1
|
Li MY, Zhao CY, Xu HP, Zhou W, Liu W, Zhu J, Guo SP. Phase-Matching Second-Harmonic Generation and Enhanced Laser-Induced Damage Threshold Induced by Cs Substitution: Cu 3PSe 4 vs Cs 2CuP 3S 9. Inorg Chem 2024; 63:18484-18488. [PMID: 39298650 DOI: 10.1021/acs.inorgchem.4c03583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Chalcophosphates are an important type of infrared nonlinear optical (NLO) candidates in view of their rich anionic motifs. Here, two copper chalcophosphates Cu3PSe4 (CPSe) and Cs2CuP3S9 (CCPS) were synthesized and studied as IR NLO materials. They both feature three-dimensional polyanionic frameworks constructed by similar T2-supertetrahedra, and the structure of CCPS can be derived from CPSe via introducing Cs and substituting Se with S. This structural evolution results in phase-matchable NLO behavior, enlarged optical band gap, and enhanced laser-induced damage threshold for CCPS. These results are elucidated by structure analysis and theoretical calculations, and the increased structural anisotropy contributes to the phase matchable behavior of CCPS. This work presents a case on how to adjust NLO properties via certain structure considerations, which may be extended to more systems for obtaining high-performance NLO materials.
Collapse
Affiliation(s)
- Ming-Yang Li
- Yunnan Key Laboratory of Electromagnetic Materials and Devices, National Center for International Research on Photoelectric and Energy Materials, School of Material and Energy, Yunnan University, Kunming, Yunnan 650091, P. R. China
| | - Chen-Yi Zhao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Hai-Ping Xu
- Yunnan Key Laboratory of Electromagnetic Materials and Devices, National Center for International Research on Photoelectric and Energy Materials, School of Material and Energy, Yunnan University, Kunming, Yunnan 650091, P. R. China
| | - Wenfeng Zhou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Wenlong Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Jing Zhu
- Yunnan Key Laboratory of Electromagnetic Materials and Devices, National Center for International Research on Photoelectric and Energy Materials, School of Material and Energy, Yunnan University, Kunming, Yunnan 650091, P. R. China
| | - Sheng-Ping Guo
- Yunnan Key Laboratory of Electromagnetic Materials and Devices, National Center for International Research on Photoelectric and Energy Materials, School of Material and Energy, Yunnan University, Kunming, Yunnan 650091, P. R. China
| |
Collapse
|
2
|
Bu K, Feng X, Wang D, Fu T, Ma Y, Guo S, Luo H, Ding Y, Zhai T, Lü X. Quantifying Structural Polarization by Continuous Regulation of Lone-Pair Electron Expression in Molecular Crystals. J Am Chem Soc 2024; 146:22469-22475. [PMID: 39090075 DOI: 10.1021/jacs.4c05927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Rational design of structural polarization is vital for modern technologies, as it allows the physical properties of functional materials to be tailored. An effective approach for governing polarization involves the utilization of stereochemical lone-pair electrons (LPEs). However, despite the recognized significance of LPEs in controlling structural polarization, there remains a lack of understanding regarding the quantitative relationship between their expression and the extent of structural polarization. Here, by using pressure to continuously tune the LPE expression, we achieve the precise control and quantification of structural polarization, which brings enhanced second harmonic generation (SHG) of the molecular crystal SbI3·3S8. We introduce the I-Sb-I angle (α̅) that describes the degree of LPE expression and establishes a quantitative relationship between α̅ and structural polarization. That is, decreasing α̅ shapes LPE expression from delocalization to localization, which repels the bonding pairs of electrons and thus enhances the structural polarization. In addition, we extend this quantified relationship to a series of molecular crystals and demonstrate its applicability to the design of structural polarization by tailoring LPE expression.
Collapse
Affiliation(s)
- Kejun Bu
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China
| | - Xin Feng
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Dong Wang
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China
| | - Tonghuan Fu
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China
| | - Yiran Ma
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Songhao Guo
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China
| | - Hui Luo
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China
| | - Yang Ding
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Xujie Lü
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China
| |
Collapse
|
3
|
Cheranyova AM, Zelenkov LE, Baykov SV, Izotova YA, Ivanov DM, Bokach NA, Kukushkin VY. Intermolecular Metal-Involving Pnictogen Bonding: The Case of σ-(Sb III)-Hole···d z2[Pt II] Interaction. Inorg Chem 2024; 63:14943-14957. [PMID: 39066736 DOI: 10.1021/acs.inorgchem.4c01570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Cocrystallizations of trans-[PtX'2(NCNR2)2] (R2 = Me2, X' = Cl 1a, Br 1b, I 1c; R2 = (CH2)5, X' = I 2c) with SbX3 (X = Cl, Br, I) gave 1:2 cocrystals 1a·2SbCl3, 1b·2SbBr3, 1c·2SbCl3, 1c·2SbBr3, 1c·2SbI3, and 2c·2SbI3. In all six X-ray structures, the association of the molecular coformers is achieved mainly by SbIII···dz2[PtII] metal-involving intermolecular pnictogen bonding. Density functional theory (DFT) calculations (based on experimentally determined geometries) using both gas-phase and solid-state approximations revealed that a σ-(Sb)-hole interacts with an area of negative potential associated with the dz2-orbital of the positively charged platinum(II) sites, thus forming a pnictogen bond whose energy falls in the range between -7.3 and -16.9 kcal/mol.
Collapse
Affiliation(s)
- Anna M Cheranyova
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Lev E Zelenkov
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, Shandong, China
| | - Sergey V Baykov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Yulia A Izotova
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Daniil M Ivanov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Nadezhda A Bokach
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Vadim Yu Kukushkin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
- Institute of Chemistry and Pharmaceutical Technologies, Altai State University, Barnaul 656049, Russian Federation
| |
Collapse
|
4
|
Tang RL, Ma L, Lv YL, Liu W, Guo SP. From Pb 6(HPO 3)(H 2PO 3)Cl 9 to Pb 6(HPO 3) 2Br 8(H 2O)·H 2O: Halogen Regulation to Achieve Inorganic Metal Phosphite Halide Nonlinear Optical Material with Unprecedented Pb-Centered Polyhedral Units. Inorg Chem 2024; 63:13197-13201. [PMID: 38975741 DOI: 10.1021/acs.inorgchem.4c02401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Nonlinear optical (NLO) crystals are widely used in various fields. The introduction of lone-pair cations is regarded as an effective strategy to explore NLO crystals. In this work, two novel lead phosphite halides, centrosymmetric Pb6(HPO3)(H2PO3)Cl9 and noncentrosymmetric Pb6(HPO3)2Br8(H2O)·H2O, were obtained via a hydrothermal method. Pb6(HPO3)(H2PO3)Cl9 is the first reported lone-pair metal phosphite with two kinds of phosphite groups (HPO32- and H2PO3-) and Pb6(HPO3)2Br8(H2O)·H2O is the first inorganic NLO phosphite halide with a phase-matchable SHG effect of 1.02 × KDP. In addition, the Pb-centered polyhedral units of PbOCl4, PbOCl6, PbO2Cl5, PbO2Br5, PbOBr6, and PbO3(H2O)Br3 in these two structures have never been reported before. An in-depth study on the structure-property relationship of the two compounds with halogen substitution is also performed.
Collapse
Affiliation(s)
- Ru-Ling Tang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, People's Republic of China
| | - Liang Ma
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, People's Republic of China
| | - Yi-Lei Lv
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, People's Republic of China
| | - Wenlong Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, People's Republic of China
| | - Sheng-Ping Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, People's Republic of China
| |
Collapse
|
5
|
Fan XX, Yang M, Yao WD, Zhou W, Jiang T, Liu W, Guo SP. Pentanary Oxythiogermanates Ba 3MGe 3O 2S 8 (M = Ca, Zn) Featuring [Ge 3O 2S 8] 8- Trimers and {[MGe 3O 2S 8] 6-} ∞ Chains: Structural Chemistry and Physical Properties. Inorg Chem 2024; 63:7549-7554. [PMID: 38607347 DOI: 10.1021/acs.inorgchem.3c04336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Oxychalcogenides are increasingly attracting wide attention because they contain multiple anions that may combine the advantages of oxides and chalcogenides. In this work, two new pentanary oxythiogermanates, Ba3MGe3O2S8 [M = Ca (1), Zn (2)], were synthesized by a high-temperature solid-state reaction. They crystallize in the orthorhombic space group Pnma, and their structures contain isolated [Ge3O2S8]8- units constructed by one [GeO2S2] and two [GeOS3] tetrahedra that link with M2+ ions to build the {[MGe3O2S8]6-}∞ chain, representing a new type of oxythiogermanate. Notably, a [ZnS5] square pyramid exists in 2. Their structural chemistry and relationship with relevant structures are analyzed. 1 and 2 exhibit wide band gaps of 3.93 and 2.63 eV, birefringences of 0.100 and 0.089 at 2100 nm, respectively, and also obvious photocurrent responses. This work may be extended to a family of AE3MIIMIV3O2Q8 (AE = alkali-earth metal; MII = Ca, Zn, Cd, Hg; MIV = Si, Ge, Sn; Q = S, Se), and further systematic survey on them can be performed to enrich the study of multifunctional oxychalcogenides.
Collapse
Affiliation(s)
- Xin-Xin Fan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Mei Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Wen-Dong Yao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Wenfeng Zhou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Tengfei Jiang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Wenlong Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Sheng-Ping Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| |
Collapse
|
6
|
Lv MH, Li SF, Ren MM, Wang JX, Tang RL, Chen J, Huang H, Zhang B, Yan D. [C(NH 2) 3] 6Mo 7O 24: A Guanidinium Molybdate as a UV Nonlinear Optical Crystal with Large Birefringence. Inorg Chem 2024; 63:3948-3954. [PMID: 38350031 DOI: 10.1021/acs.inorgchem.3c04344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
The key to searching novel nonlinear optical (NLO) crystals was effectively combining the NLO-active units to obtain a noncentrosymmetric structure. Nevertheless, the present predicament lies in the growing challenge of discovering novel crystals within conventional inorganic frameworks that surpass the properties of the current NLO materials. In view of this, researchers expanded their research focus to the organic-inorganic hybridization system; it is foreseeable to concentrate the advantages from several kinds of NLO-active units to acquire novel NLO crystals with superior properties. We herein report an organic-inorganic hybrid molybdate crystal, namely, [C(NH2)3]6Mo7O24 (GMO). It was successfully obtained via combining inorganic NLO-active MoO6 octahedra and organic π-conjugated [C(NH2)3]+ groups. GMO demonstrates a moderate second-harmonic-generation response, specifically measuring about 1.3 times the value of KDP. Additionally, it exhibits a significant birefringence value of 0.203 at the wavelength of 550 nm and possesses a wide band gap of 3.31 eV. Theoretical calculations suggest that the optical properties of the GMO are primarily influenced by the synergy effect of [C(NH2)3]+ groups between MoO6 octahedra.
Collapse
Affiliation(s)
- Meng-Han Lv
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Shu-Fang Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Meng-Meng Ren
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Jia-Xin Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Ru-Ling Tang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Jin Chen
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350002, China
| | - Hongbo Huang
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Bingbing Zhang
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Dong Yan
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| |
Collapse
|
7
|
Zhou W, Guo SP. Rational Design of Novel Promising Infrared Nonlinear Optical Materials: Structural Chemistry and Balanced Performances. Acc Chem Res 2024. [PMID: 38301117 DOI: 10.1021/acs.accounts.3c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
ConspectusSecond-order nonlinear optical (NLO) materials are currently a hot topic in modern solid-state chemistry and optics because they can produce coherent light by frequency conversion. Noncentrosymmetric (NCS) structure is not only the prerequisite for NLO materials but also a challengeable issue because materials tend to be centrosymmetric (CS) in terms of thermodynamical stability. Among NLO materials, an excellent infrared (IR) candidate should simultaneously meet several strict key conditions including a large NLO coefficient, high laser-induced damage threshold (LIDT), phase-matchable (PM) behavior, and so on. Achieving a balance between the large NLO effect and high LIDT is difficult, as they have contradictory requirements for chemical bonds. Considering the urgent need of the high-power IR laser market and the drawbacks of the available ones, exploring new high-performance IR NLO crystals is necessary while challenging. In this Account, we first briefly introduce the status and advancement of IR NLO crystals and emphasize the criteria of an excellent candidate. Then, we will introduce five simple methods developed by us to discover practical NLO candidates through understanding of the chemical composition-structure-NLO performance relationship. (1) A rarely investigated system with simple chemical compositions as new-type NLO crystals, namely, adducts containing S8 molecules, are developed. Combining a chairlike S8 unit with other units through van der Waals forces has successfully obtained several high-performance NLO adducts. (2) The main trend in exploring new NLO crystals is that the chemical composition is more and more diversified and the structure is more and more complex, and expensive and chemically active alkaline and alkaline earth metals are usually introduced as counter cations. In contrast, the research on systems with simple chemical compositions, simple structures, and low costs has been continuously ignored. The binary M2Q3 (M = Ga, In; Q = S, Se) family with rich acentric modifications has been systematically investigated, and they all exhibit strong SHG effects and high LIDTs. (3) We first proposed the concept of inducing CS structures transformed to NCS ones by partial cation substitution to design novel NLO crystals. Considering the huge number of CS structures in the database compared to the number of NCS structures, it is an attractive method to apply CS structures as the parents to obtain potential NLO materials via partial-substitution-induced symmetry breaking. A series of chalcogenides with high NLO performances have been successfully obtained by us in this way. (4) We investigated the first NLO-active rare earth (RE) chalcophosphates and developed this family systematically, and they demonstrate wonderful comprehensive NLO properties. (5) We created a novel mixed-anion system for NLO applications, namely, chalcogenide borates. Usually, mixed-anion compounds can engender a synergistic effect to obtain desired IR NLO properties. Our recent progress on this system suggests that chalcogenide borates are potential candidates for IR NLO applications, although the study is still in its infancy. Finally, we state the current problems of IR NLO materials and give some perspectives for their future development.
Collapse
Affiliation(s)
- Wenfeng Zhou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Sheng-Ping Guo
- Yunnan Key Laboratory of Electromagnetic Materials and Devices, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| |
Collapse
|
8
|
Wang C, Yang S, Luo M. Adduct-Type Compounds for Nonlinear Optical Crystals. Chempluschem 2023; 88:e202300471. [PMID: 37776511 DOI: 10.1002/cplu.202300471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/02/2023]
Abstract
The performance prerequisites for nonlinear optical (NLO) crystals encompass a substantial second-harmonic generation (SHG), a considerable laser induced damage threshold, and a moderate degree of birefringence. Nevertheless, the presence of particular anions may result in deficiencies within certain properties. The utilization of mixed anionic groups has emerged as an effective strategy to achieve a balance among numerous performance parameters of NLO crystals, particularly in terms of SHG responses and bandgaps. Compared with other heteroanionic compounds, adduct-type compounds feature more concise structures with specific properties. Herein, we aim to provide an overview of the recent advancements in adduct-type NLO crystals, focusing on their structures and properties. Furthermore, we analyze the coordination chemistry and disadvantages involved in adducts, and discuss the current synthesis methods as well as future directions for further exploration.
Collapse
Affiliation(s)
- Chao Wang
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Shunda Yang
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Min Luo
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
| |
Collapse
|
9
|
Yang S, Lin C, Fan H, Chen K, Zhang G, Ye N, Luo M. Polar Phosphorus Chalcogenide Cage Molecules: Enhancement of Nonlinear Optical Properties in Adducts. Angew Chem Int Ed Engl 2023; 62:e202218272. [PMID: 36646634 DOI: 10.1002/anie.202218272] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/18/2023]
Abstract
Inorganic adducts are an emerging class of infrared nonlinear optical (NLO) materials. However, although the reported NLO adducts have sufficient birefringences and significant laser-induced damage thresholds (LIDTs), they commonly suffer from weak second harmonic generation (SHG) responses. In this work, a series of polar phosphorus chalcogenide cage molecules with strong hyperpolarizabilities were theoretically screened out to enhance the SHG responses of adducts. Accordingly, (CuI)3 (P4 S4 ), (CuI)3 (P4 Se4 ), (CuBr)7 (P4 S3 )3 and (CuBr)7 (P4 Se3 )3 with target polar cage molecules were successfully synthesized. As expected, they exhibit enhanced SHG responses while keeping moderate birefringences and high LIDTs. Notably, (CuBr)7 (P4 Se3 )3 possesses the largest SHG response (3.5×AGS@2.05 μm) among the known inorganic NLO adducts. Our study confirms that introducing NLO-active cage molecules into adducts is an efficient strategy for high-performance NLO materials.
Collapse
Affiliation(s)
- Shunda Yang
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.,ShanghaiTech University, Shanghai, 200120, China
| | - Chensheng Lin
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Huixin Fan
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Kaichuang Chen
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Ge Zhang
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
| | - Ning Ye
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin, 300384, China
| | - Min Luo
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
| |
Collapse
|
10
|
AIO3∙H6TeO6 (A=NH4, Rb): Two Telluric Acid and Iodate Co-Crystalline Compounds with Second Harmonic Generation Response. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY 2023. [DOI: 10.1016/j.cjsc.2023.100025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
11
|
Das TK, Jesionek M, Kępińska M, Nowak M, Kotyczka-Morańska M, Zubko M, Młyńczak J, Kopczyński K. SbI 3·3S 8: A Novel Promising Inorganic Adducts Crystal for Second Harmonic Generation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16031105. [PMID: 36770110 PMCID: PMC9921455 DOI: 10.3390/ma16031105] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/18/2023] [Accepted: 01/25/2023] [Indexed: 05/27/2023]
Abstract
In the past twenty years, the basic investigation of innovative Non-Linear Optical (NLO) crystals has received significant attention, which has built the crucial heritage for the use of NLO materials. Fundamental research is essential given the scarcity of materials for NLO compounds, especially in the deep ultraviolet (DUV) and middle- and far-infrared (MFIR) regions. In the present work, we synthesized high-quality MFIR SbI3·3S8 NLO crystals having a length in the range of 1-5 mm through rapid facile liquid phase ultrasonic reaction followed by the assistance of instantaneous natural evaporation phenomenon of the solvent at room temperature. X-ray diffraction (XRD) results ratify the hexagonal R3m structure of SbI3·3S8 crystal, and energy-dispersive X-ray spectroscopy (EDX) demonstrates that the elemental composition of SbI3·3S8 crystal is similar to that of its theoretical composition. The direct and indirect forbidden energy gaps of SbI3·3S8 were measured from the optical transmittance spectra and they were shown to be 2.893 eV and 1.986 eV, respectively. The green sparkling signal has been observed from the crystal during the second harmonic generation (SHG) experiment. Therefore, as inorganic adducts are often explored as NLO crystals, this work on the MFIR SbI3·3S8 NLO crystal can bring about additional investigations on this hot topic in the near future.
Collapse
Affiliation(s)
- Tushar Kanti Das
- Institute of Physics—Center for Science and Education, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland
| | - Marcin Jesionek
- Institute of Physics—Center for Science and Education, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland
| | - Mirosława Kępińska
- Institute of Physics—Center for Science and Education, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland
| | - Marian Nowak
- Institute of Physics—Center for Science and Education, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland
| | | | - Maciej Zubko
- Institute of Materials Engineering, Faculty of Science and Technology, University of Silesia, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
- Department of Physics, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Králové, Czech Republic
| | - Jarosław Młyńczak
- Institute of Optoelectronics, Military University of Technology, Gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
| | - Krzysztof Kopczyński
- Institute of Optoelectronics, Military University of Technology, Gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
| |
Collapse
|
12
|
Yang M, Liu W, Guo SP. Sb 5O 7I: Exploration of Ternary Antimony-Based Oxyhalide as a Nonlinear-Optical Material. Inorg Chem 2022; 61:14517-14522. [PMID: 36067496 DOI: 10.1021/acs.inorgchem.2c02765] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metal oxyhalides are attracting extensive interest for their enchanting structures and diverse properties. Herein, a ternary antimony oxyiodide, Sb5O7I with the new hexagonal noncentrosymmetric P63 structure is systematically surveyed by focusing on its nonlinear-optical (NLO) behavior. Its two-dimensional structure is constructed by {Sb2[Sb3O7]}∞+ layers separated by charge-balanced I- anions. The second-harmonic-generation measurement result suggests that Sb5O7I is NLO-active, and the effect is assigned to the [SbO3]3- triangular pyramids' contribution. Sb5O7I shows a direct optical energy gap of 3.22 eV, which is the largest among all reported ternary oxyiodides. This work is the first investigation of ternary NLO Sb-based oxyhalides and enriches the study of metal oxyhalides as promising NLO materials.
Collapse
Affiliation(s)
- Mei Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Wenlong Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Sheng-Ping Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| |
Collapse
|
13
|
Varadwaj A, Varadwaj PR, Marques HM, Yamashita K. The Pnictogen Bond: The Covalently Bound Arsenic Atom in Molecular Entities in Crystals as a Pnictogen Bond Donor. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113421. [PMID: 35684359 PMCID: PMC9181914 DOI: 10.3390/molecules27113421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/08/2022] [Accepted: 05/17/2022] [Indexed: 12/04/2022]
Abstract
In chemical systems, the arsenic-centered pnictogen bond, or simply the arsenic bond, occurs when there is evidence of a net attractive interaction between the electrophilic region associated with a covalently or coordinately bound arsenic atom in a molecular entity and a nucleophile in another or the same molecular entity. It is the third member of the family of pnictogen bonds formed by the third atom of the pnictogen family, Group 15 of the periodic table, and is an inter- or intramolecular noncovalent interaction. In this overview, we present several illustrative crystal structures deposited into the Cambridge Structure Database (CSD) and the Inorganic Chemistry Structural Database (ICSD) during the last and current centuries to demonstrate that the arsenic atom in molecular entities has a significant ability to act as an electrophilic agent to make an attractive engagement with nucleophiles when in close vicinity, thereby forming σ-hole or π-hole interactions, and hence driving (in part, at least) the overall stability of the system’s crystalline phase. This overview does not include results from theoretical simulations reported by others as none of them address the signatory details of As-centered pnictogen bonds. Rather, we aimed at highlighting the interaction modes of arsenic-centered σ- and π-holes in the rationale design of crystal lattices to demonstrate that such interactions are abundant in crystalline materials, but care has to be taken to identify them as is usually done with the much more widely known noncovalent interactions in chemical systems, halogen bonding and hydrogen bonding. We also demonstrate that As-centered pnictogen bonds are usually accompanied by other primary and secondary interactions, which reinforce their occurrence and strength in most of the crystal structures illustrated. A statistical analysis of structures deposited into the CSD was performed for each interaction type As···D (D = N, O, S, Se, Te, F, Cl, Br, I, arene’s π system), thus providing insight into the typical nature of As···D interaction distances and ∠R–As···D bond angles of these interactions in crystals, where R is the remainder of the molecular entity.
Collapse
Affiliation(s)
- Arpita Varadwaj
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo 7-3-1, Tokyo 113-8656, Japan;
- Correspondence: (A.V.); (P.R.V.)
| | - Pradeep R. Varadwaj
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo 7-3-1, Tokyo 113-8656, Japan;
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa;
- Correspondence: (A.V.); (P.R.V.)
| | - Helder M. Marques
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa;
| | - Koichi Yamashita
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo 7-3-1, Tokyo 113-8656, Japan;
| |
Collapse
|
14
|
Polar lanthanide copper iodates LnCu(IO3)5 (Ln = La, Ce, Pr, and Nd): Synthesis, crystal structure and characterization. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.122934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Li X, Shi Z, Yang M, Liu W, Guo S. Sn
7
Br
10
S
2
: The First Ternary Halogen‐Rich Chalcohalide Exhibiting a Chiral Structure and Pronounced Nonlinear Optical Properties. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115871] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiao‐Hui Li
- School of Chemistry and Chemical Engineering Yangzhou University 180 Siwangting Road Yangzhou 250002 China
| | - Zhi‐Hui Shi
- School of Chemistry and Chemical Engineering Yangzhou University 180 Siwangting Road Yangzhou 250002 China
| | - Mei Yang
- School of Chemistry and Chemical Engineering Yangzhou University 180 Siwangting Road Yangzhou 250002 China
| | - Wenlong Liu
- School of Chemistry and Chemical Engineering Yangzhou University 180 Siwangting Road Yangzhou 250002 China
| | - Sheng‐Ping Guo
- School of Chemistry and Chemical Engineering Yangzhou University 180 Siwangting Road Yangzhou 250002 China
| |
Collapse
|
16
|
Yan M, Tang RL, Zhou W, Liu WL, Guo SP. Pb3SBrI3: The first Pb-based chalcohalide with multiple halogens features unique two-dimensional structure composed of diverse Pb-centered polyhedra. Dalton Trans 2022; 51:12921-12927. [DOI: 10.1039/d2dt02038f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chalcohalides are attractive multifunctional material candidates due to their diverse crystal structures and the merits fused from chalcogenides and halides. Here, we successfully synthesized a new Pb-based chalcohalide with multiple-halogens,...
Collapse
|
17
|
Liu C, Zhou SH, Zhang C, Shen YY, Liu XY, Lin H, Liu Y. CsCu3SbS4: rational design of a two-dimensional layered material with giant birefringence derived from Cu3SbS4. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01318a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By introducing Cs into known Cu3SbS4, we successfully obtained a novel thioantimonate, quaternary CsCu3SbS4 with an unprecedented 2D layered structure, which exhibits a giant birefringence (0.232 at 549 nm).
Collapse
Affiliation(s)
- Chang Liu
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Sheng-Hua Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Zhang
- Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ya-Ying Shen
- Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiao-Yan Liu
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Hua Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Yi Liu
- Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
18
|
Li XH, Shi ZH, Yang M, Liu W, Guo SP. Sn7Br10S2: The First Ternary Halogen-Rich Chalcohalide Exhibiting A Chiral Structure and Pronounced Nonlinear Optical Properties. Angew Chem Int Ed Engl 2021; 61:e202115871. [PMID: 34951094 DOI: 10.1002/anie.202115871] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Indexed: 11/10/2022]
Abstract
Infrared nonliear optical (IR NLO) materials are significant in laser technology for civil and military uses. Here, we report the synthesis, structural chemistry and NLO properties of a halogen-rich chalcohalide Sn7Br10S2. Its noncentrosymmetric (NCS, P63) structure can be considered as partially aliovalent anion substitution of SnBr2 (P63/m) induced centrosymmetric (CS) to NCS structural transformation. The 3D ∞[Sn(1)6Sn(2)6Br6X6]6- (X = Br/S) channel framework is consisting of Sn(1)BrX2 and Sn(2)X3 trigonal pyramids. It exhibits excellent NLO performances, including strong phase-matchable NLO response 1.5 × AgGaS2 and high laser-induced damage threshold 6.3 × AgGaS2. Structure-NLO performance relationship investigation confirm that the effective arrangement of Sn(1)BrX2 and Sn(2)X3 units predominantly contribute to the large SHG response. These results indicate Sn7Br10S2 is a potential IR NLO candidate, and provide a new feasible system as promising NLO materials.
Collapse
Affiliation(s)
- Xiao-Hui Li
- Yangzhou University, College of Chemistry and Chemical Engineering, CHINA
| | - Zhi-Hui Shi
- Yangzhou University, College of Chemistry and Chemical Engineering, CHINA
| | - Mei Yang
- Yangzhou University, College of Chemistry and Chemical Engineering, CHINA
| | - Wenlong Liu
- Yangzhou University, College of Chemistry and Chemical Engineering, CHINA
| | - Sheng-Ping Guo
- Yangzhou University, College of Chemistry & Chemical Engineering, Siwangting Road 180, 225002, Yangzhou, CHINA
| |
Collapse
|
19
|
Wu Q, Yang C, Ma J, Liu X, Li Y. Halogen-Ion-Induced Structural Phase Transition Giving a Polymorph of HgBr 2 with Balanced Nonlinear Optical Properties. Inorg Chem 2021; 60:19297-19303. [PMID: 34854664 DOI: 10.1021/acs.inorgchem.1c03099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The key to developing new infrared nonlinear optical (NLO) materials is balancing second-order nonlinear optical effects and the laser-induced damage threshold (LIDT). In this paper, a new polymorph of HgBr2 (P212121) was synthesized by a "halogen-ion-induced effect" in solution, which features a crystal structure different from that of the original phase (Cmc21) and exhibits better NLO properties. Its powders show a strong SHG effect (9 × KDP), a high LIDT (30 × AgGaS2), a wide infrared transparent range, and stability in air, making it a prospective NLO material in the IR region. In addition, the above excellent NLO characteristics are well illustrated in DFT theoretical calculations. More importantly, experimental results show that the new infrared NLO polymorph with excellent comprehensive properties could be controllably obtained by using the halogen-ion-induced strategy.
Collapse
Affiliation(s)
- Qi Wu
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, People's Republic of China
| | - Can Yang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, People's Republic of China
| | - Jie Ma
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, People's Republic of China
| | - Xian Liu
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, People's Republic of China
| | - Yanjun Li
- Department of Chemistry, Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China
| |
Collapse
|
20
|
Yang M, Shi ZH, Yao WD, Guo SP. Second-Harmonic-Generation-Active Oxyhalides: CuSb 2O 3X (X = Cl, Br). Inorg Chem 2021; 61:42-46. [PMID: 34910471 DOI: 10.1021/acs.inorgchem.1c03588] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Metal oxyhalides have attracted broad interest recently because of their diverse structures and versatile properties. Here, two oxyhalides, CuSb2O3Cl (1) and CuSb2O3Br (2), were studied by focusing on their nonlinear-optical properties. They are crystallized in the noncentrosymmetric monoclinic Cc structure, and the layered structures could be derived from a 1:1 combination of CuX- (X = Cl, Br) and Sb2O3-type slabs. Their energy gaps were determined to be 2.76 and 2.64 eV. The second-harmonic-generation (SHG) test suggests that they are nonlinear-optical-active, and the effects are ascribed to the contribution of CuX3O units. Meanwhile, the SbO3 units' arrangement has a small contribution to the SHG effects. This work is the pioneer SHG investigation of the MI-MIII-O-X (MI = Cu, Ag; MIII = trivalent As, Sb, Bi; X = halogen) family.
Collapse
Affiliation(s)
- Mei Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Zhi-Hui Shi
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Wen-Dong Yao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Sheng-Ping Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| |
Collapse
|
21
|
|
22
|
Lian X, Yao WD, Liu W, Tang RL, Guo SP. KNa 2ZrF 7: A Mixed-Metal Fluoride Exhibits Phase-Matchable Second-Harmonic-Generation Effect and High Laser-Induced Damage Threshold. Inorg Chem 2020; 60:19-23. [PMID: 33321043 DOI: 10.1021/acs.inorgchem.0c03198] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Halides are one type of important IR nonlinear-optical material candidate. Here, a mixed alkali metal and d0 transition-metal fluoride, namely, KNa2ZrF7, was obtained by a facile hydrothermal method. It crystallizes in an orthorhombic system with the polar space group Pmn21, and its pseudo-1D structure features isolated (ZrF7)3- moncocapped trigonal prisms, which are ionically linked together by countercations K+ and Na+, representing a new type of fluoride. The powder sample of KNa2ZrF7 exhibits a moderate second-harmonic-generation response and a high laser-induced damage threshold. Besides, it can realize phase matchability and possesses a wide-IR transparent window. Thermal stability analysis suggests that KNa2ZrF7 is a congruent compound. Structural comparisons with related fluorides and theoretical calculations are also presented in this work.
Collapse
Affiliation(s)
- Xin Lian
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Wen-Dong Yao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Wenlong Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Ru-Ling Tang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Sheng-Ping Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| |
Collapse
|
23
|
Second-order nonlinear optical-active selenide borate Zn8Se2(BO2)12: Experimental and theoretical analysis. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Gao L, Huang J, Guo S, Yang Z, Pan S. Structure-property survey and computer-assisted screening of mid-infrared nonlinear optical chalcohalides. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213379] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Yang SH, Li XH, Yao WD, Xu QT, Guo SP. Crystal chemistry, second-order nonlinear optical, and magnetic properties of Eu8Sn4Se20. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121432] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Feng X, Sun Z, Pei K, Han W, Wang F, Luo P, Su J, Zuo N, Liu G, Li H, Zhai T. 2D Inorganic Bimolecular Crystals with Strong In-Plane Anisotropy for Second-Order Nonlinear Optics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003146. [PMID: 32589323 DOI: 10.1002/adma.202003146] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/03/2020] [Indexed: 05/07/2023]
Abstract
2D inorganic bimolecular crystals, consisting of two different inorganic molecules, are expected to possess novel physical and chemical properties due to the synergistic effect of the individual components. However, 2D inorganic bimolecular crystals remain unexploited because of the difficulties in preparation arising from non-typical layered structures and intricate intermolecular interactions. Here, the synthesis of 2D inorganic bimolecular crystal SbI3 ·3S8 nanobelts via a facile vertical microspacing sublimation strategy is reported. The as-synthesized SbI3 ·3S8 nanobelts exhibit strong in-plane anisotropy of phonon vibrations and intramolecular vibrations as well as show anisotropic light absorption with a high dichroism ratio of 3.9. Furthermore, it is revealed that the second harmonic generation intensity of SbI3 ·3S8 nanobelts is highly dependent on the excitation wavelength and crystallographic orientation. This work can inspire the growth of more 2D inorganic bimolecular crystals and excite potential applications for bimolecular optoelectronic devices.
Collapse
Affiliation(s)
- Xin Feng
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Zongdong Sun
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Ke Pei
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Wei Han
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Fakun Wang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Peng Luo
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Jianwei Su
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Nian Zuo
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Guiheng Liu
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Huiqiao Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| |
Collapse
|
27
|
Lu ZT, Fan WJ, Wang ZQ, Gu N, Yue ZH, Xue HG, Guo SP. Second-Order Nonlinear-Optical-Active Selenide Borate YSeBO2: Featuring a [YSeBO2]n Planar Belt. Inorg Chem 2020; 59:7905-7909. [DOI: 10.1021/acs.inorgchem.0c00753] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Zhen-Tao Lu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Wen-Jing Fan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Zhi-Qian Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Ning Gu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Zeng-Hao Yue
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Huai-Guo Xue
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Sheng-Ping Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| |
Collapse
|
28
|
Li XH, Chen YT, Xue H, Guo SP. KInSi1.32Sn0.68Se6: An Infrared Nonlinear Optical Material Containing Three Types of Tetrahedral Units. Inorg Chem 2020; 59:5823-5827. [DOI: 10.1021/acs.inorgchem.0c00639] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xiao-Hui Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Yi-Ting Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Huaiguo Xue
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Sheng-Ping Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| |
Collapse
|
29
|
Lu ZT, Sun ZD, Chi Y, Xue HG, Guo SP. Balanced Second-Order Nonlinear Optical Properties of Adducts CHI3·(S8)3 and AsI3·(S8)3: A Systematic Survey. Inorg Chem 2019; 58:4619-4625. [DOI: 10.1021/acs.inorgchem.9b00190] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhen-Tao Lu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Zong-Dong Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Yang Chi
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Huai-Guo Xue
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Sheng-Ping Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| |
Collapse
|
30
|
Chi Y, Jiang TF, Xue HG, Guo SP. Transition Metal Free Monoclinic Eu8In17.33S34 and Its Anisotropic Photoelectronic Responses. Inorg Chem 2019; 58:3574-3577. [DOI: 10.1021/acs.inorgchem.8b03256] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yang Chi
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Teng-Fei Jiang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Huai-Guo Xue
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Sheng-Ping Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| |
Collapse
|
31
|
Wei Q, He C, Ge BD, Wan MX, Wei L, Wang GM. Zeolitic Open-Framework Borates with Noncentrosymmetric Structures and Nonlinear Optical Properties. Inorg Chem 2019; 58:3527-3534. [DOI: 10.1021/acs.inorgchem.9b00101] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Qi Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, P.R. China
| | - Chao He
- College of Science, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, P.R. China
| | - Bang-Di Ge
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, P.R. China
| | | | - Li Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, P.R. China
| | - Guo-Ming Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, P.R. China
| |
Collapse
|
32
|
Cu2EuMQ4 (M = Si, Ge; Q = S, Se): Syntheses, structure study and physical properties determination. J SOLID STATE CHEM 2019. [DOI: 10.1016/j.jssc.2018.09.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|