1
|
Malme JT, Weaver JN, Girolami GS, Vura-Weis J. Picosecond Metal-to-Ligand Charge-Transfer Deactivation in Co(ppy) 3 via Jahn-Teller Distortion. Inorg Chem 2024; 63:13825-13830. [PMID: 39023554 DOI: 10.1021/acs.inorgchem.4c01959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The excited-state dynamics of fac-Co(ppy)3, where ppy = 2-[2-(pyridyl)phenyl], are measured with femtosecond UV-vis transient absorption spectroscopy. The initial state is confirmed with spectroelectrochemistry to have significant metal-to-ligand charge transfer (MLCT) character, unlike other Co complexes that generally have ligand-to-metal charge transfer or ligand-field transitions in this energy range. Ground-state recovery occurs in 8.65 ps in dichloromethane. Density functional theory calculations show that the MLCT state undergoes Jahn-Teller distortion and converts to a five-coordinate triplet metal-centered state in which one Co-N bond is broken. The results highlight a potential pitfall of heteroleptic bidentate ligands when designing strong-field ligands for transition-metal chromophores.
Collapse
Affiliation(s)
- Justin T Malme
- Department of Chemistry, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States
| | - Jenelle N Weaver
- Department of Chemistry, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States
| | - Gregory S Girolami
- Department of Chemistry, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States
| | - Josh Vura-Weis
- Department of Chemistry, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States
| |
Collapse
|
2
|
Cole HD, Vali A, Roque JA, Shi G, Talgatov A, Kaur G, Francés-Monerris A, Alberto ME, Cameron CG, McFarland SA. Ru(II) Oligothienyl Complexes with Fluorinated Ligands: Photophysical, Electrochemical, and Photobiological Properties. Inorg Chem 2024; 63:9735-9752. [PMID: 38728376 PMCID: PMC11166183 DOI: 10.1021/acs.inorgchem.3c04382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
A series of Ru(II) complexes incorporating two 4,4'-bis(trifluoromethyl)-2,2'-bipyridine (4,4'-btfmb) coligands and thienyl-appended imidazo[4,5-f][1,10]phenanthroline (IP-nT) ligands was characterized and assessed for phototherapy effects toward cancer cells. The [Ru(4,4'-btfmb)2(IP-nT)]2+ scaffold has greater overall redox activity compared to Ru(II) polypyridyl complexes such as [Ru(bpy)3]2+. Ru-1T-Ru-4T have additional oxidations due to the nT group and additional reductions due to the 4,4'-btfmb ligands. Ru-2T-Ru-4T also exhibit nT-based reductions. Ru-4T exhibits two oxidations and eight reductions within the potential window of -3 to +1.5 V. The lowest-lying triplets (T1) for Ru-0T-2T are metal-to-ligand charge-transfer (3MLCT) excited states with lifetimes around 1 μs, whereas T1 for Ru-3T-4T is longer-lived (∼20-24 μs) and of significant intraligand charge-transfer (3ILCT) character. Phototoxicity toward melanoma cells (SK-MEL-28) increases with n, with Ru-4T having a visible EC50 value as low as 9 nM and PI as large as 12,000. Ru-3T and Ru-4T retain some of this activity in hypoxia, where Ru-4T has a visible EC50 as low as 35 nM and PI as high as 2900. Activity over six biological replicates is consistent and within an order of magnitude. These results demonstrate the importance of lowest-lying 3ILCT states for phototoxicity and maintaining activity in hypoxia.
Collapse
Affiliation(s)
- Houston D. Cole
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| | - Abbas Vali
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| | - John A. Roque
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| | - Ge Shi
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| | - Alisher Talgatov
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| | - Gurleen Kaur
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| | | | - Marta E. Alberto
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende, 87036 Italy
| | - Colin G. Cameron
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| | - Sherri A. McFarland
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| |
Collapse
|
3
|
Zahn C, Pastore M, Lustres JLP, Gros PC, Haacke S, Heyne K. Femtosecond Infrared Spectroscopy Resolving the Multiplicity of High-Spin Crossover States in Transition Metal Iron Complexes. J Am Chem Soc 2024; 146:9347-9355. [PMID: 38520392 PMCID: PMC10995999 DOI: 10.1021/jacs.4c01637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
Tuning the photophysical properties of iron-based transition-metal complexes is crucial for their employment as photosensitizers in solar energy conversion. For the optimization of these new complexes, a detailed understanding of the excited-state deactivation paths is necessary. Here, we report femtosecond transient mid-IR spectroscopy data on a recently developed octahedral ligand-field enhancing [Fe(dqp)2]2+ (C1) complex with dqp = 2,6-diquinolylpyridine and prototypical [Fe(bpy)3]2+ (C0). By combining mid-IR spectroscopy with quantum chemical DFT calculations, we propose a method for disentangling the 5Q1 and 3T1 multiplicities of the long-lived metal-centered (MC) states, applicable to a variety of metal-organic iron complexes. Our results for C0 align well with the established assignment toward the 5Q1, validating our approach. For C1, we find that deactivation of the initially excited metal-to-ligand charge-transfer state leads to a population of a long-lived MC 5Q1 state. Analysis of transient changes in the mid-IR shows an ultrafast sub 200 fs rearrangement of ligand geometry for both complexes, accompanying the MLCT → MC deactivation. This confirms that the flexibility in the ligand sphere supports the stabilization of high spin states and plays a crucial role in the MLCT lifetime of metal-organic iron complexes.
Collapse
Affiliation(s)
- Clark Zahn
- Department
of Physics, Free University Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | | | - J. Luis Perez Lustres
- Department
of Physics, Free University Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | | | - Stefan Haacke
- Université
de Strasbourg—CNRS, IPCMS, 67034 Strasbourg, France
| | - Karsten Heyne
- Department
of Physics, Free University Berlin, Arnimallee 14, D-14195 Berlin, Germany
| |
Collapse
|
4
|
Prakash O, Chábera P, Kaul N, Hlynsson VF, Rosemann NW, Losada IB, Hoang Hai YT, Huang P, Bendix J, Ericsson T, Häggström L, Gupta AK, Strand D, Yartsev A, Lomoth R, Persson P, Wärnmark K. How Rigidity and Conjugation of Bidentate Ligands Affect the Geometry and Photophysics of Iron N-Heterocyclic Complexes: A Comparative Study. Inorg Chem 2024; 63:4461-4473. [PMID: 38421802 PMCID: PMC10934811 DOI: 10.1021/acs.inorgchem.3c03972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
Two iron complexes featuring the bidentate, nonconjugated N-heterocyclic carbene (NHC) 1,1'-methylenebis(3-methylimidazol-2-ylidene) (mbmi) ligand, where the two NHC moieties are separated by a methylene bridge, have been synthesized to exploit the combined influence of geometric and electronic effects on the ground- and excited-state properties of homoleptic FeIII-hexa-NHC [Fe(mbmi)3](PF6)3 and heteroleptic FeII-tetra-NHC [Fe(mbmi)2(bpy)](PF6)2 (bpy = 2,2'-bipyridine) complexes. They are compared to the reported FeIII-hexa-NHC [Fe(btz)3](PF6)3 and FeII-tetra-NHC [Fe(btz)2(bpy)](PF6)2 complexes containing the conjugated, bidentate mesoionic NHC ligand 3,3'-dimethyl-1,1'-bis(p-tolyl)-4,4'-bis(1,2,3-triazol-5-ylidene) (btz). The observed geometries of [Fe(mbmi)3](PF6)3 and [Fe(mbmi)2(bpy)](PF6)2 are evaluated through L-Fe-L bond angles and ligand planarity and compared to those of [Fe(btz)3](PF6)3 and [Fe(btz)2(bpy)](PF6)2. The FeII/FeIII redox couples of [Fe(mbmi)3](PF6)3 (-0.38 V) and [Fe(mbmi)2(bpy)](PF6)2 (-0.057 V, both vs Fc+/0) are less reducing than [Fe(btz)3](PF6)3 and [Fe(btz)2(bpy)](PF6)2. The two complexes show intense absorption bands in the visible region: [Fe(mbmi)3](PF6)3 at 502 nm (ligand-to-metal charge transfer, 2LMCT) and [Fe(mbmi)2(bpy)](PF6)2 at 410 and 616 nm (metal-to-ligand charge transfer, 3MLCT). Lifetimes of 57.3 ps (2LMCT) for [Fe(mbmi)3](PF6)3 and 7.6 ps (3MLCT) for [Fe(mbmi)2(bpy)](PF6)2 were probed and are somewhat shorter than those for [Fe(btz)3](PF6)3 and [Fe(btz)2(bpy)](PF6)2. [Fe(mbmi)3](PF6)3 exhibits photoluminescence at 686 nm (2LMCT) in acetonitrile at room temperature with a quantum yield of (1.2 ± 0.1) × 10-4, compared to (3 ± 0.5) × 10-4 for [Fe(btz)3](PF6)3.
Collapse
Affiliation(s)
- Om Prakash
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Pavel Chábera
- Chemical
Physics Division, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Nidhi Kaul
- Department
of Chemistry − Ångström Laboratory, Uppsala University, Box
523, SE-751 20 Uppsala, Sweden
| | - Valtýr F. Hlynsson
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Nils W. Rosemann
- Chemical
Physics Division, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Iria Bolaño Losada
- Theoretical
Chemistry Division, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Yen Tran Hoang Hai
- Theoretical
Chemistry Division, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Ping Huang
- Department
of Chemistry − Ångström Laboratory, Uppsala University, Box
523, SE-751 20 Uppsala, Sweden
| | - Jesper Bendix
- Department
of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Tore Ericsson
- Department
of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Lennart Häggström
- Department
of Physics − Ångström Laboratory, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden
| | - Arvind Kumar Gupta
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Daniel Strand
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Arkady Yartsev
- Chemical
Physics Division, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Reiner Lomoth
- Department
of Chemistry − Ångström Laboratory, Uppsala University, Box
523, SE-751 20 Uppsala, Sweden
| | - Petter Persson
- Theoretical
Chemistry Division, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Kenneth Wärnmark
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| |
Collapse
|
5
|
Cole HD, Vali A, Roque JA, Shi G, Kaur G, Hodges RO, Francés-Monerris A, Alberto ME, Cameron CG, McFarland SA. Ru(II) Phenanthroline-Based Oligothienyl Complexes as Phototherapy Agents. Inorg Chem 2023; 62:21181-21200. [PMID: 38079387 PMCID: PMC10754219 DOI: 10.1021/acs.inorgchem.3c03216] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Ru(II) polypyridyl complexes have gained widespread attention as photosensitizers for photodynamic therapy (PDT). Herein, we systematically investigate a series of the type [Ru(phen)2(IP-nT)]2+, featuring 1,10-phenanthroline (phen) coligands and imidazo[4,5-f][1,10]phenanthroline ligands tethered to n = 0-4 thiophene rings (IP-nT). The complexes were characterized and investigated for their electrochemical, spectroscopic, and (photo)biological properties. The electrochemical oxidation of the nT unit shifted by -350 mV as n = 1 → 4 (+920 mV for Ru-1T, +570 mV for Ru-4T); nT reductions were observed in complexes Ru-3T (-2530 mV) and Ru-4T (-2300 mV). Singlet oxygen quantum yields ranged from 0.53 to 0.88, with Ru-3T and Ru-4T being equally efficient (∼0.88). Time-resolved absorption spectra of Ru-0T-1T were dominated by metal-to-ligand charge-transfer (3MLCT) states (τTA = 0.40-0.85 μs), but long-lived intraligand charge-transfer (3ILCT) states were observed in Ru-2T-4T (τTA = 25-148 μs). The 3ILCT energies of Ru-3T and Ru-4T were computed to be 1.6 and 1.4 eV, respectively. The phototherapeutic efficacy against melanoma cells (SK-MEL-28) under broad-band visible light (400-700 nm) increases as n = 0 → 4: Ru-0T was inactive up to 300 μM, Ru-1T-2T were moderately active (EC50 ∼ 600 nM, PI = 200), and Ru-3T (EC50 = 57 nM, PI > 1100) and Ru-4T (EC50 = 740 pM, PI = 114,000) were the most phototoxic. The activity diminishes with longer wavelengths of light and is completely suppressed for all complexes except Ru-3T and Ru-4T in hypoxia. Ru-4T is the more potent and robust PS in 1% O2 over seven biological replicates (avg EC50 = 1.3 μM, avg PI = 985). Ru-3T exhibited hypoxic activity in five of seven replicates, underscoring the need for biological replicates in compound evaluation. Singlet oxygen sensitization is likely responsible for phototoxic effects of the compounds in normoxia, but the presence of redox-active excited states may facilitate additional photoactive pathways for complexes with three or more thienyl groups. The 3ILCT state with its extended lifetime (30-40× longer than the 3MLCT state for Ru-3T and Ru-4T) implicates its predominant role in photocytotoxicity.
Collapse
Affiliation(s)
- Houston D. Cole
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 USA
| | - Abbas Vali
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 USA
| | - John A. Roque
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 USA
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina 27402 USA
| | - Ge Shi
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 USA
| | - Gurleen Kaur
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 USA
| | - Rachel O. Hodges
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina 27402 USA
| | | | - Marta E. Alberto
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende, 87036 Italy
| | - Colin G. Cameron
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 USA
| | - Sherri A. McFarland
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 USA
| |
Collapse
|
6
|
Lindh L, Pascher T, Persson S, Goriya Y, Wärnmark K, Uhlig J, Chábera P, Persson P, Yartsev A. Multifaceted Deactivation Dynamics of Fe(II) N-Heterocyclic Carbene Photosensitizers. J Phys Chem A 2023; 127:10210-10222. [PMID: 38000043 DOI: 10.1021/acs.jpca.3c06983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
Excited state dynamics of three iron(II) carbene complexes that serve as prototype Earth-abundant photosensitizers were investigated by ultrafast optical spectroscopy. Significant differences in the dynamics between the investigated complexes down to femtosecond time scales are used to characterize fundamental differences in the depopulation of triplet metal-to-ligand charge-transfer (3MLCT) excited states in the presence of energetically accessible triplet metal-centered (3MC) states. Novel insights into the full deactivation cascades of the investigated complexes include evidence of the need to revise the deactivation model for a prominent iron carbene prototype complex, a refined understanding of complex 3MC dynamics, and a quantitative discrimination between activated and barrierless deactivation steps along the 3MLCT → 3MC → 1GS path. Overall, the study provides an improved understanding of photophysical limitations and opportunities for the use of iron(II)-based photosensitizers in photochemical applications.
Collapse
Affiliation(s)
- Linnea Lindh
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
- Division of Computational Chemistry, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Torbjörn Pascher
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Samuel Persson
- Center for Analysis and Synthesis (CAS), Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Yogesh Goriya
- Center for Analysis and Synthesis (CAS), Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Kenneth Wärnmark
- Center for Analysis and Synthesis (CAS), Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Jens Uhlig
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Pavel Chábera
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Petter Persson
- Division of Computational Chemistry, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Arkady Yartsev
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| |
Collapse
|
7
|
Ogawa T, Sinha N, Pfund B, Prescimone A, Wenger OS. Molecular Design Principles to Elongate the Metal-to-Ligand Charge Transfer Excited-State Lifetimes of Square-Planar Nickel(II) Complexes. J Am Chem Soc 2022; 144:21948-21960. [DOI: 10.1021/jacs.2c08838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Tomohiro Ogawa
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Narayan Sinha
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Björn Pfund
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Alessandro Prescimone
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Oliver S. Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
8
|
Prakash O, Lindh L, Kaul N, Rosemann NW, Losada IB, Johnson C, Chábera P, Ilic A, Schwarz J, Gupta AK, Uhlig J, Ericsson T, Häggström L, Huang P, Bendix J, Strand D, Yartsev A, Lomoth R, Persson P, Wärnmark K. Photophysical Integrity of the Iron(III) Scorpionate Framework in Iron(III)-NHC Complexes with Long-Lived 2LMCT Excited States. Inorg Chem 2022; 61:17515-17526. [PMID: 36279568 PMCID: PMC9644379 DOI: 10.1021/acs.inorgchem.2c02410] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Indexed: 11/30/2022]
Abstract
Fe(III) complexes with N-heterocyclic carbene (NHC) ligands belong to the rare examples of Earth-abundant transition metal complexes with long-lived luminescent charge-transfer excited states that enable applications as photosensitizers for charge separation reactions. We report three new hexa-NHC complexes of this class: [Fe(brphtmeimb)2]PF6 (brphtmeimb = [(4-bromophenyl)tris(3-methylimidazol-2-ylidene)borate]-, [Fe(meophtmeimb)2]PF6 (meophtmeimb = [(4-methoxyphenyl)tris(3-methylimidazol-2-ylidene)borate]-, and [Fe(coohphtmeimb)2]PF6 (coohphtmeimb = [(4-carboxyphenyl)tris(3-methylimidazol-2-ylidene)borate]-. These were derived from the parent complex [Fe(phtmeimb)2]PF6 (phtmeimb = [phenyltris(3-methylimidazol-2-ylidene)borate]- by modification with electron-withdrawing and electron-donating substituents, respectively, at the 4-phenyl position of the ligand framework. All three Fe(III) hexa-NHC complexes were characterized by NMR spectroscopy, high-resolution mass spectroscopy, elemental analysis, single crystal X-ray diffraction analysis, electrochemistry, Mößbauer spectroscopy, electronic spectroscopy, magnetic susceptibility measurements, and quantum chemical calculations. Their ligand-to-metal charge-transfer (2LMCT) excited states feature nanosecond lifetimes (1.6-1.7 ns) and sizable emission quantum yields (1.7-1.9%) through spin-allowed transition to the doublet ground state (2GS), completely in line with the parent complex [Fe(phtmeimb)2]PF6 (2.0 ns and 2.1%). The integrity of the favorable excited state characteristics upon substitution of the ligand framework demonstrates the robustness of the scorpionate motif that tolerates modifications in the 4-phenyl position for applications such as the attachment in molecular or hybrid assemblies.
Collapse
Affiliation(s)
- Om Prakash
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-22100Lund, Sweden
| | - Linnea Lindh
- Chemical
Physics Division, Department of Chemistry, Lund University, Box 124, SE-22100Lund, Sweden
- Theoretical
Chemistry Division, Department of Chemistry, Lund University, Box 124, SE-22100Lund, Sweden
| | - Nidhi Kaul
- Department
of Chemistry − Ångström Laboratory, Uppsala University, Box 523, SE-75120Uppsala, Sweden
| | - Nils W. Rosemann
- Chemical
Physics Division, Department of Chemistry, Lund University, Box 124, SE-22100Lund, Sweden
| | - Iria Bolaño Losada
- Theoretical
Chemistry Division, Department of Chemistry, Lund University, Box 124, SE-22100Lund, Sweden
| | - Catherine Johnson
- Department
of Chemistry − Ångström Laboratory, Uppsala University, Box 523, SE-75120Uppsala, Sweden
| | - Pavel Chábera
- Chemical
Physics Division, Department of Chemistry, Lund University, Box 124, SE-22100Lund, Sweden
| | - Aleksandra Ilic
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-22100Lund, Sweden
| | - Jesper Schwarz
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-22100Lund, Sweden
| | - Arvind Kumar Gupta
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-22100Lund, Sweden
| | - Jens Uhlig
- Chemical
Physics Division, Department of Chemistry, Lund University, Box 124, SE-22100Lund, Sweden
| | - Tore Ericsson
- Department
of Physics − Ångström Laboratory, Uppsala University, Box 523, SE-75120Uppsala, Sweden
| | - Lennart Häggström
- Department
of Physics − Ångström Laboratory, Uppsala University, Box 523, SE-75120Uppsala, Sweden
| | - Ping Huang
- Department
of Chemistry − Ångström Laboratory, Uppsala University, Box 523, SE-75120Uppsala, Sweden
| | - Jesper Bendix
- Department
of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100Copenhagen, Denmark
| | - Daniel Strand
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-22100Lund, Sweden
| | - Arkady Yartsev
- Chemical
Physics Division, Department of Chemistry, Lund University, Box 124, SE-22100Lund, Sweden
| | - Reiner Lomoth
- Department
of Chemistry − Ångström Laboratory, Uppsala University, Box 523, SE-75120Uppsala, Sweden
| | - Petter Persson
- Theoretical
Chemistry Division, Department of Chemistry, Lund University, Box 124, SE-22100Lund, Sweden
| | - Kenneth Wärnmark
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-22100Lund, Sweden
| |
Collapse
|
9
|
Carrillo U, Francés-Monerris A, Marri AR, Cebrián C, Gros PC. Substituent-Induced Control of fac/ mer Isomerism in Azine-NHC Fe(II) Complexes. ACS ORGANIC & INORGANIC AU 2022; 2:525-536. [PMID: 36855530 PMCID: PMC9955161 DOI: 10.1021/acsorginorgau.2c00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022]
Abstract
The stereoselective synthesis of geometrical iron(II) complexes bearing azine-NHC ligands is described. Facial and meridional selectivity is achieved as a function of the steric demand of the azine unit, with no remarkable influence of the carbene nature. More specifically, meridional complexes are obtained upon selecting bulky 5-mesityl-substituted pyridyl coordinating units. Unexpectedly, increase of the steric hindrance in the α position with respect to the N coordinating atom results in an exclusive facial configuration, which is in stark contrast to the meridional selectivity induced by other reported α-substituted bidentate ligands. Investigation of the structure and the optical and electrochemical properties of the here-described complexes has revealed the non-negligible effect of the fac/mer ligand configuration around the metal center.
Collapse
|
10
|
Roque JA, Cole HD, Barrett PC, Lifshits LM, Hodges RO, Kim S, Deep G, Francés-Monerris A, Alberto ME, Cameron CG, McFarland SA. Intraligand Excited States Turn a Ruthenium Oligothiophene Complex into a Light-Triggered Ubertoxin with Anticancer Effects in Extreme Hypoxia. J Am Chem Soc 2022; 144:8317-8336. [PMID: 35482975 PMCID: PMC9098688 DOI: 10.1021/jacs.2c02475] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ru(II) complexes that undergo photosubstitution reactions from triplet metal-centered (3MC) excited states are of interest in photochemotherapy (PCT) due to their potential to produce cytotoxic effects in hypoxia. Dual-action systems that incorporate this stoichiometric mode to complement the oxygen-dependent photosensitization pathways that define photodynamic therapy (PDT) are poised to maintain antitumor activity regardless of the oxygenation status. Herein, we examine the way in which these two pathways influence photocytotoxicity in normoxia and in hypoxia using the [Ru(dmp)2(IP-nT)]2+ series (where dmp = 2,9-dimethyl-1,10-phenanthroline and IP-nT = imidazo[4,5-f][1,10]phenanthroline tethered to n = 0-4 thiophene rings) to switch the dominant excited state from the metal-based 3MC state in the case of Ru-phen-Ru-1T to the ligand-based 3ILCT state for Ru-3T and Ru-4T. Ru-phen-Ru-1T, having dominant 3MC states and the largest photosubstitution quantum yields, are inactive in both normoxia and hypoxia. Ru-3T and Ru-4T, with dominant 3IL/3ILCT states and long triplet lifetimes (τTA = 20-25 μs), have the poorest photosubstitution quantum yields, yet are extremely active. In the best instances, Ru-4T exhibit attomolar phototoxicity toward SKMEL28 cells in normoxia and picomolar in hypoxia, with phototherapeutic index values in normoxia of 105-1012 and 103-106 in hypoxia. While maximizing excited-state deactivation through photodissociative 3MC states did not result in bonafide dual-action PDT/PCT agents, the study has produced the most potent photosensitizer we know of to date. The extraordinary photosensitizing capacity of Ru-3T and Ru-4T may stem from a combination of very efficient 1O2 production and possibly complementary type I pathways via 3ILCT excited states.
Collapse
Affiliation(s)
- John A. Roque
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina 27402, USA
| | - Houston D. Cole
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| | - Patrick C. Barrett
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina 27402, USA
| | - Liubov M. Lifshits
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| | - Rachel O. Hodges
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina 27402, USA
| | - Susy Kim
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, 27157 USA
| | - Gagan Deep
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, 27157 USA
| | | | - Marta E. Alberto
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende, 87036 Italy
| | - Colin G. Cameron
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| | - Sherri A. McFarland
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| |
Collapse
|
11
|
Cebrían C, Pastore M, Monari A, Assfeld X, Gros PC, Haacke S. Ultrafast Spectroscopy of Fe(II) Complexes Designed for Solar Energy Conversion: Current Status and Open Questions. Chemphyschem 2022; 23:e202100659. [DOI: 10.1002/cphc.202100659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/22/2022] [Indexed: 11/11/2022]
Affiliation(s)
| | | | | | | | | | - Stefan Haacke
- University of Strasbourg: Universite de Strasbourg IPCMS 23, rue du Loess 67034 Strasbourg FRANCE
| |
Collapse
|
12
|
alberto ME, Francés-Monerris A. A Multiscale Free Energy Method Reveals an Unprecedented Photoactivation of a Bimetallic Os(II)-Pt(II) Dual Anticancer Agent. Phys Chem Chem Phys 2022; 24:19584-19594. [DOI: 10.1039/d2cp02128e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photoreactivity of relatively large transition metal complexes is often limited to the description of the static potential energy surfaces of the involved electronic states. While useful to grasp some...
Collapse
|
13
|
Magra K, Francés‐Monerris A, Cebrián C, Monari A, Haacke S, Gros PC. Bidentate Pyridyl‐NHC Ligands: Synthesis, Ground and Excited State Properties of Their Iron(II) Complexes and the Role of the fac/mer Isomerism. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Kévin Magra
- Université de Lorraine, CNRS, L2CM 57000 Metz France
| | | | | | - Antonio Monari
- Université de Lorraine, CNRS, LPCT 54000 Nancy France
- Université de de Paris and CNRS, Itodys 75006 Paris France
| | - Stefan Haacke
- Université de Strasbourg, CNRS, IPCMS 67000 Strasbourg France
| | | |
Collapse
|
14
|
Nair SS, Bysewski OA, Kupfer S, Wächtler M, Winter A, Schubert US, Dietzek B. Excitation Energy-Dependent Branching Dynamics Determines Photostability of Iron(II)-Mesoionic Carbene Complexes. Inorg Chem 2021; 60:9157-9173. [PMID: 34081456 DOI: 10.1021/acs.inorgchem.1c01166] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Photoactive metal complexes containing earth-abundant transition metals recently gained interest as photosensitizers in light-driven chemistry. In contrast to the traditionally employed ruthenium or iridium complexes, iron complexes developed to be promising candidates despite the fact that using iron complexes as photosensitizers poses an inherent challenge associated with the low-lying metal-centered states, which are responsible for ultrafast deactivation of the charge-transfer states. Nonetheless, recent developments of strongly σ-donating carbene ligands yielded highly promising systems, in which destabilized metal-centered states resulted in prolonged lifetimes of charge-transfer excited states. In this context, we introduce a series of novel homoleptic Fe-triazolylidene mesoionic carbene complexes. The excited-state properties of the complexes were investigated by time-resolved femtosecond transient absorption spectroscopy and quantum chemical calculations. Pump wavelength-dependent transient absorption reveals the presence of distinct excited-state relaxation pathways. We relate the excitation-wavelength-dependent branching of the excited-state dynamics into various reaction channels to solvent-dependent photodissociation following the population of dissociative metal centered states upon excitation at 400 nm.
Collapse
Affiliation(s)
- Shruthi S Nair
- Department Functional Interfaces, Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Strasse 9, 07745 Jena, Germany.,Institute of Physical Chemistry, Friedrich-Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Oliver A Bysewski
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich-Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.,Center for Energy and Environmental Chemistry Jena (CEEC-Jena), Friedrich-Schiller University Jena, Philosophenweg, 07743 Jena, Germany
| | - Stephan Kupfer
- Institute of Physical Chemistry, Friedrich-Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Maria Wächtler
- Department Functional Interfaces, Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Strasse 9, 07745 Jena, Germany.,Institute of Physical Chemistry, Friedrich-Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany.,Abbe Center of Photonics, Friedrich Schiller University Jena, Philosophenweg, 07745 Jena, Germany
| | - Andreas Winter
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich-Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.,Center for Energy and Environmental Chemistry Jena (CEEC-Jena), Friedrich-Schiller University Jena, Philosophenweg, 07743 Jena, Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich-Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.,Center for Energy and Environmental Chemistry Jena (CEEC-Jena), Friedrich-Schiller University Jena, Philosophenweg, 07743 Jena, Germany
| | - Benjamin Dietzek
- Department Functional Interfaces, Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Strasse 9, 07745 Jena, Germany.,Institute of Physical Chemistry, Friedrich-Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| |
Collapse
|
15
|
Chábera P, Lindh L, Rosemann NW, Prakash O, Uhlig J, Yartsev A, Wärnmark K, Sundström V, Persson P. Photofunctionality of iron(III) N-heterocyclic carbenes and related d transition metal complexes. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213517] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Darari M, Francés-Monerris A, Marekha B, Doudouh A, Wenger E, Monari A, Haacke S, Gros PC. Towards Iron(II) Complexes with Octahedral Geometry: Synthesis, Structure and Photophysical Properties. Molecules 2020; 25:E5991. [PMID: 33348914 PMCID: PMC7767130 DOI: 10.3390/molecules25245991] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
The control of ligand-field splitting in iron (II) complexes is critical to slow down the metal-to-ligand charge transfer (MLCT)-excited states deactivation pathways. The gap between the metal-centered states is maximal when the coordination sphere of the complex approaches an ideal octahedral geometry. Two new iron(II) complexes (C1 and C2), prepared from pyridylNHC and pyridylquinoline type ligands, respectively, have a near-perfect octahedral coordination of the metal. The photophysics of the complexes have been further investigated by means of ultrafast spectroscopy and TD-DFT modeling. For C1, it is shown that-despite the geometrical improvement-the excited state deactivation is faster than for the parent pseudo-octahedral C0 complex. This unexpected result is due to the increased ligand flexibility in C1 that lowers the energetic barrier for the relaxation of 3MLCT into the 3MC state. For C2, the effect of the increased ligand field is not strong enough to close the prominent deactivation channel into the metal-centered quintet state, as for other Fe-polypyridine complexes.
Collapse
Affiliation(s)
- Mohamed Darari
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France;
| | - Antonio Francés-Monerris
- Université de Lorraine, CNRS, LPCT, F-54000 Nancy, France; (A.F.-M.); (A.M.)
- Departament de Química Física, Universitat de València, 46100 Burjassot, Spain
| | - Bogdan Marekha
- Max-Planck-Institute for Medical Research, 69120 Heidelberg, Germany;
| | - Abdelatif Doudouh
- Université de Lorraine, CNRS, CRM2, F-54000 Nancy, France; (A.D.); (E.W.)
| | - Emmanuel Wenger
- Université de Lorraine, CNRS, CRM2, F-54000 Nancy, France; (A.D.); (E.W.)
| | - Antonio Monari
- Université de Lorraine, CNRS, LPCT, F-54000 Nancy, France; (A.F.-M.); (A.M.)
| | - Stefan Haacke
- Université de Strasbourg, CNRS, IPCMS, F-67034 Strasbourg, France;
| | | |
Collapse
|
17
|
Roque JA, Barrett PC, Cole HD, Lifshits LM, Bradner E, Shi G, von Dohlen D, Kim S, Russo N, Deep G, Cameron CG, Alberto ME, McFarland SA. Os(II) Oligothienyl Complexes as a Hypoxia-Active Photosensitizer Class for Photodynamic Therapy. Inorg Chem 2020; 59:16341-16360. [PMID: 33126792 PMCID: PMC7669743 DOI: 10.1021/acs.inorgchem.0c02137] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hypoxia presents a challenge to anticancer therapy, reducing the efficacy of many available treatments. Photodynamic therapy is particularly susceptible to hypoxia, given that its mechanism relies on oxygen. Herein, we introduce two new osmium-based polypyridyl photosensitizers that are active in hypoxia. The lead compounds emerged from a systematic study of two Os(II) polypyridyl families derived from 2,2'-bipyridine (bpy) or 4,4'-dimethyl-2,2'-bipyridine (dmb) as coligands combined with imidazo[4,5-f][1,10]phenanthroline ligands tethered to n = 0-4 thiophenes (IP-nT). The compounds were characterized and investigated for their spectroscopic and (photo)biological activities. The two hypoxia-active Os(II) photosensitizers had n = 4 thiophenes, with the bpy analogue 1-4T being the most potent. In normoxia, 1-4T had low nanomolar activity (half-maximal effective concentration (EC50) = 1-13 nM) with phototherapeutic indices (PI) ranging from 5500 to 55 000 with red and visible light, respectively. A sub-micromolar potency was maintained even in hypoxia (1% O2), with light EC50 and PI values of 732-812 nM and 68-76, respectively -currently among the largest PIs for hypoxic photoactivity. This high degree of activity coincided with a low-energy, long-lived (0.98-3.6 μs) mixed-character intraligand charge-transfer (3ILCT)/ligand-to-ligand charge-transfer (3LLCT) state only accessible in quaterthiophene complexes 1-4T and 2-4T. The coligand identity strongly influenced the photophysical and photobiological results in this study, whereby the bpy coligand led to longer lifetimes (3.6 μs) and more potent photo-cytotoxicity relative to those of dmb. The unactivated compounds were relatively nontoxic both in vitro and in vivo. The maximum tolerated dose for 1-4T and 2-4T in mice was greater than or equal to 200 mg kg-1, an excellent starting point for future in vivo validation.
Collapse
Affiliation(s)
- John A. Roque
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina, 27402 USA
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019 USA
| | - Patrick C. Barrett
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina, 27402 USA
| | - Houston D. Cole
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019 USA
| | - Liubov M. Lifshits
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019 USA
| | - Evan Bradner
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina, 27402 USA
| | - Ge Shi
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia B3H 1×5, Canada
| | - David von Dohlen
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina, 27402 USA
| | - Susy Kim
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, 27157 USA
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende, 87036 Italy
| | - Gagan Deep
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, 27157 USA
| | - Colin G. Cameron
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019 USA
| | - Marta E. Alberto
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende, 87036 Italy
| | - Sherri A. McFarland
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019 USA
| |
Collapse
|
18
|
Diez-Cabanes V, Prampolini G, Francés-Monerris A, Monari A, Pastore M. Iron's Wake: The Performance of Quantum Mechanical-Derived Versus General-Purpose Force Fields Tested on a Luminescent Iron Complex. Molecules 2020; 25:molecules25133084. [PMID: 32640764 PMCID: PMC7411876 DOI: 10.3390/molecules25133084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/29/2022] Open
Abstract
Recently synthetized iron complexes have achieved long-lived excited states and stabilities which are comparable, or even superior, to their ruthenium analogues, thus representing an eco-friendly and cheaper alternative to those materials based on rare metals. Most of computational tools which could help unravel the origin of this large efficiency rely on ab-initio methods which are not able, however, to capture the nanosecond time scale underlying these photophysical processes and the influence of their realistic environment. Therefore, it exists an urgent need of developing new low-cost, but still accurate enough, computational methodologies capable to deal with the steady-state and transient spectroscopy of transition metal complexes in solution. Following this idea, here we focus on the comparison between general-purpose transferable force-fields (FFs), directly available from existing databases, and specific quantum mechanical derived FFs (QMD-FFs), obtained in this work through the Joyce procedure. We have chosen a recently reported FeIII complex with nanosecond excited-state lifetime as a representative case. Our molecular dynamics (MD) simulations demonstrated that the QMD-FF nicely reproduces the structure and the dynamics of the complex and its chemical environment within the same precision as higher cost QM methods, whereas general-purpose FFs failed in this purpose. Although in this particular case the chemical environment plays a minor role on the photo physics of this system, these results highlight the potential of QMD-FFs to rationalize photophysical phenomena provided an accurate QM method to derive its parameters is chosen.
Collapse
Affiliation(s)
- Valentin Diez-Cabanes
- Université de Lorraine & CNRS, LPCT UMR 7019, F-54000 Nancy, France;
- Correspondence: (V.D.-C.); (G.P.); (A.M.); (M.P.)
| | - Giacomo Prampolini
- Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy
- Correspondence: (V.D.-C.); (G.P.); (A.M.); (M.P.)
| | - Antonio Francés-Monerris
- Université de Lorraine & CNRS, LPCT UMR 7019, F-54000 Nancy, France;
- Departament de Química Física, Universitat de València, 46100 Burjassot, Spain
| | - Antonio Monari
- Université de Lorraine & CNRS, LPCT UMR 7019, F-54000 Nancy, France;
- Correspondence: (V.D.-C.); (G.P.); (A.M.); (M.P.)
| | - Mariachiara Pastore
- Université de Lorraine & CNRS, LPCT UMR 7019, F-54000 Nancy, France;
- Correspondence: (V.D.-C.); (G.P.); (A.M.); (M.P.)
| |
Collapse
|
19
|
Vukadinovic Y, Burkhardt L, Päpcke A, Miletic A, Fritsch L, Altenburger B, Schoch R, Neuba A, Lochbrunner S, Bauer M. When Donors Turn into Acceptors: Ground and Excited State Properties of FeII Complexes with Amine-Substituted Tridentate Bis-imidazole-2-ylidene Pyridine Ligands. Inorg Chem 2020; 59:8762-8774. [DOI: 10.1021/acs.inorgchem.0c00393] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yannik Vukadinovic
- Department of Chemistry and Center for Sustainable Systems Design (CSSD), Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany
| | - Lukas Burkhardt
- Department of Chemistry and Center for Sustainable Systems Design (CSSD), Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany
| | - Ayla Päpcke
- Institute for Physics and Department of Life, Light and Matter, University of Rostock, 18051 Rostock, Germany
| | - Anabel Miletic
- Department of Chemistry and Center for Sustainable Systems Design (CSSD), Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany
| | - Lorena Fritsch
- Department of Chemistry and Center for Sustainable Systems Design (CSSD), Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany
| | - Björn Altenburger
- Institute for Physics and Department of Life, Light and Matter, University of Rostock, 18051 Rostock, Germany
| | - Roland Schoch
- Department of Chemistry and Center for Sustainable Systems Design (CSSD), Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany
| | - Adam Neuba
- Department of Chemistry and Center for Sustainable Systems Design (CSSD), Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany
| | - Stefan Lochbrunner
- Institute for Physics and Department of Life, Light and Matter, University of Rostock, 18051 Rostock, Germany
| | - Matthias Bauer
- Department of Chemistry and Center for Sustainable Systems Design (CSSD), Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany
| |
Collapse
|
20
|
Photophysics and Photochemistry of Iron Carbene Complexes for Solar Energy Conversion and Photocatalysis. Catalysts 2020. [DOI: 10.3390/catal10030315] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Earth-abundant first row transition metal complexes are important for the development of large-scale photocatalytic and solar energy conversion applications. Coordination compounds based on iron are especially interesting, as iron is the most common transition metal element in the Earth’s crust. Unfortunately, iron-polypyridyl and related traditional iron-based complexes generally suffer from poor excited state properties, including short excited-state lifetimes, that make them unsuitable for most light-driven applications. Iron carbene complexes have emerged in the last decade as a new class of coordination compounds with significantly improved photophysical and photochemical properties, that make them attractive candidates for a range of light-driven applications. Specific aspects of the photophysics and photochemistry of these iron carbenes discussed here include long-lived excited state lifetimes of charge transfer excited states, capabilities to act as photosensitizers in solar energy conversion applications like dye-sensitized solar cells, as well as recent demonstrations of promising progress towards driving photoredox and photocatalytic processes. Complementary advances towards photofunctional systems with both Fe(II) complexes featuring metal-to-ligand charge transfer excited states, and Fe(III) complexes displaying ligand-to-metal charge transfer excited states are discussed. Finally, we outline emerging opportunities to utilize the improved photochemical properties of iron carbenes and related complexes for photovoltaic, photoelectrochemical and photocatalytic applications.
Collapse
|
21
|
Abstract
The use of iron in photoactive metal complexes has been investigated for decades. In this respect, the charge transfer (CT) states are of particular interest, since they are usually responsible for the photofunctionality of such compounds. However, only recently breakthroughs have been made in extending CT excited state lifetimes that are notoriously short-lived in classical polypyridine iron coordination compounds. This success is in large parts owed to the use of strongly σ-donating N-heterocyclic carbene (NHC) ligands that help manipulating the photophysical and photochemical properties of iron complexes. In this review we aim to map out the basic design principles for the generation of photofunctional iron NHC complexes, summarize the progress made so far and recapitulate on the synthetic methods used. Further, we want to highlight the challenges still existing and give inspiration for future generations of photoactive iron complexes.
Collapse
|
22
|
Bokareva OS, Baig O, Al-Marri MJ, Kühn O, González L. The effect of N-heterocyclic carbene units on the absorption spectra of Fe(ii) complexes: a challenge for theory. Phys Chem Chem Phys 2020; 22:27605-27616. [DOI: 10.1039/d0cp04781c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The absorption spectra of five Fe(ii) homoleptic and heteroleptic complexes containing strong sigma-donating N-heterocyclic carbene (NHC) and polypyridyl ligands have been theoretically characterized using a tuned range-separation functional.
Collapse
Affiliation(s)
- Olga S. Bokareva
- Institut für Physik
- Universität Rostock
- Rostock
- Germany
- Department of Physical Chemistry
| | - Omar Baig
- Institut für Theoretische Chemie
- Fakultät für Chemie
- Universität Wien
- A-1090 Wien
- Austria
| | | | - Oliver Kühn
- Institut für Physik
- Universität Rostock
- Rostock
- Germany
| | - Leticia González
- Institut für Theoretische Chemie
- Fakultät für Chemie
- Universität Wien
- A-1090 Wien
- Austria
| |
Collapse
|
23
|
Braun JD, Lozada IB, Kolodziej C, Burda C, Newman KME, van Lierop J, Davis RL, Herbert DE. Iron(II) coordination complexes with panchromatic absorption and nanosecond charge-transfer excited state lifetimes. Nat Chem 2019; 11:1144-1150. [PMID: 31740761 DOI: 10.1038/s41557-019-0357-z] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 09/23/2019] [Indexed: 11/09/2022]
Abstract
Replacing current benchmark rare-element photosensitizers with ones based on abundant and low-cost metals such as iron would help facilitate the large-scale implementation of solar energy conversion. To do so, the ability to extend the lifetimes of photogenerated excited states of iron complexes is critical. Here, we present a sensitizer design in which iron(II) centres are supported by frameworks containing benzannulated phenanthridine and quinoline heterocycles paired with amido donors. These complexes exhibit panchromatic absorption and nanosecond charge-transfer excited state lifetimes, enabled by the combination of vacant, energetically accessible heterocycle-based acceptor orbitals and occupied molecular orbitals destabilized by strong mixing between amido nitrogen atoms and iron. This finding shows how ligand design can extend metal-to-ligand charge-transfer-type excited state lifetimes of iron(II) complexes into the nanosecond regime and expand the range of potential applications for iron-based photosensitizers.
Collapse
Affiliation(s)
- Jason D Braun
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Issiah B Lozada
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Charles Kolodziej
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Clemens Burda
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Kelly M E Newman
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Johan van Lierop
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba, Canada.,Manitoba Institute for Materials, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Rebecca L Davis
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - David E Herbert
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada. .,Manitoba Institute for Materials, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
24
|
UV-vis absorption spectra of Sn(IV)tetrakis(4-pyridyl) porphyrins on the basis of axial ligation and pyridine protonation. J Mol Model 2019; 25:294. [PMID: 31478116 DOI: 10.1007/s00894-019-4166-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/15/2019] [Indexed: 12/18/2022]
Abstract
The present study highlights the structural and electronic spectra of Sn(IV)tetrakis(4-pyridyl) porphyrins (SnTP) using density functional theory (DFT) and time-dependent density functional theory (TDDFT). The impact of axial ligands (OH-, Cl-, and H2O) and protonation at pyridine sites on the excitation properties of SnTP is also explored. The considered SnTPs were optimized at B3LYP/6-31+G* level of theory with LANL2DZ basis set for Sn metal. The effects of tetrahydrofuran (THF) and dimethylformamide (DMF) solvents were also assessed employing conductor-like polarizable continuum (C-PCM) model. The observed structural effects correlate well with the experimental data and clearly depict the impact of axial ligands on the SnTP ring. The absorption spectra along with the frontier orbitals in all three phases show noticeable dependence of axial ligation on the photophysical properties of SnTPs. The transition character of molecular orbitals and their respective density of states (DOS) were explored to infer the orbitals involved in electronic transitions. Graphical abstract The structural and electronic spectra of Sn(IV)tetrakis(4-pyridyl) porphyrins (SnTP) were examined using time-dependent density functional theory (TDDFT). Axial ligation and pyridine protonation significantly affects the absorption properties of Sn complexes. The overall results suggest the application of [(OH-)Sn (OH-)TP] and [(Cl-)Sn (Cl-)TP] as photosensitizers.
Collapse
|
25
|
Ponte F, Alberto ME, De Simone BC, Russo N, Sicilia E. Photophysical Exploration of Dual-Approach PtII–BODIPY Conjugates: Theoretical Insights. Inorg Chem 2019; 58:9882-9889. [DOI: 10.1021/acs.inorgchem.9b01002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Fortuna Ponte
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87036, Arcavacata di Rende, Italy
| | - Marta E. Alberto
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87036, Arcavacata di Rende, Italy
| | - Bruna C. De Simone
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87036, Arcavacata di Rende, Italy
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87036, Arcavacata di Rende, Italy
| | - Emilia Sicilia
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87036, Arcavacata di Rende, Italy
| |
Collapse
|
26
|
Francés‐Monerris A, Gros PC, Assfeld X, Monari A, Pastore M. Toward Luminescent Iron Complexes: Unravelling the Photophysics by Computing Potential Energy Surfaces. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900100] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Antonio Francés‐Monerris
- Laboratoire de Physique et Chimie Théoriques (LPCT)Université de Lorraine, CNRS 54000 Nancy France
| | - Philippe C. Gros
- Laboratoire Lorrain de Chimie Moléculaire (L2CM)Université de Lorraine, CNRS 54000 Nancy France
| | - Xavier Assfeld
- Laboratoire de Physique et Chimie Théoriques (LPCT)Université de Lorraine, CNRS 54000 Nancy France
| | - Antonio Monari
- Laboratoire de Physique et Chimie Théoriques (LPCT)Université de Lorraine, CNRS 54000 Nancy France
| | - Mariachiara Pastore
- Laboratoire de Physique et Chimie Théoriques (LPCT)Université de Lorraine, CNRS 54000 Nancy France
| |
Collapse
|
27
|
Photophysical properties of bichromophoric Fe(II) complexes bearing an aromatic electron acceptor. Theor Chem Acc 2019. [DOI: 10.1007/s00214-019-2471-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
28
|
Magra K, Domenichini E, Francés-Monerris A, Cebrián C, Beley M, Darari M, Pastore M, Monari A, Assfeld X, Haacke S, Gros PC. Impact of the fac/mer Isomerism on the Excited-State Dynamics of Pyridyl-carbene Fe(II) Complexes. Inorg Chem 2019; 58:5069-5081. [DOI: 10.1021/acs.inorgchem.9b00138] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Kevin Magra
- Université de Lorraine, CNRS, L2CM, F-57000 Metz, France
| | | | | | | | - Marc Beley
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
| | - Mohamed Darari
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
| | | | - Antonio Monari
- Université de Lorraine, CNRS, LPCT, F-54000 Nancy, France
| | - Xavier Assfeld
- Université de Lorraine, CNRS, LPCT, F-54000 Nancy, France
| | - Stefan Haacke
- Université de Strasbourg, CNRS, IPCMS, F-67000 Strasbourg, France
| | | |
Collapse
|
29
|
|
30
|
Darari M, Domenichini E, Francés-Monerris A, Cebrián C, Magra K, Beley M, Pastore M, Monari A, Assfeld X, Haacke S, Gros PC. Iron(ii) complexes with diazinyl-NHC ligands: impact of π-deficiency of the azine core on photophysical properties. Dalton Trans 2019; 48:10915-10926. [DOI: 10.1039/c9dt01731c] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Boosting iron(ii) complex excited-state lifetime by combining pyrazine and benzimidazolylidene NHC ligands.
Collapse
Affiliation(s)
| | | | | | | | - Kevin Magra
- Université de Lorraine
- CNRS
- L2CM
- F-57000 Metz
- France
| | - Marc Beley
- Université de Lorraine
- CNRS
- L2CM
- F-54000 Nancy
- France
| | | | | | | | - Stefan Haacke
- Université de Strasbourg
- CNRS
- IPCMS
- F-67000 Strasbourg
- France
| | | |
Collapse
|
31
|
Nazari M, Bösch CD, Rondi A, Francés-Monerris A, Marazzi M, Lognon E, Gazzetto M, Langenegger SM, Häner R, Feurer T, Monari A, Cannizzo A. Ultrafast dynamics in polycyclic aromatic hydrocarbons: the key case of conical intersections at higher excited states and their role in the photophysics of phenanthrene monomer. Phys Chem Chem Phys 2019; 21:16981-16988. [DOI: 10.1039/c9cp03147b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Proper interpretation of phenanthrene's and similar PAHs’ photocycle relies on two higher excited state relaxations due to the simultaneous presence of non-adiabatic and adiabatic transitions.
Collapse
Affiliation(s)
- M. Nazari
- Institute of Applied Physics
- University of Bern
- Switzerland
| | - C. D. Bösch
- Department of Chemistry and Biochemistry
- University of Bern
- Switzerland
| | - A. Rondi
- Institute of Applied Physics
- University of Bern
- Switzerland
| | | | - M. Marazzi
- Université de Lorraine & CNRS
- Nancy
- France
- Department of Analytical Chemistry
- Physical Chemistry and Chemical Engineering
| | - E. Lognon
- Université de Lorraine & CNRS
- Nancy
- France
| | - M. Gazzetto
- Institute of Applied Physics
- University of Bern
- Switzerland
| | - S. M. Langenegger
- Department of Chemistry and Biochemistry
- University of Bern
- Switzerland
| | - R. Häner
- Department of Chemistry and Biochemistry
- University of Bern
- Switzerland
| | - T. Feurer
- Institute of Applied Physics
- University of Bern
- Switzerland
| | - A. Monari
- Université de Lorraine & CNRS
- Nancy
- France
| | - A. Cannizzo
- Institute of Applied Physics
- University of Bern
- Switzerland
| |
Collapse
|
32
|
Abstract
In this invited Perspective, recent developments and possible future directions of research on photoactive coordination compounds made from nonprecious transition metal elements will be discussed. The focus is on conceptually new, structurally well-characterized complexes with excited-state lifetimes between 10 ps and 1 ms in fluid solution for possible applications in photosensitizing, light-harvesting, luminescence and catalysis. The key metal elements considered herein are Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Mo, W and Ce in various oxidation states equipped with diverse ligands, giving access to long-lived excited states via a range of fundamentally different types of electronic transitions. Research performed in this area over the past five years demonstrated that a much broader spectrum of metal complexes than what was long considered relevant exhibits useful photophysics and photochemistry.
Collapse
Affiliation(s)
- Oliver S Wenger
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland
| |
Collapse
|