1
|
Vechalapu SK, Kumar R, Sachan SK, Shaikh K, Mahapatra AD, Draksharapu A, Allimuthu D. Copper and Manganese Complexes of Pyridinecarboxaldimine Induce Oxidative Cell Death in Cancer Cells. ACS APPLIED BIO MATERIALS 2024; 7:6696-6705. [PMID: 39240687 DOI: 10.1021/acsabm.4c00854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
Leveraging the versatile redox behavior of transition metal complexes with heterocyclic ligands offers significant potential for discovering new anticancer therapeutics. This study presents a systematic investigation of a pyridinecarboxaldimine ligand (PyIm) with late 3d-transition metals inhibiting cancer cell proliferation and the mechanism of action. Synthesis and thorough characterization of authentic metal complexes of redox-active late 3d-transition metals enabled the validation of antiproliferative activity in liver cancer cells. Notably, (PyIm)2Mn(II) (1) and (PyIm)2Cu(II) (5) complexes exhibited a good inhibitory profile against liver cancer cells (EC50: 4.0 μM for 1 and 1.7 μM for 5) with excellent selectivity over normal kidney cells (Selectivity index, SI = 17 for 5). Subsequently, evaluation of these complexes in cancers cell lines from four different sites of origin (liver, breast, blood, and bone) demonstrated a predominant selectivity to liver and a moderate selectivity to breast cancer and leukemia cells over the normal kidney cells. The mechanism of action studies highlighted no expected DNA damage in cells, rather, the enhancement of extracellular and intracellular reactive oxygen species (ROS) resulting in mitochondrial damage leading to oxidative cell death in cancer cells. Notably, these complexes potentiated the antiproliferative effect of commercially used cancer therapeutics (cisplatin, oxaliplatin, doxorubicin, and dasatinib) in liver cancer cells. These findings position redox-active metal complexes for further evaluation as promising candidates for developing anticancer therapeutics and combination therapies.
Collapse
Affiliation(s)
- Sai Kumari Vechalapu
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Rakesh Kumar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Sharad Kumar Sachan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Kanchan Shaikh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | | | - Apparao Draksharapu
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Dharmaraja Allimuthu
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
2
|
Thangavel SK, Mohamed Kasim MS, Rengan R. Promoting the Anticancer Activity with Multidentate Furan-2-Carboxamide Functionalized Aroyl Thiourea Chelation in Binuclear Half-Sandwich Ruthenium(II) Complexes. Inorg Chem 2024; 63:7520-7539. [PMID: 38590210 DOI: 10.1021/acs.inorgchem.4c01265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
A new set of binuclear arene ruthenium complexes [Ru2(p-cymene)2(k4-N2OS)(L1-L3)Cl2] (Ru2L1-Ru2L3) encompassing furan-2-carboxamide-based aroylthiourea derivatives (H2L1-H2L3) was synthesized and characterized by various spectral and analytical techniques. Single-crystal XRD analysis unveils the N^O and N^S mixed monobasic bidentate coordination of the ligands constructing N, S, Cl/N, O, and Cl legged piano stool octahedral geometry. DFT analysis demonstrates the predilection for the formation of stable arene ruthenium complexes. In vitro antiproliferative activity of the complexes was examined against human cervical (HeLa), breast (MCF-7), and lung (A549) cancerous and noncancerous monkey kidney epithelial (Vero) cells. All the complexes are more efficacious against HeLa and MCF-7 cells with low inhibitory doses (3.86-11.02 μM). Specifically, Ru2L3 incorporating p-cymene and -OCH3 fragments exhibits high lipophilicity, significant cytotoxicity against cancer cells, and lower toxicity on noncancerous cells. Staining analysis indicates the apoptosis-associated cell morphological changes expressively in MCF-7 cells. Mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) analyses reveal that Ru2L3 can raise ROS levels, reduce MMP, and trigger mitochondrial dysfunction-mediated apoptosis. The catalytic oxidation of glutathione (GSH) to its disulfide form (GSSG) by the complexes may simultaneously increase the ROS levels, alluding to their observed cytotoxicity and apoptosis induction. Flow cytometry determined the quantitative classification of late apoptosis and S-phase arrest in MCF-7 and HeLa cells. Western blotting analysis confirmed that the complexes promote apoptosis by upregulating Caspase-3 and Caspase-9 and downregulating BCL-2. Molecular docking studies unfolded the strong binding affinities of the complexes with VEGFR2, an angiogenic signaling receptor, and BCL2, Cyclin D1, and HER2 proteins typically overexpressed on tumor cells.
Collapse
Affiliation(s)
- Sathiya Kamatchi Thangavel
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, India
| | | | - Ramesh Rengan
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, India
| |
Collapse
|
3
|
Pan N, Zhang Y, Huang M, Liang Z, Gong Y, Chen X, Li Y, Wu C, Huang Z, Sun J. Lysosome-targeted ruthenium(II) complex encapsulated with pluronic ® F-127 induces oncosis in A549 cells. J Biol Inorg Chem 2024; 29:265-278. [PMID: 38189962 DOI: 10.1007/s00775-023-02039-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/09/2023] [Indexed: 01/09/2024]
Abstract
Transition metal complexes with characteristics of unique packaging in nanoparticles and remarkable cancer cell cytotoxicity have emerged as potential alternatives to platinum-based antitumor drugs. Here we report the synthesis, characterization, and antitumor activities of three new Ruthenium complexes that introduce 5-fluorouracil-derived ligands. Notably, encapsulation of one such metal complex, Ru3, within pluronic® F-127 micelles (Ru3-M) significantly enhanced Ru3 cytotoxicity toward A549 cells by a factor of four. To determine the mechanisms underlying Ru3-M cytotoxicity, additional in vitro experiments were conducted that revealed A549 cell treatment with lysosome-targeting Ru3-M triggered oxidative stress, induced mitochondrial membrane potential depolarization, and drastically reduced intracellular ATP levels. Taken together, these results demonstrated that Ru3-M killed cells mainly via a non-apoptotic pathway known as oncosis, as evidenced by observed Ru3-M-induced cellular morphological changes including cytosolic flushing, cell swelling, and cytoplasmic vacuolation. In turn, these changes together caused cytoskeletal collapse and activation of porimin and calpain1 proteins with known oncotic functions that distinguished this oncotic process from other cell death processes. In summary, Ru3-M is a potential anticancer agent that kills A549 cells via a novel mechanism involving Ru(II) complex triggering of cell death via oncosis.
Collapse
Affiliation(s)
- Nanlian Pan
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
- Department of Pharmacy, Dongguan People's Hospital, Dongguan, 523059, China
| | - Yuqing Zhang
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Minying Huang
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Zhijun Liang
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Yao Gong
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Xide Chen
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, China.
| | - Yuling Li
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Ciling Wu
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Zunnan Huang
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, Guangdong Medical University, Dongguan, 523808, China.
| | - Jing Sun
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China.
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, China.
| |
Collapse
|
4
|
Abirami A, Devan U, Ramesh R, Antony Joseph Velanganni A, Grzegorz Małecki J. Naphthoyl benzhydrazine-decorated binuclear arene Ru(II) complexes as anticancer agents targeting human breast cancer cells. Dalton Trans 2023; 52:16376-16387. [PMID: 37870147 DOI: 10.1039/d3dt02552g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Breast cancer is the most dangerous type in women and its fatality rate has increased over the past decade. To develop more potent and target-specific breast cancer drugs, six arene ruthenium(II) complexes (1-6) containing naphthoyl benzhydrazine ligands (NL1-NL3) were synthesized and characterized by analytical and spectroscopic (infrared, UV-visible, NMR and HR-MS) methods. The SC-XRD analysis of 1 and 6 demonstrates the bis N^O bidentate binding nature of ligands to ruthenium ions and a pseudo-octahedral geometry around the Ru(II) ion. Solution stability studies using UV-Vis spectroscopy evidenced the instantaneous hydrolysis of the complexes to form monoaquated species in a solution of 1 : 9 (v/v) DMSO/phosphate buffer. All the complexes were screened for their in vitro antiproliferative activities against different human breast cancer cells, including MCF-7, SkBr3, MDA-MB-468, MDA-MB-231, and non-cancerous HEK-293 cells, by an MTT assay, and they displayed good cancer cell growth inhibitory capacity with low IC50 values. Notably, complexes 2 and 5 comprising methoxy and p-cymene groups exhibited excellent cytotoxicity towards SkBr3 cells compared to clinical drug cisplatin. AO-EB and HOECHST-33342 staining assays revealed apoptotic morphological changes in complex-treated cancer cells. Further, reactive oxygen species and mitochondrial membrane potential assays validated that the complexes induce apoptotic cell death via an intrinsic mitochondrial pathway with ROS production. In addition, the apoptotic induction and the quantification of late apoptosis were established with the aid of western blot and flow cytometry analysis, respectively.
Collapse
Affiliation(s)
- Arunachalam Abirami
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli - 620 024, India.
| | - Umapathy Devan
- Molecular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli - 620 024, India
| | - Rengan Ramesh
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli - 620 024, India.
| | - Arockiam Antony Joseph Velanganni
- Molecular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli - 620 024, India
| | - Jan Grzegorz Małecki
- Department of Crystallography, Institute of Chemistry, University of Silesia, Katowice, Poland
| |
Collapse
|
5
|
Chen X, Wang W, Ye T, Kang J, Wang Q, Yang W, Dai H, Wang K, Pan J. Lysosome-Specific Coumarin-Based Fluorescent Bioprobes for in Vivo Polarity Sensing and Cancer Treatment. Bioconjug Chem 2023; 34:1851-1860. [PMID: 37708446 DOI: 10.1021/acs.bioconjchem.3c00361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
About 90% of cancer deaths worldwide are caused by the spread of cancer cells from the primary tumor to distant organs (metastasis). Therefore, there is an urgent need for an early diagnosis and treatment before cancer metastasis occurs. Lysosomes have emerged as attractive targets for cancer diagnosis and treatment because polar defects in lysosomes can induce apoptosis and cell death. Coumarin is a known polar-sensitive dye with good biocompatibility; because of this, we constructed two fluorescent probes of coumarin derivatives with the "D-π-A" structure, CouN-1 and CouN-2, through three simple reactions. In molecular design, due to morpholine's prominent lysosomal targeting characteristics, it was used as both lysosomal targeting motifs and an electron donor (D), while coumarin was used as an electron acceptor (A). The experimental results strongly proved that CouN-1 and CouN-2 have a good linear relationship with the polarity change of Δf = 0.209-0.308. In addition, both in vitro and in vivo imaging results have shown that CouN-1 and CouN-2 can specifically identify and monitor tumor sites. In the cell uptake and apoptosis experiments, the two probes also showed a strong antiproliferation effect on cancer cells. All of these characteristics demonstrated the potential of these two polarity-sensitive biological probes, CouN-1 and CouN-2, in the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Xian Chen
- College of Health Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Wenjing Wang
- College of Health Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Tangying Ye
- College of Health Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Jialu Kang
- College of Health Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Qianqiu Wang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Wei Yang
- College of Health Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Heshuang Dai
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Kai Wang
- College of Health Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Jie Pan
- College of Health Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| |
Collapse
|
6
|
Bresciani G, Vančo J, Funaioli T, Zacchini S, Malina T, Pampaloni G, Dvořák Z, Trávníček Z, Marchetti F. Anticancer Potential of Diruthenium Complexes with Bridging Hydrocarbyl Ligands from Bioactive Alkynols. Inorg Chem 2023; 62:15875-15890. [PMID: 37713240 PMCID: PMC10548421 DOI: 10.1021/acs.inorgchem.3c01731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Indexed: 09/16/2023]
Abstract
Diruthenacyclopentenone complexes of the general composition [Ru2Cp2(CO)2{μ-η1:η3-CH═C(C(OH)(R))C(═O)}] (2a-c; Cp = η5-C5H5) were synthesized in 94-96% yields from the reactions of [Ru2Cp2(CO)2{μ-η1:η3-C(Ph)═C(Ph)C(═O)}] (1) with 1-ethynylcyclopentanol, 17α-ethynylestradiol, and 17-ethynyltestosterone, respectively, in toluene at reflux. Protonation of 2a-c by HBF4 afforded the corresponding allenyl derivatives [Ru2Cp2(CO)3{μ-η1:η2-CH═C═R}]BF4 (3a-c) in 85-93% yields. All products were thoroughly characterized by elemental analysis, mass spectrometry, and IR, UV-vis, and nuclear magnetic resonance spectroscopy. Additionally, 2a and 3a were investigated by cyclic voltammetry, and the single-crystal diffraction method was employed to establish the X-ray structures of 2b and 3a. The cytotoxicity in vitro of 2b and 3a-c was evaluated against nine human cancer cell lines (A2780, A2780R, MCF-7, HOS, A549, PANC-1, Caco-2, PC-3, and HeLa), while the selectivity was assessed on normal human lung fibroblast (MRC-5). Overall, complexes exert stronger cytotoxicity than cisplatin, and 3b (comprising 17α-estradiol derived ligand) emerged as the best-performing complex. Inductively coupled plasma mass spectrometry cellular uptake studies in A2780 cells revealed a higher level of internalization for 3b and 3c compared to 2b, 3a, and the reference compound RAPTA-C. Experiments conducted on A2780 cells demonstrated a noteworthy impact of 3a and 3b on the cell cycle, leading to the majority of the cells being arrested in the G0/G1 phase. Moreover, 3a moderately induced apoptosis and oxidative stress, while 3b triggered autophagy and mitochondrial membrane potential depletion.
Collapse
Affiliation(s)
- Giulio Bresciani
- University
of Pisa, Dipartimento di Chimica e Chimica
Industriale, Via G. Moruzzi
13, I-56124 Pisa, Italy
| | - Ján Vančo
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Šlechtitelů 27, CZ-779 00 Olomouc, Czech Republic
| | - Tiziana Funaioli
- University
of Pisa, Dipartimento di Chimica e Chimica
Industriale, Via G. Moruzzi
13, I-56124 Pisa, Italy
| | - Stefano Zacchini
- University
of Bologna, Dipartimento di Chimica Industriale
“Toso Montanari”, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Tomáš Malina
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Šlechtitelů 27, CZ-779 00 Olomouc, Czech Republic
| | - Guido Pampaloni
- University
of Pisa, Dipartimento di Chimica e Chimica
Industriale, Via G. Moruzzi
13, I-56124 Pisa, Italy
| | - Zdeněk Dvořák
- Department
of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-779
00 Olomouc, Czech
Republic
| | - Zdeněk Trávníček
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Šlechtitelů 27, CZ-779 00 Olomouc, Czech Republic
| | - Fabio Marchetti
- University
of Pisa, Dipartimento di Chimica e Chimica
Industriale, Via G. Moruzzi
13, I-56124 Pisa, Italy
| |
Collapse
|
7
|
Bresciani G, Boni S, Funaioli T, Zacchini S, Pampaloni G, Busto N, Biver T, Marchetti F. Adding Diversity to a Diruthenium Biscyclopentadienyl Scaffold via Alkyne Incorporation: Synthesis and Biological Studies. Inorg Chem 2023; 62:12453-12467. [PMID: 37478132 PMCID: PMC10410612 DOI: 10.1021/acs.inorgchem.3c01644] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Indexed: 07/23/2023]
Abstract
We report the synthesis and the assessment of the anticancer potential of two series of diruthenium biscyclopentadienyl carbonyl complexes. Novel dimetallacyclopentenone compounds (2-4) were obtained (45-92% yields) from the thermal reaction (PhCCPh exchange) of [Ru2Cp2(CO)(μ-CO){μ-η1:η3-C(Ph)═C(Ph)C(═O)}], 1, with alkynes HCCR [R = C5H4FeCp (Fc), 3-C6H4(Asp), 2-naphthyl; Cp = η5-C5H5, Asp = OC(O)-2-C6H4C(O)Me]. Protonation of 1-3 by HBF4 afforded the corresponding μ-alkenyl derivatives 5-7, in 40-86% yields. All products were characterized by IR and NMR spectroscopy; moreover, cyclic voltammetry (1, 2, 5, 7) and single-crystal X-ray diffraction (5, 7) analyses were performed on representative compounds. Complexes 5-7 revealed a cytotoxic activity comparable to that of cisplatin in A549 (lung adenocarcinoma), SW480 (colon adenocarcinoma), and ovarian (A2780) cancer cell lines, and 2, 5, 6, and 7 overcame cisplatin resistance in A2780cis cells. Complexes 2, 5, and 7 (but not the aspirin derivative 6) induced an increase in intracellular ROS levels. Otherwise, 6 strongly stabilizes and elongates natural DNA (from calf thymus, CT-DNA), suggesting a possible intercalation binding mode, whereas 5 is less effective in binding CT-DNA, and 7 is ineffective. This trend is reversed concerning RNA, and in particular, 7 is able to bind poly(rA)poly(rU) showing selectivity for this nucleic acid. Complexes 5-7 can interact with the albumin protein with a thermodynamic signature dominated by hydrophobic interactions. Overall, we show that organometallic species based on the Ru2Cp2(CO)x scaffold (x = 2, 3) are active against cancer cells, with different incorporated fragments influencing the interactions with nucleic acids and the production of ROS.
Collapse
Affiliation(s)
- Giulio Bresciani
- University
of Pisa, Dipartimento di
Chimica e Chimica Industriale, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Serena Boni
- University
of Pisa, Dipartimento di
Chimica e Chimica Industriale, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Tiziana Funaioli
- University
of Pisa, Dipartimento di
Chimica e Chimica Industriale, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Stefano Zacchini
- University
of Bologna, Dipartimento di
Chimica Industriale “Toso Montanari”, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Guido Pampaloni
- University
of Pisa, Dipartimento di
Chimica e Chimica Industriale, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Natalia Busto
- University
of Burgos, Departamento de
Química, Plaza
Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Tarita Biver
- University
of Pisa, Dipartimento di
Chimica e Chimica Industriale, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Fabio Marchetti
- University
of Pisa, Dipartimento di
Chimica e Chimica Industriale, Via G. Moruzzi 13, I-56124 Pisa, Italy
| |
Collapse
|
8
|
Yang Y, Zou X, Sun Y, Chen F, Zhao J, Gou S. Naphthalene Diimide-Functionalized Half-Sandwich Ru(II) Complexes as Mitochondria-Targeted Anticancer and Antimetastatic Agents. Inorg Chem 2023. [PMID: 37267472 DOI: 10.1021/acs.inorgchem.3c01125] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this work, four naphthalene diimide (NDI)-functionalized half-sandwich Ru(II) complexes Ru1-Ru4 bearing the general formula [(η6-arene)RuII(N^N)Cl]PF6, where arene = benzene (bn), p-cymene (p-cym), 1,3,5-trimethylbenzene (tmb), and hexamethylbenzene (hmb), have been synthesized and characterized. By introducing the NDI unit into the N,N-chelating ligand of these half-sandwich complexes, the poor luminescent half-sandwich complexes are endowed with excellent emission performance. Besides, modification on the arene ligand of arene-Ru(II) complexes can influence the electron density of the metal center, resulting in great changes in the kinetic properties, catalytic activities in the oxidative conversion of NADH to NAD+, and biological activities of these compounds. Particularly, Ru4 exhibits the highest reactivity and the strongest inhibitory activity against the growth of three tested cancer cell lines. Further study revealed that Ru4 can enter cells quickly in an energy-dependent manner and preferentially accumulate in the mitochondria of MDA-MB-231 cells, inducing cell apoptosis via reactive oxygen species overproduction and mitochondrial dysfunction. Significantly, Ru4 can effectively inhibit the cell migration and invasion. Overall, the complexation with NDI and modification on the arene ligand endowed the half-sandwich Ru(II) complexes with improved spectroscopic properties and anticancer activities, highlighting their potential applications for cancer treatment.
Collapse
Affiliation(s)
- Yuliang Yang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Xiaofeng Zou
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yanyan Sun
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Feihong Chen
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Jian Zhao
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Shaohua Gou
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| |
Collapse
|
9
|
Chen C, Lv H, Xu H, Zhu D, Shen C. Cyclometalated Ru(II)-NHC complexes with phenanthroline ligands induce apoptosis mediated by mitochondria and endoplasmic reticulum stress in cancer cells. Dalton Trans 2023; 52:1671-1679. [PMID: 36648504 DOI: 10.1039/d2dt03405k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The exploration of ruthenium complexes as anticancer drugs has been the focus of intense investigation. In this study, we synthesized and characterized four C,N-cyclometalated ruthenium(II) complexes (Ru1-Ru4) coordinated with pyridine-functionalized N-heterocyclic carbene (NHC) and auxiliary ligands (e.g., acetonitrile, 1,10-phenanthroline, 3,4,7,8-tetramethyl-1,10-phenanthroline, and 4,7-diphenyl-1,10-phenanthroline). X-ray diffraction analysis showed that all of the four cycloruthenated complexes are hexa-coordinated in a typical octahedral geometry. In vitro cytotoxic studies revealed that cyclometalated Ru-NHC complexes Ru3 and Ru4 had stronger anticancer activity than their corresponding Ru-NHC precursor Ru1 and the clinically used cisplatin. For HeLa cells, Ru3 and Ru4 exhibited potent cytotoxicity with the IC50 value of 4.31 ± 0.42 μM and 3.14 ± 0.23 μM, respectively, which was approximately three times lower than that of cisplatin. More interestingly, Ru3 and Ru4 not only effectively inhibited the proliferation of HeLa cells, but also exhibited potential anti-migration activity. In the scratch wound healing assay, Ru3 and Ru4 treatment significantly reduced the wound healing rate of HUVEC cells. Mechanistic studies showed that Ru3 and Ru4 caused a dual action mode of mitochondrial membrane depolarization and endoplasmic reticulum stress and finally induced apoptosis of HeLa cells.
Collapse
Affiliation(s)
- Chao Chen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China. .,College of Life Sciences, Huzhou University, Huzhou, 313000, PR China
| | - He Lv
- College of Life Sciences, Huzhou University, Huzhou, 313000, PR China
| | - Hao Xu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Dancheng Zhu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Chao Shen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China.
| |
Collapse
|
10
|
Holzer I, Desiatkina O, Anghel N, Johns SK, Boubaker G, Hemphill A, Furrer J, Păunescu E. Synthesis and Antiparasitic Activity of New Trithiolato-Bridged Dinuclear Ruthenium(II)-arene-carbohydrate Conjugates. Molecules 2023; 28:902. [PMID: 36677958 PMCID: PMC9865825 DOI: 10.3390/molecules28020902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Eight novel carbohydrate-tethered trithiolato dinuclear ruthenium(II)-arene complexes were synthesized using CuAAC ‘click’ (Cu(I)-catalyzed azide-alkyne cycloaddition) reactions, and there in vitro activity against transgenic T. gondii tachyzoites constitutively expressing β-galactosidase (T. gondii β-gal) and in non-infected human foreskin fibroblasts, HFF, was determined at 0.1 and 1 µM. When evaluated at 1 µM, seven diruthenium-carbohydrate conjugates strongly impaired parasite proliferation by >90%, while HFF viability was retained at 50% or more, and they were further subjected to the half-maximal inhibitory concentration (IC50) measurement on T. gondii β-gal. Results revealed that the biological activity of the hybrids was influenced both by the nature of the carbohydrate (glucose vs. galactose) appended on ruthenium complex and the type/length of the linker between the two units. 23 and 26, two galactose-based diruthenium conjugates, exhibited low IC50 values and reduced effect on HFF viability when applied at 2.5 µM (23: IC50 = 0.032 µM/HFF viability 92% and 26: IC50 = 0.153 µM/HFF viability 97%). Remarkably, compounds 23 and 26 performed significantly better than the corresponding carbohydrate non-modified diruthenium complexes, showing that this type of conjugates are a promising approach for obtaining new antiparasitic compounds with reduced toxicity.
Collapse
Affiliation(s)
- Isabelle Holzer
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Oksana Desiatkina
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Nicoleta Anghel
- Institute of Parasitology Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Serena K. Johns
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
- School of Chemistry, Cardiff University, Park Place, Cardiff CF103AT, UK
| | - Ghalia Boubaker
- Institute of Parasitology Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Andrew Hemphill
- Institute of Parasitology Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Julien Furrer
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Emilia Păunescu
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| |
Collapse
|
11
|
Sahu G, Patra SA, Lima S, Das S, Görls H, Plass W, Dinda R. Ruthenium(II)-Dithiocarbazates as Anticancer Agents: Synthesis, Solution Behavior, and Mitochondria-Targeted Apoptotic Cell Death. Chemistry 2023; 29:e202202694. [PMID: 36598160 DOI: 10.1002/chem.202202694] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/05/2023]
Abstract
The reaction of the Ru(PPh3 )3 Cl2 with HL1-3 -OH (-OH stands for the oxime hydroxyl group; HL1 -OH=diacetylmonoxime-S-benzyldithiocarbazonate; HL2 -OH=diacetylmonoxime-S-(4-methyl)benzyldithiocarbazonate; and HL3 -OH=diacetylmonoxime-S-(4-chloro)benzyl-dithiocarbazonate) gives three new ruthenium complexes [RuII (L1-3 -H)(PPh3 )2 Cl] (1-3) (-H stands for imine hydrogen) coordinated with dithiocarbazate imine as the final products. All ruthenium(II) complexes (1-3) have been characterized by elemental (CHNS) analyses, IR, UV-vis, NMR (1 H, 13 C, and 31 P) spectroscopy, HR-ESI-MS spectrometry and also, the structure of 1-2 was further confirmed by single crystal X-ray crystallography. The solution/aqueous stability, hydrophobicity, DNA interactions, and cell viability studies of 1-3 against HeLa, HT-29, and NIH-3T3 cell lines were performed. Cell viability results suggested 3 being the most cytotoxic of the series with IC50 6.9±0.2 μM against HeLa cells. Further, an apoptotic mechanism of cell death was confirmed by cell cycle analysis and Annexin V-FITC/PI double staining techniques. In this regard, the live cell confocal microscopy results revealed that compounds primarily target the mitochondria against HeLa, and HT-29 cell lines. Moreover, these ruthenium complexes elevate the ROS level by inducing mitochondria targeting apoptotic cell death.
Collapse
Affiliation(s)
- Gurunath Sahu
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Sushree Aradhana Patra
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Sudhir Lima
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India.,Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743, Jena, Germany
| | - Sanchita Das
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Helmar Görls
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743, Jena, Germany
| | - Winfried Plass
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743, Jena, Germany
| | - Rupam Dinda
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| |
Collapse
|
12
|
Zhao J, Gao Y, He W, Wang W, Hu W, Sun Y. Synthesis, characterization and biological evaluation of two cyclometalated iridium(III) complexes containing a glutathione S-transferase inhibitor. J Inorg Biochem 2023; 238:112050. [PMID: 36332411 DOI: 10.1016/j.jinorgbio.2022.112050] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/12/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
The cyclometalated iridium(III) compounds have been intensively studied for health-related applications due to their outstanding luminescent properties and multiple anticancer modes of action. Herein, two iridium(III) compounds Ir-1 and Ir-3 containing glutathione S-transferase inhibitor (GSTi) were developed and studied together with two unfunctionalized compounds Ir-2 and Ir-4 as a comparison. Biological study indicated that GSTi-bearing complexes Ir-1 and Ir-3 exert a synergistic effect on the inhibition of cancer cells. The photophysical properties of Ir-1 ∼ Ir-4 were investigated by UV/vis absorption and fluorescence spectroscopy and rationalized with TD-DFT calculations. As expected, GSTi-bearing complexes Ir-1 and Ir-3 exhibited considerable cytotoxicity against both A549 and cisplatin-resistant A549/cis cancer cells, much higher than the unfunctionalized iridium compounds Ir-2 and Ir-4. Further study indicated that Ir-1 and Ir-3 mainly localize in the mitochondria of tumor cells, and exert their cytotoxicity via generating ROS and inhibiting GST activity. The flow cytometry investigations demonstrated that Ir-1 and Ir-3 can arrest the cell cycle in S phase and induce the cell death through apoptosis process. Overall, the complexation of GST inhibitors with cyclometalated iridium(III) agents provides an effective way for potentiating the cytotoxicity of iridium(III) anticancer agents and resensitizing the efficacy against cisplatin resistant cancer cells.
Collapse
Affiliation(s)
- Jian Zhao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Ya Gao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Weiyu He
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Wei Wang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Weiwei Hu
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Yanyan Sun
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
13
|
Arunachalam A, Rengan R, Umapathy D, Arockiam AJV. Impact of Biphenyl Benzhydrazone-Incorporated Arene Ru(II) Complexes on Cytotoxicity and the Cancer Cell Death Mechanism. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Abirami Arunachalam
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, India
| | - Ramesh Rengan
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, India
| | - Devan Umapathy
- Molecular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| | - Antony Joseph Velanganni Arockiam
- Molecular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| |
Collapse
|
14
|
A supramolecular photosensitizer derived from an Arene-Ru(II) complex self-assembly for NIR activated photodynamic and photothermal therapy. Nat Commun 2022; 13:3064. [PMID: 35654794 PMCID: PMC9163081 DOI: 10.1038/s41467-022-30721-w] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 05/06/2022] [Indexed: 12/22/2022] Open
Abstract
Effective photosensitizers are of particular importance for the widespread clinical utilization of phototherapy. However, conventional photosensitizers are usually plagued by short-wavelength absorption, inadequate photostability, low reactive oxygen species (ROS) quantum yields, and aggregation-caused ROS quenching. Here, we report a near-infrared (NIR)-supramolecular photosensitizer (RuDA) via self-assembly of an organometallic Ru(II)-arene complex in aqueous solution. RuDA can generate singlet oxygen (1O2) only in aggregate state, showing distinct aggregation-induced 1O2 generation behavior due to the greatly increased singlet-triplet intersystem crossing process. Upon 808 nm laser irradiation, RuDA with excellent photostability displays efficient 1O2 and heat generation in a 1O2 quantum yield of 16.4% (FDA-approved indocyanine green: ΦΔ = 0.2%) together with high photothermal conversion efficiency of 24.2% (commercial gold nanorods: 21.0%, gold nanoshells: 13.0%). In addition, RuDA-NPs with good biocompatibility can be preferably accumulated at tumor sites, inducing significant tumor regression with a 95.2% tumor volume reduction in vivo during photodynamic therapy. This aggregation enhanced photodynamic therapy provides a strategy for the design of photosensitizers with promising photophysical and photochemical characteristics.
Collapse
|
15
|
Wang J, Zhang Y, Li Y, Li E, Ye W, Pan J. Dinuclear Organoruthenium Complex for Mitochondria-Targeted Near-Infrared Imaging and Anticancer Therapy to Overcome Platinum Resistance. Inorg Chem 2022; 61:8267-8282. [PMID: 35584546 DOI: 10.1021/acs.inorgchem.2c00714] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
New mononuclear and dinuclear Ru(II) coordination compounds with the 2,7-bisbenzoimidazolyl-naphthyridine ligand have been synthesized and characterized by UV-vis, NMR, and MALDI-TOF. The molecular structures for Ru(II) compounds were determined by single-crystal X-ray diffraction. With the expansion of ligand π-conjugation and the increase in the complexed Ru number, the maximum emission wavelength red-shifted from 696 to 786 nm. The binding mode between complexes and DNA was predicted by molecular docking, which is intercalations and π-π stacking interactions with the surrounding bases. The intercalation mode of DNA binding was then determined by DNA titration and ethidium bromide (EB) displacement experiments. The antigrowth effects of complexes RuY, RuY1, and RuY2 were tested in HaCat (normal cells), HeLa (cervical cancer), A549 (lung cancer), and A549/DDP (cisplatin-resistant lung cancer) through the MTT assay. The dinuclear complex RuY2 was superior to mononuclear complexes and cisplatin in the cisplatin-resistant cell line. Confocal imaging proved that the subcellular localization of Ru(II) complexes was mitochondria; moreover, apoptosis was detected by flow cytometry. All three complexes showed a dose-dependent manner in all four cell lines. All Ru(II) complexes were found to have reactive oxygen species (ROS). The finding indicated that these Ru(II) complexes caused cell death by both DNA disruption and ROS. This study helps to explore the potential of the polynuclear Ru(II) complexes for the combination of NIR imaging and Pt-resistant cancer therapy.
Collapse
Affiliation(s)
- Jiaoyang Wang
- Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Yufei Zhang
- Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Yifan Li
- Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Enbo Li
- Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Wenjing Ye
- Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.,National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, Hubei University, Wuhan 430062, P. R. China
| | - Jie Pan
- Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| |
Collapse
|
16
|
Ngoepe MP, Clayton HS. Metal Complexes as DNA Synthesis and/or Repair Inhibitors: Anticancer and Antimicrobial Agents. PHARMACEUTICAL FRONTS 2021. [DOI: 10.1055/s-0041-1741035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AbstractMedicinal inorganic chemistry involving the utilization of metal-based compounds as therapeutics has become a field showing distinct promise. DNA and RNA are ideal drug targets for therapeutic intervention in the case of various diseases, such as cancer and microbial infection. Metals play a vital role in medicine, with at least 10 metals known to be essential for human life and a further 46 nonessential metals having been involved in drug therapies and diagnosis. These metal-based complexes interact with DNA in various ways, and are often delivered as prodrugs which undergo activation in vivo. Metal complexes cause DNA crosslinking, leading to the inhibition of DNA synthesis and repair. In this review, the various interactions of metal complexes with DNA nucleic acids, as well as the underlying mechanism of action, were highlighted. Furthermore, we also discussed various tools used to investigate the interaction between metal complexes and the DNA. The tools included in vitro techniques such as spectroscopy and electrophoresis, and in silico studies such as protein docking and density-functional theory that are highlighted for preclinical development.
Collapse
Affiliation(s)
| | - Hadley S. Clayton
- Department of Chemistry, University of South Africa, Pretoria, South Africa
| |
Collapse
|
17
|
|
18
|
Swaminathan S, Haribabu J, Mohamed Subarkhan MK, Gayathri D, Balakrishnan N, Bhuvanesh N, Echeverria C, Karvembu R. Impact of aliphatic acyl and aromatic thioamide substituents on the anticancer activity of Ru(II)- p-cymene complexes with acylthiourea ligands- in vitro and in vivo studies. Dalton Trans 2021; 50:16311-16325. [PMID: 34730582 DOI: 10.1039/d1dt02611a] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Six different acylthiourea ligands (L1-L6) and their corresponding Ru(II)-p-cymene complexes (P1-P6) were designed to explore the structure-activity relationship of the complexes upon aliphatic chain and aromatic conjugation on the C- and N-terminals, respectively. The compounds were synthesized and adequately characterized using various analytical and spectroscopic techniques. The structures of P2-P6, solved using single crystal X-ray diffraction (XRD), confirmed the neutral monodentate coordination of the S atoms of the acylthiourea ligands to Ru(II) ions. In silico studies showed an increase of lipophilicity for the ligands with an increase in alkyl chain length or aromatic conjugation at the C- or N-terminal, respectively. Subsequently, mitogen-activated protein kinases (MAPK) were predicted as one of the primary targets for the complexes, which showed good binding affinity towards extracellular signal-regulated kinases (ERK1, ERK2 and ERK5), c-Jun N-terminal kinase (JNK) and p38 of the MAPK pathway. Henceforth, the complexes were tested for their anticancer activity in lung carcinoma (A549) and cisplatin-resistant lung carcinoma (cisA549R) cells and human umbilical vein epithelial normal cells (HUVEC). Interestingly, an increase in chain length or aromatic conjugation led to an increase in the activity of the complexes, with P5 (7.73 and 13.04 μM) and P6 (6.52 and 14.45 μM) showing the highest activity in A549 and cisA549R cells, which is better than the positive control, cisplatin (8.72 and 44.28 μM). Remarkably, we report the highest activity yet observed for complexes of the type [(η6-p-cymene)RuIICl2(S-acylthiourea)] in the tested cell lines. Aqueous solution studies showed that complexes P5 and P6 are rapidly hydrolyzed to produce solely aquated species that remained stable for 24 h. Staining assays and flow cytometric analyses of P5 and P6 in A549 cells revealed that the complexes induced apoptosis and arrested the cell cycle predominantly in the S phase. In vivo studies demonstrated the higher toxicity of cisplatin and a comparatively higher survival rate of mice injected with the most active complex P6. Histological analyses revealed that treatment with P6 at high doses of up to 8 mg kg-1 did not cause any palpable damage to the tested organs.
Collapse
Affiliation(s)
- Srividya Swaminathan
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, Tamil Nadu, India.
| | - Jebiti Haribabu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, Tamil Nadu, India.
- Facultad de Medicina, Universidad de Atacama, Los Carreras 1579, 1532502 Copiapo, Chile
| | - Mohamed Kasim Mohamed Subarkhan
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China
| | - Dasararaju Gayathri
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025, India
| | - Nithya Balakrishnan
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, Tamil Nadu, India.
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A & M University, College Station, Texas 77842, USA
| | - Cesar Echeverria
- Facultad de Medicina, Universidad de Atacama, Los Carreras 1579, 1532502 Copiapo, Chile
| | - Ramasamy Karvembu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, Tamil Nadu, India.
| |
Collapse
|
19
|
Mukherjee A, Koley TS, Chakraborty A, Purkait K, Mukherjee A. Synthesis, Structure and Cytotoxicity of N,N and N,O-Coordinated Ru II Complexes of 3-Aminobenzoate Schiff Bases against Triple-negative Breast Cancer. Chem Asian J 2021; 16:3729-3742. [PMID: 34549886 DOI: 10.1002/asia.202100917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/17/2021] [Indexed: 11/07/2022]
Abstract
Half-sandwich RuII complexes, [(YZ)RuII (η6 -arene)(X)]+, (YZ=chelating bidentate ligand, X=halide), with N,N and N,O coordination (1-9) show significant antiproliferative activity against the metastatic triple-negative breast carcinoma (MDA-MB-231). 3-aminobenzoic acid or its methyl ester is used in all the ligands while varying the aldehyde for N,N and N,O coordination. In the N,N coordinated complex the coordinated halide(X) is varied for enhancing stability in solution (X=Cl, I). Rapid aquation and halide exchange of the pyridine analogues, 2 and 3, in solution are a major bane towards their antiproliferative activity. Presence of free -COOH group (1 and 4) make complexes hydrophilic and reduces toxicity. The imidazolyl 3-aminobenzoate based N,N coordinated 5 and 6 display better solution stability and efficient antiproliferative activity (IC50 ca. 2.3-2.5 μM) compared to the pyridine based 2 and 3 (IC50 >100 μM) or the N,O coordinated complexes (7-9) (IC50 ca. 7-10 μM). The iodido coordinated, 6, is resistant towards aquation and halide exchange. The N,O coordinated 7-9 underwent instantaneous aquation at pH 7.4 generating monoaquated complexes stable for at least 6 h. Complexes 5 and 6, bind to 9-ethylguanine (9-EtG) showing propensity to interact with DNA bases. The complexes may kill via apoptosis as displayed from the study of 8. The change in coordination mode and the aldehyde affected the solution stability, antiproliferative activity and mechanistic pathways. The N,N coordinated (5 and 6) exhibit arrest in the G2/M phase while the N,O coordinated 8 showed arrest in the G0/G1 phase.
Collapse
Affiliation(s)
- Arpan Mukherjee
- Centre for Advanced Functional Materials (CAFM) Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Tuhin Subhra Koley
- Centre for Advanced Functional Materials (CAFM) Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Ayan Chakraborty
- Centre for Advanced Functional Materials (CAFM) Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Kallol Purkait
- Centre for Advanced Functional Materials (CAFM) Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Arindam Mukherjee
- Centre for Advanced Functional Materials (CAFM) Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| |
Collapse
|
20
|
|
21
|
Oliveira KM, Peterson EJ, Carroccia MC, Cominetti MR, Deflon VM, Farrell NP, Batista AA, Correa RS. Ru(II)-Naphthoquinone complexes with high selectivity for triple-negative breast cancer. Dalton Trans 2021; 49:16193-16203. [PMID: 32329497 DOI: 10.1039/d0dt01091j] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Six new ruthenium(ii) complexes with lapachol (Lap) and lawsone (Law) with the general formula [Ru(L)(P-P)(bipy)]PF6, where L = Lap or Law, P-P = 1,2'-bis(diphenylphosphino)ethane (dppe), 1,4'-bis(diphenylphosphino)butane (dppb), 1,1'-bis(diphenylphosphino)ferrocene (dppf) and bipy = 2,2'-bipyridine, were synthesized, fully characterized by elemental analysis, molar conductivity, NMR, cyclic voltammetry, UV-vis, IR spectroscopies and three of them by X-ray crystallography. All six complexes were active against breast (MCF-7 and MDA-MB-231) and prostate (DU-145) cancer cell lines with lower IC50 values than cisplatin. Complex [Ru(Lap)(dppe)(bipy)]PF6 (1a) showed significant selectivity for MDA-MB-231, a model of triple-negative breast cancer (TNBC), as compared to the "normal-like" human breast epithelial cell line, MCF-10A. Complex (1a) inhibited TNBC colony formation and induced loss of cellular adhesion. Furthermore, the complex (1a) induced mitochondrial dysfunction and generation of ROS, as is involved in the apoptotic cell death pathway. Preferential cellular uptake of complex (1a) was observed in MDA-MB-231 cells compared to MCF-10A cells, consistent with the observed selectivity for tumorigenic vs. non-tumorigenic cells. Taken together, these results indicate that ruthenium complexes containing lapachol and lawsone as ligands are promising candidates as chemotherapeutic agents.
Collapse
Affiliation(s)
- Katia M Oliveira
- Departamento de Química, Universidade Federal de São Carlos - UFSCar, Rodovia Washington Luiz, KM 235 CP 676, CEP 13561-901, São Carlos, SP, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Han T, Wu Y, Han W, Yan K, Zhao J, Sun Y. Antitumor Effect of Organometallic Half-Sandwich Ru(II)-Arene Complexes Bearing a Glutathione S-Transferase Inhibitor. Inorg Chem 2021; 60:13051-13061. [PMID: 34369147 DOI: 10.1021/acs.inorgchem.1c01482] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The facile modification of the ligands in organometallic Ru(II)-arene complexes offers more opportunities to optimize their pharmacological profiles. Herein, three Ru(II)-arene complexes containing a glutathione S-transferase (GST) inhibitor (NBDHEX) in chelate ligand have been designed and synthesized in this study. In vitro results indicated that the ligation with NBDHEX significantly increased the activities and selectivities of the organometallic Ru(II)-arene complexes against tumor cells, especially complex 3, which was the most active compound among the tested compounds. DFT calculations and hydrolysis results demonstrated that complex 3 with more alkyl groups in the arene ligand has increased electron density at the Ru(II) center as compared with complexes 1 and 2, thus resulting in the improved hydrolysis rate, which may be responsible for its higher anticancer activity. Further studies showed that complexes 1-3 can cause the loss of the mitochondrial membrane potential and upregulate the expression of Bcl-2 and Bax in A549 cells, suggesting that complexes 1-3-induced cell death may be mediated via the mitochondrial apoptotic pathway. Thus, these findings suggested that simultaneous modification of the chelate ligands and arene rings in the organometallic Ru(II)-arene complexes is an effective way to improve their pharmacological properties.
Collapse
Affiliation(s)
- Tianyu Han
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yuying Wu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Weinan Han
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Kaiwen Yan
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Jian Zhao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yanyan Sun
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
23
|
Pyrazole-based trinuclear and mononuclear complexes: synthesis, characterization, DNA interactions and cytotoxicity studies. TRANSIT METAL CHEM 2021. [DOI: 10.1007/s11243-021-00466-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Swaminathan S, Haribabu J, Kalagatur NK, Nikhil M, Balakrishnan N, Bhuvanesh NSP, Kadirvelu K, Kolandaivel P, Karvembu R. Tunable Anticancer Activity of Furoylthiourea-Based Ru II -Arene Complexes and Their Mechanism of Action. Chemistry 2021; 27:7418-7433. [PMID: 33404126 DOI: 10.1002/chem.202004954] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/21/2020] [Indexed: 11/08/2022]
Abstract
Fourteen new RuII -arene (p-cymene/benzene) complexes (C1-C14) have been synthesized by varying the N-terminal substituent in the furoylthiourea ligand and satisfactorily characterized by using analytical and spectroscopic techniques. Electrostatic potential maps predicted that the electronic effect of the substituents was mostly localized, with some influence seen on the labile chloride ligands. The structure-activity relationships of the Ru-p-cymene and Ru-benzene complexes showed opposite trends. All the complexes were found to be highly toxic towards IMR-32 cancer cells, with C5 (Ru-p-cymene complex containing C6 H2 (CH3 )3 as N-terminal substituent) and C13 (Ru-benzene complex containing C6 H4 (CF3 ) as N-terminal substituent) showing the highest activity among each set of complexes, and hence they were chosen for further study. These complexes showed different behavior in aqueous solutions, and were also found to catalytically oxidize glutathione. They also promoted cell death by apoptosis and cell cycle arrest. Furthermore, the complexes showed good binding ability with the receptors Pim-1 kinase and vascular endothelial growth factor receptor 2, commonly overexpressed in cancer cells.
Collapse
Affiliation(s)
- Srividya Swaminathan
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620015, Tamil Nadu, India
| | - Jebiti Haribabu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620015, Tamil Nadu, India
| | - Naveen Kumar Kalagatur
- DRDO-BU Centre for Life Sciences, Bharathiar University Campus, Coimbatore, 641046, Tamil Nadu, India
| | - Maroli Nikhil
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Nithya Balakrishnan
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620015, Tamil Nadu, India
| | | | - Krishna Kadirvelu
- DRDO-BU Centre for Life Sciences, Bharathiar University Campus, Coimbatore, 641046, Tamil Nadu, India
| | | | - Ramasamy Karvembu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620015, Tamil Nadu, India
| |
Collapse
|
25
|
Steel TR, Tong KK, Söhnel T, Jamieson SM, Wright LJ, Crowley JD, Hanif M, Hartinger CG. Homodinuclear organometallics of ditopic N,N-chelates: Synthesis, reactivity and in vitro anticancer activity. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
Masaryk L, Koczurkiewicz-Adamczyk P, Milde D, Nemec I, Słoczyńska K, Pękala E, Štarha P. Dinuclear half-sandwich Ir(III) complexes containing 4,4′-methylenedianiline-based ligands: Synthesis, characterization, cytotoxicity. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
27
|
|
28
|
Studer V, Anghel N, Desiatkina O, Felder T, Boubaker G, Amdouni Y, Ramseier J, Hungerbühler M, Kempf C, Heverhagen JT, Hemphill A, Ruprecht N, Furrer J, Păunescu E. Conjugates Containing Two and Three Trithiolato-Bridged Dinuclear Ruthenium(II)-Arene Units as In Vitro Antiparasitic and Anticancer Agents. Pharmaceuticals (Basel) 2020; 13:E471. [PMID: 33339451 PMCID: PMC7767221 DOI: 10.3390/ph13120471] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/15/2022] Open
Abstract
The synthesis, characterization, and in vitro antiparasitic and anticancer activity evaluation of new conjugates containing two and three dinuclear trithiolato-bridged ruthenium(II)-arene units are presented. Antiparasitic activity was evaluated using transgenic Toxoplasmagondii tachyzoites constitutively expressing β-galactosidase grown in human foreskin fibroblasts (HFF). The compounds inhibited T.gondii proliferation with IC50 values ranging from 90 to 539 nM, and seven derivatives displayed IC50 values lower than the reference compound pyrimethamine, which is currently used for treatment of toxoplasmosis. Overall, compound flexibility and size impacted on the anti-Toxoplasma activity. The anticancer activity of 14 compounds was assessed against cancer cell lines A2780, A2780cisR (human ovarian cisplatin sensitive and resistant), A24, (D-)A24cisPt8.0 (human lung adenocarcinoma cells wild type and cisPt resistant subline). The compounds displayed IC50 values ranging from 23 to 650 nM. In A2780cisR, A24 and (D-)A24cisPt8.0 cells, all compounds were considerably more cytotoxic than cisplatin, with IC50 values lower by two orders of magnitude. Irrespective of the nature of the connectors (alkyl/aryl) or the numbers of the di-ruthenium units (two/three), ester conjugates 6-10 and 20 exhibited similar antiproliferative profiles, and were more cytotoxic than amide analogues 11-14, 23, and 24. Polynuclear conjugates with multiple trithiolato-bridged di-ruthenium(II)-arene moieties deserve further investigation.
Collapse
Affiliation(s)
- Valentin Studer
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland; (V.S.); (O.D.); (T.F.)
| | - Nicoleta Anghel
- Vetsuisse Faculty, Institute of Parasitology, University of Bern, Länggassstrasse 122, CH-3012 Bern, Switzerland; (N.A.); (G.B.); (Y.A.); (J.R.)
| | - Oksana Desiatkina
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland; (V.S.); (O.D.); (T.F.)
| | - Timo Felder
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland; (V.S.); (O.D.); (T.F.)
| | - Ghalia Boubaker
- Vetsuisse Faculty, Institute of Parasitology, University of Bern, Länggassstrasse 122, CH-3012 Bern, Switzerland; (N.A.); (G.B.); (Y.A.); (J.R.)
| | - Yosra Amdouni
- Vetsuisse Faculty, Institute of Parasitology, University of Bern, Länggassstrasse 122, CH-3012 Bern, Switzerland; (N.A.); (G.B.); (Y.A.); (J.R.)
- Laboratoire de Parasitologie, Institution de la Recherche et de l’Enseignement Supérieur Agricoles, École Nationale de Médecine Vétérinaire de Sidi Thabet, University of Manouba, Sidi Thabet 2020, Tunisia
| | - Jessica Ramseier
- Vetsuisse Faculty, Institute of Parasitology, University of Bern, Länggassstrasse 122, CH-3012 Bern, Switzerland; (N.A.); (G.B.); (Y.A.); (J.R.)
| | - Martin Hungerbühler
- Department of BioMedical Research, Experimental Radiology, University of Bern, CH-3008 Bern, Switzerland; (M.H.); (C.K.); (J.T.H.)
- Department of Diagnostic, Interventional and Pediatric Radiology, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland
| | - Christoph Kempf
- Department of BioMedical Research, Experimental Radiology, University of Bern, CH-3008 Bern, Switzerland; (M.H.); (C.K.); (J.T.H.)
- Department of Diagnostic, Interventional and Pediatric Radiology, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland
| | - Johannes Thomas Heverhagen
- Department of BioMedical Research, Experimental Radiology, University of Bern, CH-3008 Bern, Switzerland; (M.H.); (C.K.); (J.T.H.)
- Department of Diagnostic, Interventional and Pediatric Radiology, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland
| | - Andrew Hemphill
- Vetsuisse Faculty, Institute of Parasitology, University of Bern, Länggassstrasse 122, CH-3012 Bern, Switzerland; (N.A.); (G.B.); (Y.A.); (J.R.)
| | - Nico Ruprecht
- Department of BioMedical Research, Experimental Radiology, University of Bern, CH-3008 Bern, Switzerland; (M.H.); (C.K.); (J.T.H.)
- Department of Diagnostic, Interventional and Pediatric Radiology, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland
| | - Julien Furrer
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland; (V.S.); (O.D.); (T.F.)
| | - Emilia Păunescu
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland; (V.S.); (O.D.); (T.F.)
| |
Collapse
|
29
|
Hua W, Xu G, Zhao J, Wang Z, Lu J, Sun W, Gou S. DNA‐Targeting Ru
II
‐Polypyridyl Complex with a Long‐Lived Intraligand Excited State as a Potential Photodynamic Therapy Agent. Chemistry 2020; 26:17495-17503. [DOI: 10.1002/chem.202003031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/28/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Wuyang Hua
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center School of Chemistry and Chemical, Engineering Southeast University Nanjing 211189 P.R. China
| | - Gang Xu
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center School of Chemistry and Chemical, Engineering Southeast University Nanjing 211189 P.R. China
| | - Jian Zhao
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center School of Chemistry and Chemical, Engineering Southeast University Nanjing 211189 P.R. China
| | - Z. Wang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center School of Chemistry and Chemical, Engineering Southeast University Nanjing 211189 P.R. China
| | - Jiapeng Lu
- Department of Chemistry and Biochemistry North Dakota State University Fargo North Dakota 58108-6050 USA
| | - Wenfang Sun
- Department of Chemistry and Biochemistry North Dakota State University Fargo North Dakota 58108-6050 USA
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center School of Chemistry and Chemical, Engineering Southeast University Nanjing 211189 P.R. China
| |
Collapse
|
30
|
Hu Z, Yu W, Liu X, Tang Q, Fang Z, Zhang S. Copper Coordination Polymers of
N
1
,
N
4
‐Bis(pyridin‐2‐ylmethyl)terephthalamide: Synthesis, Structures, DNA Binding and Cleavage, and Catalytic Activity for Oxidation of 1‐Phenylethanol. Z Anorg Allg Chem 2020. [DOI: 10.1002/zaac.202000129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhou‐Ping Hu
- School of Chemistry and Chemical Engineering Central South University 410083 Changsha P. R. China
| | - Wei‐Dong Yu
- School of Chemistry and Chemical Engineering Central South University 410083 Changsha P. R. China
| | - Xia Liu
- School of Chemistry and Chemical Engineering Central South University 410083 Changsha P. R. China
| | - Qing Tang
- School of Chemistry and Chemical Engineering Central South University 410083 Changsha P. R. China
| | - Zi‐Wei Fang
- School of Chemistry and Chemical Engineering Central South University 410083 Changsha P. R. China
| | - Shou‐Chun Zhang
- School of Chemistry and Chemical Engineering Central South University 410083 Changsha P. R. China
| |
Collapse
|
31
|
Lapachol in the Design of a New Ruthenium(II)-Diphosphine Complex as a Promising Anticancer Metallodrug. J Inorg Biochem 2020; 214:111289. [PMID: 33137682 DOI: 10.1016/j.jinorgbio.2020.111289] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/08/2020] [Accepted: 10/17/2020] [Indexed: 12/26/2022]
Abstract
The preparation of two new Ru(II)/diphosphine complexes containing Lapachol (Lap) and Lawsone (Law): (1) [Ru(Lap)(dppm)2]PF6 and (2) [Ru(Law)(dppm)2]PF6, where dppm = bis(diphenylphosphino)methane, is reported here. The complexes were synthetized and fully characterized by elemental analyses, molar conductivity, UV-Vis, IR, 31P{1H}, 1H and 13C NMR, and the crystal structure of the complex (1) was determined by X-ray diffraction. Complexes (1) and (2) showed high in vitro cytotoxicity against four cancer cells (MDA-MB-231, MCF-7, A549 and DU-145), with IC50 values in the micromolar range (0.03 to 2.70 μM). Importantly, complexes (1) and (2) were more active than the cisplatin, the drug used as a reference in the cytotoxic assays. Moreover, complex (1) showed high selectivity to triple-negative breast cancer cells (MDA-MB-231). Studies of the mechanism of action in MDA-MB-231 cancer cells showed that complex (1) inhibits cell migration, colony formation, and induces cell cycle arrest and apoptosis by activation of the mitochondrial pathway through the loss of mitochondrial membrane potential (ΔΨm). Furthermore, complex (1) induces ROS (Reactive Oxygen Species) generation in MDA-MB-231 cells, which can cause DNA damage. Finally, complexes (1) and (2) interact with DNA by minor grooves and show a moderate interaction with BSA (Bovine Serum Albumin), with the involvement of hydrophobic interactions. Essentially, Ru(II)/diphosphine-naphthoquinone complexes have remarkable cytotoxic effects with high selectivity to triple-negative breast cancer (MDA-MB-231) and could be promising anticancer candidates for cancer treatment. SYNOPSIS: The naphthoquinones Lapachol and Lawsone can form new ruthenium compounds with promising anticancer properties.
Collapse
|
32
|
Haribabu J, Srividya S, Umapathi R, Gayathri D, Venkatesu P, Bhuvanesh N, Karvembu R. Enhanced anticancer activity of half-sandwich Ru(II)-p-cymene complex bearing heterocyclic hydrazone ligand. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108054] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
33
|
Li S, Zhao J, Wang X, Xu G, Gou S, Zhao Q. Design of a Tris-Heteroleptic Ru(II) Complex with Red-Light Excitation and Remarkably Improved Photobiological Activity. Inorg Chem 2020; 59:11193-11204. [DOI: 10.1021/acs.inorgchem.0c01860] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Shuang Li
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People’s Republic of China
| | - Jian Zhao
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People’s Republic of China
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, People’s Republic of China
| | - Xinyi Wang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People’s Republic of China
| | - Gang Xu
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People’s Republic of China
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People’s Republic of China
| | - Qiang Zhao
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, People’s Republic of China
| |
Collapse
|
34
|
Chen C, Xu C, Li T, Lu S, Luo F, Wang H. Novel NHC-coordinated ruthenium(II) arene complexes achieve synergistic efficacy as safe and effective anticancer therapeutics. Eur J Med Chem 2020; 203:112605. [PMID: 32688202 DOI: 10.1016/j.ejmech.2020.112605] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 12/24/2022]
Abstract
There is an urgent need for more effective, less toxic cancer therapy agents. Motivated by this need, we synthesized a small panel of N-heterocyclic carbene (NHC)-coordinated ruthenium(II) arene complexes Ru1-Ru6 with the formula [Ru(p-cymene)(L)Cl]PF6 (L = NHC ligand with varying substituents). Cell-based in vitro studies revealed that despite the structural similarity, Ru1-Ru6 exhibited distinct cytotoxic activities against cancer cells. In particular, Ru4 and Ru6, which bear n-octyl and pentamethylbenzyl motifs, respectively, were the most active at inducing apoptosis. In human ovarian A2780 cancer cells, Ru4 and Ru6 showed the highest cytotoxicities with IC50 values of 2.74 ± 0.15 μM and 1.98 ± 0.10 μM, respectively, and they were approximately 2-fold more potent than cisplatin (IC50 = 5.55 ± 0.37 μM). In addition to the cell killing capacity, inhibition of cell migration was validated by using these two optimized complexes. Mechanistic studies revealed that Ru4 and Ru6 complexes induced apoptosis in a caspase-dependent manner, primarily through intracellular reactive oxygen species (ROS) overproduction and cell cycle arrest at G1 phase. Furthermore, in a preclinical metastatic model of A2780 tumor xenograft, administration of Ru4 and Ru6 (20 μmol/kg) resulted in a marked inhibition of tumor progression and metastasis. Finally, a substantially alleviated systemic toxicity was observed for both complexes in comparison with cisplatin in animals. Overall, this study greatly increases our understanding of NHC-coordinated Ru(II) arene metallodrugs, aiding further investigation of their therapeutic potential in the treatment of metastatic cancers.
Collapse
Affiliation(s)
- Chao Chen
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China; College of Life Sciences, Huzhou University, Huzhou, 313000, PR China
| | - Chang Xu
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China
| | - Tongyu Li
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China
| | - Siming Lu
- Department of Laboratory Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China
| | - Fangzhou Luo
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China
| | - Hangxiang Wang
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China.
| |
Collapse
|
35
|
Li S, Xu G, Zhu Y, Zhao J, Gou S. Bifunctional ruthenium(ii) polypyridyl complexes of curcumin as potential anticancer agents. Dalton Trans 2020; 49:9454-9463. [PMID: 32598409 DOI: 10.1039/d0dt01040e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ru(ii)-polypyridyl complexes have been widely studied and well established for their antitumor properties. Modifications of the coordination environment around the Ru atom through a proper choice of the ligand can lead to different modes of action and result in greatly improved anticancer efficacy. Herein, two Ru(ii)-polypyridyl complexes of curcumin were synthesized and characterized as potential anticancer agents. In vitro tests indicated that complexes 1 and 2 displayed excellent antiproliferative activity against the tested cancer cell lines, especially complex 2, which exhibited superior cytotoxicity compared to curcumin and cisplatin. Further biological evaluations demonstrated that complexes 1 and 2 can cause cell apoptosis via DNA interaction and MEK/ERK signaling pathway, which is the first example of a Ru(ii)-polypyridyl complex inhibiting the MEK/ERK signaling pathway and DNA intercalation. Overall, this work suggests that coordination with bioactive agents may endow Ru(ii)-polypyridyl complexes with improved pharmaceutical properties and synergistic effects for cancer therapy.
Collapse
Affiliation(s)
- Shuang Li
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China.
| | | | | | | | | |
Collapse
|
36
|
Štarha P, Hošek J, Trávníček Z, Dvořák Z. Cytotoxic dimeric half‐sandwich Ru(II), Os(II) and Ir(III) complexes containing the 4,4′‐biphenyl‐based bridging ligands. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5785] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Pavel Štarha
- Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Faculty of SciencePalacký University in Olomouc Šlechtitelů 27 Olomouc 783 71 Czech Republic
| | - Jan Hošek
- Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Faculty of SciencePalacký University in Olomouc Šlechtitelů 27 Olomouc 783 71 Czech Republic
| | - Zdeněk Trávníček
- Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Faculty of SciencePalacký University in Olomouc Šlechtitelů 27 Olomouc 783 71 Czech Republic
| | - Zdeněk Dvořák
- Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Faculty of SciencePalacký University in Olomouc Šlechtitelů 27 Olomouc 783 71 Czech Republic
- Department of Cell Biology and Genetics, Faculty of SciencePalacký University in Olomouc Šlechtitelů 27 Olomouc 783 71 Czech Republic
| |
Collapse
|
37
|
Mukherjee A, Acharya S, Purkait K, Chakraborty K, Bhattacharjee A, Mukherjee A. Effect of N, N Coordination and Ru II Halide Bond in Enhancing Selective Toxicity of a Tyramine-Based Ru II ( p-Cymene) Complex. Inorg Chem 2020; 59:6581-6594. [PMID: 32295347 DOI: 10.1021/acs.inorgchem.0c00694] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ruthenium compounds are promising anticancer candidates owing to their lower side-effects and encouraging activities against resistant tumors. Half-sandwich piano-stool type RuII compounds of general formula [(L)RuII(η6-arene)(X)]+ (L = chelating bidentate ligand, X = halide) have exhibited significant therapeutic potential against cisplatin-resistant tumor cell lines. In RuII (p-cymene) based complexes, the change of the halide leaving group has led to several interesting features, viz., hydrolytic stability, resistance toward thiols, and alteration in pathways of action. Tyramine is a naturally occurring monoamine which acts as a catecholamine precursor in humans. We synthesized a family of N,N and N,O coordinated RuII (p-cymene) complexes, [(L)RuII(η6-arene)(X)]+ (1-4), with tyramine and varied the halide (X = Cl, I) to investigate the difference in reactivity. Our studies showed that complex 2 bearing N,N coordination with an iodido leaving group shows selective in vitro cytotoxicity against the pancreatic cancer cell line MIA PaCa-2 (IC50 ca. 5 μM) but is less toxic to triple-negative breast cancer (MDA-MB-231), hepatocellular carcinoma (Hep G2), and the normal human foreskin fibroblasts (HFF-1). Complex 2 displays stability toward hydrolysis and does not bind with glutathione, as confirmed by 1H NMR and ESI-HRMS experiments. The inert nature of 2 leads to enhancement of cytotoxicity (IC50 = 5.3 ± 1 μM) upon increasing the cellular treatment time from 48 to 72 h.
Collapse
Affiliation(s)
- Arpan Mukherjee
- Department of Chemical Sciences and Centre for Advanced Functional Materials (CAFM), Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur-741246, India
| | - Sourav Acharya
- Department of Chemical Sciences and Centre for Advanced Functional Materials (CAFM), Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur-741246, India
| | - Kallol Purkait
- Department of Chemical Sciences and Centre for Advanced Functional Materials (CAFM), Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur-741246, India
| | - Kaustav Chakraborty
- Amity Institute of Biotechnology, Amity University Kolkata, Major Arterial Road, AA II, Newtown, Kolkata-700135, India
| | - Ashima Bhattacharjee
- Amity Institute of Biotechnology, Amity University Kolkata, Major Arterial Road, AA II, Newtown, Kolkata-700135, India
| | - Arindam Mukherjee
- Department of Chemical Sciences and Centre for Advanced Functional Materials (CAFM), Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur-741246, India
| |
Collapse
|
38
|
Kavukcu SB, Şahin O, Seda Vatansever H, Kurt FO, Korkmaz M, Kendirci R, Pelit L, Türkmen H. Synthesis and cytotoxic activities of organometallic Ru(II) diamine complexes. Bioorg Chem 2020; 99:103793. [PMID: 32278205 DOI: 10.1016/j.bioorg.2020.103793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 03/16/2020] [Accepted: 03/23/2020] [Indexed: 01/03/2023]
Abstract
A series of mono and bimetallic ruthenium(II) arene complexes bearing diamine (Ru1-6) were prepared and fully characterized by 1H, 13C, 19F, and 31P NMR spectroscopy and elemental analysis. The crystal structure of the bimetallic complex (Ru5) was determined by X-ray crystallography. Monometallic analogues (Ru1-3) were synthesized to investigate the contributions of ruthenium and the other organic groups (aren, ethylenediamine, butyl) to the activity. The electrochemical behaviors of mono and bimetallic complexes were obtained from the relationship between cyclic voltammetry (CV) and the biological activities of the compounds. The cytotoxic activities of the complexes (Ru1-6) were tested against wide-scale cancer cell lines, namely HeLa, MDA-MB-231, DU-145, LNCaP, Hep-G2, Saos-2, PC-3, and MCF-7, and normal cell lines 3T3-L1 and Vero. Diamine Ru(II) arene complexes have unique biological characteristics and they are promising models for new anticancer drug development. MTT analysis reveals that each synthesized Ru complex showed cytotoxic activity towards the different cancer cells. In particular, three Ru complexes (Ru3, Ru5 and Ru6) showed less toxic effects on the cancer cells than the others. These novel Ru complexes affected both cancer and normal cell lines. As they had a toxic effect on the cells, the dosage applied should be tested before being used for in vivo applications. Cytotoxicity tests have shown that the bimetallic complex Ru6 was effective on all cancer cells. The effect of bimetallic enhancement on cancer cell lines, the systematic variation of the intermetallic distance and the ligand donor properties of the mono and bimetallic complexes were explored based on the cytotoxic activity. The interaction with FS-DNA and the stability/aquation of the complexes (Ru3 and Ru6) were investigated with 1H NMR spectroscopy. The binding modes between the complexes (Ru3 and Ru6) and DNA were investigated via UV-Vis spectroscopy.
Collapse
Affiliation(s)
| | - Onur Şahin
- University of Sinop, Scientific and Technological Research Application and Research Center, Sinop, Turkey
| | - Hafize Seda Vatansever
- University of Manisa Celal Bayar, Faculty of Medicine, Department of Histology-Embryology, 45030 Manisa, Turkey; Research Centre of Experimental Health Sciences (DESAM), Near East University, Mersin-10, Cyprus
| | - Feyzan Ozdal Kurt
- University of Manisa Celal Bayar, Faculty of Sciences and Letters, Department of Biology, 45030 Manisa, Turkey
| | - Mehmet Korkmaz
- University of Manisa Celal Bayar, Faculty of Medicine, Department of Medical Biology, 45030 Manisa, Turkey
| | - Remziye Kendirci
- University of Manisa Celal Bayar, Faculty of Medicine, Department of Histology-Embryology, 45030 Manisa, Turkey
| | - Levent Pelit
- University of Ege, Faculty of Science, Department of Chemistry, 35100 Izmir, Turkey
| | - Hayati Türkmen
- University of Ege, Faculty of Science, Department of Chemistry, 35100 Izmir, Turkey.
| |
Collapse
|
39
|
Cunha BN, Luna-Dulcey L, Plutin AM, Silveira RG, Honorato J, Cairo RR, de Oliveira TD, Cominetti MR, Castellano EE, Batista AA. Selective Coordination Mode of Acylthiourea Ligands in Half-Sandwich Ru(II) Complexes and Their Cytotoxic Evaluation. Inorg Chem 2020; 59:5072-5085. [DOI: 10.1021/acs.inorgchem.0c00319] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Beatriz N. Cunha
- Departamento de Química, Universidade Federal de São Carlos—UFSCar, Rodovia Washington Luís KM 235, CP 676, 13561-901 São Carlos, SP, Brazil
- Instituto Federal Goiano—IFGoiano, Campus Ceres, Rodovia GO-154 KM 03, CP 51, 76300-000 Ceres, GO, Brazil
| | - Liany Luna-Dulcey
- Departamento de Gerontologia, Universidade Federal de São Carlos—UFSCar, Rodovia Washington Luís KM 235, CP 676, 13561-901 São Carlos, SP, Brazil
| | - Ana M. Plutin
- Laboratório de Síntesis Orgánica, Facultad de Química, Universidad dela Habana—UH, Habana 10400, Cuba
| | - Rafael G. Silveira
- Departamento de Química, Universidade Federal de São Carlos—UFSCar, Rodovia Washington Luís KM 235, CP 676, 13561-901 São Carlos, SP, Brazil
- Instituto Federal Goiano—IFGoiano, Campus Ceres, Rodovia GO-154 KM 03, CP 51, 76300-000 Ceres, GO, Brazil
| | - João Honorato
- Departamento de Química, Universidade Federal de São Carlos—UFSCar, Rodovia Washington Luís KM 235, CP 676, 13561-901 São Carlos, SP, Brazil
| | - Raúl R. Cairo
- Laboratório de Síntesis Orgánica, Facultad de Química, Universidad dela Habana—UH, Habana 10400, Cuba
| | - Tamires D. de Oliveira
- Departamento de Química, Universidade Federal de São Carlos—UFSCar, Rodovia Washington Luís KM 235, CP 676, 13561-901 São Carlos, SP, Brazil
| | - Marcia R. Cominetti
- Departamento de Gerontologia, Universidade Federal de São Carlos—UFSCar, Rodovia Washington Luís KM 235, CP 676, 13561-901 São Carlos, SP, Brazil
| | - Eduardo E. Castellano
- Departamento de Física e Informática, Instituto de Física de São Carlos, Universidade de São Paulo—USP, CP 369, 13560-970 São Carlos, SP, Brazil
| | - Alzir A. Batista
- Departamento de Química, Universidade Federal de São Carlos—UFSCar, Rodovia Washington Luís KM 235, CP 676, 13561-901 São Carlos, SP, Brazil
| |
Collapse
|
40
|
Lin K, Rong Y, Chen D, Zhao Z, Bo H, Qiao A, Hao X, Wang J. Combination of Ruthenium Complex and Doxorubicin Synergistically Inhibits Cancer Cell Growth by Down-Regulating PI3K/AKT Signaling Pathway. Front Oncol 2020; 10:141. [PMID: 32133289 PMCID: PMC7041628 DOI: 10.3389/fonc.2020.00141] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/27/2020] [Indexed: 01/21/2023] Open
Abstract
Combinational use of drugs has been a common strategy in cancer treatment because of synergistic advantages in reducing dose and toxicity, minimizing or delaying drug resistance. To improve the efficacy of chemotherapy, various potential combinations have been investigated. Ruthenium complex is considered a potential alternative of the platinum-based drugs due to its significant efficacy and safety. Previously, we reported that ruthenium(II) complex (Δ-Ru1) has great anticancer potential and minor toxicity toward normal tissues. However, the therapeutic efficacy and mechanism of action of ruthenium(II) complex combined with other anticancer drugs is still unknown. Here, we investigated the combinational effect of Δ-Ru1 and doxorubicin in different cancer cells. The data assessed by Chou-Talalay method showed significant synergism in MCF-7 cells. Furthermore, the results in antiproliferation efficacy indicated that the combination showed strong cytotoxicity and increasing apoptosis of MCF-7 cells in 2D and 3D multicellular tumor spheroids (MCTSs). Significant inhibition of MCF-7 cells accompanied with increased ROS generation was observed. Furthermore, the expression of PI3K/AKT was significantly down-regulated, while the expression of PTEN was strongly up-regulated in cells treated with combination of Δ-Ru1 and doxorubicin. The expression of NF-κB and XIAP decreased while the expression of P53 increased and associated with apoptosis. These findings suggest that the combination of ruthenium complex and doxorubicin has a significant synergistic effect by down-regulating the PI3K/AKT signaling pathway in MCF-7 cells. This study may trigger more research in ruthenium complex and combination therapy that will be able to provide opportunities for developing better therapeutics for cancer treatment.
Collapse
Affiliation(s)
- Ke Lin
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yi Rong
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Dan Chen
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zizhuo Zhao
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huaben Bo
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Aimin Qiao
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaojuan Hao
- Manufacturing, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC, Australia
| | - Jinquan Wang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
41
|
|
42
|
King AP, Wilson JJ. Endoplasmic reticulum stress: an arising target for metal-based anticancer agents. Chem Soc Rev 2020; 49:8113-8136. [DOI: 10.1039/d0cs00259c] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Metal anticancer agents are rapidly emerging as selective, potent therapeutics that exhibit anticancer activity by inducing endoplasmic reticulum stress.
Collapse
Affiliation(s)
- A. Paden King
- Department of Chemistry and Chemical Biology
- Cornell University
- Ithaca
- USA
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology
- Cornell University
- Ithaca
- USA
| |
Collapse
|
43
|
King AP, Marker SC, Swanda RV, Woods JJ, Qian SB, Wilson JJ. A Rhenium Isonitrile Complex Induces Unfolded Protein Response-Mediated Apoptosis in Cancer Cells. Chemistry 2019; 25:9206-9210. [PMID: 31090971 DOI: 10.1002/chem.201902223] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Indexed: 12/31/2022]
Abstract
Complexes of the element Re have recently been shown to possess promising anticancer activity through mechanisms of action that are distinct from the conventional metal-based drug cisplatin. In this study, we report our investigations on the anticancer activity of the complex [Re(CO)3 (dmphen)(p-tol-ICN)]+ (TRIP) in which dmphen=2,9-dimethyl-1,10-phenanthroline and p-tol-ICN=para-tolyl isonitrile. TRIP was synthesized by literature methods and exhaustively characterized. This compound exhibited potent in vitro anticancer activity in a wide variety of cell lines. Flow cytometry and immunostaining experiments indicated that TRIP induces intrinsic apoptosis. Comprehensive biological mechanistic studies demonstrated that this compound triggers the accumulation of misfolded proteins, which causes endoplasmic reticulum (ER) stress, the unfolded protein response, and apoptotic cell death. Furthermore, TRIP induced hyperphosphorylation of eIF2α, translation inhibition, mitochondrial fission, and expression of proapoptotic ATF4 and CHOP. These results establish TRIP as a promising anticancer agent based on its potent cytotoxic activity and ability to induce ER stress.
Collapse
Affiliation(s)
- A Paden King
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Sierra C Marker
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Robert V Swanda
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Joshua J Woods
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA.,Robert F. Smith School for Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Shu-Bing Qian
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Justin J Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
44
|
Zhao J, Liu N, Sun S, Gou S, Wang X, Wang Z, Li X, Zhang W. Light-activated ruthenium (II)-bicalutamide prodrugs for prostate cancer. J Inorg Biochem 2019; 196:110684. [PMID: 31054419 DOI: 10.1016/j.jinorgbio.2019.03.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/25/2019] [Accepted: 03/28/2019] [Indexed: 01/25/2023]
Abstract
Targeted delivery of clinically approved anticancer drug to tumor sites is an effective way to achieve enhanced drug efficacy as well as reduced side effects and toxicity. Here bicalutamide is caged by the Ru(II) center through the nitrile group, and three photoactive Ru(II) complexes were designed and synthesized. Docking study showed that the ruthenium(II) fragments can effectively block the binding of complexes 1-3 with AR (androgen receptor) owing to the large steric structures, thus bicalutamide in complexes 1-3 could not interact with AR-LBD (ligand binding domain). Once irradiation with blue light (465nm), complexes 1-3 can release bicalutamide and anticancer Ru(II) fragments, which possesses dual-action of AR binding and DNA interaction simultaneously. In vitro cytotoxicity study on these complexes further confirmed that complexes 1-3 exhibited considerable cytotoxicity upon irradiation with blue light. Significantly, complex 3 could be activated at 660nm, which greatly increases the scope of complex 3 to treat deeper within tissue. Theoretical calculations showed that the lowest singlet excitation energy of complex 3 is lower than those of complexes 1-2, which explains the experimental results well. Moreover, the 3MC (metal centered) states of these complexes are more stable than their 3MLCT (metal to ligand charge transfer) states, indicating that the photoactive processes of these complexes are likely to result in ligand dissociation.
Collapse
Affiliation(s)
- Jian Zhao
- Research Center and School of Chemistry and Chemical Engineering, and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Nannan Liu
- Research Center and School of Chemistry and Chemical Engineering, and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Shuchen Sun
- Research Center and School of Chemistry and Chemical Engineering, and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Shaohua Gou
- Research Center and School of Chemistry and Chemical Engineering, and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China.
| | - Xinyi Wang
- Research Center and School of Chemistry and Chemical Engineering, and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Zhimei Wang
- Research Center and School of Chemistry and Chemical Engineering, and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Xiaoyan Li
- The College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Wenjing Zhang
- The College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan Province 450001, China.
| |
Collapse
|