1
|
Squarcina A, Maier P, Vignane T, Senft L, Filipovic MR, Ivanović-Burmazović I. Unlocking Selective Anticancer Mechanisms: Dinuclear Manganese Superoxide Dismutase Mimetics Combined with Pt(II) Complexes. Chemistry 2024; 30:e202402685. [PMID: 39037925 DOI: 10.1002/chem.202402685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
We conducted an in-depth exploration of the in vitro activities of the dinuclear Mn2L2Ac and Mn2L2 complexes (where HL=2-{[di(2-pyridyl)methylamino]-methyl}phenol), possessing dual superoxide dismutase (SOD) and catalase (CAT) activity. We investigated these complexes both individually and in conjunction with various Pt(II)-complexes, either as mixtures or as the Mn2-Pt adducts. Our findings revealed a notable up to 50 % enhancement in the viability of healthy human breast cells, contrasted with a viability decrease as low as 50 % in breast cancer cells upon combined treatments with Mn2 SOD mimics and Pt(II) complexes. Specifically, we synthesized and characterized the self-assembled Mn2-Pt adducts (isolated Mn2L2Pt and in situ Mn2L2Pt'), linking Mn2L2-core with the carboxylate group of PtDAPCl2 (dichloro(2,3-diaminopropionic acid) platinum(II)). The SOD activity of the isolated Mn2L2Pt adduct (kSOD=1.7×107 M-1 s-1) remained intact. Through in vitro cell viability assessments, ROS levels, cellular Mn uptake and proteomics measurements, we elucidated key mechanisms underlying the observed biological effects. We demonstrated that Mn2-containing formulations predominantly target mitochondrial processes, differently affecting the proteome of cancerous and healthy cells. They induced downregulation of H2S signaling and expression of mitochondrial complex I and III, as well as increased oxidative phosphorylation pathways and upregulation of EGFR in cancer cells. In contrast, healthy cells showed a decrease in EGFR expression and a moderate enrichment in oxidative phosphorylation pathways.
Collapse
Affiliation(s)
- Andrea Squarcina
- Department of Chemistry, Ludwig-Maximilians Universität (LMU) München, München, 81377, Germany
| | - Philipp Maier
- Department of Chemistry, Ludwig-Maximilians Universität (LMU) München, München, 81377, Germany
| | - Thibaut Vignane
- Leibniz Institute for Analytical Sciences ISAS e.V., Otto-Hahn-Straße 6b, 44227, Dortmund, Germany
| | - Laura Senft
- Department of Chemistry, Ludwig-Maximilians Universität (LMU) München, München, 81377, Germany
| | - Milos R Filipovic
- Leibniz Institute for Analytical Sciences ISAS e.V., Otto-Hahn-Straße 6b, 44227, Dortmund, Germany
| | | |
Collapse
|
2
|
Miliordos E, Moore JL, Obisesan SV, Oppelt J, Ivanović-Burmazović I, Goldsmith CR. Computational Analysis of the Superoxide Dismutase Mimicry Exhibited by a Zinc(II) Complex with a Redox-Active Organic Ligand. J Phys Chem A 2024; 128:1491-1500. [PMID: 38354404 DOI: 10.1021/acs.jpca.3c07403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Previously, we found that a Zn(II) complex with the redox-active ligand N-(2,5-dihydroxybenzyl)-N,N',N'-tris(2-pyridinylmethyl)-1,2-ethanediamine (H2qp1) was able to act as a functional mimic of superoxide dismutase, despite its lack of a redox-active transition metal. As the complex catalyzes the dismutation of superoxide to form O2 and H2O2, the quinol in the ligand is believed to cycle between three oxidation states: quinol, quinoxyl radical, and para-quinone. Although the metal is not the redox partner, it nonetheless is essential to the reactivity since the free ligand by itself is inactive as a catalyst. In the present work, we primarily use calculations to probe the mechanism. The calculations support the inner-sphere decomposition of superoxide, suggest that the quinol/quinoxyl radical couple accounts for most of the catalysis, and elucidate the many roles that proton transfer between the zinc complexes and buffer has in the reactivity. Acid/base reactions involving the nonmetal-coordinating hydroxyl group on the quinol are predicted to be key to lowering the energy of the intermediates. We prepared a Zn(II) complex with N-(2-hydroxybenzyl)-N,N',N'-tris(2-pyridinylmethyl)-1,2-ethanediamine (Hpp1) that lacks this functional group and found that it could not catalyze the dismutation of superoxide; this confirms the importance of the second, distal hydroxyl group of the quinol.
Collapse
Affiliation(s)
- Evangelos Miliordos
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Jamonica L Moore
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Segun V Obisesan
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Julian Oppelt
- Department of Chemistry, Ludwig-Maximilians-Universität München, 81377 München, Germany
| | | | - Christian R Goldsmith
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
3
|
Graziotto ME, Kidman CJ, Adair LD, James SA, Harris HH, New EJ. Towards multimodal cellular imaging: optical and X-ray fluorescence. Chem Soc Rev 2023; 52:8295-8318. [PMID: 37910139 DOI: 10.1039/d3cs00509g] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Imaging techniques permit the study of the molecular interactions that underlie health and disease. Each imaging technique collects unique chemical information about the cellular environment. Multimodal imaging, using a single probe that can be detected by multiple imaging modalities, can maximise the information extracted from a single cellular sample by combining the results of different imaging techniques. Of particular interest in biological imaging is the combination of the specificity and sensitivity of optical fluorescence microscopy (OFM) with the quantitative and element-specific nature of X-ray fluorescence microscopy (XFM). Together, these techniques give a greater understanding of how native elements or therapeutics affect the cellular environment. This review focuses on recent studies where both techniques were used in conjunction to study cellular systems, demonstrating the breadth of biological models to which this combination of techniques can be applied and the potential for these techniques to unlock untapped knowledge of disease states.
Collapse
Affiliation(s)
- Marcus E Graziotto
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Clinton J Kidman
- Department of Chemistry, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Liam D Adair
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia.
- Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Simon A James
- Australian Nuclear Science and Technology Organisation, Clayton, Victoria, 3168, Australia
| | - Hugh H Harris
- Department of Chemistry, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Elizabeth J New
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia.
- Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
4
|
Liu C, Wang Q, Wu YL. Recent Advances in Nanozyme-Based Materials for Inflammatory Bowel Disease. Macromol Biosci 2023; 23:e2300157. [PMID: 37262405 DOI: 10.1002/mabi.202300157] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/07/2023] [Indexed: 06/03/2023]
Abstract
Inflammatory bowel disease (IBD) is a type of chronic inflammatory disorder that interferes with the patient's lifestyle and, in extreme situations, can be deadly. Fortunately, with the ever-deepening understanding of the pathological cause of IBD, recent studies using nanozyme-based materials have indicated the potential toward effective IBD treatment. In this review, the recent advancement of nanozymes for the treatment of enteritis is summarized from the perspectives of the structural design of nanozyme-based materials and therapeutic strategies, intending to serve as a reference to produce effective nanozymes for moderating inflammation in the future. Last but not least, the potential and current restrictions for using nanozymes in IBD will also be discussed. In short, this review may provide a guidance for the development of innovative enzyme-mimetic nanomaterials that offer a novel and efficient approach toward the effective treatment of IBD.
Collapse
Affiliation(s)
- Chuyi Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Qi Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
5
|
Prieux-Klotz C, Chédotal H, Zoumpoulaki M, Chouzenoux S, Chêne C, Lopez-Sanchez A, Thomas M, Ranjan Sahoo P, Policar C, Batteux F, Bertrand HC, Nicco C, Coriat R. A New Manganese Superoxide Dismutase Mimetic Improves Oxaliplatin-Induced Neuropathy and Global Tolerance in Mice. Int J Mol Sci 2022; 23:12938. [PMID: 36361753 PMCID: PMC9658974 DOI: 10.3390/ijms232112938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 09/08/2024] Open
Abstract
Reactive oxygen species (ROS) are produced by every aerobic cell during mitochondrial oxidative metabolism as well as in cellular response to xenobiotics, cytokines, and bacterial invasion. Superoxide Dismutases (SOD) are antioxidant proteins that convert superoxide anions (O2•-) to hydrogen peroxide (H2O2) and dioxygen. Using the differential in the level of oxidative stress between normal and cancer cells, SOD mimetics can show an antitumoral effect and prevent oxaliplatin-induced peripheral neuropathy. New Pt(IV) conjugate prodrugs (OxPt-x-Mn1C1A (x = 1, 1-OH, 2)), combining oxaliplatin and a Mn SOD mimic (MnSODm Mn1C1A) with a covalent link, were designed. Their stability in buffer and in the presence of sodium ascorbate was studied. In vitro, their antitumoral activity was assessed by the viability and ROS production of tumor cell lines (CT16, HCT 116, KC) and fibroblasts (primary culture and NIH 3T3). In vivo, a murine model of colorectal cancer was created with subcutaneous injection of CT26 cells in Balb/c mice. Tumor size and volume were measured weekly in four groups: vehicle, oxaliplatin, and oxaliplatin associated with MnSODm Mn1C1A and the bis-conjugate OxPt-2-Mn1C1A. Oxaliplatin-induced peripheral neuropathy (OIPN) was assessed using a Von Frey test reflecting chronic hypoalgesia. Tolerance to treatment was assessed with a clinical score including four items: weight loss, weariness, alopecia, and diarrhea. In vitro, Mn1C1A associated with oxaliplatin and Pt(IV) conjugates treatment induced significantly higher production of H2O2 in all cell lines and showed a significant improvement of the antitumoral efficacy compared to oxaliplatin alone. In vivo, the association of Mn1C1A to oxaliplatin did not decrease its antitumoral activity, while OxPt-2-Mn1C1A had lower antitumoral activity than oxaliplatin alone. Mn1C1A associated with oxaliplatin significantly decreased OIPN and also improved global clinical tolerance of oxaliplatin. A neuroprotective effect was observed, associated with a significantly improved tolerance to oxaliplatin without impairing its antitumoral activity.
Collapse
Affiliation(s)
- Caroline Prieux-Klotz
- Institut Cochin, INSERM U 1016 CNRS UMR 8104, Université de Paris, 75005 Paris, France
- Percy Military Hospital, Gastroenterology, 101 Avenue Henri Barbusse, 92140 Clamart, France
- Laboratoire des Biomolécules, LBM, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Henri Chédotal
- Laboratoire des Biomolécules, LBM, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Martha Zoumpoulaki
- Laboratoire des Biomolécules, LBM, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Sandrine Chouzenoux
- Institut Cochin, INSERM U 1016 CNRS UMR 8104, Université de Paris, 75005 Paris, France
| | - Charlotte Chêne
- Institut Cochin, INSERM U 1016 CNRS UMR 8104, Université de Paris, 75005 Paris, France
| | - Alvaro Lopez-Sanchez
- Laboratoire des Biomolécules, LBM, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Marine Thomas
- Institut Cochin, INSERM U 1016 CNRS UMR 8104, Université de Paris, 75005 Paris, France
| | - Priya Ranjan Sahoo
- Laboratoire des Biomolécules, LBM, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Clotilde Policar
- Laboratoire des Biomolécules, LBM, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Frédéric Batteux
- Institut Cochin, INSERM U 1016 CNRS UMR 8104, Université de Paris, 75005 Paris, France
| | - Hélène C. Bertrand
- Laboratoire des Biomolécules, LBM, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Carole Nicco
- Institut Cochin, INSERM U 1016 CNRS UMR 8104, Université de Paris, 75005 Paris, France
| | - Romain Coriat
- Institut Cochin, INSERM U 1016 CNRS UMR 8104, Université de Paris, 75005 Paris, France
- Gastroenterology, Cochin Hospital AP-HP, Université de Paris, 75014 Paris, France
| |
Collapse
|
6
|
Zoumpoulaki M, Schanne G, Delsuc N, Preud'homme H, Quévrain E, Eskenazi N, Gazzah G, Guillot R, Seksik P, Vinh J, Lobinski R, Policar C. Deciphering the Metal Speciation in Low‐Molecular‐Weight Complexes by IMS‐MS: Application to the Detection of Manganese Superoxide Dismutase Mimics in Cell Lysates. Angew Chem Int Ed Engl 2022; 61:e202203066. [DOI: 10.1002/anie.202203066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Martha Zoumpoulaki
- Laboratoire des biomolécules (LBM) Département de chimie École normale supérieure PSL University, Sorbonne Université, CNRS 75005 Paris France
- SMBP ESPCI Paris PSL University, UMR 8249 CNRS France
- Centre de Recherche de Saint-Antoine, INSERM, UMRS 938 Sorbonne University, INSERM 75012 Paris France
| | - Gabrielle Schanne
- Laboratoire des biomolécules (LBM) Département de chimie École normale supérieure PSL University, Sorbonne Université, CNRS 75005 Paris France
- Centre de Recherche de Saint-Antoine, INSERM, UMRS 938 Sorbonne University, INSERM 75012 Paris France
| | - Nicolas Delsuc
- Laboratoire des biomolécules (LBM) Département de chimie École normale supérieure PSL University, Sorbonne Université, CNRS 75005 Paris France
| | | | - Elodie Quévrain
- Laboratoire des biomolécules (LBM) Département de chimie École normale supérieure PSL University, Sorbonne Université, CNRS 75005 Paris France
| | | | - Géraldine Gazzah
- Laboratoire des biomolécules (LBM) Département de chimie École normale supérieure PSL University, Sorbonne Université, CNRS 75005 Paris France
| | - Regis Guillot
- ICMMO UMR CNRS 8182 Université Paris-Saclay 91405 Orsay France
| | - Philippe Seksik
- Centre de Recherche de Saint-Antoine, INSERM, UMRS 938 Sorbonne University, INSERM 75012 Paris France
- Gastroenterology Department Saint-Antoine Hospital Sorbonne Université, APHP Paris France
| | - Joelle Vinh
- SMBP ESPCI Paris PSL University, UMR 8249 CNRS France
| | - Ryszard Lobinski
- Universite de Pau, CNRS, E2S, IPREM-UMR5254, Hélioparc 64053 Pau France
- Chair of Analytical Chemistry Warsaw University of Technology, Noakowskiego 3 00-664 Warsaw Poland
| | - Clotilde Policar
- Laboratoire des biomolécules (LBM) Département de chimie École normale supérieure PSL University, Sorbonne Université, CNRS 75005 Paris France
| |
Collapse
|
7
|
Deciphering the Metal Speciation in Low‐Molecular‐Weight Complexes by IMS‐MS: Application to the Detection of Manganese Superoxide Dismutase Mimics in Cell Lysates. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Inertness of Superoxide Dismutase Mimics Mn(II) Complexes Based on an Open-Chain Ligand, Bioactivity, and Detection in Intestinal Epithelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3858122. [PMID: 35401918 PMCID: PMC8993562 DOI: 10.1155/2022/3858122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/03/2022] [Accepted: 01/29/2022] [Indexed: 12/22/2022]
Abstract
Oxidative stress is known to play a major role in the pathogenesis of inflammatory bowel diseases (IBDs), and, in particular, superoxide dismutase (SODs) defenses were shown to be weakened in patients suffering from IBDs. SOD mimics, also called SOD mimetics, as low-molecular-weight complexes reproducing the activity of SOD, constitute promising antioxidant catalytic metallodrugs in the context of IBDs. A Mn(II) complex SOD mimic (Mn1) based on an open-chain diaminoethane ligand exerting antioxidant and anti-inflammatory effects on an intestinal epithelial cellular model was shown to experience metal exchanges between the manganese center and metal ions present in the biological environment (such as Zn(II)) to some degrees. As the resulting complexes (mainly Zn(II)) were shown to be inactive, improving the kinetic inertness of Mn(II) complexes based on open-chain ligands is key to improve their bioactivity in a cellular context. We report here the study of three new Mn(II) complexes resulting from Mn1 functionalization with a cyclohexyl and/or a propyl group meant to limit, respectively, (a) metal exchanges and (b) deprotonation of an amine from the 1,2-diaminoethane central scaffold. The new manganese-based SOD mimics display a higher intrinsic SOD activity and also improved kinetic inertness in metal ion exchange processes (with Zn(II), Cu(II), Ni(II), and Co(II)). They were shown to provide anti-inflammatory and antioxidant effects in cells at lower doses than Mn1 (down to 10 μM). This improvement was due to their higher inertness against metal-assisted dissociation and not to different cellular overall accumulations. Based on its higher inertness, the SOD mimic containing both the propyl and the cyclohexyl moieties was suitable for intracellular detection and quantification by mass spectrometry, quantification, that was achieved by using a 13C-labeled Co-based analog of the SOD mimics as an external heavy standard.
Collapse
|
9
|
SOD mimics: From the tool box of the chemists to cellular studies. Curr Opin Chem Biol 2022; 67:102109. [DOI: 10.1016/j.cbpa.2021.102109] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/15/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023]
|
10
|
Caro-Ramirez JY, Parente JE, Gaddi GM, Martini N, Franca CA, Urquiza NM, Lezama L, Piro OE, Echeverría GA, Williams PA, Ferrer EG. The biocatalytic activity of the “lantern-like” binuclear copper complex with trisulfide bridges mimicking SOD metallo-proteins. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Nagarajan S, Poyer F, Fourmois L, Naud‐Martin D, Medjoubi K, Somogyi A, Schanne G, Henry L, Delsuc N, Policar C, Bertrand HC, Mahuteau‐Betzer F. Cellular Detection of a Mitochondria Targeted Brominated Vinyl Triphenylamine Optical Probe (TP−Br) by X‐Ray Fluorescence Microscopy. Chemistry 2022; 28:e202104424. [DOI: 10.1002/chem.202104424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Indexed: 11/06/2022]
Affiliation(s)
- Sounderya Nagarajan
- CNRS UMR9187, Inserm U1196, Chemistry and Modeling for the Biology of Cancer Institut Curie Université PSL 91400 Orsay France
- CNRS UMR9187, Inserm U1196, Chemistry and Modeling for the Biology of Cancer Université Paris-Saclay 91400 Orsay France
| | - Florent Poyer
- CNRS UMR9187, Inserm U1196, Chemistry and Modeling for the Biology of Cancer Institut Curie Université PSL 91400 Orsay France
- CNRS UMR9187, Inserm U1196, Chemistry and Modeling for the Biology of Cancer Université Paris-Saclay 91400 Orsay France
| | - Laura Fourmois
- CNRS UMR9187, Inserm U1196, Chemistry and Modeling for the Biology of Cancer Institut Curie Université PSL 91400 Orsay France
- CNRS UMR9187, Inserm U1196, Chemistry and Modeling for the Biology of Cancer Université Paris-Saclay 91400 Orsay France
| | - Delphine Naud‐Martin
- CNRS UMR9187, Inserm U1196, Chemistry and Modeling for the Biology of Cancer Institut Curie Université PSL 91400 Orsay France
- CNRS UMR9187, Inserm U1196, Chemistry and Modeling for the Biology of Cancer Université Paris-Saclay 91400 Orsay France
| | - Kadda Medjoubi
- Synchrotron SOLEIL, BP 48 Saint-Aubin 91192 Gif sur Yvette France
| | - Andrea Somogyi
- Synchrotron SOLEIL, BP 48 Saint-Aubin 91192 Gif sur Yvette France
| | - Gabrielle Schanne
- Laboratoire des biomolécules, LBM, Département de chimie Ecole normale supérieure PSL University Sorbonne université, CNRS 75005 Paris France
| | - Lucas Henry
- Laboratoire des biomolécules, LBM, Département de chimie Ecole normale supérieure PSL University Sorbonne université, CNRS 75005 Paris France
| | - Nicolas Delsuc
- Laboratoire des biomolécules, LBM, Département de chimie Ecole normale supérieure PSL University Sorbonne université, CNRS 75005 Paris France
| | - Clotilde Policar
- Laboratoire des biomolécules, LBM, Département de chimie Ecole normale supérieure PSL University Sorbonne université, CNRS 75005 Paris France
| | - Helene C. Bertrand
- Laboratoire des biomolécules, LBM, Département de chimie Ecole normale supérieure PSL University Sorbonne université, CNRS 75005 Paris France
| | - Florence Mahuteau‐Betzer
- CNRS UMR9187, Inserm U1196, Chemistry and Modeling for the Biology of Cancer Institut Curie Université PSL 91400 Orsay France
- CNRS UMR9187, Inserm U1196, Chemistry and Modeling for the Biology of Cancer Université Paris-Saclay 91400 Orsay France
| |
Collapse
|
12
|
Rouco L, Alvariño R, Alfonso A, Romero MJ, Pedrido R, Maneiro M. Neuroprotective effects of fluorophore-labelled manganese complexes: Determination of ROS production, mitochondrial membrane potential and confocal fluorescence microscopy studies in neuroblastoma cells. J Inorg Biochem 2021; 227:111670. [PMID: 34864293 DOI: 10.1016/j.jinorgbio.2021.111670] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 02/07/2023]
Abstract
In this work, four manganese(II) complexes derived from the ligands H2L1-H2L4, that incorporate dansyl or tosyl fluorescent dyes, have been investigated in term of their antioxidant properties. Two of the manganese(II) complexes have been newly prepared using the asymmetric half-salen ligand H2L2 and the thiosemicarbazone ligand H2L3. The four organic strands and the manganese complexes have been characterized by different analytical and spectroscopic techniques. The study of the antioxidant behaviour of these two new complexes and other two fluorophore-labelled analogues was tested in SH-SY5Y neuroblastoma cells. These four model complexes 1-4 were found to protect cells from oxidative damage in this human neuronal model, by reducing the release of reactive oxygen species. Complexes 1-4 significantly improved cell survival, with levels between 79.1 ± 0.8% and 130.9 ± 4.1%. Moreover, complexes 3 and 4 were able to restore the mitochondrial membrane potential at 1 μM, with 4 reaching levels higher than 85%, similar to the percentages obtained by the positive control agent cyclosporin A. The incorporation of the fluorescent label in the complexes allowed the study of their ability to enter the human neuroblastoma cells by confocal microscopy.
Collapse
Affiliation(s)
- Lara Rouco
- Departamento de Química Inorgánica, Facultade de Ciencias, Campus Terra, Universidade de Santiago de Compostela, Lugo, Spain
| | - Rebeca Alvariño
- Departamento de Farmacología, Facultade de Veterinaria, Campus Terra, Universidade de Santiago de Compostela, Lugo, Spain.
| | - Amparo Alfonso
- Departamento de Farmacología, Facultade de Veterinaria, Campus Terra, Universidade de Santiago de Compostela, Lugo, Spain
| | - María J Romero
- Departamento de Didácticas Aplicadas, Facultade de Formación do Profesorado, Campus Terra, Universidade de Santiago de Compostela, Lugo, Spain
| | - Rosa Pedrido
- Departamento de Química Inorgánica, Facultade de Química, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Marcelino Maneiro
- Departamento de Química Inorgánica, Facultade de Ciencias, Campus Terra, Universidade de Santiago de Compostela, Lugo, Spain.
| |
Collapse
|
13
|
Synthesis and characterization for new Mn(II) complexes; conductometry, DFT, antioxidant activity via enhancing superoxide dismutase enzymes that confirmed by in-silico and in-vitro ways. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130855] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
14
|
Pariano M, Pieroni S, De Luca A, Iannitti RG, Borghi M, Puccetti M, Giovagnoli S, Renga G, D’Onofrio F, Bellet MM, Stincardini C, Della-Fazia MA, Servillo G, van de Veerdonk FL, Costantini C, Romani L. Anakinra Activates Superoxide Dismutase 2 to Mitigate Inflammasome Activity. Int J Mol Sci 2021; 22:ijms22126531. [PMID: 34207085 PMCID: PMC8234597 DOI: 10.3390/ijms22126531] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 05/27/2021] [Accepted: 06/14/2021] [Indexed: 01/03/2023] Open
Abstract
Inflammasomes are powerful cytosolic sensors of environmental stressors and are critical for triggering interleukin-1 (IL-1)-mediated inflammatory responses. However, dysregulation of inflammasome activation may lead to pathological conditions, and the identification of negative regulators for therapeutic purposes is increasingly being recognized. Anakinra, the recombinant form of the IL-1 receptor antagonist, proved effective by preventing the binding of IL-1 to its receptor, IL-1R1, thus restoring autophagy and dampening NLR family pyrin domain containing 3 (NLRP3) activity. As the generation of mitochondrial reactive oxidative species (ROS) is a critical upstream event in the activation of NLRP3, we investigated whether anakinra would regulate mitochondrial ROS production. By profiling the activation of transcription factors induced in murine alveolar macrophages, we found a mitochondrial antioxidative pathway induced by anakinra involving the manganese-dependent superoxide dismutase (MnSOD) or SOD2. Molecularly, anakinra promotes the binding of SOD2 with the deubiquitinase Ubiquitin Specific Peptidase 36 (USP36) and Constitutive photomorphogenesis 9 (COP9) signalosome, thus increasing SOD2 protein longevity. Functionally, anakinra and SOD2 protects mice from pulmonary oxidative inflammation and infection. On a preclinical level, anakinra upregulates SOD2 in murine models of chronic granulomatous disease (CGD) and cystic fibrosis (CF). These data suggest that protection from mitochondrial oxidative stress may represent an additional mechanism underlying the clinical benefit of anakinra and identifies SOD2 as a potential therapeutic target.
Collapse
Affiliation(s)
- Marilena Pariano
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.P.); (S.P.); (A.D.L.); (R.G.I.); (M.B.); (G.R.); (F.D.); (M.M.B.); (C.S.); (M.A.D.-F.); (G.S.); (C.C.)
| | - Stefania Pieroni
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.P.); (S.P.); (A.D.L.); (R.G.I.); (M.B.); (G.R.); (F.D.); (M.M.B.); (C.S.); (M.A.D.-F.); (G.S.); (C.C.)
| | - Antonella De Luca
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.P.); (S.P.); (A.D.L.); (R.G.I.); (M.B.); (G.R.); (F.D.); (M.M.B.); (C.S.); (M.A.D.-F.); (G.S.); (C.C.)
| | - Rossana G. Iannitti
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.P.); (S.P.); (A.D.L.); (R.G.I.); (M.B.); (G.R.); (F.D.); (M.M.B.); (C.S.); (M.A.D.-F.); (G.S.); (C.C.)
| | - Monica Borghi
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.P.); (S.P.); (A.D.L.); (R.G.I.); (M.B.); (G.R.); (F.D.); (M.M.B.); (C.S.); (M.A.D.-F.); (G.S.); (C.C.)
| | - Matteo Puccetti
- Department of Pharmaceutical Science, University of Perugia, 06132 Perugia, Italy; (M.P.); (S.G.)
| | - Stefano Giovagnoli
- Department of Pharmaceutical Science, University of Perugia, 06132 Perugia, Italy; (M.P.); (S.G.)
| | - Giorgia Renga
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.P.); (S.P.); (A.D.L.); (R.G.I.); (M.B.); (G.R.); (F.D.); (M.M.B.); (C.S.); (M.A.D.-F.); (G.S.); (C.C.)
| | - Fiorella D’Onofrio
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.P.); (S.P.); (A.D.L.); (R.G.I.); (M.B.); (G.R.); (F.D.); (M.M.B.); (C.S.); (M.A.D.-F.); (G.S.); (C.C.)
| | - Marina M. Bellet
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.P.); (S.P.); (A.D.L.); (R.G.I.); (M.B.); (G.R.); (F.D.); (M.M.B.); (C.S.); (M.A.D.-F.); (G.S.); (C.C.)
| | - Claudia Stincardini
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.P.); (S.P.); (A.D.L.); (R.G.I.); (M.B.); (G.R.); (F.D.); (M.M.B.); (C.S.); (M.A.D.-F.); (G.S.); (C.C.)
| | - Maria Agnese Della-Fazia
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.P.); (S.P.); (A.D.L.); (R.G.I.); (M.B.); (G.R.); (F.D.); (M.M.B.); (C.S.); (M.A.D.-F.); (G.S.); (C.C.)
| | - Giuseppe Servillo
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.P.); (S.P.); (A.D.L.); (R.G.I.); (M.B.); (G.R.); (F.D.); (M.M.B.); (C.S.); (M.A.D.-F.); (G.S.); (C.C.)
| | | | - Claudio Costantini
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.P.); (S.P.); (A.D.L.); (R.G.I.); (M.B.); (G.R.); (F.D.); (M.M.B.); (C.S.); (M.A.D.-F.); (G.S.); (C.C.)
| | - Luigina Romani
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.P.); (S.P.); (A.D.L.); (R.G.I.); (M.B.); (G.R.); (F.D.); (M.M.B.); (C.S.); (M.A.D.-F.); (G.S.); (C.C.)
- Correspondence:
| |
Collapse
|
15
|
Gottlieb MGV, Borges CA, Closs VE, Seibel R, Schneider RH, Schwanke CH, Gomes I. Association of Val16Ala Polymorphism of Manganese Superoxide Dismutase (MnSOD) with Food Intake and Cardiometabolic Risk Factors in the Elderly in Primary Care in Porto Alegre. Curr Aging Sci 2021; 15:49-58. [PMID: 34042042 DOI: 10.2174/1874609814666210526115150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/23/2021] [Accepted: 03/16/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The aging process causes physiological changes on its own. The combination of an unhealthy lifestyle with the presence of genetic polymorphisms, such as the Val16Ala of the antioxidant enzyme manganese-dependent superoxide dismutase (MnSOD) may contribute to a greater occurrence of cardiometabolic risk factors. OBJECTIVE This study aimed to verify the association of Val16Ala-MnSOD polymorphism with food intake, caloric expenditure, and cardiometabolic risk factors in the elderly. METHODS A cross-sectional study with a sample size of 270 elderly individuals assisted in primary health care in the city of Porto Alegre, RS, Brazil. Val16Ala polymorphism, glucose, lipid profile, insulin, HOMA-IR, blood pressure, waist circumference, PCR-us, IL-6, food consumption, and caloric expenditure were evaluated. RESULTS The average age of the elderly was 68.6 ± 7.6 years. There were statistically significant differences regarding the consumption of two or more servings of fruits and vegetables daily between the elderly VV versus AV (P=0.017). There were also statistically significant differences regarding the consumption of two or more daily servings of legumes and eggs between the elderly AA versus VV (P=0.002). The median of insulin was higher in the elderly AA versus AV (P=0.025) and the median of HOMA-IR was higher in the elderly VV versus AV (P=0.029). AA elderly individuals had higher means of high-density lipoprotein (HDL-c) compared to AV (P=0.029). CONCLUSION The results suggest that Val16Ala -MnSOD polymorphism is associated with the consumption of fruits, vegetables, legumes, and eggs, as well as with cardiometabolic risk factors in the elderly.
Collapse
Affiliation(s)
- Maria Gabriela Valle Gottlieb
- Graduate Program in Biomedical Gerontology. School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Cristiane Alves Borges
- Graduate Program in Biomedical Gerontology. School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Vera Elizabeth Closs
- Graduate Program in Biomedical Gerontology. School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Raquel Seibel
- Graduate Program in Biomedical Gerontology. School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rodolfo Herberto Schneider
- Graduate Program in Biomedical Gerontology. School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carla Helena Schwanke
- Graduate Program in Biomedical Gerontology. School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Irenio Gomes
- Graduate Program in Biomedical Gerontology. School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
16
|
Rosa AC, Corsi D, Cavi N, Bruni N, Dosio F. Superoxide Dismutase Administration: A Review of Proposed Human Uses. Molecules 2021; 26:1844. [PMID: 33805942 PMCID: PMC8037464 DOI: 10.3390/molecules26071844] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Superoxide dismutases (SODs) are metalloenzymes that play a major role in antioxidant defense against oxidative stress in the body. SOD supplementation may therefore trigger the endogenous antioxidant machinery for the neutralization of free-radical excess and be used in a variety of pathological settings. This paper aimed to provide an extensive review of the possible uses of SODs in a range of pathological settings, as well as describe the current pitfalls and the delivery strategies that are in development to solve bioavailability issues. We carried out a PubMed query, using the keywords "SOD", "SOD mimetics", "SOD supplementation", which included papers published in the English language, between 2012 and 2020, on the potential therapeutic applications of SODs, including detoxification strategies. As highlighted in this paper, it can be argued that the generic antioxidant effects of SODs are beneficial under all tested conditions, from ocular and cardiovascular diseases to neurodegenerative disorders and metabolic diseases, including diabetes and its complications and obesity. However, it must be underlined that clinical evidence for its efficacy is limited and consequently, this efficacy is currently far from being demonstrated.
Collapse
Affiliation(s)
- Arianna Carolina Rosa
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Via P. Giuria 9, 10125 Turin, Italy; (D.C.); (N.C.); (F.D.)
| | - Daniele Corsi
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Via P. Giuria 9, 10125 Turin, Italy; (D.C.); (N.C.); (F.D.)
| | - Niccolò Cavi
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Via P. Giuria 9, 10125 Turin, Italy; (D.C.); (N.C.); (F.D.)
| | - Natascia Bruni
- Istituto Farmaceutico Candioli, Strada Comunale di None, 1, 10092 Beinasco, Italy;
| | - Franco Dosio
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Via P. Giuria 9, 10125 Turin, Italy; (D.C.); (N.C.); (F.D.)
| |
Collapse
|
17
|
Evaluation of the compounds commonly known as superoxide dismutase and catalase mimics in cellular models. J Inorg Biochem 2021; 219:111431. [PMID: 33798828 DOI: 10.1016/j.jinorgbio.2021.111431] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 12/15/2022]
Abstract
Oxidative stress that results from an imbalance between the concentrations of reactive species (RS) and antioxidant defenses is associated with many pathologies. Superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase are among the key enzymes that maintain the low nanomolar physiological concentrations of superoxide and hydrogen peroxide. The increase in the levels of these species and their progeny could have deleterious effects. In this context, chemists have developed SOD and CAT mimics to supplement them when cells are overwhelmed with oxidative stress. However, the beneficial activity of such molecules in cells depends not only on their intrinsic catalytic activities but also on their stability in biological context, their cell penetration and their cellular localization. We have employed cellular assays to characterize several compounds that possess SOD and CAT activities and have been frequently used in cellular and animal models. We used cellular assays that address SOD and CAT activities of the compounds. Finally, we determined the effect of compounds on the suppression of the inflammation in HT29-MD2 cells challenged by lipopolysaccharide. When the assay requires penetration inside cells, the SOD mimics Mn(III) meso-tetrakis(N-(2'-n-butoxyethyl)pyridinium-2-yl)porphyrin (MnTnBuOE-2-PyP5+) and Mn(II) dichloro[(4aR,13aR,17aR,21aR)-1,2,3,4,4a,5,6,12,13,13a,14,15,16,17,17a,18,19,20,21,21a-eicosahydro-11,7-nitrilo-7Hdibenzo[b,h] [1,4, 7,10] tetraazacycloheptadecine-κN5,κN13,κN18,κN21,κN22] (Imisopasem manganese, M40403, CG4419) were found efficacious at 10 μM, while Mn(II) chloro N-(phenolato)-N,N'-bis[2-(N-methyl-imidazolyl)methyl]-ethane-1,2-diamine (Mn1) requires an incubation at 100 μM. This study thus demonstrates that MnTnBuOE-2-PyP5+, M40403 and Mn1 were efficacious in suppressing inflammatory response in HT29-MD2 cells and such action appears to be related to their ability to enter the cells and modulate reactive oxygen species (ROS) levels.
Collapse
|
18
|
Lovett JH, Harris HH. Application of X-ray absorption and X-ray fluorescence techniques to the study of metallodrug action. Curr Opin Chem Biol 2021; 61:135-142. [PMID: 33548877 DOI: 10.1016/j.cbpa.2020.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/07/2020] [Accepted: 12/18/2020] [Indexed: 12/21/2022]
Abstract
X-ray absorption spectroscopy and X-ray fluorescence microscopy are two synchrotron-based techniques frequently deployed either individually or in tandem to investigate the fates of metallodrugs and their biotransformation products in physiologically relevant sample material. These X-ray methods confer advantages over other analytical techniques in that they are nondestructive and require minimal chemical or physical manipulation of the sample before analysis, conserving both chemical and spatial information of the element(s) under investigation. In this review, we present selected examples of the use of X-ray absorption spectroscopy and X-ray fluorescence microscopy in studies of metallodrug speciation and localisation in vivo, in cell spheroids and in intact tissues and organs, and offer recent highlights in the advances of these techniques as they pertain to research on metallodrug action.
Collapse
Affiliation(s)
- James H Lovett
- Department of Chemistry, The University of Adelaide, South Australia 5005, Australia
| | - Hugh H Harris
- Department of Chemistry, The University of Adelaide, South Australia 5005, Australia.
| |
Collapse
|
19
|
Pursuing the Elixir of Life: In Vivo Antioxidative Effects of Manganosalen Complexes. Antioxidants (Basel) 2020; 9:antiox9080727. [PMID: 32785017 PMCID: PMC7465912 DOI: 10.3390/antiox9080727] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/31/2020] [Accepted: 08/07/2020] [Indexed: 12/15/2022] Open
Abstract
Manganosalen complexes are coordination compounds that possess a chelating salen-type ligand, a class of bis-Schiff bases obtained by condensation of salicylaldehyde and a diamine. They may act as catalytic antioxidants mimicking both the structure and the reactivity of the native antioxidant enzymes active site. Thus, manganosalen complexes have been shown to exhibit superoxide dismutase, catalase, and glutathione peroxidase activities, and they could potentially facilitate the scavenging of excess reactive oxygen species (ROS), thereby restoring the redox balance in damaged cells and organs. Initial catalytic studies compared the potency of these compounds as antioxidants in terms of rate constants of the chemical reactivity against ROS, giving catalytic values approaching and even exceeding that of the native antioxidative enzymes. Although most of these catalytic studies lack of biological relevance, subsequent in vitro studies have confirmed the efficiency of many manganosalen complexes in oxidative stress models. These synthetic catalytic scavengers, cheaper than natural antioxidants, have accordingly attracted intensive attention for the therapy of ROS-mediated injuries. The aim of this review is to focus on in vivo studies performed on manganosalen complexes and their activity on the treatment of several pathological disorders associated with oxidative damage. These disorders, ranging from the prevention of fetal malformations to the extension of lifespan, include neurodegenerative, inflammatory, and cardiovascular diseases; tissue injury; and other damages related to the liver, kidney, or lungs.
Collapse
|
20
|
Zhang C, Yang R, Hao X, Geng Z, Wang Z. Mn-TAT PTD-Ngb ameliorates inflammation through the elimination of damaged mitochondria and the activation of Nrf2-antioxidant signaling pathway. Biochem Pharmacol 2020; 178:114055. [PMID: 32470548 DOI: 10.1016/j.bcp.2020.114055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/22/2020] [Indexed: 01/02/2023]
Abstract
Inflammation, mitochondrial dysfunction and oxidative stress are closely associated with neurological diseases. In this study, Mn-TAT PTD-Ngb, a novel artificial recombinant protein, exerted inhibitory effects on the inflammatory response and inflammasome activation. During the lipopolysaccharide (LPS)-induced inflammatory response, Mn-TAT PTD-Ngb suppressed the nuclear translocation of nuclear factor kappa B (NF-κB) and the release of proinflammatory cytokines and attenuated the phosphorylation of mitogen-activated protein kinase (MAPK). Furthermore, the recombinant protein blocked reactive oxygen species (ROS) production, abated mitochondrial dysfunction and significantly suppressed the assembly of the inflammasome, which led to the overproduction of proinflammatory cytokines IL-1β and IL-18. Mn-TAT PTD-Ngb increased the level of nuclear factor-erythroid 2 -related factor 2 (Nrf2), which protected against oxidative stress and improved pyroptosis. Mn-TAT PTD-Ngb might be a promising drug for curing neurological diseases.
Collapse
Affiliation(s)
- Cui Zhang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, PR China
| | - Ruirui Yang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, PR China
| | - Xuehui Hao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, PR China
| | - Zhirong Geng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, PR China.
| | - Zhilin Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
21
|
Mathieu E, Bernard AS, Ching HYV, Somogyi A, Medjoubi K, Fores JR, Bertrand HC, Vincent A, Trépout S, Guerquin-Kern JL, Scheitler A, Ivanović-Burmazović I, Seksik P, Delsuc N, Policar C. Anti-inflammatory activity of superoxide dismutase mimics functionalized with cell-penetrating peptides. Dalton Trans 2020; 49:2323-2330. [DOI: 10.1039/c9dt04619d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A superoxide dismutase mimic was functionalized with three peptides: -R9, -RRWWRRWRR or -Fx-r-Fx-K (MPP). They were studied in intestinal epithelial cells in an inorganic cellular chemistry approach: quantification, distribution and bio-activity.
Collapse
|
22
|
Ahmad MS, Khalid M, Khan MS, Shahid M, Ahmad M, Monika, Ansari A, Ashafaq M. Exploring catecholase activity in dinuclear Mn(ii) and Cu(ii) complexes: an experimental and theoretical approach. NEW J CHEM 2020. [DOI: 10.1039/d0nj00605j] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Two dinuclear Mn(ii) and Cu(ii) complexes were prepared, characterised and assessed for non-covalent interactions and catecholase oxidase properties. The catecholase activity of2is further corroborated by theoretical calculations using DFT.
Collapse
Affiliation(s)
- M. Shahwaz Ahmad
- Department of Chemistry
- Aligarh Muslim University
- Aligarh 202002
- India
| | - Mohd Khalid
- Department of Chemistry
- Aligarh Muslim University
- Aligarh 202002
- India
| | | | - M. Shahid
- Department of Chemistry
- Aligarh Muslim University
- Aligarh 202002
- India
| | - Musheer Ahmad
- Department of Applied Chemistry
- Aligarh Muslim University
- Aligarh 202002
- India
| | - Monika
- Department of Chemistry
- Central University of Haryana
- Mahendergarh-123031
- India
| | - Azaj Ansari
- Department of Chemistry
- Central University of Haryana
- Mahendergarh-123031
- India
| | - Mo Ashafaq
- Department of Chemistry
- Aligarh Muslim University
- Aligarh 202002
- India
| |
Collapse
|
23
|
Mathieu E, Bernard AS, Quévrain E, Zoumpoulaki M, Iriart S, Lung-Soong C, Lai B, Medjoubi K, Henry L, Nagarajan S, Poyer F, Scheitler A, Ivanović-Burmazović I, Marco S, Somogyi A, Seksik P, Delsuc N, Policar C. Intracellular location matters: rationalization of the anti-inflammatory activity of a manganese(ii) superoxide dismutase mimic complex. Chem Commun (Camb) 2020; 56:7885-7888. [DOI: 10.1039/d0cc03398g] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The study of Mn-based superoxide dismutase mimic conjugated with a multimodal Re-probe in a cellular model of oxidative stress revealed that its bioactivity is associated with its accumulation at the mitochondria.
Collapse
|
24
|
Vincent A, Fores JR, Tauziet E, Quévrain E, Dancs Á, Conte-Daban A, Bernard AS, Pelupessy P, Coulibaly K, Seksik P, Hureau C, Selmeczi K, Policar C, Delsuc N. An easy-to-implement combinatorial approach involving an activity-based assay for the discovery of a peptidyl copper complex mimicking superoxide dismutase. Chem Commun (Camb) 2020; 56:399-402. [DOI: 10.1039/c9cc07920c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A strategy combining combinatorial chemistry and an activity-based screening leads to the development of a peptidyl catalytic drug that reduces the oxidative stress in cellular models.
Collapse
|
25
|
Guillaumot MA, Cerles O, Bertrand HC, Benoit E, Nicco C, Chouzenoux S, Schmitt A, Batteux F, Policar C, Coriat R. Oxaliplatin-induced neuropathy: the preventive effect of a new super-oxide dismutase modulator. Oncotarget 2019; 10:6418-6431. [PMID: 31741707 PMCID: PMC6849645 DOI: 10.18632/oncotarget.27248] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/10/2019] [Indexed: 01/09/2023] Open
Abstract
By using the differential in level of oxidative status between normal and cancer cells, SuperOxide Dismutase (SOD) mimetics can have anti-tumor efficacy and prevent oxaliplatin-induced peripheral neuropathy. Our objective was to evaluate the neuroprotective efficacy of MAG, a new SOD mimic. In vitro, the effects of MAG alone or with oxaliplatin were studied on colon cancer cells (HT29 and CT26) and on normal fibroblast cells (NIH3T3). The cell viability (by crystal violet) as well as the production of reactive forms of oxygen and glutathione (by spectrofluorimetric assay) was measured. In vivo, efficacy on tumor growth was assessed in mice grafted with CT26 colon cancer cells. The effects on induced neurotoxicity were measured by specific behavioral Von Frey nociception, cold-plate tests, specific functional neuromuscular assay and electron microscopy. In vitro, MAG induced a production of hydrogen peroxide in all cells. At 24 h-incubation, MAG exhibits a cytotoxic activity in all cell lines. A cytotoxic additive effect of MAG and oxaliplatin was observed through oxidative burst. In vivo, oxaliplatin-treated mice associated with MAG did not counteract oxaliplatin’s antitumoral efficacy. After 4 weeks of treatment with oxaliplatin combined with MAG, behavioral and functional tests showed a decrease in peripheral neuropathy induced by oxaliplatin in vivo. Electron microscopy analyses on sciatic nerves revealed an oxaliplatin-induced demyelination which is prevented by the association of MAG to this chemotherapy. In conclusion, MAG prevents the appearance of sensitive axonal neuropathy and neuromuscular disorders induced by oxaliplatin without affecting its antitumor activity.
Collapse
Affiliation(s)
- Marie-Anne Guillaumot
- Département "Development, Reproduction and Cancer", Institut Cochin, Paris Descartes Université, Sorbonne Paris Cité, INSERM U1016, Paris, France
| | - Olivier Cerles
- Département "Development, Reproduction and Cancer", Institut Cochin, Paris Descartes Université, Sorbonne Paris Cité, INSERM U1016, Paris, France
| | - Hélène C Bertrand
- Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Evelyne Benoit
- Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), CEA de Saclay, Université Paris-Saclay, Gif-sur-Yvette, France.,Institut des Neurosciences Paris-Saclay (Neuro-PSI), CNRS, UMR CNRS/Université Paris-Sud 9197, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Carole Nicco
- Département "Development, Reproduction and Cancer", Institut Cochin, Paris Descartes Université, Sorbonne Paris Cité, INSERM U1016, Paris, France
| | - Sandrine Chouzenoux
- Département "Development, Reproduction and Cancer", Institut Cochin, Paris Descartes Université, Sorbonne Paris Cité, INSERM U1016, Paris, France
| | - Alain Schmitt
- Plateforme Imagerie Cellulaire, Microscopie électronique Institut Cochin, Université Paris Descartes, Sorbonne Paris Cité, INSERM U1016, Paris, France
| | - Frédéric Batteux
- Département "Development, Reproduction and Cancer", Institut Cochin, Paris Descartes Université, Sorbonne Paris Cité, INSERM U1016, Paris, France.,Service d'Immunologie, Centre Hospitalo-Universitaire Cochin AP-HP, Université Paris Descartes, Paris, France
| | - Clotilde Policar
- Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Romain Coriat
- Département "Development, Reproduction and Cancer", Institut Cochin, Paris Descartes Université, Sorbonne Paris Cité, INSERM U1016, Paris, France.,Service de Gastro-Entérologie du Centre Hospitalo-Universitaire Cochin, APHP, Université Paris Descartes, Paris, France
| |
Collapse
|
26
|
Zhang KY, Zhang YH, Wang Y, Xing YH, Sun LX. Synthesis, crystal structure and efficient SOD activity of transition compounds constructed with 5-aminoisophthalic acid ligand. Polyhedron 2019. [DOI: 10.1016/j.poly.2018.12.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
Rationally designed mimics of antioxidant manganoenzymes: Role of structural features in the quest for catalysts with catalase and superoxide dismutase activity. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.03.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
28
|
Conte-Daban A, Ambike V, Guillot R, Delsuc N, Policar C, Hureau C. A Metallo Pro-Drug to Target Cu II in the Context of Alzheimer's Disease. Chemistry 2018; 24:5095-5099. [PMID: 29334419 PMCID: PMC6120673 DOI: 10.1002/chem.201706049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Indexed: 01/28/2023]
Abstract
Alzheimer's disease and oxidative stress are connected. In the present communication, we report the use of a MnII -based superoxide dismutase (SOD) mimic ([MnII (L)]+ , 1+ ) as a pro-drug candidate to target CuII -associated events, namely, CuII -induced formation of reactive oxygen species (ROS) and modulation of the amyloid-β (Aβ) peptide aggregation. Complex 1+ is able to remove CuII from Aβ, stop ROS and prevent alteration of Aβ aggregation as would do the corresponding free ligand LH. Using 1+ instead of LH in further biological applications would have the double advantage to avoid the cell toxicity of LH and to benefit from its proved SOD-like activity.
Collapse
Affiliation(s)
- Amandine Conte-Daban
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099 31077 Toulouse Cedex 4, France
- Université de Toulouse, UPS, INPT, 31077 Toulouse Cedex 4, France
| | - Vinita Ambike
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR CNRS 8182, Bâtiments 420, Université Paris-Sud 11, Université Paris-Saclay, Rue du doyen Georges Poitou, 91405 Orsay cedex, France
| | - Régis Guillot
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR CNRS 8182, Bâtiments 420, Université Paris-Sud 11, Université Paris-Saclay, Rue du doyen Georges Poitou, 91405 Orsay cedex, France
| | - Nicolas Delsuc
- Laboratoire des Biomolécules, Département de chimie, École normale supérieure, UPMC Univ. Paris 06, CNRS, PSL Research University, 24 rue Lhomond, 75005 Paris, France
- Sorbonne Universités, UPMC Univ. Paris 06, École normale supérieure, CNRS, Laboratoire des Biomolécules (LBM), 75005 Paris, France
| | - Clotilde Policar
- Laboratoire des Biomolécules, Département de chimie, École normale supérieure, UPMC Univ. Paris 06, CNRS, PSL Research University, 24 rue Lhomond, 75005 Paris, France
- Sorbonne Universités, UPMC Univ. Paris 06, École normale supérieure, CNRS, Laboratoire des Biomolécules (LBM), 75005 Paris, France
| | - Christelle Hureau
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099 31077 Toulouse Cedex 4, France
- Université de Toulouse, UPS, INPT, 31077 Toulouse Cedex 4, France
| |
Collapse
|
29
|
Jiménez-Lamana J, Szpunar J, Łobinski R. New Frontiers of Metallomics: Elemental and Species-Specific Analysis and Imaging of Single Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1055:245-270. [PMID: 29884968 DOI: 10.1007/978-3-319-90143-5_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Single cells represent the basic building units of life, and thus their study is one the most important areas of research. However, classical analysis of biological cells eludes the investigation of cell-to-cell differences to obtain information about the intracellular distribution since it only provides information by averaging over a huge number of cells. For this reason, chemical analysis of single cells is an expanding area of research nowadays. In this context, metallomics research is going down to the single-cell level, where high-resolution high-sensitive analytical techniques are required. In this chapter, we present the latest developments and applications in the fields of single-cell inductively coupled plasma mass spectrometry (SC-ICP-MS), mass cytometry, laser ablation (LA)-ICP-MS, nanoscale secondary ion mass spectrometry (nanoSIMS), and synchrotron X-ray fluorescence microscopy (SXRF) for single-cell analysis. Moreover, the capabilities and limitations of the current analytical techniques to unravel single-cell metabolomics as well as future perspectives in this field will be discussed.
Collapse
Affiliation(s)
- Javier Jiménez-Lamana
- Institute of Analytical Sciences and Physico-Chemistry for Environment and Materials (IPREM), UMR 5254, CNRS-UPPA, Pau, France.
| | - Joanna Szpunar
- Institute of Analytical Sciences and Physico-Chemistry for Environment and Materials (IPREM), UMR 5254, CNRS-UPPA, Pau, France
| | - Ryszard Łobinski
- Institute of Analytical Sciences and Physico-Chemistry for Environment and Materials (IPREM), UMR 5254, CNRS-UPPA, Pau, France
| |
Collapse
|
30
|
Weekley CM, Kenkel I, Lippert R, Wei S, Lieb D, Cranwell T, Wedding JL, Zillmann AS, Rohr R, Filipovic MR, Ivanović-Burmazović I, Harris HH. Cellular Fates of Manganese(II) Pentaazamacrocyclic Superoxide Dismutase (SOD) Mimetics: Fluorescently Labeled MnSOD Mimetics, X-ray Absorption Spectroscopy, and X-ray Fluorescence Microscopy Studies. Inorg Chem 2017; 56:6076-6093. [DOI: 10.1021/acs.inorgchem.6b03073] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Claire M. Weekley
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Isabell Kenkel
- Department of Chemistry
and Pharmacy, University of Erlangen−Nuremberg, Egerlandstrasse 1, 91058 Erlangen, Germany
| | - Rainer Lippert
- Department of Chemistry
and Pharmacy, University of Erlangen−Nuremberg, Egerlandstrasse 1, 91058 Erlangen, Germany
| | - Shengwei Wei
- Department of Chemistry
and Pharmacy, University of Erlangen−Nuremberg, Egerlandstrasse 1, 91058 Erlangen, Germany
| | - Dominik Lieb
- Department of Chemistry
and Pharmacy, University of Erlangen−Nuremberg, Egerlandstrasse 1, 91058 Erlangen, Germany
| | - Tiffanny Cranwell
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Jason L. Wedding
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Annika S. Zillmann
- Department of Chemistry
and Pharmacy, University of Erlangen−Nuremberg, Egerlandstrasse 1, 91058 Erlangen, Germany
| | - Robin Rohr
- Department of Chemistry
and Pharmacy, University of Erlangen−Nuremberg, Egerlandstrasse 1, 91058 Erlangen, Germany
| | - Milos R. Filipovic
- Department of Chemistry
and Pharmacy, University of Erlangen−Nuremberg, Egerlandstrasse 1, 91058 Erlangen, Germany
| | - Ivana Ivanović-Burmazović
- Department of Chemistry
and Pharmacy, University of Erlangen−Nuremberg, Egerlandstrasse 1, 91058 Erlangen, Germany
| | - Hugh H. Harris
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|