1
|
Ding XX, Yang WZ, Yao SJ, Tong XY, Ling YX, Jiang ZG, Wang CF, Zhan CH. Au/Ag@polyoxometalate core-shell structures: from nanoparticles to atomically precise nanoclusters. Dalton Trans 2024; 53:15787-15794. [PMID: 39253864 DOI: 10.1039/d4dt02098g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
This review summarizes the progress in the research on polyoxometalate (POM)-decorated gold (Au) and silver (Ag) core-shell structures (Au/Ag@POMs), emphasizing their substantial application potential in catalysis, medicine, and biology. It outlines the central strategies for fabricating Au/Ag@POMs with diverse morphologies and dimensions, leveraging POMs as protective ligands and reducing agents as well as for ligand exchange. Of particular note is the focus on the analysis of the nanoparticle size, shape, and intricate architecture of POM shells using cryo-electron microscopy techniques. By integrating recent findings on atomically precise POM-stabilized nanoclusters, this review delves deeper into understanding surface interface structures, intrinsic atomic architectures, and electronic interactions between POM shells and metallic cores. Collectively, advancements in this field underscore significant strides in the controllable synthesis and precise structural manipulation of Au/Ag@POM architectures, thus paving the way for engineering high-performance metal catalysts.
Collapse
Affiliation(s)
- Xiu-Xia Ding
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry, College of Chemistry and Materials Science, Zhejiang Normal University, No.688, Yingbin Avenue, Jinhua, Zhejiang, 321004, China.
| | - Wen-Zhu Yang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry, College of Chemistry and Materials Science, Zhejiang Normal University, No.688, Yingbin Avenue, Jinhua, Zhejiang, 321004, China.
| | - Sheng-Jie Yao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry, College of Chemistry and Materials Science, Zhejiang Normal University, No.688, Yingbin Avenue, Jinhua, Zhejiang, 321004, China.
| | - Xin-Yu Tong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry, College of Chemistry and Materials Science, Zhejiang Normal University, No.688, Yingbin Avenue, Jinhua, Zhejiang, 321004, China.
| | - Yan-Xiang Ling
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry, College of Chemistry and Materials Science, Zhejiang Normal University, No.688, Yingbin Avenue, Jinhua, Zhejiang, 321004, China.
| | - Zhan-Guo Jiang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry, College of Chemistry and Materials Science, Zhejiang Normal University, No.688, Yingbin Avenue, Jinhua, Zhejiang, 321004, China.
| | - Chun-Feng Wang
- GuangDong Engineering Technology Research Center of Biomaterials, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China.
| | - Cai-Hong Zhan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry, College of Chemistry and Materials Science, Zhejiang Normal University, No.688, Yingbin Avenue, Jinhua, Zhejiang, 321004, China.
| |
Collapse
|
2
|
Xia K, Yatabe T, Yamaguchi K, Suzuki K. Multidentate polyoxometalate modification of metal nanoparticles with tunable electronic states. Dalton Trans 2024; 53:11088-11093. [PMID: 38885120 DOI: 10.1039/d4dt01218f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
To respond to the increasing demands for practical applications, stabilization and property modulation of metal nanoparticles have emerged as a key research subject. Herein, we present a viable protocol for preparing small metal nanoparticles (<5 nm; Ag, Pd, Pt, and Ru) via multidentate polyoxometalate (POM, [SiW9O34]10-) modification. In addition to enhancing stability, the POMs can modulate the electronic states of metal nanoparticles. Moreover, immobilization of the POM-modified metal nanoparticles on solid supports enables further tuning of the electronic states via a cooperative effect between the POMs and the supports without altering the particle size. Notably, POM-modified Pd nanoparticles on carbon support exhibited superior catalytic activity and selectivity in hydrogenation reactions in comparison with the catalyst without the POM modification.
Collapse
Affiliation(s)
- Kang Xia
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Takafumi Yatabe
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Kosuke Suzuki
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
3
|
Ma T, Yan R, Wu X, Wang M, Yin B, Li S, Cheng C, Thomas A. Polyoxometalate-Structured Materials: Molecular Fundamentals and Electrocatalytic Roles in Energy Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310283. [PMID: 38193756 DOI: 10.1002/adma.202310283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/02/2024] [Indexed: 01/10/2024]
Abstract
Polyoxometalates (POMs), a kind of molecular metal oxide cluster with unique physical-chemical properties, have made essential contributions to creating efficient and robust electrocatalysts in renewable energy systems. Due to the fundamental advantages of POMs, such as the diversity of molecular structures and large numbers of redox active sites, numerous efforts have been devoted to extending their application areas. Up to now, various strategies of assembling POM molecules into superstructures, supporting POMs on heterogeneous substrates, and POMs-derived metal compounds have been developed for synthesizing electrocatalysts. From a multidisciplinary perspective, the latest advances in creating POM-structured materials with a unique focus on their molecular fundamentals, electrocatalytic roles, and the recent breakthroughs of POMs and POM-derived electrocatalysts, are systematically summarized. Notably, this paper focuses on exposing the current states, essences, and mechanisms of how POM-structured materials influence their electrocatalytic activities and discloses the critical requirements for future developments. The future challenges, objectives, comparisons, and perspectives for creating POM-structured materials are also systematically discussed. It is anticipated that this review will offer a substantial impact on stimulating interdisciplinary efforts for the prosperities and widespread utilizations of POM-structured materials in electrocatalysis.
Collapse
Affiliation(s)
- Tian Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Rui Yan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xizheng Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mao Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Bo Yin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Shuang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Arne Thomas
- Department of Chemistry, Technische Universität Berlin, Hardenbergstraße 40, 10623, Berlin, Germany
| |
Collapse
|
4
|
Xia K, Yatabe T, Yonesato K, Kikkawa S, Yamazoe S, Nakata A, Ishikawa R, Shibata N, Ikuhara Y, Yamaguchi K, Suzuki K. Ultra-stable and highly reactive colloidal gold nanoparticle catalysts protected using multi-dentate metal oxide nanoclusters. Nat Commun 2024; 15:851. [PMID: 38321026 PMCID: PMC10847421 DOI: 10.1038/s41467-024-45066-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
Owing to their remarkable properties, gold nanoparticles are applied in diverse fields, including catalysis, electronics, energy conversion and sensors. However, for catalytic applications of colloidal gold nanoparticles, the trade-off between their reactivity and stability is a significant concern. Here we report a universal approach for preparing stable and reactive colloidal small (~3 nm) gold nanoparticles by using multi-dentate polyoxometalates as protecting agents in non-polar solvents. These nanoparticles exhibit exceptional stability even under conditions of high concentration, long-term storage, heating and addition of bases. Moreover, they display excellent catalytic performance in various oxidation reactions of organic substrates using molecular oxygen as the sole oxidant. Our findings highlight the ability of inorganic multi-dentate ligands with structural stability and robust steric and electronic effects to confer stability and reactivity upon gold nanoparticles. This approach can be extended to prepare metal nanoparticles other than gold, enabling the design of novel nanomaterials with promising applications.
Collapse
Affiliation(s)
- Kang Xia
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Takafumi Yatabe
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kentaro Yonesato
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Soichi Kikkawa
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Seiji Yamazoe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Ayako Nakata
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Ibaraki, Japan
| | - Ryo Ishikawa
- Institute of Engineering Innovation, The University of Tokyo, Tokyo, Japan
| | - Naoya Shibata
- Institute of Engineering Innovation, The University of Tokyo, Tokyo, Japan
| | - Yuichi Ikuhara
- Institute of Engineering Innovation, The University of Tokyo, Tokyo, Japan
| | - Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kosuke Suzuki
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
5
|
Korenev VS, Burilova EA, Volchek VV, Benassi E, Amirov RR, Sokolov MN, Abramov PA. NMR-Relaxometric Investigation of Mn(II)-Doped Polyoxometalates in Aqueous Solutions. Int J Mol Sci 2023; 24:ijms24087308. [PMID: 37108471 PMCID: PMC10139238 DOI: 10.3390/ijms24087308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Solution behavior of K;5[(Mn(H2O))PW11O39]·7H2O (1), Na3.66(NH4)4.74H3.1[(MnII(H2O))2.75(WO(H2O))0.25(α-B-SbW9O33)2]·27H2O (2), and Na4.6H3.4[(MnII(H2O)3)2(WO2)2(β-B-TeW9O33)2]·19H2O (3) was studied with NMR-relaxometry and HPLC-ICP-AES (High Performance Liquid Chromatography coupled with Inductively Coupled Plasma Atomic Emission Spectroscopy). According to the data, the [(Mn(H2O))PW11O39]5- Keggin-type anion is the most stable in water among the tested complexes, even in the presence of ethylenediaminetetraacetic acid (EDTA) or diethylenetriaminepentaacetic acid (DTPA). Aqueous solutions of 2 and 3 anions are less stable and contain other species resulting from dissociation of Mn2+. Quantum chemical calculations show the change in Mn2+ electronic state between [Mn(H2O)6]2+ and [(Mn(H2O))PW11O39]5-.
Collapse
Affiliation(s)
- Vladimir S Korenev
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Akad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Evgenia A Burilova
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya Str. 18, Kazan 420008, Russia
- A.E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Street 8, Kazan 420088, Russia
| | - Victoria V Volchek
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Akad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Enrico Benassi
- Faculty of Natural Sciences, Novosibirsk State University, 1 Pirogova Str., Novosibirsk 630090, Russia
| | - Rustem R Amirov
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya Str. 18, Kazan 420008, Russia
| | - Maxim N Sokolov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Akad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Pavel A Abramov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Akad. Lavrentiev Ave., Novosibirsk 630090, Russia
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634034, Russia
| |
Collapse
|
6
|
Xia K, Yamaguchi K, Suzuki K. Recent Advances in Hybrid Materials of Metal Nanoparticles and Polyoxometalates. Angew Chem Int Ed Engl 2023; 62:e202214506. [PMID: 36282183 DOI: 10.1002/anie.202214506] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Indexed: 11/25/2022]
Abstract
Polyoxometalates (POMs), anionic metal-oxygen nanoclusters that possess various composition-dependent properties, are widely used to modify the existing properties of metal nanoparticles and to endow them with new ones. Herein, we present an overview of recent advances in hybrid materials that consist of metal nanoparticles and POMs. Following a brief introduction on the inception of this area and its development, representative properties and applications of these materials in various fields such as electrochemistry, photochemistry, and catalysis are introduced. We discuss how the combination of two classic inorganic materials facilitates cooperative and synergistic behavior, and we also give personal perspectives on the future development of this field.
Collapse
Affiliation(s)
- Kang Xia
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kosuke Suzuki
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
7
|
Xia K, Yatabe T, Yonesato K, Yabe T, Kikkawa S, Yamazoe S, Nakata A, Yamaguchi K, Suzuki K. Supported Anionic Gold Nanoparticle Catalysts Modified Using Highly Negatively Charged Multivacant Polyoxometalates. Angew Chem Int Ed Engl 2022; 61:e202205873. [DOI: 10.1002/anie.202205873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Kang Xia
- Department of Applied Chemistry School of Engineering The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Takafumi Yatabe
- Department of Applied Chemistry School of Engineering The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Kentaro Yonesato
- Department of Applied Chemistry School of Engineering The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Tomohiro Yabe
- Department of Applied Chemistry School of Engineering The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Soichi Kikkawa
- Department of Chemistry Graduate School of Science Tokyo Metropolitan University 1-1 Minami Osawa Hachioji Tokyo 192-0397 Japan
| | - Seiji Yamazoe
- Department of Chemistry Graduate School of Science Tokyo Metropolitan University 1-1 Minami Osawa Hachioji Tokyo 192-0397 Japan
- Precursory Research for Embryonic Science and Technology (PRESTO) Japan Science and Technology Agency (JST) 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| | - Ayako Nakata
- Precursory Research for Embryonic Science and Technology (PRESTO) Japan Science and Technology Agency (JST) 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
- International Center for Materials Nanoarchitectonics (WPI-MANA) National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Kazuya Yamaguchi
- Department of Applied Chemistry School of Engineering The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Kosuke Suzuki
- Department of Applied Chemistry School of Engineering The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
- Precursory Research for Embryonic Science and Technology (PRESTO) Japan Science and Technology Agency (JST) 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| |
Collapse
|
8
|
Xia K, Yatabe T, Yonesato K, Yabe T, Kikkawa S, Yamazoe S, Nakata A, Yamaguchi K, Suzuki K. Supported Anionic Gold Nanoparticle Catalysts Modified Using Highly Negatively Charged Multivacant Polyoxometalates. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Kang Xia
- Department of Applied Chemistry School of Engineering The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Takafumi Yatabe
- Department of Applied Chemistry School of Engineering The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Kentaro Yonesato
- Department of Applied Chemistry School of Engineering The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Tomohiro Yabe
- Department of Applied Chemistry School of Engineering The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Soichi Kikkawa
- Department of Chemistry Graduate School of Science Tokyo Metropolitan University 1-1 Minami Osawa Hachioji Tokyo 192-0397 Japan
| | - Seiji Yamazoe
- Department of Chemistry Graduate School of Science Tokyo Metropolitan University 1-1 Minami Osawa Hachioji Tokyo 192-0397 Japan
- Precursory Research for Embryonic Science and Technology (PRESTO) Japan Science and Technology Agency (JST) 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| | - Ayako Nakata
- Precursory Research for Embryonic Science and Technology (PRESTO) Japan Science and Technology Agency (JST) 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
- International Center for Materials Nanoarchitectonics (WPI-MANA) National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Kazuya Yamaguchi
- Department of Applied Chemistry School of Engineering The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Kosuke Suzuki
- Department of Applied Chemistry School of Engineering The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
- Precursory Research for Embryonic Science and Technology (PRESTO) Japan Science and Technology Agency (JST) 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| |
Collapse
|
9
|
The fascinating polyoxometalates. CHEMTEXTS 2021. [DOI: 10.1007/s40828-021-00145-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Kurbah SD. Development of sustainable and efficient nanocatalyst based on polyoxometalate/nickel oxide nanocomposite: A simple and recyclable catalyst for reduction of nitroaromatic compounds. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202100057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
11
|
|
12
|
Nakagawa Y, Kuwata A, Yamaguchi K, Tamura M, Yabushita M, Tomishige K. Adsorption of Keggin-Type Polyoxometalates on Rh Metal Particles under Reductive Conditions. Inorg Chem 2021; 60:12413-12424. [PMID: 34323068 DOI: 10.1021/acs.inorgchem.1c01644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The adsorption of POMs on Rh/SiO2 in water solvent under strongly reductive conditions was investigated. Aqueous solutions of α-Keggin type silicotungstate and silicovanadotungstates were mixed with Rh/SiO2 at 393-473 K under 1 MPa of H2. Monovanadium-substituted silicotungstate, α-SiVW11O405- (SiVW11), was more readily adsorbed than nonsubstituted silicotungstate, α-SiW12O404- (SiW12). After adsorption at 433 K, SiVW11 was desorbed from Rh/SiO2 by oxidation with Br2 water without change of the Keggin structure, as evidenced by 51V NMR. Trivanadium-substituted silicotungstate, α-1,2,3-SiV3W9O407-, was not stable, and the desorbed species from Rh/SiO2 by oxidation with Br2 did not maintain the Keggin structure. The very high temperature for adsorption (473 K) also led to the decomposition of the Keggin structure of SiVW11. An increase in the concentration of SiVW11 in the liquid phase gave a saturation of the amount of desorbable SiVW11, up to five SiVW11 anions per one Rh particle with a 3 nm size. The elemental analysis and W L3-edge extended X-ray absorption fine structure of Rh/SiO2 after the adsorption of SiVW11 showed that a part of SiVW11 was decomposed and irreversibly adsorbed as metallic W species incorporated into the surface of Rh metal particles. The amount of decomposed SiVW11 was almost the same as that of SiVW11 adsorbed as the original Keggin structure. The desorbable SiVW11 was probably bonded on the W atom incorporated on the Rh metal particles as the two-electron-reduced form (α-SiVIIIW11O407-).
Collapse
Affiliation(s)
- Yoshinao Nakagawa
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan.,Research Center for Rare Metal and Green Innovation, Tohoku University, 468-1, Aoba, Aramaki, Aoba-ku, Sendai 980-0845, Japan
| | - Ayaka Kuwata
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Kosuke Yamaguchi
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Masazumi Tamura
- Research Center for Artificial Photosynthesis, Advanced Research Institute for Natural Science and Technology, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| | - Mizuho Yabushita
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Keiichi Tomishige
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan.,Research Center for Rare Metal and Green Innovation, Tohoku University, 468-1, Aoba, Aramaki, Aoba-ku, Sendai 980-0845, Japan
| |
Collapse
|
13
|
|
14
|
|
15
|
Asif HM, Bi RB, Tariq M, Shaheen N, Khalid M, Nadeem M, Ali Khan M, Ansari TM. Synthesis and Characterization of Polyvanadium and Heteropoly-Tungsten Based Inorganic Wells Dawson Polyoxometalates Hybrids. RUSS J INORG CHEM+ 2021. [DOI: 10.1134/s0036023621030025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
16
|
Preparation, Functionalization, Modification, and Applications of Nanostructured Gold: A Critical Review. ENERGIES 2021. [DOI: 10.3390/en14051278] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Gold nanoparticles (Au NPs) play a significant role in science and technology because of their unique size, shape, properties and broad range of potential applications. This review focuses on the various approaches employed for the synthesis, modification and functionalization of nanostructured Au. The potential catalytic applications and their enhancement upon modification of Au nanostructures have also been discussed in detail. The present analysis also offers brief summaries of the major Au nanomaterials synthetic procedures, such as hydrothermal, solvothermal, sol-gel, direct oxidation, chemical vapor deposition, sonochemical deposition, electrochemical deposition, microwave and laser pyrolysis. Among the various strategies used for improving the catalytic performance of nanostructured Au, the modification and functionalization of nanostructured Au produced better results. Therefore, various synthesis, modification and functionalization methods employed for better catalytic outcomes of nanostructured Au have been summarized in this review.
Collapse
|
17
|
Zhu Y, Li Q, Li D, Zhang J, Zhang L. Functional ligand directed assembly and electronic structure of Sn18-oxo wheel nanoclusters. Chem Commun (Camb) 2021; 57:5159-5162. [DOI: 10.1039/d1cc00651g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The bilayer hexagonal Sn18-oxo cluster, as the largest tin-oxo wheel, was constructed by a ligand templating method. Moreover, the ligands also show important effects on electronic structure and third-order nonlinear optical property of the wheel.
Collapse
Affiliation(s)
- Yu Zhu
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- P. R. China
| | - Qiaohong Li
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- P. R. China
| | - Dongsheng Li
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials
- College of Materials and Chemical Engineering
- China Three Gorges University
- Yichang
- P. R. China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- P. R. China
| | - Lei Zhang
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- P. R. China
| |
Collapse
|
18
|
Martin C, Kastner K, Cameron JM, Hampson E, Alves Fernandes J, Gibson EK, Walsh DA, Sans V, Newton GN. Redox‐Active Hybrid Polyoxometalate‐Stabilised Gold Nanoparticles. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Carmen Martin
- Nottingham Applied Materials and Interfaces (NAMI) Group The GSK Carbon Neutral Laboratories for Sustainable Chemistry University of Nottingham Nottingham NG7 2TU UK
- Universidad de Sevilla Departamento de Quimica Fisica Facultad de Quimica 41012 Sevilla Spain
| | - Katharina Kastner
- Nottingham Applied Materials and Interfaces (NAMI) Group The GSK Carbon Neutral Laboratories for Sustainable Chemistry University of Nottingham Nottingham NG7 2TU UK
| | - Jamie M. Cameron
- Nottingham Applied Materials and Interfaces (NAMI) Group The GSK Carbon Neutral Laboratories for Sustainable Chemistry University of Nottingham Nottingham NG7 2TU UK
| | - Elizabeth Hampson
- Nottingham Applied Materials and Interfaces (NAMI) Group The GSK Carbon Neutral Laboratories for Sustainable Chemistry University of Nottingham Nottingham NG7 2TU UK
| | | | - Emma K. Gibson
- School of Chemistry University of Glasgow Glasgow G12 8QQ UK
| | - Darren A. Walsh
- Nottingham Applied Materials and Interfaces (NAMI) Group The GSK Carbon Neutral Laboratories for Sustainable Chemistry University of Nottingham Nottingham NG7 2TU UK
| | - Victor Sans
- Nottingham Applied Materials and Interfaces (NAMI) Group The GSK Carbon Neutral Laboratories for Sustainable Chemistry University of Nottingham Nottingham NG7 2TU UK
- Institute of Advanced Materials (INAM) University Jaume I 12006 Castellon Spain
| | - Graham N. Newton
- Nottingham Applied Materials and Interfaces (NAMI) Group The GSK Carbon Neutral Laboratories for Sustainable Chemistry University of Nottingham Nottingham NG7 2TU UK
| |
Collapse
|
19
|
Martin C, Kastner K, Cameron JM, Hampson E, Alves Fernandes J, Gibson EK, Walsh DA, Sans V, Newton GN. Redox-Active Hybrid Polyoxometalate-Stabilised Gold Nanoparticles. Angew Chem Int Ed Engl 2020; 59:14331-14335. [PMID: 32432351 PMCID: PMC7497208 DOI: 10.1002/anie.202005629] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Indexed: 12/31/2022]
Abstract
We report the design and preparation of multifunctional hybrid nanomaterials through the stabilization of gold nanoparticles with thiol-functionalised hybrid organic-inorganic polyoxometalates (POMs). The covalent attachment of the hybrid POM forms new nanocomposites that are stable at temperatures and pH values which destroy analogous electrostatically functionalised nanocomposites. Photoelectrochemical analysis revealed the unique photochemical and redox properties of these systems.
Collapse
Affiliation(s)
- Carmen Martin
- Nottingham Applied Materials and Interfaces (NAMI) GroupThe GSK Carbon Neutral Laboratories for Sustainable ChemistryUniversity of NottinghamNottinghamNG7 2TUUK
- Universidad de SevillaDepartamento de Quimica FisicaFacultad de Quimica41012SevillaSpain
| | - Katharina Kastner
- Nottingham Applied Materials and Interfaces (NAMI) GroupThe GSK Carbon Neutral Laboratories for Sustainable ChemistryUniversity of NottinghamNottinghamNG7 2TUUK
| | - Jamie M. Cameron
- Nottingham Applied Materials and Interfaces (NAMI) GroupThe GSK Carbon Neutral Laboratories for Sustainable ChemistryUniversity of NottinghamNottinghamNG7 2TUUK
| | - Elizabeth Hampson
- Nottingham Applied Materials and Interfaces (NAMI) GroupThe GSK Carbon Neutral Laboratories for Sustainable ChemistryUniversity of NottinghamNottinghamNG7 2TUUK
| | | | - Emma K. Gibson
- School of ChemistryUniversity of GlasgowGlasgowG12 8QQUK
| | - Darren A. Walsh
- Nottingham Applied Materials and Interfaces (NAMI) GroupThe GSK Carbon Neutral Laboratories for Sustainable ChemistryUniversity of NottinghamNottinghamNG7 2TUUK
| | - Victor Sans
- Nottingham Applied Materials and Interfaces (NAMI) GroupThe GSK Carbon Neutral Laboratories for Sustainable ChemistryUniversity of NottinghamNottinghamNG7 2TUUK
- Institute of Advanced Materials (INAM)University Jaume I12006CastellonSpain
| | - Graham N. Newton
- Nottingham Applied Materials and Interfaces (NAMI) GroupThe GSK Carbon Neutral Laboratories for Sustainable ChemistryUniversity of NottinghamNottinghamNG7 2TUUK
| |
Collapse
|
20
|
Chupina AV, Mukhacheva AA, Abramov PA, Sokolov MN. Complexation and Isomerization of [β-Mo8O26]4− in the Presence of Ag+ and DMF. J STRUCT CHEM+ 2020. [DOI: 10.1134/s0022476620020158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
21
|
Dumur F, Dumas E, Mayer CR. Functionalization of Gold Nanoparticles by Inorganic Entities. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E548. [PMID: 32197512 PMCID: PMC7153718 DOI: 10.3390/nano10030548] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 02/06/2023]
Abstract
The great affinity of gold surface for numerous electron-donating groups has largely contributed to the rapid development of functionalized gold nanoparticles (Au-NPs). In the last years, a new subclass of nanocomposite has emerged, based on the association of inorganic molecular entities (IME) with Au-NPs. This highly extended and diversified subclass was promoted by the synergy between the intrinsic properties of the shell and the gold core. This review-divided into four main parts-focuses on an introductory section of the basic notions related to the stabilization of gold nanoparticles and defines in a second part the key role played by the functionalizing agent. Then, we present a wide range of inorganic molecular entities used to prepare these nanocomposites (NCs). In particular, we focus on four different types of inorganic systems, their topologies, and their current applications. Finally, the most recent applications are described before an overview of this new emerging field of research.
Collapse
Affiliation(s)
- Frédéric Dumur
- Aix Marseille Univ, CNRS, ICR, UMR 7273, F-13397 Marseille, France
| | - Eddy Dumas
- Institut Lavoisier de Versailles, UMR CNRS 8180, Université de Versailles Saint-Quentin-en-Yvelines, F-78035 Versailles, France;
| | - Cédric R. Mayer
- Laboratoire LuMin, FRE CNRS 2036, CNRS, Université Paris-Sud, ENS Paris-Saclay, Université Paris-Saclay, F-91405 Orsay CEDEX, France
- Département de Chimie, UFR des Sciences, Université de Versailles Saint-Quentin-en-Yvelines, F-78035 Versailles, France
| |
Collapse
|
22
|
Wang Y, Gayet F, Guillo P, Agustin D. Organic Solvent-Free Olefins and Alcohols (ep)oxidation Using Recoverable Catalysts Based on [PM 12O 40] 3- (M = Mo or W) Ionically Grafted on Amino Functionalized Silica Nanobeads. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3278. [PMID: 31600903 PMCID: PMC6829895 DOI: 10.3390/ma12203278] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 12/18/2022]
Abstract
Catalyzed organic solvent-free (ep)oxidation were achieved using H3PM12O40 (M = Mo or W) complexes ionically grafted on APTES-functionalized nano-silica beads obtained from straightforward method (APTES = aminopropyltriethoxysilane). Those catalysts have been extensively analyzed through morphological studies (Dynamic Light Scattering (DLS), TEM) and several spectroscopic qualitative (IR, multinuclear solid-state NMR) and quantitative (1H and 31P solution NMR) methods. Interesting catalytic results were obtained for the epoxidation of cyclooctene, cyclohexene, limonene and oxidation of cyclohexanol with a lower [POM]/olefin ratio. The catalysts were found to be recyclable and reused during three runs with similar catalytic performances.
Collapse
Affiliation(s)
- Yun Wang
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205, route de Narbonne, F-31077 Toulouse, France.
- Université de Toulouse, Institut Universitaire de Technologie Paul Sabatier-Département de Chimie, Av. Georges Pompidou, BP 20258, F-81104 Castres, CEDEX, France.
| | - Florence Gayet
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205, route de Narbonne, F-31077 Toulouse, France.
- INPT, ENSIACET 4, allée Emile Monso-CS 44362, F-31030 Toulouse, CEDEX 4, France.
| | - Pascal Guillo
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205, route de Narbonne, F-31077 Toulouse, France.
- Université de Toulouse, Institut Universitaire de Technologie Paul Sabatier-Département de Chimie, Av. Georges Pompidou, BP 20258, F-81104 Castres, CEDEX, France.
| | - Dominique Agustin
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205, route de Narbonne, F-31077 Toulouse, France.
- Université de Toulouse, Institut Universitaire de Technologie Paul Sabatier-Département de Chimie, Av. Georges Pompidou, BP 20258, F-81104 Castres, CEDEX, France.
| |
Collapse
|
23
|
|
24
|
Chai D, Xin J, Li B, Pang H, Ma H, Li K, Xiao B, Wang X, Tan L. Mo-Based crystal POMOFs with a high electrochemical capacitor performance. Dalton Trans 2019; 48:13026-13033. [DOI: 10.1039/c9dt02420d] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The capacitor performance of newly synthesized crystalline POMOFs was higher than those of the majority of reported POMOF-, state-of-the-art MOF- and POM-based materials.
Collapse
Affiliation(s)
- Dongfeng Chai
- School of Materials Science and Engineering
- College of Chemical and Environmental Engineering
- Harbin University of Science and Technology
- Harbin 150040
- P. R. China
| | - Jianjiao Xin
- School of Materials Science and Engineering
- College of Chemical and Environmental Engineering
- Harbin University of Science and Technology
- Harbin 150040
- P. R. China
| | - Bonan Li
- School of Materials Science and Engineering
- College of Chemical and Environmental Engineering
- Harbin University of Science and Technology
- Harbin 150040
- P. R. China
| | - Haijun Pang
- School of Materials Science and Engineering
- College of Chemical and Environmental Engineering
- Harbin University of Science and Technology
- Harbin 150040
- P. R. China
| | - Huiyuan Ma
- School of Materials Science and Engineering
- College of Chemical and Environmental Engineering
- Harbin University of Science and Technology
- Harbin 150040
- P. R. China
| | - Kunqi Li
- School of Materials Science and Engineering
- College of Chemical and Environmental Engineering
- Harbin University of Science and Technology
- Harbin 150040
- P. R. China
| | - Boxin Xiao
- School of Materials Science and Engineering
- College of Chemical and Environmental Engineering
- Harbin University of Science and Technology
- Harbin 150040
- P. R. China
| | - Xinming Wang
- School of Materials Science and Engineering
- College of Chemical and Environmental Engineering
- Harbin University of Science and Technology
- Harbin 150040
- P. R. China
| | - Lichao Tan
- School of Materials Science and Engineering
- College of Chemical and Environmental Engineering
- Harbin University of Science and Technology
- Harbin 150040
- P. R. China
| |
Collapse
|