1
|
Zueva AY, Bilyachenko AN, Arteev IS, Khrustalev VN, Dorovatovskii PV, Shul'pina LS, Ikonnikov NS, Gutsul EI, Rahimov KG, Shubina ES, Reis Conceição N, Mahmudov KT, Guedes da Silva MFC, Pombeiro AJL. A Family of Hexacopper Phenylsilsesquioxane/Acetate Complexes: Synthesis, Solvent-Controlled Cage Structures, and Catalytic Activity. Chemistry 2024; 30:e202401164. [PMID: 38551412 DOI: 10.1002/chem.202401164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Indexed: 04/26/2024]
Abstract
Convenient self-assembly synthesis of copper(II) complexes via double (phenylsilsesquioxane and acetate) ligation allows to isolate a family of impressive sandwich-like cage compounds. An intriguing feature of these complexes is the difference in the structure of a pair of silsesquioxane ligands despite identical (Cu6) nuclearity and number (four) of acetate fragments. Formation of particular combination of silsesquioxane ligands (cyclic/cyclic vs condensed/condensed vs cyclic/condensed) was found to be dependent on the synthesis/crystallization media. A combination of Si4-cyclic and Si6-condensed silsesquioxane ligands is a brand new feature of cage metallasilsesquioxanes. A representative Cu6-complex (4) (with cyclic silsesquioxanes) exhibited high catalytic activity in the oxidation of alkanes and alcohols with peroxides. Maximum yield of the products of cyclohexane oxidation attained 30 %. The compound 4 was also tested as catalyst in the Baeyer-Villiger oxidation of cyclohexanone by m-chloroperoxybenzoic acid: maximum yields of 88 % and 100 % of ϵ-caprolactone were achieved upon conventional heating at 50 °C for 4 h and MW irradiation at 70 or 80 °C during 30 min, respectively. It was also possible to obtain the lactone (up to 16 % yield) directly from the cyclohexane via a tandem oxidation/Baeyer-Villiger oxidation reaction using the same oxidant.
Collapse
Affiliation(s)
- Anna Y Zueva
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, 119334, Moscow, Russian Federation
- Research Institute of Chemistry, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
| | - Alexey N Bilyachenko
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, 119334, Moscow, Russian Federation
- Research Institute of Chemistry, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
| | - Ivan S Arteev
- Research Institute of Chemistry, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
- Higher Chemical College, Mendeleev University of Chemical Technology of Russia, Miusskaya Sq. 9, 125047, Moscow, Russia
| | - Victor N Khrustalev
- Research Institute of Chemistry, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, 119991, Moscow, Russian Federation
| | - Pavel V Dorovatovskii
- National Research Center "Kurchatov Institute", 1 Akademika Kurchatova Pl., 123182, Moscow, Russian Federation
| | - Lidia S Shul'pina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, 119334, Moscow, Russian Federation
| | - Nikolay S Ikonnikov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, 119334, Moscow, Russian Federation
| | - Evgenii I Gutsul
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, 119334, Moscow, Russian Federation
| | - Karim G Rahimov
- Baku State University, Z. Xalilov Str. 23, Az 1148, Baku, Azerbaijan
| | - Elena S Shubina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, 119334, Moscow, Russian Federation
| | - Nuno Reis Conceição
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Kamran T Mahmudov
- Baku State University, Z. Xalilov Str. 23, Az 1148, Baku, Azerbaijan
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - M Fátima C Guedes da Silva
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| |
Collapse
|
2
|
Bilyachenko AN, Gutsul EI, Khrustalev VN, Chusova O, Dorovatovskii PV, Aliyeva VA, Paninho AB, Nunes AVM, Mahmudov KT, Shubina ES, Pombeiro AJL. A Family of Cagelike Mn-Silsesquioxane/Bathophenanthroline Complexes: Synthesis, Structure, and Catalytic and Antifungal Activity. Inorg Chem 2023; 62:15537-15549. [PMID: 37698451 DOI: 10.1021/acs.inorgchem.3c02040] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
This study reports a novel family of cage manganesesilsesquioxanes prepared via complexation with bathophenanthroline (4,7-diphenyl-1,10-phenanthroline). The resulting Mn4-, Mn6Li2-, and Mn4Na-compounds exhibit several unprecedented cage metallasilsesquioxane structural features, including intriguing self-assembly of silsesquioxane ligands. Complexes were tested in vitro for fungicidal activity against seven classes of phytopathogenic fungi. The representative Mn4Na-complex acts as a catalyst in the cycloaddition of CO2 to epoxides under solvent-free conditions to form cyclic carbonates in good yields.
Collapse
Affiliation(s)
- Alexey N Bilyachenko
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
- Peoples' Friendship University of Russia, Miklukho-Maklay St., 6, 117198 Moscow, Russia
| | - Evgenii I Gutsul
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
| | - Victor N Khrustalev
- Peoples' Friendship University of Russia, Miklukho-Maklay St., 6, 117198 Moscow, Russia
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 47, 119991 Moscow, Russia
| | - Olga Chusova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
| | - Pavel V Dorovatovskii
- National Research Center "Kurchatov Institute", Acad. Kurchatov Sq., 1, 123182 Moscow, Russia
| | - Vusala A Aliyeva
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Ana B Paninho
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Ana V M Nunes
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Kamran T Mahmudov
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Excellence Center, Baku State University, Z. Xalilov Str. 23, Az 1148 Baku, Azerbaijan
| | - Elena S Shubina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
| | - Armando J L Pombeiro
- Peoples' Friendship University of Russia, Miklukho-Maklay St., 6, 117198 Moscow, Russia
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
3
|
Bilyachenko AN, Arteev IS, Khrustalev VN, Shul'pina LS, Korlyukov AA, Ikonnikov NS, Shubina ES, Kozlov YN, Reis Conceição N, Guedes da Silva MFC, Mahmudov KT, Pombeiro AJL. Cage-like Cu 5Cs 4-Phenylsilsesquioxanes: Synthesis, Supramolecular Structures, and Catalytic Activity. Inorg Chem 2023; 62:13573-13586. [PMID: 37561666 DOI: 10.1021/acs.inorgchem.3c01989] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
A small family of nonanuclear Cu5Cs4-based phenylsilsesquioxanes 1-2 were prepared by a convenient self-assembly approach and characterized by X-ray diffraction studies. The compounds 1 and 2 show some unprecedented structural features such as the presence of a [Ph14Si14O28]14- silsesquioxane ligand and a CuII5CsI4 nuclearity in which the metal cations occupy unusual positions within the cluster. Copper ions are "wrapped" into a silsesquioxane matrix, while cesium ions are located in external positions. This resulted in cesium-involved aggregation of coordination polymer structures. Both compounds 1 and 2 realize specific metallocene (cesium-phenyl) linkage between neighboring cages. Compound 2 is evaluated as a catalyst in the Baeyer-Villiger (B-V) oxidation of cyclohexanone and tandem cyclohexane oxidation/B-V oxidation of cyclohexanone with m-chloroperoxybenzoic acid (mCPBA) as an oxidant, in an aqueous acetonitrile medium, and HNO3 as the promoter. A quantitative yield of ε-caprolactone was achieved under conventional heating at 50 °C for 4 h or MW irradiation for 30 min (for cyclohexanone as substrate); 17 and 19% yields of lactone upon MW irradiation at 80 °C for 30 min and heating at 50 °C for 4 h, respectively (for cyclohexane as a substrate), were achieved. Complex 2 was evaluated as a catalyst for the oxidation of alkanes to alkyl hydroperoxides and alcohols to ketones with peroxides at 60 °C in acetonitrile. The maximum yield of cyclohexane oxidation products was 30%. Complex 2 exhibits high activity in the oxidation of alcohols.
Collapse
Affiliation(s)
- Alexey N Bilyachenko
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, Moscow 119991, Russia
- Peoples' Friendship University of Russia, Miklukho-Maklay St., 6, Moscow 117198, Russia
| | - Ivan S Arteev
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, Moscow 119991, Russia
- Higher Chemical College, Mendeleev University of Chemical Technology of Russia, Miusskaya Sq. 9, Moscow 125047, Russia
| | - Victor N Khrustalev
- Peoples' Friendship University of Russia, Miklukho-Maklay St., 6, Moscow 117198, Russia
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| | - Lidia S Shul'pina
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, Moscow 119991, Russia
| | - Alexander A Korlyukov
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, Moscow 119991, Russia
- Pirogov Russian National Research Medical University, Ostrovitianov Str. 1, Moscow 117997, Russia
| | - Nikolay S Ikonnikov
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, Moscow 119991, Russia
| | - Elena S Shubina
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, Moscow 119991, Russia
| | - Yuriy N Kozlov
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, ul. Kosygina, dom 4, Moscow 119991, Russia
- Plekhanov Russian University of Economics, Stremyannyi Pereulok 36, Moscow 117997, Russia
| | - Nuno Reis Conceição
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
| | - M Fátima C Guedes da Silva
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
- Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
| | - Kamran T Mahmudov
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
- Excellence Center, Baku State University, Z. Xalilov Str. 23, Baku Az 1148, Azerbaijan
| | - Armando J L Pombeiro
- Peoples' Friendship University of Russia, Miklukho-Maklay St., 6, Moscow 117198, Russia
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
| |
Collapse
|
4
|
Wytrych P, Utko J, Stefanski M, Kłak J, Lis T, John Ł. Synthesis, Crystal Structures, and Optical and Magnetic Properties of Samarium, Terbium, and Erbium Coordination Entities Containing Mono-Substituted Imine Silsesquioxane Ligands. Inorg Chem 2023; 62:2913-2923. [PMID: 36716237 PMCID: PMC9930112 DOI: 10.1021/acs.inorgchem.2c04371] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mono-substituted cage-like silsesquioxanes of the T8-type can play the role of potential ligands in the coordination chemistry. In this paper, we report on imine derivatives as ligands for samarium, terbium, and erbium cations and discuss their efficient synthesis, crystal structures, and magnetic and optical properties. X-ray analysis of the lanthanide coordination entities [MCl3(POSS)3]·2THF [M = Er3+ (3), Tb3+ (4), Sm3+ (5)] showed that all three compounds crystallize in the same space group with similar lattice parameters. All compounds contain an octahedrally coordinated metal atom, and additionally, 3 and 5 structures are strictly isomorphous. However, surprisingly, there are two different molecules in the crystal structure of the terbium coordination entity 4, monomer (sof 65%) and dimer (sof 35%), with one and two metal centers. Absorption measurements of the investigated materials recorded at 300 K showed that regardless of the lanthanide involved, their energy band gap equals 2.7 eV. Moreover, the analogues containing Tb3+ and Sm3+ exhibit luminescence typical of these rare earth ions in the visible and infrared spectral range, while the compound with Er3+ does not generate any emission. Direct current variable-temperature magnetic susceptibility measurements on polycrystalline samples of 3-5 were performed between 1.8 and 300 K. The magnetic properties of 3 and 4 are dominated by the crystal field effect on the Er3+ and Tb3+ ions, respectively, hiding the magnetic influence between the magnetic cations of adjacent molecules. Complex 5 exhibits a nature typical for the paramagnetism of the samarium(III) cation.
Collapse
Affiliation(s)
- Patrycja Wytrych
- Faculty
of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383Wrocław, Poland
| | - Józef Utko
- Faculty
of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383Wrocław, Poland
| | - Mariusz Stefanski
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, 2 Okólna, 50-422Wrocław, Poland
| | - Julia Kłak
- Faculty
of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383Wrocław, Poland
| | - Tadeusz Lis
- Faculty
of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383Wrocław, Poland
| | - Łukasz John
- Faculty
of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383Wrocław, Poland,
| |
Collapse
|
5
|
Bilyachenko AN, Arteev IS, Khrustalev VN, Zueva AY, Shul’pina LS, Shubina ES, Ikonnikov NS, Shul’pin GB. Cagelike Octacopper Methylsilsesquioxanes: Self-Assembly in the Focus of Alkaline Metal Ion Influence-Synthesis, Structure, and Catalytic Activity. Molecules 2023; 28:1211. [PMID: 36770877 PMCID: PMC9921387 DOI: 10.3390/molecules28031211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
A family of unusual octacopper cage methylsilsesquioxanes 1-4 were prepared and characterized. Features of their cagelike (prismatic) structure were established using X-ray diffraction studies. Effects of distortion of prismatic cages 1-4 due to variation of (i) additional alkaline metal ions (K, Rb, or Cs), (ii) combination of solvating ligands, and (iii) nature of encapsulating species were found. Opportunities for the design of supramolecular 1D extended structures were found. These opportunities are based on (i) formate linkers between copper centers (in the case of Cu8K2-based compound 2) or (ii) crown ether-like contacts between cesium ions and siloxane cycles (in the case of Cu8Cs2-based compound 4). Cu8Cs2-complex 4 was evaluated in the catalysis of alkanes and alcohols. Complex 4 exhibits high catalytic activity. The yield of cyclohexane oxidation products is 35%. The presence of nitric acid is necessary as a co-catalyst. The oxidation of alcohols with the participation of complex 4 as a catalyst and tert-butyl hydroperoxide as an oxidizer also proceeds in high yields of up to 98%.
Collapse
Affiliation(s)
- Alexey N. Bilyachenko
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str. 28, 119991 Moscow, Russia
| | - Ivan S. Arteev
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str. 28, 119991 Moscow, Russia
- Higher Chemical College, Mendeleev University of Chemical Technology of Russia, Miusskaya Sq. 9, 125047 Moscow, Russia
| | - Victor N. Khrustalev
- Research Institute of Chemistry, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklay Str. 6, 117198 Moscow, Russia
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences (RAS), Leninsky Prospect 47, 119991 Moscow, Russia
| | - Anna Y. Zueva
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str. 28, 119991 Moscow, Russia
- Research Institute of Chemistry, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklay Str. 6, 117198 Moscow, Russia
| | - Lidia S. Shul’pina
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str. 28, 119991 Moscow, Russia
| | - Elena S. Shubina
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str. 28, 119991 Moscow, Russia
| | - Nikolay S. Ikonnikov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str. 28, 119991 Moscow, Russia
| | - Georgiy B. Shul’pin
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Ulitsa Kosygina 4, 119991 Moscow, Russia
- Chair of Chemistry and Physics, Plekhanov Russian University of Economics, Stremyannyi Pereulok, Dom 36, 117997 Moscow, Russia
| |
Collapse
|
6
|
Hybrid Silsesquioxane/Benzoate Cu 7-Complexes: Synthesis, Unique Cage Structure, and Catalytic Activity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238505. [PMID: 36500598 PMCID: PMC9739484 DOI: 10.3390/molecules27238505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022]
Abstract
A series of phenylsilsesquioxane-benzoate heptacopper complexes 1-3 were synthesized and characterized by X-ray crystallography. Two parallel routes of toluene spontaneous oxidation (into benzyl alcohol and benzoate) assisted the formation of the cagelike structure 1. A unique multi-ligation of copper ions (from (i) silsesquioxane, (ii) benzoate, (iii) benzyl alcohol, (iv) pyridine, (v) dimethyl-formamide and (vi) water ligands) was found in 1. Directed self-assembly using benzoic acid as a reactant afforded complexes 2-3 with the same main structural features as for 1, namely heptanuclear core coordinated by (i) two distorted pentameric cyclic silsesquioxane and (ii) four benzoate ligands, but featuring other solvate surroundings. Complex 3 was evaluated as a catalyst for the oxidation of alkanes to alkyl hydroperoxides and alcohols to ketones with hydrogen peroxide and tert-butyl hydroperoxide, respectively, at 50 °C in acetonitrile. The maximum yield of cyclohexane oxidation products as high as 32% was attained. The oxidation reaction results in a mixture of cyclohexyl hydroperoxide, cyclohexanol, and cyclohexanone. Upon the addition of triphenylphosphine, the cyclohexyl hydroperoxide is completely converted to cyclohexanol. The specific regio- and chemoselectivity in the oxidation of n-heptane and methylcyclohexane, respectively, indicate the involvement of of hydroxyl radicals. Complex 3 exhibits a high activity in the oxidation of alcohols.
Collapse
|
7
|
Bilyachenko AN, Gutsul EI, Khrustalev VN, Astakhov GS, Zueva AY, Zubavichus YV, Kirillova MV, Shul'pina LS, Ikonnikov NS, Dorovatovskii PV, Shubina ES, Kirillov AM, Shul'pin GB. Acetone Factor in the Design of Cu 4-, Cu 6-, and Cu 9-Based Cage Coppersilsesquioxanes: Synthesis, Structural Features, and Catalytic Functionalization of Alkanes. Inorg Chem 2022; 61:14800-14814. [PMID: 36059209 DOI: 10.1021/acs.inorgchem.2c02217] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The present study describes a new feature in the self-assembly of cagelike copperphenylsilsesquioxanes: the strong influence of acetone solvates on cage structure formation. By this simple approach, a series of novel tetra-, hexa-, or nonacoppersilsesquioxanes were isolated and characterized. In addition, several new complexes of Cu4 or Cu6 nuclearity bearing additional nitrogen-based ligands (ethylenediamine, 2,2'-bipyridine, phenanthroline, bathophenanthroline, or neocuproine) were produced. Single-crystal X-ray diffraction studies established molecular architectures of all of the synthesized products. Several coppersilsesquioxanes represent a novel feature of cagelike metallasilsesquioxane (CLMS) in terms of molecular topology. A Cu4-silsesquioxane complex with ethylenediamine (En) ligands was isolated via the unprecedented self-assembly of a partly condensed framework of silsesquioxane ligands, followed by the formation of a sandwich-like cage. Two prismatic Cu6 complexes represent the different conformers─regular and elliptical hexagonal prisms, "cylinders", determined by the different orientations of the coordinated acetone ligands ("shape-switch effect"). A heterometallic Cu4Na4-sandwich-like derivative represents the first example of a metallasilsesquioxane complex with diacetone alcohol ligands formed in situ due to acetone condensation reaction. As a selected example, the compound [(Ph6Si6O11)2Cu4En2]·(acetone)2 was explored in homogeneous oxidation catalysis. It catalyzes the oxidation of alkanes to alkyl hydroperoxides with hydrogen peroxide and the oxidation of alcohols to ketones with tert-butyl hydroperoxide. Radical species take part in the oxidation of alkanes. Besides, [(Ph6Si6O11)2Cu4En2]·(acetone)2 catalyzes the mild oxidative functionalization of gaseous alkanes (ethane, propane, n-butane, and i-butane). Two different model reactions were investigated: (1) the oxidation of gaseous alkanes with hydrogen peroxide to give a mixture of oxygenates (alcohols, ketones, or aldehydes) and (2) the carboxylation of Cn gaseous alkanes with carbon monoxide, water, and potassium peroxodisulfate to give Cn+1 carboxylic acids (main products), along with the corresponding Cn oxygenates. For these reactions, the effects of acid promoter, reaction time, and substrate scope were explored. As expected for free-radical-type reactions, the alkane reactivity follows the trend C2H6 < C3H8 < n-C4H10 < i-C4H10. The highest total product yields were observed in the carboxylation of i-butane (up to 61% based on i-C4H10). The product yields and catalyst turnover numbers (TONs) are remarkable, given an inertness of gaseous alkanes and very mild reaction conditions applied (low pressures, 50-60 °C temperatures).
Collapse
Affiliation(s)
- Alexey N Bilyachenko
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia.,Peoples' Friendship University of Russia, Miklukho-Maklay St., 6, 117198 Moscow, Russia
| | - Evgenii I Gutsul
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
| | - Victor N Khrustalev
- Peoples' Friendship University of Russia, Miklukho-Maklay St., 6, 117198 Moscow, Russia.,Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| | - Grigorii S Astakhov
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
| | - Anna Y Zueva
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia.,Peoples' Friendship University of Russia, Miklukho-Maklay St., 6, 117198 Moscow, Russia
| | - Yan V Zubavichus
- Synchrotron Radiation Facility SKIF, Boreskov Institute of Catalysis SB RAS, Nikolskii prosp., 1, Koltsovo 630559, Russia
| | - Marina V Kirillova
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Lidia S Shul'pina
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
| | - Nikolay S Ikonnikov
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
| | - Pavel V Dorovatovskii
- National Research Center "Kurchatov Institute", Akademika Kurchatova pl., 1, 123182 Moscow, Russia
| | - Elena S Shubina
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
| | - Alexander M Kirillov
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Georgiy B Shul'pin
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, ul. Kosygina, dom 4, Moscow 119991, Russia.,Chair of Chemistry and Physics, Plekhanov Russian University of Economics, Stremyannyi pereulok 36, Moscow 117997, Russia
| |
Collapse
|
8
|
Nesterova OV, Kuznetsov ML, Pombeiro AJL, Shul'pin GB, Nesterov DS. Homogeneous oxidation of C–H bonds with m-CPBA catalysed by a Co/Fe system: mechanistic insights from the point of view of the oxidant. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01991k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Co/Fe system efficiently catalyses the oxidation of C–H bonds with m-CPBA. The nitric acid promoter hampers the m-CPBA homolysis, suppressing the free radical activity. Experimental and computational data evidence a concerted oxidation mechanism.
Collapse
Affiliation(s)
- Oksana V. Nesterova
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Maxim L. Kuznetsov
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Armando J. L. Pombeiro
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Peoples' Friendship University of Russia (RUDN University), Research Institute of Chemistry, 6 Miklukho-Maklaya st, Moscow 117198, Russia
| | - Georgiy B. Shul'pin
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Ulitsa Kosygina 4, Moscow 119991, Russia
- Chair of Chemistry and Physics, Plekhanov Russian University of Economics, Stremyannyi pereulok 36, Moscow 117997, Russia
| | - Dmytro S. Nesterov
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
9
|
Astakhov GS, Khrustalev VN, Dronova MS, Gutsul EI, Korlyukov AA, Gelman D, Zubavichus YV, Novichkov DA, Trigub AL, Shubina ES, Bilyachenko AN. Cage-like manganesesilsesquioxanes: features of their synthesis, unique structure, and catalytic activity in oxidative amidations. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01054b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A family of Mn-based cage-like silsesquioxanes (and complexes with 1,10-phenanthroline) exhibits unique types of molecular architectures and catalytic activity in oxidative amidation reactions.
Collapse
Affiliation(s)
- Grigorii S. Astakhov
- Peoples’ Friendship University of Russia, Miklukho-Maklay Street, 6, 117198 Moscow, Russia
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
| | - Victor N. Khrustalev
- Peoples’ Friendship University of Russia, Miklukho-Maklay Street, 6, 117198 Moscow, Russia
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| | - Marina S. Dronova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
| | - Evgenii I. Gutsul
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
| | - Alexander A. Korlyukov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
- Pirogov Russian National Research Medical University, Ostrovitianov Str., 1, Moscow 117997, Russia
| | - Dmitri Gelman
- Institute of Chemistry, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yan V. Zubavichus
- Boreskov Institute of Catalysis SB RAS, prosp. Akad. Lavrentieva, 5, Novosibirsk 630090, Russia
| | - Daniil A. Novichkov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Bld. 3, Moscow 119991, Russian Federation
| | - Alexander L. Trigub
- National Research Center “Kurchatov Institute”, Akademika Kurchatova pl., 1, 123182 Moscow, Russia
| | - Elena S. Shubina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
| | - Alexey N. Bilyachenko
- Peoples’ Friendship University of Russia, Miklukho-Maklay Street, 6, 117198 Moscow, Russia
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
| |
Collapse
|
10
|
The effect of additives (pyrazine, pyrazole and their derivatives) in the oxidation of 2-butanol with FeCl3‒H2O2 in aqueous solutions. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.07.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Nesterova OV, Vassilyeva OY, Skelton BW, Bieńko A, Pombeiro AJL, Nesterov DS. A novel o-vanillin Fe(III) complex catalytically active in C-H oxidation: exploring the magnetic exchange interactions and spectroscopic properties with different DFT functionals. Dalton Trans 2021; 50:14782-14796. [PMID: 34595485 DOI: 10.1039/d1dt02366g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The novel complex [FeIIICl(L)2(H2O)] (1) was synthesized by interaction of iron(III) chloride with ethanol solution of o-vanillin (HL) and characterized by IR, UV/Vis spectroscopy, thermogravimetry and single crystal X-ray diffraction analysis. The molecules of 1 in the solid state are joined into supramolecular dimeric units, where a set of strong hydrogen bonds predefines the structure of the dimer according to the "key-lock" principle. From the Hirshfield surface analysis the contribution of π⋯π stacking to the overall stabilization of the dimer was found to be negligible. Broken symmetry DFT calculations suggested the presence of long-range antiferromagnetic interactions (J = -0.12 cm-1 for H = -JS1S2 formalism) occurring through the Fe-O⋯O-Fe pathway, as evidenced by the studies of the model dimers where the water molecules were substituted by acetonitrile and acetone ones. The benchmark studies using a set of literature examples and various DFT functionals revealed the hybrid-GGA B3LYP as the best one for prediction of FeIII⋯FeIII antiferromagnetic exchange couplings of small magnitude. Magnetic susceptibility measurements confirmed antiferromagnetic coupling between the metal atoms in 1 with a coupling constant of -0.35 cm-1. Catalytic studies demonstrated that 1 acts as an efficient catalyst in the oxidation of cyclohexane with hydrogen peroxide in the presence of nitric acid promoter and under mild conditions (yield up to 37% based on the substrate), while tert-butylhydroperoxide (TBHP) and m-chloroperoxybenzoic acid (m-CPBA) as oxidants exhibit less efficiency. Combined UV/TDDFT studies evidence the structural rearrangement of 1 in acetonitrile with the formation of [FeIIICl(L)2(CH3CN)] species. The TDDFT benchmark using nine common DFT functionals and two model compounds (o-vanillin and [FeIII(H2O)6]3+ ion) support the hybrid meta-GGA M06-2X functional as the one most correctly predicting the excited state structure for the Fe(III) complexes, under the conditions studied.
Collapse
Affiliation(s)
- Oksana V Nesterova
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Olga Yu Vassilyeva
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska str., Kyiv 01601, Ukraine.
| | - Brian W Skelton
- School of Molecular Sciences, M310, University of Western Australia, Perth, WA 6009, Australia
| | - Alina Bieńko
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, Wroclaw 50-383, Poland
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal. .,Peoples' Friendship University of Russia (RUDN University), Research Institute of Chemistry, 6 Miklukho-Maklaya st, Moscow 117198, Russia
| | - Dmytro S Nesterov
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| |
Collapse
|
12
|
Catalytic Oxidations with Meta-Chloroperoxybenzoic Acid (m-CPBA) and Mono- and Polynuclear Complexes of Nickel: A Mechanistic Outlook. Catalysts 2021. [DOI: 10.3390/catal11101148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Selective catalytic functionalization of organic substrates using peroxides as terminal oxidants remains a challenge in modern chemistry. The high complexity of interactions between metal catalysts and organic peroxide compounds complicates the targeted construction of efficient catalytic systems. Among the members of the peroxide family, m-chloroperoxybenzoic acid (m-CPBA) exhibits quite complex behavior, where numerous reactive species could be formed upon reaction with a metal complex catalyst. Although m-CPBA finds plenty of applications in fine organic synthesis and catalysis, the factors that discriminate its decomposition routes under catalytic conditions are still poorly understood. The present review covers the advances in catalytic C–H oxidation and olefine epoxidation with m-CPBA catalyzed by mono- and polynuclear complexes of nickel, a cheap and abundant first-row transition metal. The reaction mechanisms are critically discussed, with special attention to the O–O bond splitting route. Selectivity parameters using recognized model hydrocarbon substrates are summarized and important factors that could improve further catalytic studies are outlined.
Collapse
|
13
|
Tandon S, Steuber FW, Kathalikkattil AC, Venkatesan M, Watson GW, Schmitt W. Modulating Structural and Electronic Properties of Rare Archimedean and Johnson-Type Mn Cages. Inorg Chem 2021; 60:8388-8393. [PMID: 34076418 DOI: 10.1021/acs.inorgchem.1c00984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
High-nuclearity Mn complexes have attracted significant scientific attention due to their fascinating magnetic properties and their relevance to bioinorganic systems and catalysis. In this work, we demonstrate how the strong binding characteristics of phosphonate ligands can be coupled with sterically hindered carboxylate groups to influence the symmetry of Mn coordination clusters. We describe the structure of two high-nuclearity Mn coordination cages, {Mn12} and {Mn15}, synthesized using this approach. These cages are structurally related to the truncated tetrahedral geometry and adopt rare topological features of Archimedean and Johnson-type solids. Their structural attributes distinctively influence their magnetic properties and electrocatalytic H2O oxidation characteristics.
Collapse
Affiliation(s)
- Swetanshu Tandon
- School of Chemistry & CRANN Institute, University of Dublin, Trinity College, Dublin 2, Ireland.,AMBER Center, University of Dublin, Trinity College, Dublin 2, Ireland
| | - Friedrich W Steuber
- School of Chemistry & CRANN Institute, University of Dublin, Trinity College, Dublin 2, Ireland.,AMBER Center, University of Dublin, Trinity College, Dublin 2, Ireland
| | - Amal C Kathalikkattil
- School of Chemistry & CRANN Institute, University of Dublin, Trinity College, Dublin 2, Ireland.,AMBER Center, University of Dublin, Trinity College, Dublin 2, Ireland
| | - Munuswamy Venkatesan
- School of Physics & CRANN Institute, University of Dublin, Trinity College, Dublin 2, Ireland
| | - Graeme W Watson
- School of Chemistry & CRANN Institute, University of Dublin, Trinity College, Dublin 2, Ireland
| | - Wolfgang Schmitt
- School of Chemistry & CRANN Institute, University of Dublin, Trinity College, Dublin 2, Ireland.,AMBER Center, University of Dublin, Trinity College, Dublin 2, Ireland
| |
Collapse
|
14
|
Astakhov GS, Levitsky MM, Zubavichus YV, Khrustalev VN, Titov AA, Dorovatovskii PV, Smol'yakov AF, Shubina ES, Kirillova MV, Kirillov AM, Bilyachenko AN. Cu 6- and Cu 8-Cage Sil- and Germsesquioxanes: Synthetic and Structural Features, Oxidative Rearrangements, and Catalytic Activity. Inorg Chem 2021; 60:8062-8074. [PMID: 33979518 DOI: 10.1021/acs.inorgchem.1c00586] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study reports intriguing features in the self-assembly of cage copper(II) silsesquioxanes in the presence of air. Despite the wide variation of solvates used, a series of prismatic hexanuclear Cu6 cages (1-5) were assembled under mild conditions. In turn, syntheses at higher temperatures are accompanied by side reactions, leading to the oxidation of solvates (methanol, 1-butanol, and tetrahydrofuran). The oxidized solvent derivatives then specifically participate in the formation of copper silsesquioxane cages, allowing the isolation of several unusual Cu8-based (6 and 7) and Cu6-based (8) complexes. When 1,4-dioxane was applied as a reaction medium, deep rearrangements occurred (with a total elimination of silsesquioxane ligands), causing the formation of mononuclear copper(II) compounds bearing oxidized dioxane fragments (9 and 11) or a formate-driven 1D coordination polymer (10). Finally, a "directed" self-assembly of sil- and germsesquioxanes from copper acetate (or formate) resulted in the corresponding acetate (or formate) containing Cu6 cages (12 and 13) that were isolated in high yields. The structures of all of the products 1-13 were established by single-crystal X-ray diffraction, mainly based on the use of synchrotron radiation. Moreover, the catalytic activity of compounds 12 and 13 was evaluated toward the mild homogeneous oxidation of C5-C8 cycloalkanes with hydrogen peroxide to form a mixture of the corresponding cyclic alcohols and ketones.
Collapse
Affiliation(s)
- Grigorii S Astakhov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences (RAS), Vavilov Strasse 28, Moscow 119991, Russia.,Peoples' Friendship University of Russia, Miklukho-Maklay Street 6, Moscow 117198, Russia
| | - Mikhail M Levitsky
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences (RAS), Vavilov Strasse 28, Moscow 119991, Russia
| | - Yan V Zubavichus
- Boreskov Institute of Catalysis, Siberian Branch of Russian Academy of Sciences (SB RAS) Prosp. Akad., Lavrentieva 5, Novosibirsk 630090, Russia
| | - Victor N Khrustalev
- Peoples' Friendship University of Russia, Miklukho-Maklay Street 6, Moscow 117198, Russia.,Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences (RAS), Leninsky Prospect 47, Moscow 119991, Russia
| | - Aleksei A Titov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences (RAS), Vavilov Strasse 28, Moscow 119991, Russia
| | - Pavel V Dorovatovskii
- National Research Center "Kurchatov Institute", Akademika Kurchatova pl. 1, Moscow 123182, Russia
| | - Alexander F Smol'yakov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences (RAS), Vavilov Strasse 28, Moscow 119991, Russia.,Plekhanov Russian University of Economics, Stremyanny per. 36, Moscow 117997, Russia
| | - Elena S Shubina
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences (RAS), Vavilov Strasse 28, Moscow 119991, Russia
| | - Marina V Kirillova
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, Lisbon 1049-001, Portugal
| | - Alexander M Kirillov
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, Lisbon 1049-001, Portugal
| | - Alexey N Bilyachenko
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences (RAS), Vavilov Strasse 28, Moscow 119991, Russia
| |
Collapse
|
15
|
Shenderovich IG. 1,3,5-Triaza-7-Phosphaadamantane (PTA) as a 31P NMR Probe for Organometallic Transition Metal Complexes in Solution. Molecules 2021; 26:molecules26051390. [PMID: 33806666 PMCID: PMC7961616 DOI: 10.3390/molecules26051390] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 11/16/2022] Open
Abstract
Due to the rigid structure of 1,3,5-triaza-7-phosphaadamantane (PTA), its 31P chemical shift solely depends on non-covalent interactions in which the molecule is involved. The maximum range of change caused by the most common of these, hydrogen bonding, is only 6 ppm, because the active site is one of the PTA nitrogen atoms. In contrast, when the PTA phosphorus atom is coordinated to a metal, the range of change exceeds 100 ppm. This feature can be used to support or reject specific structural models of organometallic transition metal complexes in solution by comparing the experimental and Density Functional Theory (DFT) calculated values of this 31P chemical shift. This approach has been tested on a variety of the metals of groups 8-12 and molecular structures. General recommendations for appropriate basis sets are reported.
Collapse
Affiliation(s)
- Ilya G Shenderovich
- Institute of Organic Chemistry, University of Regensburg, Universitaetstrasse 31, 93053 Regensburg, Germany
| |
Collapse
|
16
|
Abstract
The review describes articles that provide data on the synthesis and study of the properties of catalysts for the oxidation of alkanes, olefins, and alcohols. These catalysts are polynuclear complexes of iron, copper, osmium, nickel, manganese, cobalt, vanadium. Such complexes for example are: [Fe2(HPTB)(m-OH)(NO3)2](NO3)2·CH3OH·2H2O, where HPTB-¼N,N,N0,N0-tetrakis(2-benzimidazolylmethyl)-2-hydroxo-1,3-diaminopropane; complex [(PhSiO1,5)6]2[CuO]4[NaO0.5]4[dppmO2]2, where dppm-1,1-bis(diphenylphosphino)methane; (2,3-η-1,4-diphenylbut-2-en-1,4-dione)undecacarbonyl triangulotriosmium; phenylsilsesquioxane [(PhSiO1.5)10(CoO)5(NaOH)]; bi- and tri-nuclear oxidovanadium(V) complexes [{VO(OEt)(EtOH)}2(L2)] and [{VO(OMe)(H2O)}3(L3)]·2H2O (L2 = bis(2-hydroxybenzylidene)terephthalohydrazide and L3 = tris(2-hydroxybenzylidene)benzene-1,3,5-tricarbohydrazide); [Mn2L2O3][PF6]2 (L = 1,4,7-trimethyl-1,4,7-triazacyclononane). For comparison, articles are introduced describing catalysts for the oxidation of alkanes and alcohols with peroxides, which are simple metal salts or mononuclear metal complexes. In many cases, polynuclear complexes exhibit higher activity compared to mononuclear complexes and exhibit increased regioselectivity, for example, in the oxidation of linear alkanes. The review contains a description of some of the mechanisms of catalytic reactions. Additionally presented are articles comparing the rates of oxidation of solvents and substrates under oxidizing conditions for various catalyst structures, which allows researchers to conclude about the nature of the oxidizing species. This review is focused on recent works, as well as review articles and own original studies of the authors.
Collapse
|
17
|
Piec K, Wątły J, Jerzykiewicz M, Kłak J, Plichta A, John Ł. Mono-substituted cage-like silsesquioxanes bound by trifunctional acyl chloride as a multi-donor N,O-type ligand in copper(ii) coordination chemistry: synthesis and structural properties. NEW J CHEM 2021. [DOI: 10.1039/d0nj05425a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In this paper, we report on the synthesis of novel copper(ii) complexes containing a multi-donor N,O-type ligand based on mono-substituted cage-like silsesquioxanes bound by trifunctional acyl chloride.
Collapse
Affiliation(s)
- Kamila Piec
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| | - Joanna Wątły
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| | | | - Julia Kłak
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| | - Andrzej Plichta
- Faculty of Chemistry
- Warsaw University of Technology
- 00-664 Warsaw
- Poland
| | - Łukasz John
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| |
Collapse
|
18
|
Nesterova OV, Pombeiro AJL, Nesterov DS. Novel H-Bonded Synthons in Copper Supramolecular Frameworks with Aminoethylpiperazine-Based Ligands. Synthesis, Structure and Catalytic Activity. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5435. [PMID: 33260358 PMCID: PMC7731324 DOI: 10.3390/ma13235435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/17/2020] [Accepted: 11/25/2020] [Indexed: 11/26/2022]
Abstract
New Schiff base complexes [Cu2(HL1)(L1)(N3)3]∙2H2O (1) and [Cu2L2(N3)2]∙H2O (2) were synthesized. The crystal structures of 1 and 2 were determined by single-crystal X-ray diffraction analysis. The HL1 ligand results from the condensation of salicylaldehyde and 1-(2-aminoethyl)piperazine, while a new organic ligand, H2L2, was formed by the dimerization of HL1 via a coupling of two piperazine rings of HL1 on a carbon atom coming from DMF solvent. The dinuclear building units in 1 and 2 are linked into complex supramolecular networks through hydrogen and coordination bondings, resulting in 2D and 1D architectures, respectively. Single-point and broken-symmetry DFT calculations disclosed negligible singlet-triplet splittings within the dinuclear copper fragments in 1 and 2. Catalytic studies showed a remarkable activity of 1 and 2 towards cyclohexane oxidation with H2O2 in the presence of nitric acid and pyridine as promoters and under mild conditions (yield of products up to 21%). Coordination compound 1 also acts as an active catalyst in the intermolecular coupling of cyclohexane with benzamide using di-tert-butyl peroxide (tBuOOtBu) as a terminal oxidant. Conversion of benzamide at 55% was observed after 24 h reaction time. By-product patterns and plausible reaction mechanisms are discussed.
Collapse
Affiliation(s)
- Oksana V. Nesterova
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (O.V.N.); (A.J.L.P.)
| | - Armando J. L. Pombeiro
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (O.V.N.); (A.J.L.P.)
| | - Dmytro S. Nesterov
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (O.V.N.); (A.J.L.P.)
- Research Institute of Chemistry, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya st., 117198 Moscow, Russia
| |
Collapse
|
19
|
Shul'pina LS, Vinogradov MM, Kozlov YN, Nelyubina YV, Ikonnikov NS, Shul'pin GB. Copper complexes with 1,10-phenanthrolines as efficient catalysts for oxidation of alkanes by hydrogen peroxide. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119889] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
20
|
Nesterova OV, Bondarenko OE, Pombeiro AJL, Nesterov DS. Phenoxazinone synthase-like catalytic activity of novel mono- and tetranuclear copper(ii) complexes with 2-benzylaminoethanol. Dalton Trans 2020; 49:4710-4724. [PMID: 32207490 DOI: 10.1039/d0dt00222d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Three novel coordination compounds, [Cu(ca)2(Hbae)2] (1), [Cu(va)2(Hbae)2] (2) and [Cu4(va)4(bae)4]·H2O (3), have been prepared by self-assembly reactions of copper(ii) chloride (1 and 2) or tetrafluoroborate (3) and CH3OH (1 and 3) or CH3CN (2) solution of 2-benzylaminoethanol (Hbae) and cinnamic (Hca, 1) or valeric (Hva, 2 and 3) acid. Crystallographic analysis revealed that both 1 and 2 have mononuclear crystal structures, wherein the complex molecules are H-bonded forming extended supramolecular chains. The tetranuclear structure of 3 is based on the {Cu4(μ3-O)4} core, wherein the metal atoms are bound together by μ3 oxygen bridges from 2-benzylaminoethanol forming an overall cubane-like configuration. The strong hydrogen bonding in 1-3 leads to the joining of the neighbouring molecules into 1D chains. Concentration-dependent ESI-MS studies disclosed the equilibria between di-, tri- and tetranuclear species in solutions of 1-3. All three compounds act as catalysts for the aerobic oxidation of o-aminophenol to the phenoxazinone chromophore (phenoxazinone synthase-like activity), with the maximum reaction rates of 4.0 × 10-7, 2.5 × 10-7 and 2.1 × 10-7 M s-1 for 1, 2 and 3, respectively, supported by the quantitative yield of the product after 24 h. The dependence of the reaction rates on catalyst concentrations is evidence of reaction orders higher than one relative to the catalyst. Kinetic and ESI-MS data allowed us to assume that the tetranuclear species, originating from 1, 2 and 3 in solution, possess considerably higher activity than the species of lower nuclearity. Mechanistic and isotopic 18O-labelling experiments suggested that o-aminophenol coordinates to CuII species with the formation of reactive intermediates, while the oxygen from 18O2 is not incorporated into the phenoxazinone chromophore.
Collapse
Affiliation(s)
- Oksana V Nesterova
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Olena E Bondarenko
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Dmytro S Nesterov
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal. and Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya st., Moscow 117198, Russia
| |
Collapse
|
21
|
Liu YN, Hou JL, Wang Z, Gupta RK, Jagličić Z, Jagodič M, Wang WG, Tung CH, Sun D. An Octanuclear Cobalt Cluster Protected by Macrocyclic Ligand: In Situ Ligand-Transformation-Assisted Assembly and Single-Molecule Magnet Behavior. Inorg Chem 2020; 59:5683-5693. [DOI: 10.1021/acs.inorgchem.0c00449] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Ya-Nan Liu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People’s Republic of China
| | - Jin-Le Hou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, People’s Republic of China
| | - Zhi Wang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People’s Republic of China
| | - Rakesh Kumar Gupta
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People’s Republic of China
| | - Zvonko Jagličić
- Faculty of Civil and Geodetic Engineering & Institute of Mathematics, Physics and Mechanics, University of Ljubljana, Jamova 2, Ljubljana 1000, Slovenia
| | - Marko Jagodič
- Faculty of Civil and Geodetic Engineering & Institute of Mathematics, Physics and Mechanics, University of Ljubljana, Jamova 2, Ljubljana 1000, Slovenia
| | - Wen-Guang Wang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People’s Republic of China
| | - Chen-Ho Tung
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People’s Republic of China
| | - Di Sun
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People’s Republic of China
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, People’s Republic of China
| |
Collapse
|
22
|
Astakhov GS, Bilyachenko AN, Levitsky MM, Shul'pina LS, Korlyukov AA, Zubavichus YV, Khrustalev VN, Vologzhanina AV, Shubina ES, Dorovatovskii PV, Shul'pin GB. Coordination Affinity of Cu(II)-Based Silsesquioxanes toward N,N-Ligands and Associated Skeletal Rearrangements: Cage and Ionic Products Exhibiting a High Catalytic Activity in Oxidation Reactions. Inorg Chem 2020; 59:4536-4545. [PMID: 32162522 DOI: 10.1021/acs.inorgchem.9b03680] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An unusual skeletal rearrangement of piperazine into ethylenediamine has been observed for the first time as a result of an attempt to synthesize a piperazine-linked metal-organic framework (MOF) using cage Cu(II),Na-phenylsilsequixane as a potential building block. Instead of the expected "metallasilsesquioxane-based MOF", a Cu6 complex 1 coordinated both by silsesquioxane and ethylenediamine ligands was isolated. An effort to reproduce this result via direct interaction of Cu-phenylsilsequioxane and ethylenediamine surprisingly afforded two other types of complexes, copper-sodium 2 and copper 3 ionic products. Cationic components in both products 2 and 3 are represented by (i) copper and sodium ions (in the case of 2) or (ii) copper ions exclusively (in the case of 3) coordinated by ethylenediamine ligands. Both complexes 2 and 3 include Si6-based condensed silsesquioxane fragments serving as anionic components of the products. Symptomatically, the types of the Si6-frameworks in 2 and 3 are drastically different. More specifically, the Si6 unit in 2 is an unprecedented distorted silsesquioxane skeleton consisting of two condensed tetramembered rings. Structural features of compounds 1-3 were established by single crystal X-ray diffraction. Compound 2 was found to catalyze the oxidation of cyclohexane to cyclohexanol and cyclohexanone with H2O2 (a mixture of these products was obtained after adding PPh3 to the reaction solution) as well as the transformation of cyclohexanol to cyclohexanone under the action of tert-butyl hydroperoxide.
Collapse
Affiliation(s)
- Grigorii S Astakhov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str., 28, Moscow 119991, Russia.,Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklay Str., 6, Moscow 117198, Russia
| | - Alexey N Bilyachenko
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str., 28, Moscow 119991, Russia.,Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklay Str., 6, Moscow 117198, Russia
| | - Mikhail M Levitsky
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str., 28, Moscow 119991, Russia
| | - Lidia S Shul'pina
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str., 28, Moscow 119991, Russia
| | - Alexander A Korlyukov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str., 28, Moscow 119991, Russia.,Pirogov Russian National Research Medical University, Ostrovitianov Str., 1, Moscow 117997, Russia
| | - Yan V Zubavichus
- Boreskov Institute of Catalysis SB RAS, prosp. Akad. Lavrentieva, dom 5, Novosibirsk 630090, Russia
| | - Victor N Khrustalev
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklay Str., 6, Moscow 117198, Russia.,Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| | - Anna V Vologzhanina
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str., 28, Moscow 119991, Russia
| | - Elena S Shubina
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str., 28, Moscow 119991, Russia
| | - Pavel V Dorovatovskii
- National Research Center "Kurchatov Institute", pl. Akad. Kurchatova, dom 1, Moscow 123182, Russia
| | - Georgiy B Shul'pin
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, ul. Kosygina, dom 4, Moscow 119991, Russia.,Plekhanov Russian University of Economics, Stremyannyi pereulok, dom 36, Moscow 117997, Russia
| |
Collapse
|
23
|
Astakhov G, Levitsky M, Bantreil X, Lamaty F, Khrustalev V, Zubavichus Y, Dorovatovskii P, Shubina E, Bilyachenko A. Cu(II)-silsesquioxanes as efficient precatalysts for Chan-Evans-Lam coupling. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2019.121022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Metal Complexes Containing Redox-Active Ligands in Oxidation of Hydrocarbons and Alcohols: A Review. Catalysts 2019. [DOI: 10.3390/catal9121046] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Ligands are innocent when they allow oxidation states of the central atoms to be defined. A noninnocent (or redox) ligand is a ligand in a metal complex where the oxidation state is not clear. Dioxygen can be a noninnocent species, since it exists in two oxidation states, i.e., superoxide (O2−) and peroxide (O22−). This review is devoted to oxidations of C–H compounds (saturated and aromatic hydrocarbons) and alcohols with peroxides (hydrogen peroxide, tert-butyl hydroperoxide) catalyzed by complexes of transition and nontransition metals containing innocent and noninnocent ligands. In many cases, the oxidation is induced by hydroxyl radicals. The mechanisms of the formation of hydroxyl radicals from H2O2 under the action of transition (iron, copper, vanadium, rhenium, etc.) and nontransition (aluminum, gallium, bismuth, etc.) metal ions are discussed. It has been demonstrated that the participation of the second hydrogen peroxide molecule leads to the rapture of O–O bond, and, as a result, to the facilitation of hydroxyl radical generation. The oxidation of alkanes induced by hydroxyl radicals leads to the formation of relatively unstable alkyl hydroperoxides. The data on regioselectivity in alkane oxidation allowed us to identify an oxidizing species generated in the decomposition of hydrogen peroxide: (hydroxyl radical or another species). The values of the ratio-of-rate constants of the interaction between an oxidizing species and solvent acetonitrile or alkane gives either the kinetic support for the nature of the oxidizing species or establishes the mechanism of the induction of oxidation catalyzed by a concrete compound. In the case of a bulky catalyst molecule, the ratio of hydroxyl radical attack rates upon the acetonitrile molecule and alkane becomes higher. This can be expanded if we assume that the reactions of hydroxyl radicals occur in a cavity inside a voluminous catalyst molecule, where the ratio of the local concentrations of acetonitrile and alkane is higher than in the whole reaction volume. The works of the authors of this review in this field are described in more detail herein.
Collapse
|
25
|
Tsygankov AA, Makarova M, Afanasyev OI, Kashin AS, Naumkin AV, Loginov DA, Chusov D. Reductive Amidation without an External Hydrogen Source Using Rhodium on Carbon Matrix as a Catalyst. ChemCatChem 2019. [DOI: 10.1002/cctc.201901465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Alexey A. Tsygankov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences 28 Vavilova str. Moscow 119991 Russia
| | - Maria Makarova
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences 28 Vavilova str. Moscow 119991 Russia
- Higher Chemical CollegeDmitry Mendeleev University of Chemical Technology of Russia Miusskaya sq. 9 Moscow 125047 Russia
| | - Oleg I. Afanasyev
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences 28 Vavilova str. Moscow 119991 Russia
| | - Alexey S. Kashin
- Zelinsky Institute of Organic ChemistryRussian Academy of Sciences Leninsky Prospekt 47 Moscow 119991 Russia
| | - Alexander V. Naumkin
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences 28 Vavilova str. Moscow 119991 Russia
- Moscow Institute of Physics and TechnologyState University Institutskiy Pereulok 9 Dolgoprudny 141701 Russia
| | - Dmitry A. Loginov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences 28 Vavilova str. Moscow 119991 Russia
| | - Denis Chusov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences 28 Vavilova str. Moscow 119991 Russia
- G.V. Plekhanov Russian University of Economics 36 Stremyanny Per. Moscow 117997 Russia
| |
Collapse
|
26
|
Levitsky MM, Bilyachenko AN, Shubina ES, Long J, Guari Y, Larionova J. Magnetic cage-like metallasilsesquioxanes. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
New Cu4Na4- and Cu5-Based Phenylsilsesquioxanes. Synthesis via Complexation with 1,10-Phenanthroline, Structures and High Catalytic Activity in Alkane Oxidations with Peroxides in Acetonitrile. Catalysts 2019. [DOI: 10.3390/catal9090701] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Self-assembly of copper(II)phenylsilsesquioxane assisted by the use of 1,10-phenanthroline (phen) results in isolation of two unusual cage-like compounds: (PhSiO1,5)12(CuO)4(NaO0.5)4(phen)4 1 and (PhSiO1,5)6(PhSiO1,5)7(HO0.5)2(CuO)5(O0.25)2(phen)3 2. X-Ray diffraction study revealed extraordinaire molecular architectures of both products. Namely, complex 1 includes single cyclic (PhSiO1,5)12 silsesquioxane ligand. Four sodium ions of 1 are additionally ligated by 1,10-phenanthrolines. In turn, “sodium-less” complex 2 represents coordination of 1,10-phenanthrolines to copper ions. Two silsesquioxane ligands of 2 are: (i) noncondensed cubane of a rare Si6-type and (ii) unprecedented Si7-based ligand including two HOSiO1.5 fragments. These silanol units were formed due to removal of phenyl groups from silicon atoms, observed in mild conditions. The presence of phenanthroline ligands in products 1 and 2 favored the π–π stacking interactions between neighboring cages. Noticeable that in the case of 1 all four phenanthrolines participated in such supramolecular organization, unlike to complex 2 where one of the three phenanthrolines is not “supramolecularly active”. Complexes 1 and 2 were found to be very efficient precatalysts in oxidations with hydroperoxides. A new method for the determination of the participation of hydroxyl radicals has been developed.
Collapse
|
28
|
Rahman MM, Li G, Szostak M. Metal-Free Transamidation of Secondary Amides by N–C Cleavage. J Org Chem 2019; 84:12091-12100. [DOI: 10.1021/acs.joc.9b02013] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Md. Mahbubur Rahman
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Guangchen Li
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
29
|
A Comparative Study of the Catalytic Behaviour of Alkoxy-1,3,5-Triazapentadiene Copper(II) Complexes in Cyclohexane Oxidation. INORGANICS 2019. [DOI: 10.3390/inorganics7070082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The mononuclear copper complexes [Cu{NH=C(OR)NC(OR)=NH}2] with alkoxy-1,3,5-triazapentadiene ligands that have different substituents (R = Me (1), Et (2), nPr (3), iPr (4), CH2CH2OCH3 (5)) were prepared, characterized (including the single crystal X-ray analysis of 3) and studied as catalysts in the mild oxidation of alkanes with H2O2 as an oxidant, pyridine as a promoting agent and cyclohexane as a main model substrate. The complex 4 showed the highest activity with a yield of products up to 18.5% and turnover frequency (TOF) up to 41 h−1. Cyclohexyl hydroperoxide was the main reaction product in all cases. Selectivity parameters in the oxidation of substituted cyclohexanes and adamantane disclosed a dominant free radical reaction mechanism with hydroxyl radicals as C–H-attacking species. The main overoxidation product was 6-hydroxyhexanoic acid, suggesting the presence of a secondary reaction mechanism of a different type. All complexes undergo gradual alteration of their structures in acetonitrile solutions to produce catalytically-active intermediates, as evidenced by UV/Vis spectroscopy and kinetic studies. Complex 4, having tertiary C–H bonds in its iPr substituents, showed the fastest alteration rate, which can be significantly suppressed by using the CD3CN solvent instead of CH3CN one. The observed process was associated to an autocatalytic oxidation of the alkoxy-1,3,5-triazapentadiene ligand. The deuterated complex 4-d32 was prepared and showed higher stability under the same conditions. The complexes 1 and 4 showed different reactivity in the formation of H218O from 18O2 in acetonitrile solutions.
Collapse
|
30
|
Silicon and Germanium-Based Sesquioxanes as Versatile Building Blocks for Cage Metallacomplexes. A Review. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01567-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Levitsky MM, Bilyachenko AN, Shubina ES. Cagelike metallagermanates and metallagermoxanes: Synthesis, structures and functional properties. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Balaboina R, Thirukovela NS, Vadde R, Vasam CS. Amide bond synthesis via silver(I) N-heterocyclic carbene-catalyzed and tert-butyl hydroperoxide-mediated oxidative coupling of alcohols with amines under base free conditions. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.02.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Palanquin-Like Cu4Na4 Silsesquioxane Synthesis (via Oxidation of 1,1-bis(Diphenylphosphino)methane), Structure and Catalytic Activity in Alkane or Alcohol Oxidation with Peroxides. Catalysts 2019. [DOI: 10.3390/catal9020154] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The self-assembly synthesis of copper-sodium phenylsilsesquioxane in the presence of 1,1-bis(diphenylphosphino)methane (dppm) results in an unprecedented cage-like product: [(PhSiO1,5)6]2[CuO]4[NaO0.5]4[dppmO2]2 1. The most intriguing feature of the complex 1 is the presence of two oxidized dppm species that act as additional O-ligands for sodium ions. Two cyclic phenylsiloxanolate (PhSiO1,5)6 ligands coordinate in a sandwich manner with the copper(II)-containing layer of the cage. The structure of 1 was established by X-ray diffraction analysis. Complex 1 was shown to be a very good catalyst in the oxidation of alkanes and alcohols with hydrogen peroxide or tert-butyl hydroperoxide in acetonitrile solution. Thus, cyclohexane (CyH), was transformed into cyclohexyl hydroperoxide (CyOOH), which could be easily reduced by PPh3 to afford stable cyclohexanol with a yield of 26% (turnover number (TON) = 240) based on the starting cyclohexane. 1-Phenylethanol was oxidized by tert-butyl hydroperoxide to give acetophenone in an almost quantitative yield. The selectivity parameters of the oxidation of normal and branched alkanes led to the conclusion that the peroxides H2O2 and tert-BuOOH, under the action of compound (1), decompose to generate the radicals HO• and tert-BuO• which attack the C-H bonds of the substrate.
Collapse
|