1
|
Shi L, Lu J, Xia X, Liu X, Li H, Li X, Zhu J, Li X, Sun H, Yang X. Clinically used drug arsenic trioxide targets XIAP and overcomes apoptosis resistance in an organoid-based preclinical cancer model. Chem Sci 2024; 15:8311-8322. [PMID: 38846391 PMCID: PMC11151819 DOI: 10.1039/d4sc01294a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/29/2024] [Indexed: 06/09/2024] Open
Abstract
Drug resistance in tumor cells remains a persistent clinical challenge in the pursuit of effective anticancer therapy. XIAP, a member of the inhibitor of apoptosis protein (IAP) family, suppresses apoptosis via its Baculovirus IAP Repeat (BIR) domains and is responsible for drug resistance in various human cancers. Therefore, XIAP has attracted significant attention as a potential therapeutic target. However, no XIAP inhibitor is available for clinical use to date. In this study, we surprisingly observed that arsenic trioxide (ATO) induced a rapid depletion of XIAP in different cancer cells. Mechanistic studies revealed that arsenic attacked the cysteine residues of BIR domains and directly bound to XIAP, resulting in the release of zinc ions from this protein. Arsenic-XIAP binding suppressed the normal anti-apoptosis functions of BIR domains, and led to the ubiquitination-dependent degradation of XIAP. Importantly, we further demonstrate that arsenic sensitized a variety of apoptosis-resistant cancer cells, including patient-derived colon cancer organoids, to the chemotherapy drug using cisplatin as a showcase. These findings suggest that targeting XIAP with ATO offers an attractive strategy for combating apoptosis-resistant cancers in clinical practice.
Collapse
Affiliation(s)
- Liwa Shi
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University Zhuhai China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University Zhuhai 519000 China
| | - Jing Lu
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University Zhuhai China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University Zhuhai 519000 China
- Department of Gastroenterology, The Fifth Affiliated Hospital, Sun Yat-sen University Zhuhai China
| | - Xin Xia
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University Zhuhai China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University Zhuhai 519000 China
| | - Xue Liu
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University Zhuhai China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University Zhuhai 519000 China
| | - Hongyan Li
- Department of Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong Hong Kong SAR China
| | - Xinghua Li
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-sen University Zhuhai China
| | - Jun Zhu
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University Zhuhai China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University Zhuhai 519000 China
| | - Xiaofeng Li
- Department of Gastroenterology, The Fifth Affiliated Hospital, Sun Yat-sen University Zhuhai China
| | - Hongzhe Sun
- Department of Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong Hong Kong SAR China
| | - Xinming Yang
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University Zhuhai China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University Zhuhai 519000 China
| |
Collapse
|
2
|
Friese S, Heinze T, Ebert F, Schwerdtle T. Establishment of a nonradioactive DNA ligation assay and its applications in murine tissues. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65:106-115. [PMID: 38767089 DOI: 10.1002/em.22602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/06/2024] [Accepted: 04/15/2024] [Indexed: 05/22/2024]
Abstract
As final process of every DNA repair pathway, DNA ligation is crucial for maintaining genomic stability and preventing DNA strand breaks to accumulate. Therefore, a method reliably assessing DNA ligation capacity in protein extracts from murine tissues was aimed to establish. To optimize applicability, the use of radioactively labeled substrates was avoided and replaced by fluorescently labeled oligonucleotides. Briefly, tissue extracts were incubated with those complementary oligonucleotides so that in an ensuing gel electrophoresis ligated strands could be separated from unconnected molecules. Originally, the method was intended for use in cerebellum tissue to further elucidate possible mechanisms of neurodegenerative diseases. However, due to its inhomogeneous anatomy, DNA ligation efficiency varied strongly between different cerebellar areas, illuminating the established assay to be suitable only for homogenous organs. Thus, for murine liver tissue sufficient intra- and interday repeatability was shown during validation. In further experiments, the established assay was applied to an animal study comprising young and old (24 and 110 weeks) mice which showed that DNA ligation efficiency was affected by neither sex nor age. Finally, the impact of in vitro addition of the trace elements copper, iron, and zinc on DNA ligation in tissue extracts was investigated. While all three metals inhibited DNA ligation, variations in their potency became evident. In conclusion, the established method can be reliably used for investigation of DNA ligation efficiency in homogenous murine tissues.
Collapse
Affiliation(s)
- Sharleen Friese
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
- TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany
| | - Tom Heinze
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
- TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany
| | - Franziska Ebert
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Tanja Schwerdtle
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
- TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany
- German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| |
Collapse
|
3
|
Iyer AS, Shaik MR, Raufman JP, Xie G. The Roles of Zinc Finger Proteins in Colorectal Cancer. Int J Mol Sci 2023; 24:10249. [PMID: 37373394 DOI: 10.3390/ijms241210249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Despite colorectal cancer remaining a leading worldwide cause of cancer-related death, there remains a paucity of effective treatments for advanced disease. The molecular mechanisms underlying the development of colorectal cancer include altered cell signaling and cell cycle regulation that may result from epigenetic modifications of gene expression and function. Acting as important transcriptional regulators of normal biological processes, zinc finger proteins also play key roles in regulating the cellular mechanisms underlying colorectal neoplasia. These actions impact cell differentiation and proliferation, epithelial-mesenchymal transition, apoptosis, homeostasis, senescence, and maintenance of stemness. With the goal of highlighting promising points of therapeutic intervention, we review the oncogenic and tumor suppressor roles of zinc finger proteins with respect to colorectal cancer tumorigenesis and progression.
Collapse
Affiliation(s)
- Aishwarya S Iyer
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Mohammed Rifat Shaik
- Department of Medicine, University of Maryland Medical Center Midtown Campus, Baltimore, MD 21201, USA
| | - Jean-Pierre Raufman
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- VA Maryland Healthcare System, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Guofeng Xie
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- VA Maryland Healthcare System, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
4
|
Splan KE, Choi SR, Claycomb RE, Eckart-Frank IK, Nagdev S, Rodemeier ME. Disruption of zinc (II) binding and dimeric protein structure of the XIAP-RING domain by copper (I) ions. J Biol Inorg Chem 2023:10.1007/s00775-023-02002-4. [PMID: 37268744 DOI: 10.1007/s00775-023-02002-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/15/2023] [Indexed: 06/04/2023]
Abstract
Modulation of metalloprotein structure and function via metal ion substitution may constitute a molecular basis for metal ion toxicity and/or metal-mediated functional control. The X-linked Inhibitor of Apoptosis Protein (XIAP) is a metalloprotein that requires zinc for proper structure and function. In addition to its role as a modulator of apoptosis, XIAP has been implicated in copper homeostasis. Given the similar coordination preferences of copper and zinc, investigation of XIAP structure and function upon interaction with copper is relevant. The Really Interesting New Gene (RING) domain of XIAP is representative of a class of zinc finger proteins that utilize a bi-nuclear zinc-binding motif to maintain proper structure and ubiquitin ligase function. Herein, we report the characterization of copper (I) binding to the Zn2-RING domain of XIAP. Electronic absorption studies that monitor copper-thiolate interactions demonstrate that the RING domain of XIAP binds 5-6 Cu(I) ions and that copper is thermodynamically preferred relative to zinc. Repetition of the experiments in the presence of the Zn(II)-specific dye Mag-Fura2 shows that Cu(I) addition results in Zn(II) ejection from the protein, even in the presence of glutathione. Loss of dimeric structure of the RING domain, which is a requirement for its ubiquitin ligase activity, upon copper substitution at the zinc-binding sites, was readily observed via size exclusion chromatography. These results provide a molecular basis for the modulation of RING function by copper and add to the growing body of literature that describe the impact of Cu(I) on zinc metalloprotein structure and function.
Collapse
Affiliation(s)
- Kathryn E Splan
- Department of Chemistry, Macalester College, 1600 Grand Avenue, Saint Paul, MN, 55105, USA.
| | - Sylvia R Choi
- Department of Chemistry, Macalester College, 1600 Grand Avenue, Saint Paul, MN, 55105, USA
| | - Ruth E Claycomb
- Department of Chemistry, Macalester College, 1600 Grand Avenue, Saint Paul, MN, 55105, USA
| | - Isaiah K Eckart-Frank
- Department of Chemistry, Macalester College, 1600 Grand Avenue, Saint Paul, MN, 55105, USA
| | - Shreya Nagdev
- Department of Chemistry, Macalester College, 1600 Grand Avenue, Saint Paul, MN, 55105, USA
| | - Madeline E Rodemeier
- Department of Chemistry, Macalester College, 1600 Grand Avenue, Saint Paul, MN, 55105, USA
| |
Collapse
|
5
|
Negi S, Imanishi M, Hamori M, Kawahara-Nakagawa Y, Nomura W, Kishi K, Shibata N, Sugiura Y. The past, present, and future of artificial zinc finger proteins: design strategies and chemical and biological applications. J Biol Inorg Chem 2023; 28:249-261. [PMID: 36749405 PMCID: PMC9903285 DOI: 10.1007/s00775-023-01991-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/25/2023] [Indexed: 02/08/2023]
Abstract
Zinc finger proteins are abundant in the human proteome and are responsible for a variety of functions. The domains that constitute zinc finger proteins are compact spherical structures, each comprising approximately 30 amino acid residues, but they also have precise molecular factor functions: zinc binding and DNA recognition. Due to the biological importance of zinc finger proteins and their unique structural and functional properties, many artificial zinc finger proteins have been created and are expected to improve their functions and biological applications. In this study, we review previous studies on the redesign and application of artificial zinc finger proteins, focusing on the experimental results obtained by our research group. In addition, we systematically review various design strategies used to construct artificial zinc finger proteins and discuss in detail their potential biological applications, including gene editing. This review will provide relevant information to researchers involved or interested in the field of artificial zinc finger proteins as a potential new treatment for various diseases.
Collapse
Affiliation(s)
- Shigeru Negi
- Faculty of Pharmaceutical Science, Doshisha Women's University Kyotanabe, Kyoto, 610-0395, Japan.
| | - Miki Imanishi
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Mami Hamori
- Faculty of Pharmaceutical Science, Doshisha Women's University Kyotanabe, Kyoto, 610-0395, Japan
| | - Yuka Kawahara-Nakagawa
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-Cho, Ako-Gun, Hyogo, 678-1297, Japan
| | - Wataru Nomura
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-Ku, Hiroshima, 734-8553, Japan
| | - Kanae Kishi
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-Ku, Hiroshima, 734-8553, Japan
| | - Nobuhito Shibata
- Faculty of Pharmaceutical Science, Doshisha Women's University Kyotanabe, Kyoto, 610-0395, Japan
| | - Yukio Sugiura
- Faculty of Pharmaceutical Science, Doshisha Women's University Kyotanabe, Kyoto, 610-0395, Japan
| |
Collapse
|
6
|
Schulte NB, Pushie MJ, Martinez A, Sendzik M, Escobedo M, Kuter K, Haas KL. Exploration of the Potential Role of Serum Albumin in the Delivery of Cu(I) to Ctr1. Inorg Chem 2023; 62:4021-4034. [PMID: 36826341 DOI: 10.1021/acs.inorgchem.2c03753] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Human serum albumin (HSA) is the major copper (Cu) carrier in blood. The majority of previous studies that have investigated Cu interactions with HSA have focused primarily on the Cu(II) oxidation state. Yet, cellular Cu uptake by the human copper transport protein (Ctr1), a plasma membrane-embedded protein responsible for Cu uptake into cells, requires Cu(I). Recent in vitro work has determined that reducing agents, such as the ascorbate present in blood, are sufficient to reduce the Cu(II)HSA complex to form Cu(I)HSA and that Cu(I) is bound to HSA with pM affinity. The biological accessibility of Cu(I)HSA suggests that HSA-bound Cu(I) may be an unappreciated form of Cu cargo and a key player in extracellular Cu trafficking. To better understand Cu trafficking by HSA, we sought to investigate the exchange of Cu(I) from HSA to a model peptide of the Cu-binding ectodomain of Ctr1. In this study, we used X-ray absorption near-edge spectroscopy to show that Cu(I) becomes more highly coordinated as increasing amounts of the Ctr1-14 model peptide are added to a solution of Cu(I)HSA. Extended X-ray absorption fine structure (EXAFS) spectroscopy was used to further characterize the interaction of Cu(I)HSA with Ctr1-14 by determining the ligands coordinating Cu(I) and their bond lengths. The EXAFS data support that some Cu(I) likely undergoes complete transfer from HSA to Ctr1-14. This finding of HSA interacting with and releasing Cu(I) to an ectodomain model peptide of Ctr1 suggests a mechanism by which HSA delivers Cu(I) to cells under physiological conditions.
Collapse
Affiliation(s)
- Natalie B Schulte
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - M Jake Pushie
- Department of Surgery, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Ana Martinez
- Department of Chemistry and Physics, Saint Mary's College, Notre Dame, Indiana 46556, United States
| | - Madison Sendzik
- Department of Chemistry and Physics, Saint Mary's College, Notre Dame, Indiana 46556, United States
| | - Maria Escobedo
- Department of Mathematics and Computer Science, Saint Mary's College, Notre Dame, Indiana 46556, United States
| | - Kristin Kuter
- Department of Mathematics and Computer Science, Saint Mary's College, Notre Dame, Indiana 46556, United States
| | - Kathryn L Haas
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
7
|
Stoltzfus AT, Campbell CJ, Worth MM, Hom K, Stemmler TL, Michel SLJ. Pb(II) coordination to the nonclassical zinc finger tristetraprolin: retained function with an altered fold. J Biol Inorg Chem 2023; 28:85-100. [PMID: 36478265 DOI: 10.1007/s00775-022-01980-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/26/2022] [Indexed: 12/13/2022]
Abstract
Tristetraprolin (TTP) is a nonclassical CCCH zinc finger (ZF) that plays a crucial role in regulating inflammation. TTP regulates cytokine mRNAs by specific binding of its two conserved ZF domains (CysX8CysX5CysX3His) to adenylate-uridylate-rich sequences (AREs) at the 3'-untranslated region, leading to degradation of the RNA. Dysregulation of TTP in animal models has demonstrated several cytokine-related syndromes, including chronic inflammation and autoimmune disorders. Exposure to Pb(II), a prevalent environmental toxin, is known to contribute to similar pathologies, in part by disruption of and/or competition with cysteine-rich metalloproteins. TTP's role during stress as a ubiquitous translational regulator of cell signaling (and dysfunction), which may underpin various phenotypes of Pb(II) toxicity, highlights the importance of understanding the interaction between TTP and Pb(II). The impact of Pb(II) binding on TTP's fold and RNA-binding function was analyzed via UV-Vis spectroscopy, circular dichroism, X-ray absorption spectroscopy, nuclear magnetic resonance spectroscopy, and fluorescence anisotropy. A construct containing the two ZF domains of TTP (TTP-2D) bound to Pb(II) with nanomolar affinity and exhibited a different geometry and fold in comparison to Zn2-TTP-2D. Despite the altered secondary structure, Pb(II)-substituted TTP-2D bound a canonical ARE sequence more selectively than Zn2-TTP-2D. Taken together, these data suggest that Pb(II) may interfere with proper TTP regulation and hinder the cell's ability to respond to inflammation.
Collapse
Affiliation(s)
- Andrew T Stoltzfus
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, 21201, USA
| | - Courtney J Campbell
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Madison M Worth
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, 21201, USA
| | - Kellie Hom
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, 21201, USA
| | - Timothy L Stemmler
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Sarah L J Michel
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, 21201, USA.
| |
Collapse
|
8
|
Dragone M, Grazioso R, D’Abrosca G, Baglivo I, Iacovino R, Esposito S, Paladino A, Pedone PV, Russo L, Fattorusso R, Malgieri G, Isernia C. Copper (I) or (II) Replacement of the Structural Zinc Ion in the Prokaryotic Zinc Finger Ros Does Not Result in a Functional Domain. Int J Mol Sci 2022; 23:ijms231911010. [PMID: 36232306 PMCID: PMC9569694 DOI: 10.3390/ijms231911010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
A strict interplay is known to involve copper and zinc in many cellular processes. For this reason, the results of copper’s interaction with zinc binding proteins are of great interest. For instance, copper interferences with the DNA-binding activity of zinc finger proteins are associated with the development of a variety of diseases. The biological impact of copper depends on the chemical properties of its two common oxidation states (Cu(I) and Cu(II)). In this framework, following the attention addressed to unveil the effect of metal ion replacement in zinc fingers and in zinc-containing proteins, we explore the effects of the Zn(II) to Cu(I) or Cu(II) replacement in the prokaryotic zinc finger domain. The prokaryotic zinc finger protein Ros, involved in the horizontal transfer of genes from A. tumefaciens to a host plant infected by it, belongs to a family of proteins, namely Ros/MucR, whose members have been recognized in different bacteria symbionts and pathogens of mammals and plants. Interestingly, the amino acids of the coordination sphere are poorly conserved in most of these proteins, although their sequence identity can be very high. In fact, some members of this family of proteins do not bind zinc or any other metal, but assume a 3D structure similar to that of Ros with the residues replacing the zinc ligands, forming a network of hydrogen bonds and hydrophobic interactions that surrogates the Zn-coordinating role. These peculiar features of the Ros ZF domain prompted us to study the metal ion replacement with ions that have different electronic configuration and ionic radius. The protein was intensely studied as a perfectly suited model of a metal-binding protein to study the effects of the metal ion replacement; it appeared to tolerate the Zn to Cd substitution, but not the replacement of the wildtype metal by Ni(II), Pb(II) and Hg(II). The structural characterization reported here gives a high-resolution description of the interaction of copper with Ros, demonstrating that copper, in both oxidation states, binds the protein, but the replacement does not give rise to a functional domain.
Collapse
Affiliation(s)
- Martina Dragone
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Rinaldo Grazioso
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Gianluca D’Abrosca
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Ilaria Baglivo
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Rosa Iacovino
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Sabrina Esposito
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Antonella Paladino
- Institute of Biostructures and Bioimaging, National Research Council (IBB-CNR), Via Pietro Castellino 111, 80131 Naples, Italy
| | - Paolo V. Pedone
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Luigi Russo
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Roberto Fattorusso
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Gaetano Malgieri
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Carla Isernia
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
- Correspondence:
| |
Collapse
|
9
|
Memo1 binds reduced copper ions, interacts with copper chaperone Atox1, and protects against copper-mediated redox activity in vitro. Proc Natl Acad Sci U S A 2022; 119:e2206905119. [PMID: 36067318 PMCID: PMC9477392 DOI: 10.1073/pnas.2206905119] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Since many proteins depend on copper ions for functionality, it is not surprising that cancer cells have a high demand for copper. Still, free copper ions are toxic as they can potentially catalyze the formation of harmful reactive oxygen species (ROS) upon coupling redox cycling between Cu(I) and Cu(II) with reduction of O2. Here, we investigated copper binding to Memo1, an oncogenic protein linked to cancer. We demonstrate that Memo1 coordinates reduced but not oxidized copper ions, thereby preventing the copper ions from acting as redox catalysts for ROS generation. As Memo1 is a putative target for the treatment of cancer, it is of importance to identify its binding partners (e.g., metal ions) and the functional consequences of such interactions. The protein mediator of ERBB2-driven cell motility 1 (Memo1) is connected to many signaling pathways that play key roles in cancer. Memo1 was recently postulated to bind copper (Cu) ions and thereby promote the generation of reactive oxygen species (ROS) in cancer cells. Since the concentration of Cu as well as ROS are increased in cancer cells, both can be toxic if not well regulated. Here, we investigated the Cu-binding capacity of Memo1 using an array of biophysical methods at reducing as well as oxidizing conditions in vitro. We find that Memo1 coordinates two reduced Cu (Cu(I)) ions per protein, and, by doing so, the metal ions are shielded from ROS generation. In support of biological relevance, we show that the cytoplasmic Cu chaperone Atox1, which delivers Cu(I) in the secretory pathway, can interact with and exchange Cu(I) with Memo1 in vitro and that the two proteins exhibit spatial proximity in breast cancer cells. Thus, Memo1 appears to act as a Cu(I) chelator (perhaps shuttling the metal ion to Atox1 and the secretory path) that protects cells from Cu-mediated toxicity, such as uncontrolled formation of ROS. This Memo1 functionality may be a safety mechanism to cope with the increased demand of Cu ions in cancer cells.
Collapse
|
10
|
Ma X, Zhou S, Xu X, Du Q. Copper-containing nanoparticles: Mechanism of antimicrobial effect and application in dentistry-a narrative review. Front Surg 2022; 9:905892. [PMID: 35990090 PMCID: PMC9388913 DOI: 10.3389/fsurg.2022.905892] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/19/2022] [Indexed: 11/18/2022] Open
Abstract
Copper has been used as an antimicrobial agent long time ago. Nowadays, copper-containing nanoparticles (NPs) with antimicrobial properties have been widely used in all aspects of our daily life. Copper-containing NPs may also be incorporated or coated on the surface of dental materials to inhibit oral pathogenic microorganisms. This review aims to detail copper-containing NPs' antimicrobial mechanism, cytotoxic effect and their application in dentistry.
Collapse
Affiliation(s)
- Xinru Ma
- Department of Stomatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Stomatology, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (West China Hospital Sichuan University Tibet Chengdu Branch Hospital), Chengdu, China
| | - Shiyu Zhou
- Department of Stomatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoling Xu
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Qin Du
- Department of Stomatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
11
|
Walke G, Aupič J, Kashoua H, Janoš P, Meron S, Shenberger Y, Qasem Z, Gevorkyan-Airapetov L, Magistrato A, Ruthstein S. Dynamical interplay between the human high-affinity copper transporter hCtr1 and its cognate metal ion. Biophys J 2022; 121:1194-1204. [PMID: 35202609 PMCID: PMC9034245 DOI: 10.1016/j.bpj.2022.02.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/12/2021] [Accepted: 02/17/2022] [Indexed: 11/02/2022] Open
Abstract
Abnormal cellular copper levels have been clearly implicated in genetic diseases, cancer, and neurodegeneration. Ctr1, a high-affinity copper transporter, is a homotrimeric integral membrane protein that provides the main route for cellular copper uptake. Together with a sophisticated copper transport system, Ctr1 regulates Cu(I) metabolism in eukaryotes. Despite its pivotal role in normal cell function, the molecular mechanism of copper uptake and transport via Ctr1 remains elusive. In this study, electron paramagnetic resonance (EPR), UV-visible spectroscopy, and all-atom simulations were employed to explore Cu(I) binding to full-length human Ctr1 (hCtr1), thereby elucidating how metal binding at multiple distinct sites affects the hCtr1 conformational dynamics. We demonstrate that each hCtr1 monomer binds up to five Cu(I) ions and that progressive Cu(I) binding triggers a marked structural rearrangement in the hCtr1 C-terminal region. The observed Cu(I)-induced conformational remodeling suggests that the C-terminal region may play a dual role, serving both as a channel gate and as a shuttle mediating the delivery of copper ions from the extracellular hCtr1 selectivity filter to intracellular metallochaperones. Our findings thus contribute to a more complete understanding of the mechanism of hCtr1-mediated Cu(I) uptake and provide a conceptual basis for developing mechanism-based therapeutics for treating pathological conditions linked to de-regulated copper metabolism.
Collapse
Affiliation(s)
- Gulshan Walke
- Department of Chemistry and the Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan, Israel
| | - Jana Aupič
- Department National Research Council of Italy (CNR) - Institute of Material (IOM) c/o International School for Advanced Studies (SISSA), Trieste, Italy
| | - Hadeel Kashoua
- Department of Chemistry and the Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan, Israel
| | - Pavel Janoš
- Department National Research Council of Italy (CNR) - Institute of Material (IOM) c/o International School for Advanced Studies (SISSA), Trieste, Italy
| | - Shelly Meron
- Department of Chemistry and the Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan, Israel
| | - Yulia Shenberger
- Department of Chemistry and the Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan, Israel
| | - Zena Qasem
- Department of Chemistry and the Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan, Israel
| | - Lada Gevorkyan-Airapetov
- Department of Chemistry and the Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan, Israel
| | - Alessandra Magistrato
- Department National Research Council of Italy (CNR) - Institute of Material (IOM) c/o International School for Advanced Studies (SISSA), Trieste, Italy.
| | - Sharon Ruthstein
- Department of Chemistry and the Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
12
|
Fe-S clusters masquerading as zinc finger proteins. J Inorg Biochem 2022; 230:111756. [DOI: 10.1016/j.jinorgbio.2022.111756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/01/2022] [Accepted: 02/06/2022] [Indexed: 02/06/2023]
|
13
|
Wang Y, Hu H, Yuan S, LI Y, Cao K, Sun H, Liu Y. Cuprous Ions can Disrupt Structure and Functions of the RING Finger Domain of RNF11. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00631f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Copper is an essential element that plays crucial roles in a variety of biological processes, while excessive copper is harmful to cells. RNF11 is a RING finger protein associated with...
Collapse
|
14
|
Ok K, Filipovic MR, Michel SLJ. Targeting Zinc Finger Proteins with Exogenous Metals and Molecules: Lessons learned from Tristetraprolin, a CCCH type Zinc Finger. Eur J Inorg Chem 2021; 2021:3795-3805. [PMID: 34867080 PMCID: PMC8635303 DOI: 10.1002/ejic.202100402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Indexed: 11/09/2022]
Abstract
ZF proteins are ubiquitous eukaryotic proteins that play important roles in gene regulation. ZFs contain small domains made up of a combination of four cysteine and histidine residues, and are classified based up on the identity of these residues and their spacing. One emerging class of ZFs are the Cys3His (or CCCH) class of ZFs. These ZFs play key roles in regulating RNA. In this minireview, an overview of the CCCH class of ZFs, with a focus on tristetraprolin (TTP) is provided. TTP regulates inflammation by controlling cytokine mRNAs, and there is an interest in modulating TTP activity to control inflammation. Two methods to control TTP activity are to target with exogenous metals (a 'metals in medicine' approach) or to target with endogenous signaling molecules. Work that has been done to target TTP with Fe, Cu, Cd and Au as well as with H2S is reviewed. This includes attention to new methods that have been developed to monitor metal exchange with the spectroscopically silent ZnII including native electro-spray ionization mass spectrometry (ESI-MS), spin-filter inductively coupled plasma mass spectrometry (ICP-MS) and cryo-electro-spray mass spectrometry (CSI-MS); along with fluorescence anisotropy (FA) to follow RNA binding.
Collapse
Affiliation(s)
- Kiwon Ok
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Milos R Filipovic
- Leibniz-Institut für Analytische, Wissenschaften-ISAS-e.V., 44227 Dortmund, Germany
| | - Sarah L J Michel
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| |
Collapse
|
15
|
Kuo MT, Huang YF, Chou CY, Chen HHW. Targeting the Copper Transport System to Improve Treatment Efficacies of Platinum-Containing Drugs in Cancer Chemotherapy. Pharmaceuticals (Basel) 2021; 14:ph14060549. [PMID: 34201235 PMCID: PMC8227247 DOI: 10.3390/ph14060549] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 12/18/2022] Open
Abstract
The platinum (Pt)-containing antitumor drugs including cisplatin (cis-diamminedichloroplatinum II, cDDP), carboplatin, and oxaliplatin, have been the mainstay of cancer chemotherapy. These drugs are effective in treating many human malignancies. The major cell-killing target of Pt drugs is DNA. Recent findings underscored the important roles of Pt drug transport system in cancer therapy. While many mechanisms have been proposed for Pt-drug transport, the high-affinity copper transporter (hCtr1), Cu chaperone (Atox1), and Cu exporters (ATP7A and ATP7B) are also involved in cDDP transport, highlighting Cu homeostasis regulation in Pt-based cancer therapy. It was demonstrated that by reducing cellular Cu bioavailable levels by Cu chelators, hCtr1 is transcriptionally upregulated by transcription factor Sp1, which binds the promoters of Sp1 and hCtr1. In contrast, elevated Cu poisons Sp1, resulting in suppression of hCtr1 and Sp1, constituting the Cu-Sp1-hCtr1 mutually regulatory loop. Clinical investigations using copper chelator (trientine) in carboplatin treatment have been conducted for overcoming Pt drug resistance due in part to defective transport. While results are encouraging, future development may include targeting multiple steps in Cu transport system for improving the efficacies of Pt-based cancer chemotherapy. The focus of this review is to delineate the mechanistic interrelationships between Cu homeostasis regulation and antitumor efficacy of Pt drugs.
Collapse
Affiliation(s)
- Macus Tien Kuo
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Yu-Fang Huang
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
| | - Cheng-Yang Chou
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
- Correspondence: (C.-Y.C.); (H.H.W.C.)
| | - Helen H. W. Chen
- Department of Radiation Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 701, Taiwan
- Correspondence: (C.-Y.C.); (H.H.W.C.)
| |
Collapse
|
16
|
Brandis JEP, Zalesak SM, Kane MA, Michel SLJ. Cadmium Exchange with Zinc in the Non-Classical Zinc Finger Protein Tristetraprolin. Inorg Chem 2021; 60:7697-7707. [PMID: 33999622 PMCID: PMC8501473 DOI: 10.1021/acs.inorgchem.0c03808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Tristetraprolin (TTP) is a nonclassical CCCH zinc finger protein that regulates inflammation. TTP targets AU-rich RNA sequences of cytokine mRNAs forming a TTP/mRNA complex. This complex is then degraded, switching off the inflammatory response. Cadmium, a known carcinogen, triggers proinflammatory effects, and there is evidence that Cd increases TTP expression in cells, suggesting that Zn-TTP may be a target for cadmium toxicity. We sought to determine whether Cd exchanges with Zn in the TTP active site and measure the effect of RNA binding on this exchange. A construct of TTP that contains the two CCCH domains (TTP-2D) was employed to investigate these interactions. A spin-filter ICP-MS experiment to quantify the metal that is bound to the ZF after metal exchange was performed, and it was determined that Cd exchanges with Zn in Zn2-TTP-2D and that Zn exchanges with Cd in Cd2-TTP-2D. A native ESI-MS experiment to identify the metal-ZF complexes formed after metal exchange was performed, and M-TTP-2D complexes with singular and double metal exchange were observed. Metal exchange was measured in both the absence and presence of TTP's partner RNA, with retention of RNA binding. These data show that Cd can exchange with Zn in TTP without affecting function.
Collapse
Affiliation(s)
- Joel E P Brandis
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Stephanie M Zalesak
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Sarah L J Michel
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| |
Collapse
|
17
|
Monette A, Mouland AJ. Zinc and Copper Ions Differentially Regulate Prion-Like Phase Separation Dynamics of Pan-Virus Nucleocapsid Biomolecular Condensates. Viruses 2020; 12:E1179. [PMID: 33081049 PMCID: PMC7589941 DOI: 10.3390/v12101179] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 02/08/2023] Open
Abstract
Liquid-liquid phase separation (LLPS) is a rapidly growing research focus due to numerous demonstrations that many cellular proteins phase-separate to form biomolecular condensates (BMCs) that nucleate membraneless organelles (MLOs). A growing repertoire of mechanisms supporting BMC formation, composition, dynamics, and functions are becoming elucidated. BMCs are now appreciated as required for several steps of gene regulation, while their deregulation promotes pathological aggregates, such as stress granules (SGs) and insoluble irreversible plaques that are hallmarks of neurodegenerative diseases. Treatment of BMC-related diseases will greatly benefit from identification of therapeutics preventing pathological aggregates while sparing BMCs required for cellular functions. Numerous viruses that block SG assembly also utilize or engineer BMCs for their replication. While BMC formation first depends on prion-like disordered protein domains (PrLDs), metal ion-controlled RNA-binding domains (RBDs) also orchestrate their formation. Virus replication and viral genomic RNA (vRNA) packaging dynamics involving nucleocapsid (NC) proteins and their orthologs rely on Zinc (Zn) availability, while virus morphology and infectivity are negatively influenced by excess Copper (Cu). While virus infections modify physiological metal homeostasis towards an increased copper to zinc ratio (Cu/Zn), how and why they do this remains elusive. Following our recent finding that pan-retroviruses employ Zn for NC-mediated LLPS for virus assembly, we present a pan-virus bioinformatics and literature meta-analysis study identifying metal-based mechanisms linking virus-induced BMCs to neurodegenerative disease processes. We discover that conserved degree and placement of PrLDs juxtaposing metal-regulated RBDs are associated with disease-causing prion-like proteins and are common features of viral proteins responsible for virus capsid assembly and structure. Virus infections both modulate gene expression of metalloproteins and interfere with metal homeostasis, representing an additional virus strategy impeding physiological and cellular antiviral responses. Our analyses reveal that metal-coordinated virus NC protein PrLDs initiate LLPS that nucleate pan-virus assembly and contribute to their persistence as cell-free infectious aerosol droplets. Virus aerosol droplets and insoluble neurological disease aggregates should be eliminated by physiological or environmental metals that outcompete PrLD-bound metals. While environmental metals can control virus spreading via aerosol droplets, therapeutic interference with metals or metalloproteins represent additional attractive avenues against pan-virus infection and virus-exacerbated neurological diseases.
Collapse
Affiliation(s)
- Anne Monette
- Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada
| | - Andrew J. Mouland
- Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada
- Department of Medicine, McGill University, Montréal, QC H4A 3J1, Canada
| |
Collapse
|
18
|
Abbehausen C. Zinc finger domains as therapeutic targets for metal-based compounds - an update. Metallomics 2020; 11:15-28. [PMID: 30303505 DOI: 10.1039/c8mt00262b] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Zinc finger proteins are one of the most abundant families of proteins and present a wide range of structures and functions. The structural zinc ion provides the correct conformation to specifically recognize DNA, RNA and protein sequences. Zinc fingers have essential functions in transcription, protein degradation, DNA repair, cell migration, and others. Recently, reports on the extensive participation of zinc fingers in disease have been published. On the other hand, much information remains to be unravelled as many genomes and proteomes are being reported. A variety of zinc fingers have been identified; however, their functions are still under investigation. Because zinc fingers have identified functions in several diseases, they are being increasingly recognized as drug targets. The replacement of Zn(ii) by another metal ion in zinc fingers is one of the most prominent methods of inhibition. From one side, zinc fingers play roles in the toxicity mechanisms of Ni(ii), Hg(ii), Cd(ii) and others. From the other side, gold, platinum, cobalt, and selenium complexes are amongst the compounds being developed as zinc finger inhibitors for therapy. The main challenge in the design of therapeutic zinc finger inhibitors is to achieve selectivity. Recently, the design of novel compounds and elucidation of the mechanisms of zinc substitution have renewed the possibilities of selective zinc finger inhibition by metal complexes. This review aims to update the status of novel strategies to selectively target zinc finger domains by metal complexes.
Collapse
Affiliation(s)
- C Abbehausen
- Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, CEP 13083-970, Campinas, São Paulo, Brazil.
| |
Collapse
|
19
|
Pritts JD, Hursey MS, Michalek JL, Batelu S, Stemmler TL, Michel SLJ. Unraveling the RNA Binding Properties of the Iron-Sulfur Zinc Finger Protein CPSF30. Biochemistry 2020; 59:970-982. [PMID: 32027124 DOI: 10.1021/acs.biochem.9b01065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cleavage and polyadenylation specificity factor 30 (CPSF30) is a "zinc finger" protein that plays a crucial role in the transition of pre-mRNA to RNA. CPSF30 contains five conserved CCCH domains and a CCHC "zinc knuckle" domain. CPSF30 activity is critical for pre-mRNA processing. A truncated form of the protein, in which only the CCCH domains are present, has been shown to specifically bind AU-rich pre-mRNA targets; however, the RNA binding and recognition properties of full-length CPSF30 are not known. Herein, we report the isolation and biochemical characterization of full-length CPSF30. We report that CPSF30 contains one 2Fe-2S cluster in addition to five zinc ions, as measured by inductively coupled plasma mass spectrometry, ultraviolet-visible spectroscopy, and X-ray absorption spectroscopy. Utilizing fluorescence anisotropy RNA binding assays, we show that full-length CPSF30 has high binding affinity for two types of pre-mRNA targets, AAUAAA and polyU, both of which are conserved sequence motifs present in the majority of pre-mRNAs. Binding to the AAUAAA motif requires that the five CCCH domains of CPSF30 be present, whereas binding to polyU sequences requires the entire, full-length CPSF30. These findings implicate the CCHC "zinc knuckle" present in the full-length protein as being critical for mediating polyU binding. We also report that truncated forms of the protein, containing either just two CCCH domains (ZF2 and ZF3) or the CCHC "zinc knuckle" domain, do not exhibit any RNA binding, indicating that CPSF30/RNA binding requires several ZF (and/or Fe-S cluster) domains working in concert to mediate RNA recognition.
Collapse
Affiliation(s)
- Jordan D Pritts
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201-1180, United States
| | - Matthew S Hursey
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201-1180, United States
| | - Jamie L Michalek
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201-1180, United States
| | - Sharon Batelu
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48201, United States
| | - Timothy L Stemmler
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48201, United States
| | - Sarah L J Michel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201-1180, United States
| |
Collapse
|
20
|
Ok K, Li W, Neu HM, Batelu S, Stemmler TL, Kane MA, Michel SLJ. Role of Gold in Inflammation and Tristetraprolin Activity. Chemistry 2020; 26:1535-1547. [DOI: 10.1002/chem.201904837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Kiwon Ok
- Department of Pharmaceutical Sciences University of Maryland School of Pharmacy 20 Penn St. Baltimore MD 21201 USA
| | - Wenjing Li
- Department of Pharmaceutical Sciences University of Maryland School of Pharmacy 20 Penn St. Baltimore MD 21201 USA
| | - Heather M. Neu
- Department of Pharmaceutical Sciences University of Maryland School of Pharmacy 20 Penn St. Baltimore MD 21201 USA
| | - Sharon Batelu
- Department of Pharmaceutical Sciences Wayne State University 259 Mack Avenue Detroit MI 48201 USA
| | - Timothy L. Stemmler
- Department of Pharmaceutical Sciences Wayne State University 259 Mack Avenue Detroit MI 48201 USA
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences University of Maryland School of Pharmacy 20 Penn St. Baltimore MD 21201 USA
| | - Sarah L. J. Michel
- Department of Pharmaceutical Sciences University of Maryland School of Pharmacy 20 Penn St. Baltimore MD 21201 USA
| |
Collapse
|
21
|
Park G, Amaris ZN, Eiken MK, Baumgartner KV, Johnston KA, Williams MA, Markwordt JG, Millstone JE, Splan KE, Wheeler KE. Emerging investigator series: characterization of silver and silver nanoparticle interactions with zinc finger peptides. ENVIRONMENTAL SCIENCE. NANO 2019; 6:2367-2378. [PMID: 31528351 PMCID: PMC6746224 DOI: 10.1039/c9en00065h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In biological systems, chemical and physical transformations of engineered silver nanomaterials (AgENMs) are mediated, in part, by proteins and other biomolecules. Metalloprotein interactions with AgENMs are also central in understanding toxicity and antimicrobial and resistance mechanisms. Despite their readily available thiolate and amine ligands, zinc finger (ZF) peptides have thus far escaped study in reaction with AgENMs and their Ag(I) oxidative dissolution product. We report spectroscopic studies that characterize AgENM and Ag(I) interactions with two ZF peptides that differ in sequence, but not in metal binding ligands: the ZF consensus peptide CP-CCHC and the C-terminal zinc finger domain of HIV-1 nucleocapsid protein p7 (NCp7_C). Both ZF peptides catalyze AgENM (10 and 40 nm, citrate coated) dissolution and agglomeration, two important AgENM transformations that impact bioreactivity. AgENMs and their oxidative dissolution product, Ag(I)(aq), mediate changes to ZF peptide structure and metalation as well. Spectroscopic titrations of Ag(I) into apo-ZF peptides show an Ag(I)-thiolate charge transfer band, indicative of Ag(I)-ZF binding. Fluorescence studies of the Zn(II)-NCp_7 complex indicate that the Ag(I) also effectively competes with the Zn(II) to drive Zn(II) displacement from the ZFs. Upon interaction with AgENMs, Zn(II) bound ZF peptides show a secondary structural change in circular dichroism spectroscopy toward an apo-like structure. The results suggest that Ag(I) and AgENMs may alter ZF protein function within the cell.
Collapse
Affiliation(s)
- Grace Park
- Department of Chemistry & Biochemistry Santa Clara University Santa Clara, CA 95053, USA
| | - Zoe N Amaris
- Department of Chemistry & Biochemistry Santa Clara University Santa Clara, CA 95053, USA
| | - Madeline K Eiken
- Department of Chemistry & Biochemistry Santa Clara University Santa Clara, CA 95053, USA
| | - Karl V Baumgartner
- Department of Chemistry & Biochemistry Santa Clara University Santa Clara, CA 95053, USA
| | - Kathryn A Johnston
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave, Pittsburgh, PA 15260, USA
| | - Mari A Williams
- Department of Chemistry & Biochemistry Santa Clara University Santa Clara, CA 95053, USA
| | - Jasmine G Markwordt
- Department of Chemistry & Biochemistry Santa Clara University Santa Clara, CA 95053, USA
| | - Jill E Millstone
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave, Pittsburgh, PA 15260, USA
| | - Kathryn E Splan
- Department of Chemistry, Macalester College, 1600 Grand Avenue, Saint Paul, Minnesota 55105, USA
| | - Korin E Wheeler
- Department of Chemistry & Biochemistry Santa Clara University Santa Clara, CA 95053, USA
| |
Collapse
|
22
|
Lai WS, Wells ML, Perera L, Blackshear PJ. The tandem zinc finger RNA binding domain of members of the tristetraprolin protein family. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1531. [PMID: 30864256 DOI: 10.1002/wrna.1531] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/12/2019] [Accepted: 02/20/2019] [Indexed: 12/23/2022]
Abstract
Tristetraprolin (TTP), the prototype member of the protein family of the same name, was originally discovered as the product of a rapidly inducible gene in mouse cells. Development of a knockout (KO) mouse established that absence of the protein led to a severe inflammatory syndrome, due in part to elevated levels of tumor necrosis factor (TNF). TTP was found to bind directly and with high affinity to specific AU-rich sequences in the 3'-untranslated region of the TNF mRNA. This initial binding led to promotion of TNF mRNA decay and inhibition of its translation. Many additional TTP target mRNAs have since been identified, some of which are cytokines and chemokines involved in the inflammatory response. There are three other proteins in the mouse with similar activities and domain structures, but whose KO phenotypes are remarkably different. Moreover, proteins with similar domain structures and activities have been found throughout eukaryotes, demonstrating that this protein family arose from an ancient ancestor. The defining characteristic of this protein family is the tandem zinc finger (TZF) domain, a 64 amino acid sequence with many conserved residues that is responsible for the direct RNA binding. We discuss here many aspects of this protein domain that have been elucidated since the original discovery of TTP, including its sequence conservation throughout eukarya; its apparent continued evolution in some lineages; its functional dependence on many key conserved residues; its "interchangeability" among evolutionarily distant species; and the evidence that RNA binding is required for the physiological functions of the proteins. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Wi S Lai
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Durham, North Carolina
| | - Melissa L Wells
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Durham, North Carolina
| | - Lalith Perera
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Durham, North Carolina
| | - Perry J Blackshear
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Durham, North Carolina.,Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
23
|
Puchkova LV, Babich PS, Zatulovskaia YA, Ilyechova EY, Di Sole F. Copper Metabolism of Newborns Is Adapted to Milk Ceruloplasmin as a Nutritive Source of Copper: Overview of the Current Data. Nutrients 2018; 10:E1591. [PMID: 30380720 PMCID: PMC6266612 DOI: 10.3390/nu10111591] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/17/2018] [Accepted: 10/26/2018] [Indexed: 12/19/2022] Open
Abstract
Copper, which can potentially be a highly toxic agent, is an essential nutrient due to its role as a cofactor for cuproenzymes and its participation in signaling pathways. In mammals, the liver is a central organ that controls copper turnover throughout the body, including copper absorption, distribution, and excretion. In ontogenesis, there are two types of copper metabolism, embryonic and adult, which maintain the balance of copper in each of these periods of life, respectively. In the liver cells, these types of metabolism are characterized by the specific expression patterns and activity levels of the genes encoding ceruloplasmin, which is the main extracellular ferroxidase and copper transporter, and the proteins mediating ceruloplasmin metalation. In newborns, the molecular genetic mechanisms responsible for copper homeostasis and the ontogenetic switch from embryonic to adult copper metabolism are highly adapted to milk ceruloplasmin as a dietary source of copper. In the mammary gland cells, the level of ceruloplasmin gene expression and the alternative splicing of its pre-mRNA govern the amount of ceruloplasmin in the milk, and thus, the amount of copper absorbed by a newborn is controlled. In newborns, the absorption, distribution, and accumulation of copper are adapted to milk ceruloplasmin. If newborns are not breast-fed in the early stages of postnatal development, they do not have this natural control ensuring alimentary copper balance in the body. Although there is still much to be learned about the neonatal consequences of having an imbalance of copper in the mother/newborn system, the time to pay attention to this problem has arrived because the neonatal misbalance of copper may provoke the development of copper-related disorders.
Collapse
Affiliation(s)
- Ludmila V Puchkova
- Laboratory of Trace Elements Metabolism, ITMO University, Kronverksky av., 49, 197101 St.-Petersburg, Russia.
- Department of Molecular Genetics, Research Institute of Experimental Medicine, Acad. Pavlov str., 12, 197376 St.-Petersburg, Russia.
- Department of Biophysics, Peter the Great St. Petersburg Polytechnic University, Politekhnicheskaya str., 29, 195251 St.-Petersburg, Russia.
| | - Polina S Babich
- Department of Zoology, Herzen State Pedagogical University of Russia, Kazanskaya str., 6, 191186 St.-Petersburg, Russia.
| | - Yulia A Zatulovskaia
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Ekaterina Y Ilyechova
- Laboratory of Trace Elements Metabolism, ITMO University, Kronverksky av., 49, 197101 St.-Petersburg, Russia.
| | - Francesca Di Sole
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA 50312, USA.
| |
Collapse
|
24
|
Kardos J, Héja L, Simon Á, Jablonkai I, Kovács R, Jemnitz K. Copper signalling: causes and consequences. Cell Commun Signal 2018; 16:71. [PMID: 30348177 PMCID: PMC6198518 DOI: 10.1186/s12964-018-0277-3] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/24/2018] [Indexed: 12/18/2022] Open
Abstract
Copper-containing enzymes perform fundamental functions by activating dioxygen (O2) and therefore allowing chemical energy-transfer for aerobic metabolism. The copper-dependence of O2 transport, metabolism and production of signalling molecules are supported by molecular systems that regulate and preserve tightly-bound static and weakly-bound dynamic cellular copper pools. Disruption of the reducing intracellular environment, characterized by glutathione shortage and ambient Cu(II) abundance drives oxidative stress and interferes with the bidirectional, copper-dependent communication between neurons and astrocytes, eventually leading to various brain disease forms. A deeper understanding of of the regulatory effects of copper on neuro-glia coupling via polyamine metabolism may reveal novel copper signalling functions and new directions for therapeutic intervention in brain disorders associated with aberrant copper metabolism.
Collapse
Affiliation(s)
- Julianna Kardos
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| | - László Héja
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| | - Ágnes Simon
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| | - István Jablonkai
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| | - Richard Kovács
- Institute of Neurophysiology, Charité-Universitätsmedizin, Berlin, Germany
| | - Katalin Jemnitz
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| |
Collapse
|
25
|
Yuan S, Chen S, Xi Z, Liu Y. Copper-finger protein of Sp1: the molecular basis of copper sensing. Metallomics 2017; 9:1169-1175. [PMID: 28759062 DOI: 10.1039/c7mt00184c] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The cellular copper level is strictly regulated since excessive copper is harmful to cells. It has been proposed that the expression of copper transport protein hCtr1 is transcriptionally regulated by specificity protein 1 (Sp1) in response to the cellular copper level. However, it is not known how Sp1, a zinc-finger-protein (ZFP), can sense copper ions in cells. Here we found that Sp1 demonstrates high binding affinity to cuprous ions, even stronger than Cu-Atox1 binding. Cu(i) can displace Zn(ii) in Sp1, resulting in a well-folded 'Copper-Finger-Protein' (CFP). Although only very little structural alteration occurs upon copper binding, CFP cannot recognize the promoter of hCtr1, therefore copper binding interrupts the transcription. This result indicates that, in addition to apo-to-holo alteration, metal substitution can also lead to transcriptional switch in metal sensing. This work provides insight into the copper sensing mechanism of Sp1 at the molecular level.
Collapse
Affiliation(s)
- Siming Yuan
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | | | | | | |
Collapse
|