1
|
Reuter T, Zorn D, Naumann R, Klett J, Förster C, Heinze K. A Tetracarbene Iron(II) Complex with a Long-lived Triplet Metal-to-Ligand Charge Transfer State due to a Triplet-Triplet Barrier. Angew Chem Int Ed Engl 2024; 63:e202406438. [PMID: 38946322 DOI: 10.1002/anie.202406438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/02/2024]
Abstract
Mixed N-heterocyclic carbene (NHC) / pyridyl iron(II) complexes have attracted a great deal of attention recently because of their potential as photocatalysts and light sensitizers made from Earth-abundant elements. The most decisive challenge for their successful implementation is the lifetime of the lowest triplet metal-to-ligand charge transfer state (3MLCT), which typically decays via a triplet metal-centered (3MC) state back to the ground state. We reveal by variable-temperature ultrafast transient absorption spectroscopy that the tripodal iron(II) bis(pyridine) complex isomers trans- and cis-[Fe(pdmi)2]2+ with four NHC donors show 3MLCT→3MC population transfers with very different barriers and rationalize this by computational means. While trans-[Fe(pdmi)2]2+ possesses an unobservable activation barrier, the cis isomer exhibits a barrier of 492 cm-1, which leads to a nanosecond 3MLCT lifetime at 77 K. The kinetic and quantum chemical data were analyzed in the context of semi-classical Marcus theory revealing a high reorganization energy and small electronic coupling between the two triplet states. This highlights the importance of detailed structural control and kinetic knowledge for the rational design of photosensitizers from first row transition metals such as iron.
Collapse
Affiliation(s)
- Thomas Reuter
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Dimitri Zorn
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Robert Naumann
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Jan Klett
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Christoph Förster
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Katja Heinze
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|
2
|
Malme JT, Weaver JN, Girolami GS, Vura-Weis J. Picosecond Metal-to-Ligand Charge-Transfer Deactivation in Co(ppy) 3 via Jahn-Teller Distortion. Inorg Chem 2024; 63:13825-13830. [PMID: 39023554 DOI: 10.1021/acs.inorgchem.4c01959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The excited-state dynamics of fac-Co(ppy)3, where ppy = 2-[2-(pyridyl)phenyl], are measured with femtosecond UV-vis transient absorption spectroscopy. The initial state is confirmed with spectroelectrochemistry to have significant metal-to-ligand charge transfer (MLCT) character, unlike other Co complexes that generally have ligand-to-metal charge transfer or ligand-field transitions in this energy range. Ground-state recovery occurs in 8.65 ps in dichloromethane. Density functional theory calculations show that the MLCT state undergoes Jahn-Teller distortion and converts to a five-coordinate triplet metal-centered state in which one Co-N bond is broken. The results highlight a potential pitfall of heteroleptic bidentate ligands when designing strong-field ligands for transition-metal chromophores.
Collapse
Affiliation(s)
- Justin T Malme
- Department of Chemistry, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States
| | - Jenelle N Weaver
- Department of Chemistry, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States
| | - Gregory S Girolami
- Department of Chemistry, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States
| | - Josh Vura-Weis
- Department of Chemistry, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States
| |
Collapse
|
3
|
Witas K, Nair SS, Maisuradze T, Zedler L, Schmidt H, Garcia-Porta P, Rein ASJ, Bolter T, Rau S, Kupfer S, Dietzek-Ivanšić B, Sorsche DU. Beyond the First Coordination Sphere─Manipulating the Excited-State Landscape in Iron(II) Chromophores with Protons. J Am Chem Soc 2024; 146:19710-19719. [PMID: 38990184 PMCID: PMC11273614 DOI: 10.1021/jacs.4c00552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 07/12/2024]
Abstract
Molecular transition metal chromophores play a central role in light harvesting and energy conversion. Recently, earth-abundant transition-metal-based chromophores have begun to challenge the dominance of platinum group metal complexes in this area. However, the development of new chromophores with optimized photophysical properties is still limited by a lack of synthetic methods, especially with respect to heteroleptic complexes with functional ligands. Here, we demonstrate a facile and efficient method for the combination of strong-field carbenes with the functional 2,2'-bibenzimidazole ligand in a heteroleptic iron(II) chromophore complex. Our approach yields two isomers that differ predominantly in their excited-state lifetimes based on the symmetry of the ligand field. Deprotonation of both isomers leads to a significant red-shift of the metal-to-ligand charge transfer (MLCT) absorption and a shortening of excited-state lifetimes. Femtosecond transient absorption spectroscopy in combination with quantum chemical simulations and resonance Raman spectroscopy reveals the complex relationship between protonation and photophysical properties. Protonation is found to tip the balance between MLCT and metal-centered (MC) excited states in favor of the former. This study showcases the first example of fine-tuning of the excited-state landscape in an iron(II) chromophore through second-sphere manipulations and provides a new perspective to the challenge of excited-state optimizations in 3d transition metal chromophores.
Collapse
Affiliation(s)
- Kamil Witas
- Institute
for Inorganic Chemistry 1, Ulm University
(UUlm), Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Shruthi Santhosh Nair
- Research
Department Functional Interfaces, Leibniz
Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Straße 9, Jena 07745, Germany
- Institute
for Physical Chemistry, Friedrich-Schiller-Universität
Jena (FSU Jena), Lessingstraße 4, Jena 07743, Germany
| | - Tamar Maisuradze
- Institute
for Physical Chemistry, Friedrich-Schiller-Universität
Jena (FSU Jena), Lessingstraße 4, Jena 07743, Germany
| | - Linda Zedler
- Research
Department Functional Interfaces, Leibniz
Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Straße 9, Jena 07745, Germany
- Institute
for Physical Chemistry, Friedrich-Schiller-Universität
Jena (FSU Jena), Lessingstraße 4, Jena 07743, Germany
| | - Heiner Schmidt
- Research
Department Functional Interfaces, Leibniz
Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Straße 9, Jena 07745, Germany
- Institute
for Physical Chemistry, Friedrich-Schiller-Universität
Jena (FSU Jena), Lessingstraße 4, Jena 07743, Germany
| | - Pablo Garcia-Porta
- Institute
for Inorganic Chemistry 1, Ulm University
(UUlm), Albert-Einstein-Allee 11, Ulm 89081, Germany
| | | | - Tim Bolter
- Institute
for Inorganic Chemistry 1, Ulm University
(UUlm), Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Sven Rau
- Institute
for Inorganic Chemistry 1, Ulm University
(UUlm), Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Stephan Kupfer
- Institute
for Physical Chemistry, Friedrich-Schiller-Universität
Jena (FSU Jena), Lessingstraße 4, Jena 07743, Germany
| | - Benjamin Dietzek-Ivanšić
- Research
Department Functional Interfaces, Leibniz
Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Straße 9, Jena 07745, Germany
- Institute
for Physical Chemistry, Friedrich-Schiller-Universität
Jena (FSU Jena), Lessingstraße 4, Jena 07743, Germany
| | - Dieter U. Sorsche
- Institute
for Inorganic Chemistry 1, Ulm University
(UUlm), Albert-Einstein-Allee 11, Ulm 89081, Germany
| |
Collapse
|
4
|
Zahn C, Pastore M, Lustres JLP, Gros PC, Haacke S, Heyne K. Femtosecond Infrared Spectroscopy Resolving the Multiplicity of High-Spin Crossover States in Transition Metal Iron Complexes. J Am Chem Soc 2024; 146:9347-9355. [PMID: 38520392 PMCID: PMC10995999 DOI: 10.1021/jacs.4c01637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
Tuning the photophysical properties of iron-based transition-metal complexes is crucial for their employment as photosensitizers in solar energy conversion. For the optimization of these new complexes, a detailed understanding of the excited-state deactivation paths is necessary. Here, we report femtosecond transient mid-IR spectroscopy data on a recently developed octahedral ligand-field enhancing [Fe(dqp)2]2+ (C1) complex with dqp = 2,6-diquinolylpyridine and prototypical [Fe(bpy)3]2+ (C0). By combining mid-IR spectroscopy with quantum chemical DFT calculations, we propose a method for disentangling the 5Q1 and 3T1 multiplicities of the long-lived metal-centered (MC) states, applicable to a variety of metal-organic iron complexes. Our results for C0 align well with the established assignment toward the 5Q1, validating our approach. For C1, we find that deactivation of the initially excited metal-to-ligand charge-transfer state leads to a population of a long-lived MC 5Q1 state. Analysis of transient changes in the mid-IR shows an ultrafast sub 200 fs rearrangement of ligand geometry for both complexes, accompanying the MLCT → MC deactivation. This confirms that the flexibility in the ligand sphere supports the stabilization of high spin states and plays a crucial role in the MLCT lifetime of metal-organic iron complexes.
Collapse
Affiliation(s)
- Clark Zahn
- Department
of Physics, Free University Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | | | - J. Luis Perez Lustres
- Department
of Physics, Free University Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | | | - Stefan Haacke
- Université
de Strasbourg—CNRS, IPCMS, 67034 Strasbourg, France
| | - Karsten Heyne
- Department
of Physics, Free University Berlin, Arnimallee 14, D-14195 Berlin, Germany
| |
Collapse
|
5
|
Prakash O, Chábera P, Kaul N, Hlynsson VF, Rosemann NW, Losada IB, Hoang Hai YT, Huang P, Bendix J, Ericsson T, Häggström L, Gupta AK, Strand D, Yartsev A, Lomoth R, Persson P, Wärnmark K. How Rigidity and Conjugation of Bidentate Ligands Affect the Geometry and Photophysics of Iron N-Heterocyclic Complexes: A Comparative Study. Inorg Chem 2024; 63:4461-4473. [PMID: 38421802 PMCID: PMC10934811 DOI: 10.1021/acs.inorgchem.3c03972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
Two iron complexes featuring the bidentate, nonconjugated N-heterocyclic carbene (NHC) 1,1'-methylenebis(3-methylimidazol-2-ylidene) (mbmi) ligand, where the two NHC moieties are separated by a methylene bridge, have been synthesized to exploit the combined influence of geometric and electronic effects on the ground- and excited-state properties of homoleptic FeIII-hexa-NHC [Fe(mbmi)3](PF6)3 and heteroleptic FeII-tetra-NHC [Fe(mbmi)2(bpy)](PF6)2 (bpy = 2,2'-bipyridine) complexes. They are compared to the reported FeIII-hexa-NHC [Fe(btz)3](PF6)3 and FeII-tetra-NHC [Fe(btz)2(bpy)](PF6)2 complexes containing the conjugated, bidentate mesoionic NHC ligand 3,3'-dimethyl-1,1'-bis(p-tolyl)-4,4'-bis(1,2,3-triazol-5-ylidene) (btz). The observed geometries of [Fe(mbmi)3](PF6)3 and [Fe(mbmi)2(bpy)](PF6)2 are evaluated through L-Fe-L bond angles and ligand planarity and compared to those of [Fe(btz)3](PF6)3 and [Fe(btz)2(bpy)](PF6)2. The FeII/FeIII redox couples of [Fe(mbmi)3](PF6)3 (-0.38 V) and [Fe(mbmi)2(bpy)](PF6)2 (-0.057 V, both vs Fc+/0) are less reducing than [Fe(btz)3](PF6)3 and [Fe(btz)2(bpy)](PF6)2. The two complexes show intense absorption bands in the visible region: [Fe(mbmi)3](PF6)3 at 502 nm (ligand-to-metal charge transfer, 2LMCT) and [Fe(mbmi)2(bpy)](PF6)2 at 410 and 616 nm (metal-to-ligand charge transfer, 3MLCT). Lifetimes of 57.3 ps (2LMCT) for [Fe(mbmi)3](PF6)3 and 7.6 ps (3MLCT) for [Fe(mbmi)2(bpy)](PF6)2 were probed and are somewhat shorter than those for [Fe(btz)3](PF6)3 and [Fe(btz)2(bpy)](PF6)2. [Fe(mbmi)3](PF6)3 exhibits photoluminescence at 686 nm (2LMCT) in acetonitrile at room temperature with a quantum yield of (1.2 ± 0.1) × 10-4, compared to (3 ± 0.5) × 10-4 for [Fe(btz)3](PF6)3.
Collapse
Affiliation(s)
- Om Prakash
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Pavel Chábera
- Chemical
Physics Division, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Nidhi Kaul
- Department
of Chemistry − Ångström Laboratory, Uppsala University, Box
523, SE-751 20 Uppsala, Sweden
| | - Valtýr F. Hlynsson
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Nils W. Rosemann
- Chemical
Physics Division, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Iria Bolaño Losada
- Theoretical
Chemistry Division, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Yen Tran Hoang Hai
- Theoretical
Chemistry Division, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Ping Huang
- Department
of Chemistry − Ångström Laboratory, Uppsala University, Box
523, SE-751 20 Uppsala, Sweden
| | - Jesper Bendix
- Department
of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Tore Ericsson
- Department
of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Lennart Häggström
- Department
of Physics − Ångström Laboratory, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden
| | - Arvind Kumar Gupta
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Daniel Strand
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Arkady Yartsev
- Chemical
Physics Division, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Reiner Lomoth
- Department
of Chemistry − Ångström Laboratory, Uppsala University, Box
523, SE-751 20 Uppsala, Sweden
| | - Petter Persson
- Theoretical
Chemistry Division, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Kenneth Wärnmark
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| |
Collapse
|
6
|
Pastore M, Caramori S, Gros PC. Iron-Sensitized Solar Cells (FeSSCs). Acc Chem Res 2024. [PMID: 38302460 DOI: 10.1021/acs.accounts.3c00613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
ConspectusThe harvesting and conversion of solar energy have become a burning issue for our modern societies seeking to move away from the exploitation of fossil fuels. In this context, dye-sensitized solar cells (DSSCs) have proven to be trustworthy alternatives to silicon-based cells with advantages in terms of transparency and efficiency under low illumination conditions. These devices are highly dependent on the ability of the sensitizer that they contain to collect sunlight and transfer an electron to a semiconductor after excitation. Ruthenium and polypyridine complexes are benchmarks in this field as they exhibit ideal characteristics such as long-lasting metal-ligand charge transfer (MLCT) states and efficient separation between electrons and holes, limiting recombination at the dye-semiconductor interface. Despite all of these advantages, ruthenium is a noble metal, and the development of more sustainable energy devices based on earth-abundant metals is now a must. A quick glance at the periodic table reveals iron as a potential good candidate, since it belongs to the same group of ruthenium, which suggests similar electronic properties. However, striking photophysical differences exist between ruthenium(II) polypyridyl complexes and their Fe(II) analogues, the latter suffering from short-lived MLCT states resulting of their ultrafast relaxation into metal-centered (MC) states. Pyridyl-N-heterocyclic carbenes (pyridylNHC) brought a strong σ-donor character required to promote a higher ligand field splitting of the iron d orbitals. This induces destabilization of the MC states over the MLCT manifold and a consequent slowdown of the excited states deactivation providing iron(II) complexes with tens of picoseconds lifetimes, making them more promising for applications in DSSCs. This Account highlights our recent advances in the development and characterization of iron-sensitized solar cells (FeSSCs) with a focus on the design of efficient sensitizers going from homoleptic to heteroleptic complexes (bearing different anchoring groups) and the tuning of electrolyte composition. Our rational approach led to the best photocurrent and efficiency ever reported for an iron sensitized solar cell (2% PCE and 9 mA/cm2) using a cosensitization process. This work clearly evidences that the solar energy conversion based on iron complex sensitization is now an opened and fruitful route.
Collapse
Affiliation(s)
| | - Stefano Caramori
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara,Via L. Borsari 46, 44121, Ferrara, Italy
| | | |
Collapse
|
7
|
Lindh L, Pascher T, Persson S, Goriya Y, Wärnmark K, Uhlig J, Chábera P, Persson P, Yartsev A. Multifaceted Deactivation Dynamics of Fe(II) N-Heterocyclic Carbene Photosensitizers. J Phys Chem A 2023; 127:10210-10222. [PMID: 38000043 DOI: 10.1021/acs.jpca.3c06983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
Excited state dynamics of three iron(II) carbene complexes that serve as prototype Earth-abundant photosensitizers were investigated by ultrafast optical spectroscopy. Significant differences in the dynamics between the investigated complexes down to femtosecond time scales are used to characterize fundamental differences in the depopulation of triplet metal-to-ligand charge-transfer (3MLCT) excited states in the presence of energetically accessible triplet metal-centered (3MC) states. Novel insights into the full deactivation cascades of the investigated complexes include evidence of the need to revise the deactivation model for a prominent iron carbene prototype complex, a refined understanding of complex 3MC dynamics, and a quantitative discrimination between activated and barrierless deactivation steps along the 3MLCT → 3MC → 1GS path. Overall, the study provides an improved understanding of photophysical limitations and opportunities for the use of iron(II)-based photosensitizers in photochemical applications.
Collapse
Affiliation(s)
- Linnea Lindh
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
- Division of Computational Chemistry, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Torbjörn Pascher
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Samuel Persson
- Center for Analysis and Synthesis (CAS), Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Yogesh Goriya
- Center for Analysis and Synthesis (CAS), Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Kenneth Wärnmark
- Center for Analysis and Synthesis (CAS), Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Jens Uhlig
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Pavel Chábera
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Petter Persson
- Division of Computational Chemistry, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Arkady Yartsev
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| |
Collapse
|
8
|
Bens T, Kübler JA, Walter RRM, Beerhues J, Wenger OS, Sarkar B. Impact of Bidentate Pyridyl-Mesoionic Carbene Ligands: Structural, (Spectro)Electrochemical, Photophysical, and Theoretical Investigations on Ruthenium(II) Complexes. ACS ORGANIC & INORGANIC AU 2023; 3:184-198. [PMID: 37545659 PMCID: PMC10401885 DOI: 10.1021/acsorginorgau.3c00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 08/08/2023]
Abstract
We present here new synthetic strategies for the isolation of a series of Ru(II) complexes with pyridyl-mesoionic carbene ligands (MIC) of the 1,2,3-triazole-5-ylidene type, in which the bpy ligands (bpy = 2,2'-bipyridine) of the archetypical [Ru(bpy)3]2+ have been successively replaced by one, two, or three pyridyl-MIC ligands. Three new complexes have been isolated and investigated via NMR spectroscopy and single-crystal X-ray diffraction analysis. The incorporation of one MIC unit shifts the potential of the metal-centered oxidation about 160 mV to more cathodic potential in cyclic voltammetry, demonstrating the extraordinary σ-donor ability of the pyridyl-MIC ligand, while the π-acceptor capacities are dominated by the bpy ligand, as indicated by electron paramagnetic resonance spectroelectrochemistry (EPR-SEC). The replacement of all bpy ligands by the pyridyl-MIC ligand results in an anoidic shift of the ligand-centered reduction by 390 mV compared to the well-established [Ru(bpy)3]2+ complex. In addition, UV/vis/NIR-SEC in combination with theoretical calculations provided detailed insights into the electronic structures of the respective redox states, taking into account the total number of pyridyl-MIC ligands incorporated in the Ru(II) complexes. The luminescence quantum yield and lifetimes were determined by time-resolved absorption and emission spectroscopy. An estimation of the excited state redox potentials conclusively showed that the pyridyl-MIC ligand can tune the photoredox activity of the isolated complexes to stronger photoreductants. These observations can provide new strategies for the design of photocatalysts and photosensitizers based on MICs.
Collapse
Affiliation(s)
- Tobias Bens
- Institut
für Anorganische Chemie, Universität
Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
- Institut
für Chemie und Biochemie, Freie Universität
Berlin, Fabeckstraße
34-36, 14195 Berlin, Germany
| | - Jasmin A. Kübler
- Department
of Chemistry, University of Basel, 4056 Basel, Switzerland
| | - Robert R. M. Walter
- Institut
für Anorganische Chemie, Universität
Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Julia Beerhues
- Institut
für Anorganische Chemie, Universität
Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
- Institut
für Chemie und Biochemie, Freie Universität
Berlin, Fabeckstraße
34-36, 14195 Berlin, Germany
| | - Oliver S. Wenger
- Department
of Chemistry, University of Basel, 4056 Basel, Switzerland
| | - Biprajit Sarkar
- Institut
für Anorganische Chemie, Universität
Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
- Institut
für Chemie und Biochemie, Freie Universität
Berlin, Fabeckstraße
34-36, 14195 Berlin, Germany
| |
Collapse
|
9
|
Reddy-Marri A, Marchini E, Cabanes VD, Argazzi R, Pastore M, Caramori S, Gros PC. Panchromatic light harvesting and record power conversion efficiency for carboxylic/cyanoacrylic Fe( ii) NHC co-sensitized FeSSCs. Chem Sci 2023; 14:4288-4301. [PMID: 37123187 PMCID: PMC10132143 DOI: 10.1039/d2sc05971a] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/23/2023] [Indexed: 04/05/2023] Open
Abstract
The co-sensitization of TiO2 by using a combination of carboxylic and thienylcyanoacrylic (ThCA)–Fe(ii) pyridyl-NHC sensitizers produced a panchromatic absorption and the best photocurrent and efficiency ever reported for an FeSSC.
Collapse
Affiliation(s)
- Anil Reddy-Marri
- Department of Chemistry, North Carolina State University, 851 Main Campus Drive, Raleigh, North Carolina, 27695-8204, USA
| | - Edoardo Marchini
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | | | - Roberto Argazzi
- CNR-ISOF c/o Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | | | - Stefano Caramori
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | | |
Collapse
|
10
|
Prakash O, Lindh L, Kaul N, Rosemann NW, Losada IB, Johnson C, Chábera P, Ilic A, Schwarz J, Gupta AK, Uhlig J, Ericsson T, Häggström L, Huang P, Bendix J, Strand D, Yartsev A, Lomoth R, Persson P, Wärnmark K. Photophysical Integrity of the Iron(III) Scorpionate Framework in Iron(III)-NHC Complexes with Long-Lived 2LMCT Excited States. Inorg Chem 2022; 61:17515-17526. [PMID: 36279568 PMCID: PMC9644379 DOI: 10.1021/acs.inorgchem.2c02410] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Indexed: 11/30/2022]
Abstract
Fe(III) complexes with N-heterocyclic carbene (NHC) ligands belong to the rare examples of Earth-abundant transition metal complexes with long-lived luminescent charge-transfer excited states that enable applications as photosensitizers for charge separation reactions. We report three new hexa-NHC complexes of this class: [Fe(brphtmeimb)2]PF6 (brphtmeimb = [(4-bromophenyl)tris(3-methylimidazol-2-ylidene)borate]-, [Fe(meophtmeimb)2]PF6 (meophtmeimb = [(4-methoxyphenyl)tris(3-methylimidazol-2-ylidene)borate]-, and [Fe(coohphtmeimb)2]PF6 (coohphtmeimb = [(4-carboxyphenyl)tris(3-methylimidazol-2-ylidene)borate]-. These were derived from the parent complex [Fe(phtmeimb)2]PF6 (phtmeimb = [phenyltris(3-methylimidazol-2-ylidene)borate]- by modification with electron-withdrawing and electron-donating substituents, respectively, at the 4-phenyl position of the ligand framework. All three Fe(III) hexa-NHC complexes were characterized by NMR spectroscopy, high-resolution mass spectroscopy, elemental analysis, single crystal X-ray diffraction analysis, electrochemistry, Mößbauer spectroscopy, electronic spectroscopy, magnetic susceptibility measurements, and quantum chemical calculations. Their ligand-to-metal charge-transfer (2LMCT) excited states feature nanosecond lifetimes (1.6-1.7 ns) and sizable emission quantum yields (1.7-1.9%) through spin-allowed transition to the doublet ground state (2GS), completely in line with the parent complex [Fe(phtmeimb)2]PF6 (2.0 ns and 2.1%). The integrity of the favorable excited state characteristics upon substitution of the ligand framework demonstrates the robustness of the scorpionate motif that tolerates modifications in the 4-phenyl position for applications such as the attachment in molecular or hybrid assemblies.
Collapse
Affiliation(s)
- Om Prakash
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-22100Lund, Sweden
| | - Linnea Lindh
- Chemical
Physics Division, Department of Chemistry, Lund University, Box 124, SE-22100Lund, Sweden
- Theoretical
Chemistry Division, Department of Chemistry, Lund University, Box 124, SE-22100Lund, Sweden
| | - Nidhi Kaul
- Department
of Chemistry − Ångström Laboratory, Uppsala University, Box 523, SE-75120Uppsala, Sweden
| | - Nils W. Rosemann
- Chemical
Physics Division, Department of Chemistry, Lund University, Box 124, SE-22100Lund, Sweden
| | - Iria Bolaño Losada
- Theoretical
Chemistry Division, Department of Chemistry, Lund University, Box 124, SE-22100Lund, Sweden
| | - Catherine Johnson
- Department
of Chemistry − Ångström Laboratory, Uppsala University, Box 523, SE-75120Uppsala, Sweden
| | - Pavel Chábera
- Chemical
Physics Division, Department of Chemistry, Lund University, Box 124, SE-22100Lund, Sweden
| | - Aleksandra Ilic
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-22100Lund, Sweden
| | - Jesper Schwarz
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-22100Lund, Sweden
| | - Arvind Kumar Gupta
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-22100Lund, Sweden
| | - Jens Uhlig
- Chemical
Physics Division, Department of Chemistry, Lund University, Box 124, SE-22100Lund, Sweden
| | - Tore Ericsson
- Department
of Physics − Ångström Laboratory, Uppsala University, Box 523, SE-75120Uppsala, Sweden
| | - Lennart Häggström
- Department
of Physics − Ångström Laboratory, Uppsala University, Box 523, SE-75120Uppsala, Sweden
| | - Ping Huang
- Department
of Chemistry − Ångström Laboratory, Uppsala University, Box 523, SE-75120Uppsala, Sweden
| | - Jesper Bendix
- Department
of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100Copenhagen, Denmark
| | - Daniel Strand
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-22100Lund, Sweden
| | - Arkady Yartsev
- Chemical
Physics Division, Department of Chemistry, Lund University, Box 124, SE-22100Lund, Sweden
| | - Reiner Lomoth
- Department
of Chemistry − Ångström Laboratory, Uppsala University, Box 523, SE-75120Uppsala, Sweden
| | - Petter Persson
- Theoretical
Chemistry Division, Department of Chemistry, Lund University, Box 124, SE-22100Lund, Sweden
| | - Kenneth Wärnmark
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-22100Lund, Sweden
| |
Collapse
|
11
|
Carrillo U, Francés-Monerris A, Marri AR, Cebrián C, Gros PC. Substituent-Induced Control of fac/ mer Isomerism in Azine-NHC Fe(II) Complexes. ACS ORGANIC & INORGANIC AU 2022; 2:525-536. [PMID: 36855530 PMCID: PMC9955161 DOI: 10.1021/acsorginorgau.2c00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022]
Abstract
The stereoselective synthesis of geometrical iron(II) complexes bearing azine-NHC ligands is described. Facial and meridional selectivity is achieved as a function of the steric demand of the azine unit, with no remarkable influence of the carbene nature. More specifically, meridional complexes are obtained upon selecting bulky 5-mesityl-substituted pyridyl coordinating units. Unexpectedly, increase of the steric hindrance in the α position with respect to the N coordinating atom results in an exclusive facial configuration, which is in stark contrast to the meridional selectivity induced by other reported α-substituted bidentate ligands. Investigation of the structure and the optical and electrochemical properties of the here-described complexes has revealed the non-negligible effect of the fac/mer ligand configuration around the metal center.
Collapse
|
12
|
Roque JA, Cole HD, Barrett PC, Lifshits LM, Hodges RO, Kim S, Deep G, Francés-Monerris A, Alberto ME, Cameron CG, McFarland SA. Intraligand Excited States Turn a Ruthenium Oligothiophene Complex into a Light-Triggered Ubertoxin with Anticancer Effects in Extreme Hypoxia. J Am Chem Soc 2022; 144:8317-8336. [PMID: 35482975 PMCID: PMC9098688 DOI: 10.1021/jacs.2c02475] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ru(II) complexes that undergo photosubstitution reactions from triplet metal-centered (3MC) excited states are of interest in photochemotherapy (PCT) due to their potential to produce cytotoxic effects in hypoxia. Dual-action systems that incorporate this stoichiometric mode to complement the oxygen-dependent photosensitization pathways that define photodynamic therapy (PDT) are poised to maintain antitumor activity regardless of the oxygenation status. Herein, we examine the way in which these two pathways influence photocytotoxicity in normoxia and in hypoxia using the [Ru(dmp)2(IP-nT)]2+ series (where dmp = 2,9-dimethyl-1,10-phenanthroline and IP-nT = imidazo[4,5-f][1,10]phenanthroline tethered to n = 0-4 thiophene rings) to switch the dominant excited state from the metal-based 3MC state in the case of Ru-phen-Ru-1T to the ligand-based 3ILCT state for Ru-3T and Ru-4T. Ru-phen-Ru-1T, having dominant 3MC states and the largest photosubstitution quantum yields, are inactive in both normoxia and hypoxia. Ru-3T and Ru-4T, with dominant 3IL/3ILCT states and long triplet lifetimes (τTA = 20-25 μs), have the poorest photosubstitution quantum yields, yet are extremely active. In the best instances, Ru-4T exhibit attomolar phototoxicity toward SKMEL28 cells in normoxia and picomolar in hypoxia, with phototherapeutic index values in normoxia of 105-1012 and 103-106 in hypoxia. While maximizing excited-state deactivation through photodissociative 3MC states did not result in bonafide dual-action PDT/PCT agents, the study has produced the most potent photosensitizer we know of to date. The extraordinary photosensitizing capacity of Ru-3T and Ru-4T may stem from a combination of very efficient 1O2 production and possibly complementary type I pathways via 3ILCT excited states.
Collapse
Affiliation(s)
- John A. Roque
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina 27402, USA
| | - Houston D. Cole
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| | - Patrick C. Barrett
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina 27402, USA
| | - Liubov M. Lifshits
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| | - Rachel O. Hodges
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina 27402, USA
| | - Susy Kim
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, 27157 USA
| | - Gagan Deep
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, 27157 USA
| | | | - Marta E. Alberto
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende, 87036 Italy
| | - Colin G. Cameron
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| | - Sherri A. McFarland
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| |
Collapse
|
13
|
Cebrían C, Pastore M, Monari A, Assfeld X, Gros PC, Haacke S. Ultrafast Spectroscopy of Fe(II) Complexes Designed for Solar Energy Conversion: Current Status and Open Questions. Chemphyschem 2022; 23:e202100659. [DOI: 10.1002/cphc.202100659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/22/2022] [Indexed: 11/11/2022]
Affiliation(s)
| | | | | | | | | | - Stefan Haacke
- University of Strasbourg: Universite de Strasbourg IPCMS 23, rue du Loess 67034 Strasbourg FRANCE
| |
Collapse
|
14
|
alberto ME, Francés-Monerris A. A Multiscale Free Energy Method Reveals an Unprecedented Photoactivation of a Bimetallic Os(II)-Pt(II) Dual Anticancer Agent. Phys Chem Chem Phys 2022; 24:19584-19594. [DOI: 10.1039/d2cp02128e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photoreactivity of relatively large transition metal complexes is often limited to the description of the static potential energy surfaces of the involved electronic states. While useful to grasp some...
Collapse
|
15
|
Dierks P, Vukadinovic Y, Bauer M. Photoactive iron complexes: more sustainable, but still a challenge. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01112j] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
With the “Criticality Score” used as a benchmark for sustainability – potentials, strategies and challenges are discussed to replace noble metal compounds in photosensitizers by the sustainable alternative iron.
Collapse
Affiliation(s)
- Philipp Dierks
- Faculty of Science, Chemistry Department and Center for Sustainable Systems Design, Paderborn University, 33098 Paderborn, Germany
| | - Yannik Vukadinovic
- Faculty of Science, Chemistry Department and Center for Sustainable Systems Design, Paderborn University, 33098 Paderborn, Germany
| | - Matthias Bauer
- Faculty of Science, Chemistry Department and Center for Sustainable Systems Design, Paderborn University, 33098 Paderborn, Germany
| |
Collapse
|
16
|
Magra K, Francés‐Monerris A, Cebrián C, Monari A, Haacke S, Gros PC. Bidentate Pyridyl‐NHC Ligands: Synthesis, Ground and Excited State Properties of Their Iron(II) Complexes and the Role of the fac/mer Isomerism. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Kévin Magra
- Université de Lorraine, CNRS, L2CM 57000 Metz France
| | | | | | - Antonio Monari
- Université de Lorraine, CNRS, LPCT 54000 Nancy France
- Université de de Paris and CNRS, Itodys 75006 Paris France
| | - Stefan Haacke
- Université de Strasbourg, CNRS, IPCMS 67000 Strasbourg France
| | | |
Collapse
|
17
|
Watt FA, Sieland B, Dickmann N, Schoch R, Herbst-Irmer R, Ott H, Paradies J, Kuckling D, Hohloch S. Coupling of CO 2 and epoxides catalysed by novel N-fused mesoionic carbene complexes of nickel(II). Dalton Trans 2021; 50:17361-17371. [PMID: 34788774 DOI: 10.1039/d1dt03311e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the syntheses of two rigid mesoionic carbene (MIC) ligands with a carbazole backbone via an intramolecular Finkelstein-cyclisation cascade and investigate their coordination behavior towards nickel(II) acetate. Despite the nickel(II) carbene complexes 4a,b showing only minor differences in their chemical composition, they display curious differences in their chemical properties, e.g. solubility. Furthermore, the potential of these novel MIC complexes in the coupling of carbon dioxide and epoxides as well as the differences in reactivity compared to classical NHC-derived complexes are evaluated.
Collapse
Affiliation(s)
- Fabian A Watt
- Paderborn University, Faculty of Science, Department of Chemistry, Warburger Straße 100, 33098 Paderborn, Germany
| | - Benedikt Sieland
- Paderborn University, Faculty of Science, Department of Chemistry, Warburger Straße 100, 33098 Paderborn, Germany
| | - Nicole Dickmann
- Paderborn University, Faculty of Science, Department of Chemistry, Warburger Straße 100, 33098 Paderborn, Germany
| | - Roland Schoch
- Paderborn University, Faculty of Science, Department of Chemistry, Warburger Straße 100, 33098 Paderborn, Germany
| | - Regine Herbst-Irmer
- University of Göttingen, Institute of Inorganic Chemistry, Tammannstraße 4, 37077 Göttingen, Germany
| | - Holger Ott
- Bruker AXS GmbH, Östliche Rheinbrückenstraße 49, 76187 Karlsruhe, Germany
| | - Jan Paradies
- Paderborn University, Faculty of Science, Department of Chemistry, Warburger Straße 100, 33098 Paderborn, Germany
| | - Dirk Kuckling
- Paderborn University, Faculty of Science, Department of Chemistry, Warburger Straße 100, 33098 Paderborn, Germany
| | - Stephan Hohloch
- University of Innsbruck, Faculty of Chemistry and Pharmacy, Institute of General, Inorganic and Theoretical Chemistry, Innrain 80-82, 6020 Innsbruck, Austria.
| |
Collapse
|
18
|
Marri AR, Marchini E, Cabanes VD, Argazzi R, Pastore M, Caramori S, Bignozzi CA, Gros PC. A Series of Iron(II)-NHC Sensitizers with Remarkable Power Conversion Efficiency in Photoelectrochemical Cells*. Chemistry 2021; 27:16260-16269. [PMID: 34528728 DOI: 10.1002/chem.202103178] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Indexed: 11/10/2022]
Abstract
A series of six new Fe(II)NHC-carboxylic sensitizers with their ancillary ligand decorated with functions of varied electronic properties have been designed with the aim to increase the metal-to- surface charge separation and light harvesting in iron-based dye-sensitized solar cells (DSSCs). ARM130 scored the highest efficiency ever reported for an iron-sensitized solar cell (1.83 %) using Mg2+ and NBu4 I-based electrolyte and a thick 20 μm TiO2 anode. Computational modelling, transient absorption spectroscopy and electrochemical impedance spectroscopy (EIS) revealed that the electronic properties induced by the dimethoxyphenyl-substituted NHC ligand of ARM130 led to the best combination of electron injection yield and spectral sensitivity breadth.
Collapse
Affiliation(s)
| | - Edoardo Marchini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L.Borsari 46, 44121, Ferrara, Italy
| | | | - Roberto Argazzi
- CNR-ISOF c/o Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L.Borsari 46, 44121, Ferrara, Italy
| | | | - Stefano Caramori
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L.Borsari 46, 44121, Ferrara, Italy
| | - Carlo Alberto Bignozzi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L.Borsari 46, 44121, Ferrara, Italy
| | | |
Collapse
|
19
|
Hainer F, Alagna N, Reddy Marri A, Penfold TJ, Gros PC, Haacke S, Buckup T. Vibrational Coherence Spectroscopy Identifies Ultrafast Branching in an Iron(II) Sensitizer. J Phys Chem Lett 2021; 12:8560-8565. [PMID: 34468159 DOI: 10.1021/acs.jpclett.1c01580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The introduction of N-heterocyclic carbene ligands has greatly increased the lifetimes of metal-to-ligand charge transfer states (MLCT) in iron(II) complexes, making them promising candidates for photocatalytic applications. However, the spectrally elusive triplet metal-centered state (3MC) has been suggested to play a decisive role in the relaxation of the MLCT manifold to the ground state, shortening their lifetimes and consequently limiting the application potential. In this work, time-resolved vibrational spectroscopy and quantum chemical calculations are applied to shed light on the 3MCs' involvement in the deactivation of the MLCT manifold of an iron(II) sensitizer. Two distinct symmetric Fe-L breathing vibrations at frequencies below 150 cm-1 are assigned to the 3MC and 3MLCT states by quantum chemical calculations. On the basis of this assignment, an ultrafast branching directly after excitation forms not only the long-lived 3MLCT but also the 3MC as an additional loss channel.
Collapse
Affiliation(s)
- F Hainer
- Physikalisch Chemisches Institut, Ruprecht-Karls Universität, D-69120 Heidelberg, Germany
- Centre for Advanced Materials, Ruprecht-Karls Universität, D-69120 Heidelberg, Germany
| | - N Alagna
- Physikalisch Chemisches Institut, Ruprecht-Karls Universität, D-69120 Heidelberg, Germany
- Centre for Advanced Materials, Ruprecht-Karls Universität, D-69120 Heidelberg, Germany
| | - A Reddy Marri
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
| | - T J Penfold
- Chemistry, School of Natural and Environmental Sciences, Newcastle University, NE1 7RU Newcastle Upon Tyne, United Kingdom
| | - P C Gros
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
| | - S Haacke
- University of Strasbourg, CNRS, IPCMS, 67034 Strasbourg, France
| | - T Buckup
- Physikalisch Chemisches Institut, Ruprecht-Karls Universität, D-69120 Heidelberg, Germany
- Centre for Advanced Materials, Ruprecht-Karls Universität, D-69120 Heidelberg, Germany
| |
Collapse
|
20
|
Nair SS, Bysewski OA, Kupfer S, Wächtler M, Winter A, Schubert US, Dietzek B. Excitation Energy-Dependent Branching Dynamics Determines Photostability of Iron(II)-Mesoionic Carbene Complexes. Inorg Chem 2021; 60:9157-9173. [PMID: 34081456 DOI: 10.1021/acs.inorgchem.1c01166] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Photoactive metal complexes containing earth-abundant transition metals recently gained interest as photosensitizers in light-driven chemistry. In contrast to the traditionally employed ruthenium or iridium complexes, iron complexes developed to be promising candidates despite the fact that using iron complexes as photosensitizers poses an inherent challenge associated with the low-lying metal-centered states, which are responsible for ultrafast deactivation of the charge-transfer states. Nonetheless, recent developments of strongly σ-donating carbene ligands yielded highly promising systems, in which destabilized metal-centered states resulted in prolonged lifetimes of charge-transfer excited states. In this context, we introduce a series of novel homoleptic Fe-triazolylidene mesoionic carbene complexes. The excited-state properties of the complexes were investigated by time-resolved femtosecond transient absorption spectroscopy and quantum chemical calculations. Pump wavelength-dependent transient absorption reveals the presence of distinct excited-state relaxation pathways. We relate the excitation-wavelength-dependent branching of the excited-state dynamics into various reaction channels to solvent-dependent photodissociation following the population of dissociative metal centered states upon excitation at 400 nm.
Collapse
Affiliation(s)
- Shruthi S Nair
- Department Functional Interfaces, Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Strasse 9, 07745 Jena, Germany.,Institute of Physical Chemistry, Friedrich-Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Oliver A Bysewski
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich-Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.,Center for Energy and Environmental Chemistry Jena (CEEC-Jena), Friedrich-Schiller University Jena, Philosophenweg, 07743 Jena, Germany
| | - Stephan Kupfer
- Institute of Physical Chemistry, Friedrich-Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Maria Wächtler
- Department Functional Interfaces, Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Strasse 9, 07745 Jena, Germany.,Institute of Physical Chemistry, Friedrich-Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany.,Abbe Center of Photonics, Friedrich Schiller University Jena, Philosophenweg, 07745 Jena, Germany
| | - Andreas Winter
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich-Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.,Center for Energy and Environmental Chemistry Jena (CEEC-Jena), Friedrich-Schiller University Jena, Philosophenweg, 07743 Jena, Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich-Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.,Center for Energy and Environmental Chemistry Jena (CEEC-Jena), Friedrich-Schiller University Jena, Philosophenweg, 07743 Jena, Germany
| | - Benjamin Dietzek
- Department Functional Interfaces, Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Strasse 9, 07745 Jena, Germany.,Institute of Physical Chemistry, Friedrich-Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| |
Collapse
|
21
|
Darari M, Francés-Monerris A, Marekha B, Doudouh A, Wenger E, Monari A, Haacke S, Gros PC. Towards Iron(II) Complexes with Octahedral Geometry: Synthesis, Structure and Photophysical Properties. Molecules 2020; 25:E5991. [PMID: 33348914 PMCID: PMC7767130 DOI: 10.3390/molecules25245991] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
The control of ligand-field splitting in iron (II) complexes is critical to slow down the metal-to-ligand charge transfer (MLCT)-excited states deactivation pathways. The gap between the metal-centered states is maximal when the coordination sphere of the complex approaches an ideal octahedral geometry. Two new iron(II) complexes (C1 and C2), prepared from pyridylNHC and pyridylquinoline type ligands, respectively, have a near-perfect octahedral coordination of the metal. The photophysics of the complexes have been further investigated by means of ultrafast spectroscopy and TD-DFT modeling. For C1, it is shown that-despite the geometrical improvement-the excited state deactivation is faster than for the parent pseudo-octahedral C0 complex. This unexpected result is due to the increased ligand flexibility in C1 that lowers the energetic barrier for the relaxation of 3MLCT into the 3MC state. For C2, the effect of the increased ligand field is not strong enough to close the prominent deactivation channel into the metal-centered quintet state, as for other Fe-polypyridine complexes.
Collapse
Affiliation(s)
- Mohamed Darari
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France;
| | - Antonio Francés-Monerris
- Université de Lorraine, CNRS, LPCT, F-54000 Nancy, France; (A.F.-M.); (A.M.)
- Departament de Química Física, Universitat de València, 46100 Burjassot, Spain
| | - Bogdan Marekha
- Max-Planck-Institute for Medical Research, 69120 Heidelberg, Germany;
| | - Abdelatif Doudouh
- Université de Lorraine, CNRS, CRM2, F-54000 Nancy, France; (A.D.); (E.W.)
| | - Emmanuel Wenger
- Université de Lorraine, CNRS, CRM2, F-54000 Nancy, France; (A.D.); (E.W.)
| | - Antonio Monari
- Université de Lorraine, CNRS, LPCT, F-54000 Nancy, France; (A.F.-M.); (A.M.)
| | - Stefan Haacke
- Université de Strasbourg, CNRS, IPCMS, F-67034 Strasbourg, France;
| | | |
Collapse
|
22
|
Zobel JP, Bokareva OS, Zimmer P, Wölper C, Bauer M, González L. Intersystem Crossing and Triplet Dynamics in an Iron(II) N-Heterocyclic Carbene Photosensitizer. Inorg Chem 2020; 59:14666-14678. [PMID: 32869981 PMCID: PMC7581298 DOI: 10.1021/acs.inorgchem.0c02147] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
![]()
The electronic excited
states of the iron(II) complex [FeII(tpy)(pyz-NHC)]2+ [tpy = 2,2′:6′,2″-terpyridine; pyz-NHC
= 1,1′-bis(2,6-diisopropylphenyl)pyrazinyldiimidazolium-2,2′-diylidene]
and their relaxation pathways have been theoretically investigated.
To this purpose, trajectory surface-hopping simulations within a linear
vibronic coupling model including a 244-dimensional potential energy
surface (PES) with 20 singlet and 20 triplet coupled states have been
used. The simulations show that, after excitation to the lowest-energy
absorption band of predominant metal-to-ligand charge-transfer character
involving the tpy ligand, almost 80% of the population undergoes intersystem
crossing to the triplet manifold in about 50 fs, while the remaining
20% decays through internal conversion to the electronic ground state
in about 300 fs. The population transferred to the triplet states
is found to deactivate into two different regions of the PESs, one
where the static dipole moment is small and shows increased metal-centered
character and another with a large static dipole moment, where the
electron density is transferred from the tpy to pyz-NHC ligand. Coherent
oscillations of 400 fs are observed between these two sets of triplet
populations, until the mixture equilibrates to a ratio of 60:40. Finally,
the importance of selecting suitable normal modes is highlighted—a
choice that can be far from straightforward in transition-metal complexes
with hundreds of degrees of freedom. Trajectory
surface-hopping simulations with a linear vibronic coupling model
reveal the competition of major intersystem crossing versus minor
internal conversion dynamics in an iron(II) N-heterocyclic carbene
dye. The triplet population bifurcates into two regions of the potential
energy surfaces, characterized by small and large static dipole moments
due to different electronic character and showing coherent oscillations
of 400 fs until both triplet populations coexist in a mixture of 60:40.
Collapse
Affiliation(s)
- J Patrick Zobel
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstraße 19, 1090 Vienna, Austria
| | - Olga S Bokareva
- Institute of Physics, Rostock University, Albert Einstein Straße 23-24, 18059 Rostock, Germany
| | - Peter Zimmer
- Faculty of Science, Chemistry Department and Center for Sustainable Systems Design (CSSD), Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany
| | - Christoph Wölper
- Department for X-Ray Diffraction, Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 7, D-45117 Essen, Germany
| | - Matthias Bauer
- Faculty of Science, Chemistry Department and Center for Sustainable Systems Design (CSSD), Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstraße 19, 1090 Vienna, Austria.,Vienna Research Platform on Accelerating Photoreaction Discovery, University of Vienna, Währingerstr. 19, 1090 Vienna, Austria
| |
Collapse
|
23
|
Diez-Cabanes V, Prampolini G, Francés-Monerris A, Monari A, Pastore M. Iron's Wake: The Performance of Quantum Mechanical-Derived Versus General-Purpose Force Fields Tested on a Luminescent Iron Complex. Molecules 2020; 25:molecules25133084. [PMID: 32640764 PMCID: PMC7411876 DOI: 10.3390/molecules25133084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/29/2022] Open
Abstract
Recently synthetized iron complexes have achieved long-lived excited states and stabilities which are comparable, or even superior, to their ruthenium analogues, thus representing an eco-friendly and cheaper alternative to those materials based on rare metals. Most of computational tools which could help unravel the origin of this large efficiency rely on ab-initio methods which are not able, however, to capture the nanosecond time scale underlying these photophysical processes and the influence of their realistic environment. Therefore, it exists an urgent need of developing new low-cost, but still accurate enough, computational methodologies capable to deal with the steady-state and transient spectroscopy of transition metal complexes in solution. Following this idea, here we focus on the comparison between general-purpose transferable force-fields (FFs), directly available from existing databases, and specific quantum mechanical derived FFs (QMD-FFs), obtained in this work through the Joyce procedure. We have chosen a recently reported FeIII complex with nanosecond excited-state lifetime as a representative case. Our molecular dynamics (MD) simulations demonstrated that the QMD-FF nicely reproduces the structure and the dynamics of the complex and its chemical environment within the same precision as higher cost QM methods, whereas general-purpose FFs failed in this purpose. Although in this particular case the chemical environment plays a minor role on the photo physics of this system, these results highlight the potential of QMD-FFs to rationalize photophysical phenomena provided an accurate QM method to derive its parameters is chosen.
Collapse
Affiliation(s)
- Valentin Diez-Cabanes
- Université de Lorraine & CNRS, LPCT UMR 7019, F-54000 Nancy, France;
- Correspondence: (V.D.-C.); (G.P.); (A.M.); (M.P.)
| | - Giacomo Prampolini
- Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy
- Correspondence: (V.D.-C.); (G.P.); (A.M.); (M.P.)
| | - Antonio Francés-Monerris
- Université de Lorraine & CNRS, LPCT UMR 7019, F-54000 Nancy, France;
- Departament de Química Física, Universitat de València, 46100 Burjassot, Spain
| | - Antonio Monari
- Université de Lorraine & CNRS, LPCT UMR 7019, F-54000 Nancy, France;
- Correspondence: (V.D.-C.); (G.P.); (A.M.); (M.P.)
| | - Mariachiara Pastore
- Université de Lorraine & CNRS, LPCT UMR 7019, F-54000 Nancy, France;
- Correspondence: (V.D.-C.); (G.P.); (A.M.); (M.P.)
| |
Collapse
|
24
|
Vukadinovic Y, Burkhardt L, Päpcke A, Miletic A, Fritsch L, Altenburger B, Schoch R, Neuba A, Lochbrunner S, Bauer M. When Donors Turn into Acceptors: Ground and Excited State Properties of FeII Complexes with Amine-Substituted Tridentate Bis-imidazole-2-ylidene Pyridine Ligands. Inorg Chem 2020; 59:8762-8774. [DOI: 10.1021/acs.inorgchem.0c00393] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yannik Vukadinovic
- Department of Chemistry and Center for Sustainable Systems Design (CSSD), Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany
| | - Lukas Burkhardt
- Department of Chemistry and Center for Sustainable Systems Design (CSSD), Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany
| | - Ayla Päpcke
- Institute for Physics and Department of Life, Light and Matter, University of Rostock, 18051 Rostock, Germany
| | - Anabel Miletic
- Department of Chemistry and Center for Sustainable Systems Design (CSSD), Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany
| | - Lorena Fritsch
- Department of Chemistry and Center for Sustainable Systems Design (CSSD), Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany
| | - Björn Altenburger
- Institute for Physics and Department of Life, Light and Matter, University of Rostock, 18051 Rostock, Germany
| | - Roland Schoch
- Department of Chemistry and Center for Sustainable Systems Design (CSSD), Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany
| | - Adam Neuba
- Department of Chemistry and Center for Sustainable Systems Design (CSSD), Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany
| | - Stefan Lochbrunner
- Institute for Physics and Department of Life, Light and Matter, University of Rostock, 18051 Rostock, Germany
| | - Matthias Bauer
- Department of Chemistry and Center for Sustainable Systems Design (CSSD), Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany
| |
Collapse
|
25
|
Photophysics and Photochemistry of Iron Carbene Complexes for Solar Energy Conversion and Photocatalysis. Catalysts 2020. [DOI: 10.3390/catal10030315] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Earth-abundant first row transition metal complexes are important for the development of large-scale photocatalytic and solar energy conversion applications. Coordination compounds based on iron are especially interesting, as iron is the most common transition metal element in the Earth’s crust. Unfortunately, iron-polypyridyl and related traditional iron-based complexes generally suffer from poor excited state properties, including short excited-state lifetimes, that make them unsuitable for most light-driven applications. Iron carbene complexes have emerged in the last decade as a new class of coordination compounds with significantly improved photophysical and photochemical properties, that make them attractive candidates for a range of light-driven applications. Specific aspects of the photophysics and photochemistry of these iron carbenes discussed here include long-lived excited state lifetimes of charge transfer excited states, capabilities to act as photosensitizers in solar energy conversion applications like dye-sensitized solar cells, as well as recent demonstrations of promising progress towards driving photoredox and photocatalytic processes. Complementary advances towards photofunctional systems with both Fe(II) complexes featuring metal-to-ligand charge transfer excited states, and Fe(III) complexes displaying ligand-to-metal charge transfer excited states are discussed. Finally, we outline emerging opportunities to utilize the improved photochemical properties of iron carbenes and related complexes for photovoltaic, photoelectrochemical and photocatalytic applications.
Collapse
|
26
|
Abstract
The use of iron in photoactive metal complexes has been investigated for decades. In this respect, the charge transfer (CT) states are of particular interest, since they are usually responsible for the photofunctionality of such compounds. However, only recently breakthroughs have been made in extending CT excited state lifetimes that are notoriously short-lived in classical polypyridine iron coordination compounds. This success is in large parts owed to the use of strongly σ-donating N-heterocyclic carbene (NHC) ligands that help manipulating the photophysical and photochemical properties of iron complexes. In this review we aim to map out the basic design principles for the generation of photofunctional iron NHC complexes, summarize the progress made so far and recapitulate on the synthetic methods used. Further, we want to highlight the challenges still existing and give inspiration for future generations of photoactive iron complexes.
Collapse
|
27
|
Bokareva OS, Baig O, Al-Marri MJ, Kühn O, González L. The effect of N-heterocyclic carbene units on the absorption spectra of Fe(ii) complexes: a challenge for theory. Phys Chem Chem Phys 2020; 22:27605-27616. [DOI: 10.1039/d0cp04781c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The absorption spectra of five Fe(ii) homoleptic and heteroleptic complexes containing strong sigma-donating N-heterocyclic carbene (NHC) and polypyridyl ligands have been theoretically characterized using a tuned range-separation functional.
Collapse
Affiliation(s)
- Olga S. Bokareva
- Institut für Physik
- Universität Rostock
- Rostock
- Germany
- Department of Physical Chemistry
| | - Omar Baig
- Institut für Theoretische Chemie
- Fakultät für Chemie
- Universität Wien
- A-1090 Wien
- Austria
| | | | - Oliver Kühn
- Institut für Physik
- Universität Rostock
- Rostock
- Germany
| | - Leticia González
- Institut für Theoretische Chemie
- Fakultät für Chemie
- Universität Wien
- A-1090 Wien
- Austria
| |
Collapse
|
28
|
Marchini E, Darari M, Lazzarin L, Boaretto R, Argazzi R, Bignozzi CA, Gros PC, Caramori S. Recombination and regeneration dynamics in FeNHC(ii)-sensitized solar cells. Chem Commun (Camb) 2019; 56:543-546. [PMID: 31829327 DOI: 10.1039/c9cc07794d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recombination and regeneration dynamics in Fe-NHC-sensitized DSSCs revealed incomplete injection and the detrimental effect of photoinjected electron recapture by the I3-form of the redox electrolyte on performance. Importantly, the use of additives in the electrolyte allowed the best efficiency ever recorded for an iron-based DSSC to be reached.
Collapse
Affiliation(s)
- Edoardo Marchini
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L.Borsari 46, 44121, Ferrara, Italy.
| | - Mohamed Darari
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
| | - Luca Lazzarin
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L.Borsari 46, 44121, Ferrara, Italy.
| | - Rita Boaretto
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L.Borsari 46, 44121, Ferrara, Italy.
| | - Roberto Argazzi
- CNR-ISOF c/o Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L.Borsari 46, 44121, Ferrara, Italy
| | - Carlo Alberto Bignozzi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L.Borsari 46, 44121, Ferrara, Italy.
| | | | - Stefano Caramori
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L.Borsari 46, 44121, Ferrara, Italy.
| |
Collapse
|
29
|
Tatsuno H, Kjær KS, Kunnus K, Harlang TCB, Timm C, Guo M, Chàbera P, Fredin LA, Hartsock RW, Reinhard ME, Koroidov S, Li L, Cordones AA, Gordivska O, Prakash O, Liu Y, Laursen MG, Biasin E, Hansen FB, Vester P, Christensen M, Haldrup K, Németh Z, Sárosiné Szemes D, Bajnóczi É, Vankó G, Van Driel TB, Alonso‐Mori R, Glownia JM, Nelson S, Sikorski M, Lemke HT, Sokaras D, Canton SE, Dohn AO, Møller KB, Nielsen MM, Gaffney KJ, Wärnmark K, Sundström V, Persson P, Uhlig J. Hot Branching Dynamics in a Light‐Harvesting Iron Carbene Complex Revealed by Ultrafast X‐ray Emission Spectroscopy. Angew Chem Int Ed Engl 2019; 59:364-372. [DOI: 10.1002/anie.201908065] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/17/2019] [Indexed: 12/13/2022]
|
30
|
Tatsuno H, Kjær KS, Kunnus K, Harlang TCB, Timm C, Guo M, Chàbera P, Fredin LA, Hartsock RW, Reinhard ME, Koroidov S, Li L, Cordones AA, Gordivska O, Prakash O, Liu Y, Laursen MG, Biasin E, Hansen FB, Vester P, Christensen M, Haldrup K, Németh Z, Sárosiné Szemes D, Bajnóczi É, Vankó G, Van Driel TB, Alonso‐Mori R, Glownia JM, Nelson S, Sikorski M, Lemke HT, Sokaras D, Canton SE, Dohn AO, Møller KB, Nielsen MM, Gaffney KJ, Wärnmark K, Sundström V, Persson P, Uhlig J. Hot Branching Dynamics in a Light‐Harvesting Iron Carbene Complex Revealed by Ultrafast X‐ray Emission Spectroscopy. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908065] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
31
|
Francés‐Monerris A, Gros PC, Assfeld X, Monari A, Pastore M. Toward Luminescent Iron Complexes: Unravelling the Photophysics by Computing Potential Energy Surfaces. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900100] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Antonio Francés‐Monerris
- Laboratoire de Physique et Chimie Théoriques (LPCT)Université de Lorraine, CNRS 54000 Nancy France
| | - Philippe C. Gros
- Laboratoire Lorrain de Chimie Moléculaire (L2CM)Université de Lorraine, CNRS 54000 Nancy France
| | - Xavier Assfeld
- Laboratoire de Physique et Chimie Théoriques (LPCT)Université de Lorraine, CNRS 54000 Nancy France
| | - Antonio Monari
- Laboratoire de Physique et Chimie Théoriques (LPCT)Université de Lorraine, CNRS 54000 Nancy France
| | - Mariachiara Pastore
- Laboratoire de Physique et Chimie Théoriques (LPCT)Université de Lorraine, CNRS 54000 Nancy France
| |
Collapse
|
32
|
Photophysical properties of bichromophoric Fe(II) complexes bearing an aromatic electron acceptor. Theor Chem Acc 2019. [DOI: 10.1007/s00214-019-2471-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
33
|
Darari M, Domenichini E, Francés-Monerris A, Cebrián C, Magra K, Beley M, Pastore M, Monari A, Assfeld X, Haacke S, Gros PC. Iron(ii) complexes with diazinyl-NHC ligands: impact of π-deficiency of the azine core on photophysical properties. Dalton Trans 2019; 48:10915-10926. [DOI: 10.1039/c9dt01731c] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Boosting iron(ii) complex excited-state lifetime by combining pyrazine and benzimidazolylidene NHC ligands.
Collapse
Affiliation(s)
| | | | | | | | - Kevin Magra
- Université de Lorraine
- CNRS
- L2CM
- F-57000 Metz
- France
| | - Marc Beley
- Université de Lorraine
- CNRS
- L2CM
- F-54000 Nancy
- France
| | | | | | | | - Stefan Haacke
- Université de Strasbourg
- CNRS
- IPCMS
- F-67000 Strasbourg
- France
| | | |
Collapse
|