal A. Kawade
- Department of Chemistry
- Savitribai Phule Pune University
- Pune-411007
- India
| | | | - Sreekumar Kurungot
- Physical & Materials Chemistry Division
- National Chemical Laboratory
- Pune-411008
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Christian Näther
- Institute of Inorganic Chemistry
- Christian-Albrechts-University of Kiel
- 24118 Kiel
- Germany
| |
Collapse
|
48
|
Maity R, Chakraborty D, Nandi S, Rinku K, Vaidhyanathan R. Microporous mixed-metal mixed-ligand metal organic framework for selective CO2 capture. CrystEngComm 2018. [DOI: 10.1039/c8ce00752g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Layered-pillared framework of the CO2-loaded MOF developed using this mixed-metal mixed-ligand approach showing the multiple-adsorption sites within the MOF.
Collapse
Affiliation(s)
- Rahul Maity
- Department of Chemistry
- Indian Institution of Science Education and Research (IISER)
- Pune-411008
- India
| | - Debanjan Chakraborty
- Department of Chemistry
- Indian Institution of Science Education and Research (IISER)
- Pune-411008
- India
| | - Shyamapada Nandi
- Department of Chemistry
- Indian Institution of Science Education and Research (IISER)
- Pune-411008
- India
| | - Kushwaha Rinku
- Department of Chemistry
- Indian Institution of Science Education and Research (IISER)
- Pune-411008
- India
| | - Ramanathan Vaidhyanathan
- Department of Chemistry
- Indian Institution of Science Education and Research (IISER)
- Pune-411008
- India
- Centre for Energy Science
| |
Collapse
|
49
|
Maity DK, Dey A, Ghosh S, Halder A, Ray PP, Ghoshal D. Set of Multifunctional Azo Functionalized Semiconducting Cd(II)-MOFs Showing Photoswitching Property and Selective CO 2 Adsorption. Inorg Chem 2017; 57:251-263. [PMID: 29220154 DOI: 10.1021/acs.inorgchem.7b02435] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Syntheses, structural characterizations, photoluminescence, and adsorption properties of three new azo-functionalized Cd(II)-MOFs, namely, {[Cd(azbpy)(msuc)]·2.5(H2O)}n (2), {[Cd(azbpy)(mglu)]·5(H2O)}n (3), and {[Cd1.5(azbpy)2(glu)]·(NO3)·MeOH}n (4) [where msuc2- = methylsuccinate; mglut2- = methylglutarate; glut2- = glutarate; azbpy = 4,4'-azobispyridine] have been reported. The compounds show different structures only with the variation of aliphatic dicarboxylates. The photoswitching behavior for the above-mentioned newly synthesized Cd(II)-MOFs along with one of our previously reported other azo-functionalized Cd(II)-MOF, namely, {[Cd(azbpy)(suc)]·2(H2O)}n (1), has been studied extensively. At photoilluminated condition, the conductivity values can draw a clear structure-property relationship among the structures of compounds 1-4. Single crystal structural analysis reveals that all the compounds exhibit a three-dimensional (3D) framework connected by azbpy linker and respective aliphatic dicarboxylate through their bis-chelating mono/bis oxo-bridging fashion. Compounds 1-3 exhibit an iso-structural honeycomb like 3D framework showing the same coordination environments, where the metal-carboxylate 2D sheets of compounds 1-3 are pillared by N,N'-donor azbpy linkers. On the other hand, compound 4 exhibits a 2-fold interpenetrated 3D framework with a little difference in its coordination environment and the pillaring of 1D metal-carboxylate ladder by azbpy linkers. All the compounds significantly demonstrate their enhanced sensitivity under light rather than the dark condition. The gas and solvent vapor sorption studies have been performed for the synthesized compounds 2-4. Moreover, compound 2 exhibits an enhanced type IV selective CO2 adsorption isotherm over N2 along with the appearance of gate opening phenomena in that.
Collapse
Affiliation(s)
- Dilip Kumar Maity
- Department of Chemistry, Jadavpur University , Jadavpur, Kolkata 700 032, India
| | - Arka Dey
- Department of Physics, Jadavpur University , Jadavpur, Kolkata 700 032, India
| | - Saheli Ghosh
- Department of Chemistry, Jadavpur University , Jadavpur, Kolkata 700 032, India
| | - Arijit Halder
- Department of Chemistry, Jadavpur University , Jadavpur, Kolkata 700 032, India
| | - Partha Pratim Ray
- Department of Physics, Jadavpur University , Jadavpur, Kolkata 700 032, India
| | - Debajyoti Ghoshal
- Department of Chemistry, Jadavpur University , Jadavpur, Kolkata 700 032, India
| |
Collapse
|
50
|
Niinomi K, Miyazawa S, Hibino M, Mizuno N, Uchida S. High Proton Conduction in Crystalline Composites Based on Preyssler-Type Polyoxometalates and Polymers under Nonhumidified or Humidified Conditions. Inorg Chem 2017; 56:15187-15193. [DOI: 10.1021/acs.inorgchem.7b02524] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kazuma Niinomi
- Department of Basic
Sciences, School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Satoru Miyazawa
- Department of Basic
Sciences, School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Mitsuhiro Hibino
- Department of Applied
Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Noritaka Mizuno
- Department of Applied
Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Sayaka Uchida
- Department of Basic
Sciences, School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|