1
|
Salgado-Medrano N, Millán-Pacheco C, Rodríguez-López V, Corona-Sánchez L, Mesnard F, Molinié R, León-Álvarez E, Villarreal ML, Cardoso-Taketa AT. Antioxidant Active Phytochemicals in Ternstroemia lineata Explained by Aquaporin Mechanisms. PLANTS (BASEL, SWITZERLAND) 2024; 13:2223. [PMID: 39204659 PMCID: PMC11360478 DOI: 10.3390/plants13162223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 09/04/2024]
Abstract
The antioxidant action of terngymnoside C (1) and hydroxytyrosol-1-glucoside (2), isolated for the first time from the flower buds of Ternstroemia lineata, as well as katsumadin (3), obtained from the seedless fruits, was evaluated using ABTS•+ and H2O2-Saccharomyces cerevisiae models. In silico docking analysis of 1, 2, and 3 determined their affinity forces to the aquaporin monomers of the modeled S. cerevisiae protein 3 (AQP3) and human protein 7 (AQP7) channels that regulate the H2O2 cell transport. The ABTS•+ antiradical capacity of these compounds showed IC50 values of 22.00 μM (1), 47.64 μM (2), and 73.93 μM (3). The S. cerevisiae antioxidant assay showed that at 25 µM (1) and 50 µM (2 and 3), the cells were protected from H2O2-oxidative stress. These compounds, together with quercetin and vitamin C, were explored through the modeled S. cerevisiae AQP3 and human AQP7 by molecular docking analysis. To explain these results, an antioxidant mechanism for the isolated compounds was proposed through blocking H2O2 passage mediated by aquaporin transport. On the other hand, 1, 2, and 3 were not cytotoxic in a panel of three cancer cell lines.
Collapse
Affiliation(s)
- Nahim Salgado-Medrano
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca 62210, Mexico; (N.S.-M.); (E.L.-Á.)
- Facultad de Ciencias Biológicas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62210, Mexico
| | - César Millán-Pacheco
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca 62210, Mexico; (C.M.-P.); (V.R.-L.); (L.C.-S.)
| | - Verónica Rodríguez-López
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca 62210, Mexico; (C.M.-P.); (V.R.-L.); (L.C.-S.)
| | - Lucía Corona-Sánchez
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca 62210, Mexico; (C.M.-P.); (V.R.-L.); (L.C.-S.)
| | - François Mesnard
- Unité Mixte de Recherche Transfrontalière (UMRT), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), BioEcoAgro, Laboratoire BIOPI, University of Picardie Jules Verne, 80000 Amiens, France; (F.M.); (R.M.)
| | - Roland Molinié
- Unité Mixte de Recherche Transfrontalière (UMRT), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), BioEcoAgro, Laboratoire BIOPI, University of Picardie Jules Verne, 80000 Amiens, France; (F.M.); (R.M.)
| | - Eleazar León-Álvarez
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca 62210, Mexico; (N.S.-M.); (E.L.-Á.)
| | - María Luisa Villarreal
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca 62210, Mexico; (N.S.-M.); (E.L.-Á.)
| | | |
Collapse
|
2
|
Mom R, Mocquet V, Auguin D, Réty S. Aquaporin Modulation by Cations, a Review. Curr Issues Mol Biol 2024; 46:7955-7975. [PMID: 39194687 DOI: 10.3390/cimb46080470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
Aquaporins (AQPs) are transmembrane channels initially discovered for their role in water flux facilitation through biological membranes. Over the years, a much more complex and subtle picture of these channels appeared, highlighting many other solutes accommodated by AQPs and a dense regulatory network finely tuning cell membranes' water permeability. At the intersection between several transduction pathways (e.g., cell volume regulation, calcium signaling, potassium cycling, etc.), this wide and ancient protein family is considered an important therapeutic target for cancer treatment and many other pathophysiologies. However, a precise and isoform-specific modulation of these channels function is still challenging. Among the modulators of AQPs functions, cations have been shown to play a significant contribution, starting with mercury being historically associated with the inhibition of AQPs since their discovery. While the comprehension of AQPs modulation by cations has improved, a unifying molecular mechanism integrating all current knowledge is still lacking. In an effort to extract general trends, we reviewed all known modulations of AQPs by cations to capture a first glimpse of this regulatory network. We paid particular attention to the associated molecular mechanisms and pinpointed the residues involved in cation binding and in conformational changes tied up to the modulation of the channel function.
Collapse
Affiliation(s)
- Robin Mom
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364 Lyon, France
| | - Vincent Mocquet
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364 Lyon, France
| | - Daniel Auguin
- Laboratoire de Physiologie, Ecologie et Environnement (P2E), UPRES EA 1207/USC INRAE-1328, UFR Sciences et Techniques, Université d'Orléans, F-45067 Orléans, France
| | - Stéphane Réty
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364 Lyon, France
| |
Collapse
|
3
|
Banerjee S, Smith IM, Hengen AC, Stroka KM. Methods for studying mammalian aquaporin biology. Biol Methods Protoc 2023; 8:bpad031. [PMID: 38046463 PMCID: PMC10689382 DOI: 10.1093/biomethods/bpad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/29/2023] [Accepted: 11/09/2023] [Indexed: 12/05/2023] Open
Abstract
Aquaporins (AQPs), transmembrane water-conducting channels, have earned a great deal of scrutiny for their critical physiological roles in healthy and disease cell states, especially in the biomedical field. Numerous methods have been implemented to elucidate the involvement of AQP-mediated water transport and downstream signaling activation in eliciting whole cell, tissue, and organ functional responses. To modulate these responses, other methods have been employed to investigate AQP druggability. This review discusses standard in vitro, in vivo, and in silico methods for studying AQPs, especially for biomedical and mammalian cell biology applications. We also propose some new techniques and approaches for future AQP research to address current gaps in methodology.
Collapse
Affiliation(s)
- Shohini Banerjee
- Fischell Department of Bioengineering, University of Maryland, MD 20742, United States
| | - Ian M Smith
- Fischell Department of Bioengineering, University of Maryland, MD 20742, United States
| | - Autumn C Hengen
- Fischell Department of Bioengineering, University of Maryland, MD 20742, United States
| | - Kimberly M Stroka
- Fischell Department of Bioengineering, University of Maryland, MD 20742, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore MD 21201, United States
- Biophysics Program, University of Maryland, MD 20742, United States
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland, Baltimore MD 21201, United States
| |
Collapse
|
4
|
O’Shaughnessy M, Sheils O, Baird AM. The Lung Microbiome in COPD and Lung Cancer: Exploring the Potential of Metal-Based Drugs. Int J Mol Sci 2023; 24:12296. [PMID: 37569672 PMCID: PMC10419288 DOI: 10.3390/ijms241512296] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) and lung cancer 17 are two of the most prevalent and debilitating respiratory diseases worldwide, both associated with high morbidity and mortality rates. As major global health concerns, they impose a substantial burden on patients, healthcare systems, and society at large. Despite their distinct aetiologies, lung cancer and COPD share common risk factors, clinical features, and pathological pathways, which have spurred increasing research interest in their co-occurrence. One area of particular interest is the role of the lung microbiome in the development and progression of these diseases, including the transition from COPD to lung cancer. Exploring novel therapeutic strategies, such as metal-based drugs, offers a potential avenue for targeting the microbiome in these diseases to improve patient outcomes. This review aims to provide an overview of the current understanding of the lung microbiome, with a particular emphasis on COPD and lung cancer, and to discuss the potential of metal-based drugs as a therapeutic strategy for these conditions, specifically concerning targeting the microbiome.
Collapse
Affiliation(s)
- Megan O’Shaughnessy
- School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Orla Sheils
- School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, D08 W9RT Dublin, Ireland
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, St. James’s Hospital, D08 RX0X Dublin, Ireland
| | - Anne-Marie Baird
- School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, D08 W9RT Dublin, Ireland
| |
Collapse
|
5
|
Tolbatov I, Marrone A, Shepard W, Chiaverini L, Upadhyay Kahaly M, La Mendola D, Marzo T, Ciccone L. Inorganic Drugs as a Tool for Protein Structure Solving and Studies on Conformational Changes. Chemistry 2023; 29:e202202937. [PMID: 36477932 DOI: 10.1002/chem.202202937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/12/2022]
Abstract
Inorganic drugs are capable of tight interactions with proteins through coordination towards aminoacidic residues, and this feature is recognized as a key aspect for their pharmacological action. However, the "protein metalation process" is exploitable for solving the phase problem and structural resolution. In fact, the use of inorganic drugs bearing specific metal centers and ligands capable to drive the binding towards the desired portions of the protein target could represent a very intriguing and fruitful strategy. In this context, a theoretical approach may further contribute to solve protein structures and their refinement. Here, we delineate the main features of a reliable experimental-theoretical integrated approach, based on the use of metallodrugs, for protein structure solving.
Collapse
Affiliation(s)
- Iogann Tolbatov
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avgda. Països Catalans, 16, 43007, Tarragona, Spain
| | - Alessandro Marrone
- Department of Pharmacy, University "G. D'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - William Shepard
- Department PROXIMA2 A, Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192, Gif-sur-Yvette, France
| | - Lorenzo Chiaverini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | | | - Diego La Mendola
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Tiziano Marzo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Lidia Ciccone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
- Department PROXIMA2 A, Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192, Gif-sur-Yvette, France
| |
Collapse
|
6
|
Aragoni MC, Podda E, Caria V, Carta SA, Cherchi MF, Lippolis V, Murgia S, Orrù G, Pippia G, Scano A, Slawin AMZ, Woollins JD, Pintus A, Arca M. [Au III(N^N)Br 2](PF 6): A Class of Antibacterial and Antibiofilm Complexes (N^N = 2,2'-Bipyridine and 1,10-Phenanthroline Derivatives). Inorg Chem 2023; 62:2924-2933. [PMID: 36728360 PMCID: PMC9930124 DOI: 10.1021/acs.inorgchem.2c04410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A series of new complexes of general formula [AuIII(N^N)Br2](PF6) (N^N = 2,2'-bipyridine and 1,10-phenanthroline derivatives) were prepared and characterized by spectroscopic, electrochemical, and diffractometric techniques and tested against Gram-positive and Gram-negative bacterial strains (Staphylococcus aureus, Streptococcus intermedius, Pseudomonas aeruginosa, and Escherichia coli), showing promising antibacterial and antibiofilm properties.
Collapse
Affiliation(s)
- M. Carla Aragoni
- Dipartimento
di Scienze Chimiche e Geologiche, Università
degli Studi di Cagliari, S. S. 554 bivio per Sestu, Monserrato Cagliari09042, Italy
| | - Enrico Podda
- Dipartimento
di Scienze Chimiche e Geologiche, Università
degli Studi di Cagliari, S. S. 554 bivio per Sestu, Monserrato Cagliari09042, Italy,Centro
Servizi di Ateneo per la Ricerca (CeSAR), Università degli Studi di Cagliari, S. S. 554 bivio per Sestu, Monserrato Cagliari09042, Italy
| | - Veronica Caria
- Dipartimento
di Scienze Chimiche e Geologiche, Università
degli Studi di Cagliari, S. S. 554 bivio per Sestu, Monserrato Cagliari09042, Italy
| | - Silvia A. Carta
- Dipartimento
di Scienze Chimiche e Geologiche, Università
degli Studi di Cagliari, S. S. 554 bivio per Sestu, Monserrato Cagliari09042, Italy
| | - M. Francesca Cherchi
- Dipartimento
di Scienze Chimiche e Geologiche, Università
degli Studi di Cagliari, S. S. 554 bivio per Sestu, Monserrato Cagliari09042, Italy
| | - Vito Lippolis
- Dipartimento
di Scienze Chimiche e Geologiche, Università
degli Studi di Cagliari, S. S. 554 bivio per Sestu, Monserrato Cagliari09042, Italy
| | - Simone Murgia
- Dipartimento
di Scienze Chimiche e Geologiche, Università
degli Studi di Cagliari, S. S. 554 bivio per Sestu, Monserrato Cagliari09042, Italy
| | - Germano Orrù
- Dipartimento
di Scienze Chirurgiche, University of Cagliari, Cagliari09042, Italy
| | - Gabriele Pippia
- Dipartimento
di Scienze Chimiche e Geologiche, Università
degli Studi di Cagliari, S. S. 554 bivio per Sestu, Monserrato Cagliari09042, Italy
| | - Alessandra Scano
- Dipartimento
di Scienze Chirurgiche, University of Cagliari, Cagliari09042, Italy
| | - Alexandra M. Z. Slawin
- EaStCHEM
School of Chemistry, University of St. Andrews, North Haugh, Fife, St. AndrewsKY16 9ST, U.K.
| | - J. Derek Woollins
- EaStCHEM
School of Chemistry, University of St. Andrews, North Haugh, Fife, St. AndrewsKY16 9ST, U.K.,Department
of Chemistry, Khalifa University, Abu Dhabi127788, United Arab Emirates
| | - Anna Pintus
- Dipartimento
di Scienze Chimiche e Geologiche, Università
degli Studi di Cagliari, S. S. 554 bivio per Sestu, Monserrato Cagliari09042, Italy,
| | - Massimiliano Arca
- Dipartimento
di Scienze Chimiche e Geologiche, Università
degli Studi di Cagliari, S. S. 554 bivio per Sestu, Monserrato Cagliari09042, Italy,
| |
Collapse
|
7
|
Zhong L, Xia Y, He T, Wenjie S, Jinxia A, Lijun Y, Hui G. Polymeric photothermal nanoplatform with the inhibition of aquaporin 3 for anti-metastasis therapy of breast cancer. Acta Biomater 2022; 153:505-517. [PMID: 36115652 DOI: 10.1016/j.actbio.2022.09.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 12/18/2022]
Abstract
Metastasis, as one of major challenges in the cancer treatment, is responsible for the high mortality of breast cancer. It has been reported that breast cancer cell invasion and metastasis are related to aquaporin 3 (AQP3), which is the transmembrane transport channel for H2O2 molecules. Moreover, there is agreement that preventing the metastasis of breast tumor cells in combination with inhibiting the tumor growth is a promising strategy for cancer chemotherapy. Herein, we constructed a flexible photothermal crosslinked polymeric nanovehicle for the delivery of the AQP3 inhibitor, [AuCl2(phen)]+Cl- (Auphen). The polymeric nanovehicle (pOMPC-Dex) is comprised of three modules: 1) pOEGMA-co-pMEO2MA serves as the temperature-responsive segment; 2) pCyanineMA acts as the near-infrared (NIR) optical absorbing motif for photothermal therapy and is conjugated with pOEGMA-co-pMEO2MA to obtain NIR light stimuli-responsive drug release; and 3) pPBAMA-Dex functions as an acidic tumor microenvironment-responsive unit. Auphen was encapsulated into a nanovehicle (Auphen@pOMPC-Dex) through electrostatic interactions. The designed nanoplatform showed a pH- and NIR light stimuli-responsive drug release profile and exhibited the strong inhibition of intracellular H2O2 uptake by breast cancer cells, which led to the inhibition of breast cancer cell migration and invasion in vitro. In a breast cancer mouse model, Auphen@pOMPC-Dex markedly reduced the number of lung metastases in tumor-bearing mice due to the combined suppression of tumor growth and metastasis. Consequently, the fabricated Auphen@pOMPC-Dex may provide a new strategy for the development of comprehensive oncotherapies. STATEMENT OF SIGNIFICANCE: High mortality due to metastasis-induced breast cancer has been a key issue that needs to be addressed. It has been reported that aquaporin 3 (AQP3), a transmembrane transport channel for H2O2 molecules was found to have an accelerated effect on breast cancer cell migration. Hence, a flexible crosslinked polymeric nanoplatform with the inhibition of AQP3 was designed to inhibit metastasis of breast cancer cells. At the same time, we combined suppression of tumor growth with photothermal therapy to enhance the anticancer therapy effect.
Collapse
Affiliation(s)
- Luo Zhong
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin 300384, PR China
| | - Yang Xia
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin 300384, PR China
| | - Tan He
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin 300384, PR China
| | - Shi Wenjie
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin 300384, PR China
| | - An Jinxia
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin 300384, PR China.
| | - Yang Lijun
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China.
| | - Gao Hui
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, PR China.
| |
Collapse
|
8
|
Zhang J, Li Y, Fang R, Wei W, Wang Y, Jin J, Yang F, Chen J. Organometallic gold(I) and gold(III) complexes for lung cancer treatment. Front Pharmacol 2022; 13:979951. [PMID: 36176441 PMCID: PMC9513137 DOI: 10.3389/fphar.2022.979951] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Metal compounds, especially gold complexes, have recently gained increasing attention as possible lung cancer therapeutics. Some gold complexes display not only excellent activity in cisplatin-sensitive lung cancer but also in cisplatin-resistant lung cancer, revealing promising prospects in the development of novel treatments for lung cancer. This review summarizes examples of anticancer gold(I) and gold (III) complexes for lung cancer treatment, including mechanisms of action and approaches adopted to improve their efficiency. Several excellent examples of gold complexes against lung cancer are highlighted.
Collapse
Affiliation(s)
- Juzheng Zhang
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
| | - Yanping Li
- School of Public Health, Guilin Medical University, Guilin, China
| | - Ronghao Fang
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
| | - Wei Wei
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
| | - Yong Wang
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
| | - Jiamin Jin
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
| | - Feng Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
- *Correspondence: Feng Yang, mailto:, Jian Chen, mailto:
| | - Jian Chen
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
- *Correspondence: Feng Yang, mailto:, Jian Chen, mailto:
| |
Collapse
|
9
|
Shangzu Z, Dingxiong X, ChengJun M, Yan C, Yangyang L, Zhiwei L, Ting Z, Zhiming M, Yiming Z, Liying Z, Yongqi L. Aquaporins: Important players in the cardiovascular pathophysiology. Pharmacol Res 2022; 183:106363. [PMID: 35905892 DOI: 10.1016/j.phrs.2022.106363] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/15/2022]
Abstract
Aquaporin is a membrane channel protein widely expressed in body tissues, which can control the input and output of water in cells. AQPs are differentially expressed in different cardiovascular tissues and participate in water transmembrane transport, cell migration, metabolism, inflammatory response, etc. The aberrant expression of AQPs highly correlates with the onset of ischemic heart disease, myocardial ischemia-reperfusion injury, heart failure, etc. Despite much attention to the regulatory role of AQPs in the cardiovascular system, the translation of AQPs into clinical application still faces many challenges, including clarification of the localization of AQPs in the cardiovascular system and mechanisms mediating cardiovascular pathophysiology, as well as the development of cardiovascular-specific AQPs modulators.Therefore, in this study, we comprehensively reviewed the critical roles of AQP family proteins in maintaining cardiovascular homeostasis and described the underlying mechanisms by which AQPs mediated the outcomes of cardiovascular diseases. Meanwhile, AQPs serve as important therapeutic targets, which provide a wide range of opportunities to investigate the mechanisms of cardiovascular diseases and the treatment of those diseases.
Collapse
Affiliation(s)
- Zhang Shangzu
- Gansu University of traditional Chinese Medicine, LanZhou, China
| | - Xie Dingxiong
- Gansu Institute of Cardiovascular Diseases, LanZhou,China
| | - Ma ChengJun
- Gansu University of traditional Chinese Medicine, LanZhou, China
| | - Chen Yan
- Gansu University of traditional Chinese Medicine, LanZhou, China
| | - Li Yangyang
- Gansu University of traditional Chinese Medicine, LanZhou, China
| | - Liu Zhiwei
- Gansu University of traditional Chinese Medicine, LanZhou, China
| | - Zhou Ting
- Gansu University of traditional Chinese Medicine, LanZhou, China
| | - Miao Zhiming
- Gansu University of traditional Chinese Medicine, LanZhou, China
| | - Zhang Yiming
- Gansu University of traditional Chinese Medicine, LanZhou, China
| | - Zhang Liying
- Gansu University of traditional Chinese Medicine, LanZhou, China; Gansu Institute of Cardiovascular Diseases, LanZhou,China.
| | - Liu Yongqi
- Gansu University of traditional Chinese Medicine, LanZhou, China; Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities Gansu University of Chinese Medicine, Lanzhou, China; Key Laboratory of Dunhuang Medicine and Transformation at Provincial and Ministerial Level, Lanzhou, China.
| |
Collapse
|
10
|
Tolbatov I, Marrone A. Selenocysteine of thioredoxin reductase as the primary target for the antitumor metallodrugs: A computational point of view. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Salman MM, Kitchen P, Yool AJ, Bill RM. Recent breakthroughs and future directions in drugging aquaporins. Trends Pharmacol Sci 2022; 43:30-42. [PMID: 34863533 DOI: 10.1016/j.tips.2021.10.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/09/2021] [Accepted: 10/18/2021] [Indexed: 02/06/2023]
Abstract
Aquaporins facilitate the passive transport of water, solutes, or ions across biological membranes. They are implicated in diverse pathologies including brain edema following stroke or trauma, epilepsy, cancer cell migration and tumor angiogenesis, metabolic disorders, and inflammation. Despite this, there is no aquaporin-targeted drug in the clinic and aquaporins have been perceived to be intrinsically non-druggable targets. Here we challenge this idea, as viable routes to inhibition of aquaporin function have recently been identified, including targeting their regulation or their roles as channels for unexpected substrates. Identifying new drug development frameworks for conditions associated with disrupted water and solute homeostasis will meet the urgent, unmet clinical need of millions of patients for whom no pharmacological interventions are available.
Collapse
Affiliation(s)
- Mootaz M Salman
- Department of Physiology, Anatomy and Genetics, Kavli Institute for NanoScience Discovery, University of Oxford, Oxford OX1 3PT, UK; Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK.
| | - Philip Kitchen
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK.
| | - Andrea J Yool
- University of Adelaide, School of Biomedicine, Adelaide, South Australia 5005, Australia.
| | - Roslyn M Bill
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK.
| |
Collapse
|
12
|
Tolbatov I, Marrone A, Coletti C, Re N. Computational Studies of Au(I) and Au(III) Anticancer MetalLodrugs: A Survey. Molecules 2021; 26:7600. [PMID: 34946684 PMCID: PMC8707411 DOI: 10.3390/molecules26247600] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/29/2021] [Accepted: 12/12/2021] [Indexed: 11/16/2022] Open
Abstract
Owing to the growing hardware capabilities and the enhancing efficacy of computational methodologies, computational chemistry approaches have constantly become more important in the development of novel anticancer metallodrugs. Besides traditional Pt-based drugs, inorganic and organometallic complexes of other transition metals are showing increasing potential in the treatment of cancer. Among them, Au(I)- and Au(III)-based compounds are promising candidates due to the strong affinity of Au(I) cations to cysteine and selenocysteine side chains of the protein residues and to Au(III) complexes being more labile and prone to the reduction to either Au(I) or Au(0) in the physiological milieu. A correct prediction of metal complexes' properties and of their bonding interactions with potential ligands requires QM computations, usually at the ab initio or DFT level. However, MM, MD, and docking approaches can also give useful information on their binding site on large biomolecular targets, such as proteins or DNA, provided a careful parametrization of the metal force field is employed. In this review, we provide an overview of the recent computational studies of Au(I) and Au(III) antitumor compounds and of their interactions with biomolecular targets, such as sulfur- and selenium-containing enzymes, like glutathione reductases, glutathione peroxidase, glutathione-S-transferase, cysteine protease, thioredoxin reductase and poly (ADP-ribose) polymerase 1.
Collapse
Affiliation(s)
- Iogann Tolbatov
- Institut de Chimie Moleculaire de l’Université de Bourgogne (ICMUB), Université de Bourgogne Franche-Comté (UBFC), Avenue Alain Savary 9, 21078 Dijon, France;
| | - Alessandro Marrone
- Dipartimento di Farmacia, Università degli Studi “G. D’Annunzio” Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy; (A.M.); (C.C.)
| | - Cecilia Coletti
- Dipartimento di Farmacia, Università degli Studi “G. D’Annunzio” Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy; (A.M.); (C.C.)
| | - Nazzareno Re
- Dipartimento di Farmacia, Università degli Studi “G. D’Annunzio” Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy; (A.M.); (C.C.)
| |
Collapse
|
13
|
Rosa LB, Aires RL, Oliveira LS, Fontes JV, Miguel DC, Abbehausen C. A "Golden Age" for the discovery of new antileishmanial agents: Current status of leishmanicidal gold complexes and prospective targets beyond the trypanothione system. ChemMedChem 2021; 16:1681-1695. [PMID: 33615725 DOI: 10.1002/cmdc.202100022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Indexed: 12/11/2022]
Abstract
Leishmaniasis is one of the most neglected diseases worldwide and is considered a serious public health issue. The current therapeutic options have several disadvantages that make the search for new therapeutics urgent. Gold compounds are emerging as promising candidates based on encouraging in vitro and limited in vivo results for several AuI and AuIII complexes. The antiparasitic mechanisms of these molecules remain only partially understood. However, a few studies have proposed the trypanothione redox system as a target, similar to the mammalian thioredoxin system, pointed out as the main target for several gold compounds with significant antitumor activity. In this review, we present the current status of the investigation and design of gold compounds directed at treating leishmaniasis. In addition, we explore potential targets in Leishmania parasites beyond the trypanothione system, taking into account previous studies and structure modulation performed for gold-based compounds.
Collapse
Affiliation(s)
- Leticia B Rosa
- Institute of Biology, University of Campinas UNICAMP, Campinas, SP, Brazil
| | - Rochanna L Aires
- Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil)
| | - Laiane S Oliveira
- Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil)
| | - Josielle V Fontes
- Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil)
| | - Danilo C Miguel
- Institute of Biology, University of Campinas UNICAMP, Campinas, SP, Brazil
| | - Camilla Abbehausen
- Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil)
| |
Collapse
|
14
|
Pinho JO, da Silva IV, Amaral JD, Rodrigues CMP, Casini A, Soveral G, Gaspar MM. Therapeutic potential of a copper complex loaded in pH-sensitive long circulating liposomes for colon cancer management. Int J Pharm 2021; 599:120463. [PMID: 33711474 DOI: 10.1016/j.ijpharm.2021.120463] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022]
Abstract
Colorectal carcinoma is a complex malignancy and current therapies are hampered by systemic toxicity and tumor resistance to treatment. In the field of cancer therapy, copper (Cu) compounds hold great promise, with some reaching clinical trials. However, the anticancer potential of Cu complexes has not yet been fully disclosed due to speciation in biological systems, leading to inactivation and/or potential side effects. This is the case of the widely studied Cu(II) complexes featuring phenanthroline ligands, with potent antiproliferative effects in vitro, but often failing in vivo. Aiming to overcome these limitations and maximize its anticancer effects in vivo, the Cu(II) complex (Cu(1,10-phenanthroline)Cl2) (Cuphen), displaying IC50 values <6 μM against different tumor cell lines, was loaded in long circulating liposomes with pH-sensitive properties (F1, DMPC:CHEMS:DSPE-PEG; F2, DOPE:CHEMS:DMPC:DSPE-PEG). This enabled a pH-dependent Cuphen release, with F1 and F2 releasing 36/78% and 47/94% of Cuphen at pH 6/4.5, respectively. The so formed nanoformulations preserved Cuphen effects towards cancer cell lines, with F2 presenting IC50 of 2.7 μM and 4.9 μM towards colon cancer CT-26 and HCT-116 cells, respectively. Additional in vitro studies confirmed that Cuphen antiproliferative activity towards colon cancer cells does not rely on cell cycle effect. Furthermore, in these cells, Cuphen reduced glycerol permeation and impaired cell migration. At 24 h incubation, wound closure was reduced by Cuphen, with migration values of 29% vs 54% (control) and 45% (1,10-phenanthroline) in CT-26 cells, and 33% vs ~44% (control and 1,10-phenanthroline) in HCT-116 cells. These effects were probably due to inhibition of aquaglyceroporins, membrane water and glycerol channels that are often abnormally expressed in tumors. In a syngeneic murine colon cancer model, F2 significantly reduced tumor progression, compared to the control group and to mice treated with free Cuphen or with the ligand, 1,10-phenanthroline, without eliciting toxic side effects. F2 led to a tumor volume reduction of ca. 50%. This was confirmed by RTV analysis, where F2 reached a value of 1.3 vs 4.4 (Control), 5.8 (Phen) and 3.8 (free Cuphen). These results clearly demonstrated the important role of the Cu(II) for the observed biological activity that was maximized following the association to a lipid-based nanosystem. Overall, this study represents a step forward in the development of pH-sensitive nanotherapeutic strategies of metallodrugs for colon cancer management.
Collapse
Affiliation(s)
- Jacinta O Pinho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Inês V da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Joana D Amaral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Angela Casini
- Department of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748 Garching b. München, Germany.
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - M Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
15
|
Tolbatov I, Coletti C, Marrone A, Re N. Reactivity of arsenoplatin complex versus water and thiocyanate: a DFT benchmark study. Theor Chem Acc 2020. [DOI: 10.1007/s00214-020-02694-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AbstractSeven different density functionals, including GGAs, meta-GGAs, hybrids and range-separated hybrids, and considering Grimme’s empirical dispersion correction (M06-L, M06-2X, PBE0, B3LYP, B3LYP-D3, CAM-B3LYP, ωB97X) have been tested for their performance in the prediction of molecular structures, energies and energy barriers for a class of newly developed antitumor platinum complexes involving main group heavy elements such as arsenic. The calculated structural parameters, energies and energy barriers have been compared to the available experimental data. The results show that range-separated hybrid functionals CAM-B3LYP and ωB97X give good results in predicting both geometrical parameters and isomerization energies and barrier heights and are promising new tools for the theoretical study of novel platinum(II) arsenic compounds.
Collapse
|
16
|
de Souza Pereira C, Costa Quadros H, Magalhaes Moreira DR, Castro W, Santos De Deus Da Silva RI, Botelho Pereira Soares M, Fontinha D, Prudêncio M, Schmitz V, Dos Santos HF, Gendrot M, Fonta I, Mosnier J, Pradines B, Navarro M. A Novel Hybrid of Chloroquine and Primaquine Linked by Gold(I): Multitarget and Multiphase Antiplasmodial Agent. ChemMedChem 2020; 16:662-678. [PMID: 33231370 DOI: 10.1002/cmdc.202000653] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/02/2020] [Indexed: 12/23/2022]
Abstract
Plasmodium parasites kill 435 000 people around the world every year due to unavailable vaccines, a limited arsenal of antimalarial drugs, delayed treatment, and the reduced clinical effectiveness of current practices caused by drug resistance. Therefore, there is an urgent need to discover and develop new antiplasmodial candidates. In this work, we present a novel strategy to develop a multitarget metallic hybrid antimalarial agent with possible dual efficacy in both sexual and asexual erythrocytic stages. A hybrid of antimalarial drugs (chloroquine and primaquine) linked by gold(I) was synthesized and characterized by spectroscopic and analytical techniques. The CQPQ-gold(I) hybrid molecule affects essential parasite targets, it inhibits β-hematin formation and interacts moderately with the DNA minor groove. Its interaction with PfTrxR was also examined in computational modeling studies. The CQPQ-gold(I) hybrid displayed an excellent in vitro antimalarial activity against the blood-stage of Plasmodium falciparum and liver-stage of Plasmodium berghei and efficacy in vivo against P. berghei, thereby demonstrating its multiple-stage antiplasmodial activity. This metallic hybrid is a promising chemotherapeutic agent that could act in the treatment, prevention, and transmission of malaria.
Collapse
Affiliation(s)
- Caroline de Souza Pereira
- Departamento de Química, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, s/n - Campus Universitário, Bairro Martelos, CEP 36036-900, Juiz de Fora, Minas Gerais, Brasil
| | - Helenita Costa Quadros
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Av. Waldemar Falcão, 121, Candeal, Salvador, Bahia, Brasil
| | | | - William Castro
- Centro de Química, Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Química, Carretera Panamericana, Km 11, Altos de Pipe, San Antonio de los Altos Miranda, 1020-A, Caracas, Venezuela
| | | | | | - Diana Fontinha
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa <, Lisboa, Portugal
| | - Miguel Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa <, Lisboa, Portugal
| | - Vinicius Schmitz
- Departamento de Química, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, s/n - Campus Universitário, Bairro Martelos, CEP 36036-900, Juiz de Fora, Minas Gerais, Brasil
| | - Hélio F Dos Santos
- Departamento de Química, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, s/n - Campus Universitário, Bairro Martelos, CEP 36036-900, Juiz de Fora, Minas Gerais, Brasil
| | - Mathieu Gendrot
- Unité Parasitologie et entomologie, Institut de recherche biomédicale des armées, 19-21 Bd Jean Moulin, 13005, Marseille, France.,Aix-Marseille Univ, IRD, SSA, AP-HM, VITROME, 19-21 Bd Jean Moulin, 13005, Marseille, France.,IHU Méditerranée Infection, 19-21 Bd Jean Moulin, 13005, Marseille, France
| | - Isabelle Fonta
- Unité Parasitologie et entomologie, Institut de recherche biomédicale des armées, 19-21 Bd Jean Moulin, 13005, Marseille, France.,Aix-Marseille Univ, IRD, SSA, AP-HM, VITROME, 19-21 Bd Jean Moulin, 13005, Marseille, France.,IHU Méditerranée Infection, 19-21 Bd Jean Moulin, 13005, Marseille, France.,Centre National de Référence du Paludisme, 19-21 Bd Jean Moulin, 13005, Marseille, France
| | - Joel Mosnier
- Unité Parasitologie et entomologie, Institut de recherche biomédicale des armées, 19-21 Bd Jean Moulin, 13005, Marseille, France.,Aix-Marseille Univ, IRD, SSA, AP-HM, VITROME, 19-21 Bd Jean Moulin, 13005, Marseille, France.,IHU Méditerranée Infection, 19-21 Bd Jean Moulin, 13005, Marseille, France.,Centre National de Référence du Paludisme, 19-21 Bd Jean Moulin, 13005, Marseille, France
| | - Bruno Pradines
- Unité Parasitologie et entomologie, Institut de recherche biomédicale des armées, 19-21 Bd Jean Moulin, 13005, Marseille, France.,Aix-Marseille Univ, IRD, SSA, AP-HM, VITROME, 19-21 Bd Jean Moulin, 13005, Marseille, France.,IHU Méditerranée Infection, 19-21 Bd Jean Moulin, 13005, Marseille, France.,Centre National de Référence du Paludisme, 19-21 Bd Jean Moulin, 13005, Marseille, France
| | - Maribel Navarro
- Departamento de Química, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, s/n - Campus Universitário, Bairro Martelos, CEP 36036-900, Juiz de Fora, Minas Gerais, Brasil
| |
Collapse
|
17
|
Minori K, Rosa LB, Bonsignore R, Casini A, Miguel DC. Comparing the Antileishmanial Activity of Gold(I) and Gold(III) Compounds in L. amazonensis and L. braziliensis in Vitro. ChemMedChem 2020; 15:2146-2150. [PMID: 32830445 PMCID: PMC7756297 DOI: 10.1002/cmdc.202000536] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Indexed: 12/13/2022]
Abstract
A series of mononuclear coordination or organometallic AuI /AuIII complexes (1-9) have been comparatively studied in vitro for their antileishmanial activity against promastigotes and amastigotes, the clinically relevant parasite form, of Leishmania amazonensis and Leishmania braziliensis. One of the cationic AuI bis-N-heterocyclic carbenes (3) has low EC50 values (ca. 4 μM) in promastigotes cells and no toxicity in host macrophages. Together with two other AuIII complexes (6 and 7), the compound is also extremely effective in intracellular amastigotes from L. amazonensis. Initial mechanistic studies include an evaluation of the gold complexes' effect on L. amazonensis' plasma membrane integrity.
Collapse
Affiliation(s)
- Karen Minori
- Department of Animal Biology, Biology InstituteUniversity of Campinas (UNICAMP)Rua Monteiro Lobato, 25513083-862.CampinasSPBrazil
| | - Letícia B. Rosa
- Department of Animal Biology, Biology InstituteUniversity of Campinas (UNICAMP)Rua Monteiro Lobato, 25513083-862.CampinasSPBrazil
| | - Riccardo Bonsignore
- Department of ChemistryTechnical University of Munich (TUM)Lichtenbergstraße 485748Garching b. MünchenGermany
| | - Angela Casini
- Department of ChemistryTechnical University of Munich (TUM)Lichtenbergstraße 485748Garching b. MünchenGermany
| | - Danilo C. Miguel
- Department of Animal Biology, Biology InstituteUniversity of Campinas (UNICAMP)Rua Monteiro Lobato, 25513083-862.CampinasSPBrazil
| |
Collapse
|
18
|
Yadav E, Yadav N, Hus A, Yadav JS. Aquaporins in lung health and disease: Emerging roles, regulation, and clinical implications. Respir Med 2020; 174:106193. [PMID: 33096317 DOI: 10.1016/j.rmed.2020.106193] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/17/2020] [Accepted: 10/13/2020] [Indexed: 12/16/2022]
Abstract
Aquaporins (AQPs) aka water channels are a family of conserved transmembrane proteins (~30 kDa monomers) expressed in various organ systems. Of the 13 AQPs (AQP0 through AQP12) in the human body, four (AQPs 1, 3, 4, and 5) are expressed in the respiratory system. These channels are conventionally known for mediating transcellular fluid movements. Certain AQPs (aquaglyceroporins) have the capability to transport glycerol and potentially other solutes. There is an emerging body of literature unveiling the non-conventional roles of AQPs such as in cell proliferation and migration, gas permeation, signal potentiation, etc. Initial gene knock-out studies established a physiological role for lung AQPs, particularly AQP5, in maintaining homeostasis, by mediating fluid secretion from submucosal glands onto the airway surface liquid (ASL) lining. Subsequent studies have highlighted the functional significance of AQPs, particularly AQP1 and AQP5 in lung pathophysiology and diseases, including but not limited to chronic and acute lung injury, chronic obstructive pulmonary disease (COPD), other inflammatory lung conditions, and lung cancer. AQP1 has been suggested as a potential prognostic marker for malignant mesothelioma. Recent efforts are directed toward exploiting AQPs as targets for diagnosis, prevention, intervention, and/or treatment of various lung conditions. Emerging information on regulatory pathways and directed mechanistic research are posited to unravel novel strategies for these clinical implications. Future considerations should focus on development of AQP inhibitors, blockers, and modulators for therapeutic needs, and better understanding the role of lung-specific AQPs in inter-individual susceptibility to chronic lung diseases such as COPD and cancer.
Collapse
Affiliation(s)
- Ekta Yadav
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| | - Niket Yadav
- Medical Scientist Training Program, University of Virginia School of Medicine, Charlottesville, VA, 22908-0738, USA
| | - Ariel Hus
- Department of Biology, University of Miami, Coral Gables, Florida, 33146, USA
| | - Jagjit S Yadav
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| |
Collapse
|
19
|
Dominelli B, Jakob CH, Oberkofler J, Fischer PJ, Esslinger EM, Reich RM, Marques F, Pinheiro T, Correia JD, Kühn FE. Mechanisms underlying the cytotoxic activity of syn/anti-isomers of dinuclear Au(I) NHC complexes. Eur J Med Chem 2020; 203:112576. [DOI: 10.1016/j.ejmech.2020.112576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 02/09/2023]
|
20
|
Insights into the Selectivity Mechanisms of Grapevine NIP Aquaporins. Int J Mol Sci 2020; 21:ijms21186697. [PMID: 32933135 PMCID: PMC7576499 DOI: 10.3390/ijms21186697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/05/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022] Open
Abstract
Nodulin 26-like intrinsic proteins (NIPs) of the plant aquaporin family majorly facilitate the transport of physiologically relevant solutes. The present study intended to investigate how substrate selectivity in grapevine NIPs is influenced by the aromatic/arginine (ar/R) selectivity filter within the pore and the possible underlying mechanisms. A mutational approach was used to interchange the ar/R residues between grapevine NIPs (VvTnNIP1;1 with VvTnNIP6;1, and VvTnNIP2;1 with VvTnNIP5;1). Their functional characterization by stopped-flow spectroscopy in Saccharomyces cerevisiae revealed that mutations in residues of H2/H5 helices in VvTnNIP1;1 and VvTnNIP6;1 caused a general decline in membrane glycerol permeability but did not impart the expected substrate conductivity in the mutants. This result suggests that ar/R filter substitution could alter the NIP channel activity, but it was not sufficient to interchange their substrate preferences. Further, homology modeling analyses evidenced that variations in the pore radius combined with the differences in the channel's physicochemical properties (hydrophilicity/hydrophobicity) may drive substrate selectivity. Furthermore, yeast growth assays showed that H5 residue substitution alleviated the sensitivity of VvTnNIP2;1 and VvTnNIP5;1 to As, B, and Se, implying importance of H5 sequence for substrate selection. These results contribute to the knowledge of the overall determinants of substrate selectivity in NIPs.
Collapse
|
21
|
Yadav DK, Kumar S, Choi EH, Chaudhary S, Kim MH. Computational Modeling on Aquaporin-3 as Skin Cancer Target: A Virtual Screening Study. Front Chem 2020; 8:250. [PMID: 32351935 PMCID: PMC7175779 DOI: 10.3389/fchem.2020.00250] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/17/2020] [Indexed: 12/25/2022] Open
Abstract
Aquaporin-3 (AQP3) is one of the aquaglyceroporins, which is expressed in the basolateral layer of the skin membrane. Studies have reported that human skin squamous cell carcinoma overexpresses AQP3 and inhibition of its function may alleviate skin tumorigenesis. In the present study, we have applied a virtual screening method that encompasses filters for physicochemical properties and molecular docking to select potential hit compounds that bind to the Aquaporin-3 protein. Based on molecular docking results, the top 20 hit compounds were analyzed for stability in the binding pocket using unconstrained molecular dynamics simulations and further evaluated for binding free energy. Furthermore, examined the ligand-unbinding pathway of the inhibitor from its bound form to explore possible routes for inhibitor approach to the ligand-binding site. With a good docking score, stability in the binding pocket, and free energy of binding, these hit compounds can be developed as Aquaporin-3 inhibitors in the near future.
Collapse
Affiliation(s)
- Dharmendra Kumar Yadav
- Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, Incheon, South Korea
| | - Surendra Kumar
- Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, Incheon, South Korea
| | - Eun-Ha Choi
- Plasma Bioscience Research Center/PDP Research Center, Kwangwoon University, Nowon-Gu, South Korea
| | - Sandeep Chaudhary
- Laboratory of Organic & Medicinal Chemistry, Department of Chemistry, Malaviya National Institute of Technology, Jaipur, India
| | - Mi-Hyun Kim
- Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, Incheon, South Korea
| |
Collapse
|
22
|
A Novel Hybrid Nanosystem Integrating Cytotoxic and Magnetic Properties as a Tool to Potentiate Melanoma Therapy. NANOMATERIALS 2020; 10:nano10040693. [PMID: 32268611 PMCID: PMC7221742 DOI: 10.3390/nano10040693] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 12/11/2022]
Abstract
Cancer is a major health concern and the prognosis is often poor. Significant advances in nanotechnology are now driving a revolution in cancer detection and treatment. The goal of this study was to develop a novel hybrid nanosystem for melanoma treatment, integrating therapeutic and magnetic targeting modalities. Hence, we designed long circulating and pH-sensitive liposomes loading both dichloro(1,10-phenanthroline) copper (II) (Cuphen), a cytotoxic metallodrug, and iron oxide nanoparticles (IONPs). The synthetized IONPs were characterized by transmission electron microscopy and dynamic light scattering. Lipid-based nanoformulations were prepared by the dehydration rehydration method, followed by an extrusion step for reducing and homogenizing the mean size. Liposomes were characterized in terms of incorporation parameters and mean size. High Cuphen loadings were obtained and the presence of IONPs slightly reduced Cuphen incorporation parameters. Cuphen antiproliferative properties were preserved after association to liposomes and IONPs (at 2 mg/mL) did not interfere on cellular proliferation of murine and human melanoma cell lines. Moreover, the developed nanoformulations displayed magnetic properties. The absence of hemolytic activity for formulations under study demonstrated their safety for parenteral administration. In conclusion, a lipid-based nanosystem loading the cytotoxic metallodrug, Cuphen, and displaying magnetic properties was successfully designed.
Collapse
|
23
|
Tolbatov I, Coletti C, Marrone A, Re N. Insight into the Substitution Mechanism of Antitumor Au(I) N-Heterocyclic Carbene Complexes by Cysteine and Selenocysteine. Inorg Chem 2020; 59:3312-3320. [DOI: 10.1021/acs.inorgchem.0c00106] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Iogann Tolbatov
- Dipartimento di Farmacia, Università degli Studi “G. D’Annunzio” Chieti-Pescara, Via dei Vestini, I-66100 Chieti, Italy
| | - Cecilia Coletti
- Dipartimento di Farmacia, Università degli Studi “G. D’Annunzio” Chieti-Pescara, Via dei Vestini, I-66100 Chieti, Italy
| | - Alessandro Marrone
- Dipartimento di Farmacia, Università degli Studi “G. D’Annunzio” Chieti-Pescara, Via dei Vestini, I-66100 Chieti, Italy
| | - Nazzareno Re
- Dipartimento di Farmacia, Università degli Studi “G. D’Annunzio” Chieti-Pescara, Via dei Vestini, I-66100 Chieti, Italy
| |
Collapse
|
24
|
Ok K, Li W, Neu HM, Batelu S, Stemmler TL, Kane MA, Michel SLJ. Role of Gold in Inflammation and Tristetraprolin Activity. Chemistry 2020; 26:1535-1547. [DOI: 10.1002/chem.201904837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Kiwon Ok
- Department of Pharmaceutical Sciences University of Maryland School of Pharmacy 20 Penn St. Baltimore MD 21201 USA
| | - Wenjing Li
- Department of Pharmaceutical Sciences University of Maryland School of Pharmacy 20 Penn St. Baltimore MD 21201 USA
| | - Heather M. Neu
- Department of Pharmaceutical Sciences University of Maryland School of Pharmacy 20 Penn St. Baltimore MD 21201 USA
| | - Sharon Batelu
- Department of Pharmaceutical Sciences Wayne State University 259 Mack Avenue Detroit MI 48201 USA
| | - Timothy L. Stemmler
- Department of Pharmaceutical Sciences Wayne State University 259 Mack Avenue Detroit MI 48201 USA
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences University of Maryland School of Pharmacy 20 Penn St. Baltimore MD 21201 USA
| | - Sarah L. J. Michel
- Department of Pharmaceutical Sciences University of Maryland School of Pharmacy 20 Penn St. Baltimore MD 21201 USA
| |
Collapse
|
25
|
Oberkofler J, Aikman B, Bonsignore R, Pöthig A, Platts J, Casini A, Kühn FE. Exploring the Reactivity and Biological Effects of Heteroleptic N‐Heterocyclic Carbene Gold(I)‐Alkynyl Complexes. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.201901043] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jens Oberkofler
- Catalysis Research Center and Department of Chemistry Technical University of Munich Lichtenbergstraße 4 85747 Garching Germany
- School of Chemistry Cardiff University Main Building, Park Place CF10 3AT Cardiff UK
- Department of Chemistry Technical University of Munich Lichtenbergstraße 4 85747 Garching Germany
| | - Brech Aikman
- School of Chemistry Cardiff University Main Building, Park Place CF10 3AT Cardiff UK
| | - Riccardo Bonsignore
- School of Chemistry Cardiff University Main Building, Park Place CF10 3AT Cardiff UK
| | - Alexander Pöthig
- Catalysis Research Center and Department of Chemistry Technical University of Munich Lichtenbergstraße 4 85747 Garching Germany
| | - James Platts
- School of Chemistry Cardiff University Main Building, Park Place CF10 3AT Cardiff UK
| | - Angela Casini
- School of Chemistry Cardiff University Main Building, Park Place CF10 3AT Cardiff UK
- Department of Chemistry Technical University of Munich Lichtenbergstraße 4 85747 Garching Germany
| | - Fritz E. Kühn
- Catalysis Research Center and Department of Chemistry Technical University of Munich Lichtenbergstraße 4 85747 Garching Germany
| |
Collapse
|
26
|
Sánchez Delgado GY, Paschoal D, de Oliveira MA, Dos Santos HF. Structure and redox stability of [Au(III)(X^N^X)PR3] complexes (X = C or N) in aqueous solution: The role of phosphine auxiliary ligand. J Inorg Biochem 2019; 200:110804. [DOI: 10.1016/j.jinorgbio.2019.110804] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/08/2019] [Accepted: 08/18/2019] [Indexed: 11/29/2022]
|
27
|
Oliveira Pinho J, Matias M, Gaspar MM. Emergent Nanotechnological Strategies for Systemic Chemotherapy against Melanoma. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1455. [PMID: 31614947 PMCID: PMC6836019 DOI: 10.3390/nano9101455] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/04/2019] [Accepted: 10/10/2019] [Indexed: 12/24/2022]
Abstract
Melanoma is an aggressive form of skin cancer, being one of the deadliest cancers in the world. The current treatment options involve surgery, radiotherapy, targeted therapy, immunotherapy and the use of chemotherapeutic agents. Although the last approach is the most used, the high toxicity and the lack of efficacy in advanced stages of the disease have demanded the search for novel bioactive molecules and/or efficient drug delivery systems. The current review aims to discuss the most recent advances on the elucidation of potential targets for melanoma treatment, such as aquaporin-3 and tyrosinase. In addition, the role of nanotechnology as a valuable strategy to effectively deliver selective drugs is emphasized, either incorporating/encapsulating synthetic molecules or natural-derived compounds in lipid-based nanosystems such as liposomes. Nanoformulated compounds have been explored for their improved anticancer activity against melanoma and promising results have been obtained. Indeed, they displayed improved physicochemical properties and higher accumulation in tumoral tissues, which potentiated the efficacy of the compounds in pre-clinical experiments. Overall, these experiments opened new doors for the discovery and development of more effective drug formulations for melanoma treatment.
Collapse
Affiliation(s)
- Jacinta Oliveira Pinho
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Mariana Matias
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Maria Manuela Gaspar
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
28
|
Pettenuzzo N, Brustolin L, Coltri E, Gambalunga A, Chiara F, Trevisan A, Biondi B, Nardon C, Fregona D. Cu II and Au III Complexes with Glycoconjugated Dithiocarbamato Ligands for Potential Applications in Targeted Chemotherapy. ChemMedChem 2019; 14:1162-1172. [PMID: 31091012 DOI: 10.1002/cmdc.201900226] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 04/29/2019] [Indexed: 11/07/2022]
Abstract
This work is focused on the synthesis, characterization, and preliminary biological evaluation of bio-conjugated AuIII and CuII complexes with the aim of overcoming the well-known side effects of chemotherapy by improving the selective accumulation of an anticancer metal payload in malignant cells. For this purpose, carbohydrates were chosen as targeting agents, exploiting the Warburg effect that accounts for the overexpression of glucose-transporter proteins (in particular GLUTs) in the phospholipid bilayer of most neoplastic cells. We linked the dithiocarbamato moiety to the C1 position of three different monosaccharides: d-glucose, d-galactose, and d-mannose. Altogether, six complexes with a 1:2 metal-to-ligand stoichiometry were synthesized and in vitro tested as anticancer agents. One of them showed high cytotoxic activity toward the HCT116 colorectal human carcinoma cell line, paving the way to future in vivo studies aimed at evaluating the role of carbohydrates in the selective delivery of whole molecules into cancerous cells.
Collapse
Affiliation(s)
- Nicolò Pettenuzzo
- Department of Chemical Sciences (DISC), University of Padova, Via Marzolo 1, 35131, Padova, Italy.,Department of Surgical, Oncological and Gastroenterological Sciences (DISCOG), University of Padova, Via Giustiniani 2, 35128, Padova, Italy
| | - Leonardo Brustolin
- Department of Chemical Sciences (DISC), University of Padova, Via Marzolo 1, 35131, Padova, Italy.,Department of Surgical, Oncological and Gastroenterological Sciences (DISCOG), University of Padova, Via Giustiniani 2, 35128, Padova, Italy
| | - Elisa Coltri
- Department of Chemical Sciences (DISC), University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Alberto Gambalunga
- Department of Cardio-Thoraco-Vascular Sciences and Public Health (DCTV), University of Padova, Via Giustiniani 2, 35128, Padova, Italy
| | - Federica Chiara
- Department of Cardio-Thoraco-Vascular Sciences and Public Health (DCTV), University of Padova, Via Giustiniani 2, 35128, Padova, Italy
| | - Andrea Trevisan
- Department of Cardio-Thoraco-Vascular Sciences and Public Health (DCTV), University of Padova, Via Giustiniani 2, 35128, Padova, Italy
| | - Barbara Biondi
- Institute of Biomolecular Chemistry, Padova Unit, CNR, Via Marzolo 1, 35131, Padova, Italy
| | - Chiara Nardon
- Department of Chemical Sciences (DISC), University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Dolores Fregona
- Department of Chemical Sciences (DISC), University of Padova, Via Marzolo 1, 35131, Padova, Italy
| |
Collapse
|
29
|
Tolbatov I, Coletti C, Marrone A, Re N. Reactivity of Gold(I) Monocarbene Complexes with Protein Targets: A Theoretical Study. Int J Mol Sci 2019; 20:ijms20040820. [PMID: 30769823 PMCID: PMC6412330 DOI: 10.3390/ijms20040820] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/06/2019] [Accepted: 02/12/2019] [Indexed: 01/02/2023] Open
Abstract
Neutral N–heterocyclic carbene gold(I) compounds such as IMeAuCl are widely used both in homogeneous catalysis and, more recently, in medicinal chemistry as promising antitumor agents. In order to shed light on their reactivity with protein side chains, we have carried out density functional theory (DFT) calculations on the thermodynamics and kinetics of their reactions with water and various nucleophiles as a model of plausible protein binding sites such as arginine, aspartic acid, asparagine, cysteine, glutamic acid, glutamine, histidine, lysine, methionine, selenocysteine, and the N-terminal group. In agreement with recent experimental data, our results suggest that IMeAuCl easily interacts with all considered biological targets before being hydrated—unless sterically prevented—and allows the establishment of an order of thermodynamic stability and of kinetic reactivity for its binding to protein residues.
Collapse
Affiliation(s)
- Iogann Tolbatov
- Dipartimento di Farmacia, Università degli Studi "G. D'Annunzio" Chieti-Pescara, Via dei Vestini, I-66100 Chieti, Italy.
| | - Cecilia Coletti
- Dipartimento di Farmacia, Università degli Studi "G. D'Annunzio" Chieti-Pescara, Via dei Vestini, I-66100 Chieti, Italy.
| | - Alessandro Marrone
- Dipartimento di Farmacia, Università degli Studi "G. D'Annunzio" Chieti-Pescara, Via dei Vestini, I-66100 Chieti, Italy.
| | - Nazzareno Re
- Dipartimento di Farmacia, Università degli Studi "G. D'Annunzio" Chieti-Pescara, Via dei Vestini, I-66100 Chieti, Italy.
| |
Collapse
|