1
|
Dos Santos JM, Hall D, Basumatary B, Bryden M, Chen D, Choudhary P, Comerford T, Crovini E, Danos A, De J, Diesing S, Fatahi M, Griffin M, Gupta AK, Hafeez H, Hämmerling L, Hanover E, Haug J, Heil T, Karthik D, Kumar S, Lee O, Li H, Lucas F, Mackenzie CFR, Mariko A, Matulaitis T, Millward F, Olivier Y, Qi Q, Samuel IDW, Sharma N, Si C, Spierling L, Sudhakar P, Sun D, Tankelevičiu Tė E, Duarte Tonet M, Wang J, Wang T, Wu S, Xu Y, Zhang L, Zysman-Colman E. The Golden Age of Thermally Activated Delayed Fluorescence Materials: Design and Exploitation. Chem Rev 2024. [PMID: 39666979 DOI: 10.1021/acs.chemrev.3c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Since the seminal report by Adachi and co-workers in 2012, there has been a veritable explosion of interest in the design of thermally activated delayed fluorescence (TADF) compounds, particularly as emitters for organic light-emitting diodes (OLEDs). With rapid advancements and innovation in materials design, the efficiencies of TADF OLEDs for each of the primary color points as well as for white devices now rival those of state-of-the-art phosphorescent emitters. Beyond electroluminescent devices, TADF compounds have also found increasing utility and applications in numerous related fields, from photocatalysis, to sensing, to imaging and beyond. Following from our previous review in 2017 ( Adv. Mater. 2017, 1605444), we here comprehensively document subsequent advances made in TADF materials design and their uses from 2017-2022. Correlations highlighted between structure and properties as well as detailed comparisons and analyses should assist future TADF materials development. The necessarily broadened breadth and scope of this review attests to the bustling activity in this field. We note that the rapidly expanding and accelerating research activity in TADF material development is indicative of a field that has reached adolescence, with an exciting maturity still yet to come.
Collapse
Affiliation(s)
- John Marques Dos Santos
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - David Hall
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Biju Basumatary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Megan Bryden
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dongyang Chen
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Praveen Choudhary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Thomas Comerford
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ettore Crovini
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Andrew Danos
- Department of Physics, Durham University, Durham DH1 3LE, UK
| | - Joydip De
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Stefan Diesing
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Mahni Fatahi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Máire Griffin
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Abhishek Kumar Gupta
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Hassan Hafeez
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Lea Hämmerling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Emily Hanover
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Janine Haug
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Tabea Heil
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Durai Karthik
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Shiv Kumar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Oliver Lee
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Haoyang Li
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Fabien Lucas
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | | | - Aminata Mariko
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tomas Matulaitis
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Francis Millward
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yoann Olivier
- Laboratory for Computational Modeling of Functional Materials, Namur Institute of Structured Matter, Université de Namur, Rue de Bruxelles, 61, 5000 Namur, Belgium
| | - Quan Qi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ifor D W Samuel
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Nidhi Sharma
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Changfeng Si
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Leander Spierling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Pagidi Sudhakar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dianming Sun
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Eglė Tankelevičiu Tė
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Michele Duarte Tonet
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Jingxiang Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tao Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Sen Wu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yan Xu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Le Zhang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| |
Collapse
|
2
|
Artem'ev AV, Davydova MP, Klyushova LS, Sadykov EH, Rakhmanova MI, Sukhikh TS. Coinage metal(I) clusters supported by a 1,10-phenanthroline-phosphine: orange-to-NIR phosphorescence, metallophilic interactions and enhanced cytotoxicity. Dalton Trans 2024; 53:18027-18036. [PMID: 39441054 DOI: 10.1039/d4dt02642j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
A series of small coinage metal(I) clusters has been selectively synthesized using 2-(diphenylphosphino)-1,10-phenanthroline (L), a new promising dimetal-binding P,N,N'-ligand (L). Its reaction with CuI yields the complex [Cu2L2(μ2-I)]2[Cu2I4], while the treatment of L with Au(tht)Cl/Ag+ or Au(tht)Cl/Cu+ systems leads to the assembly of [Au2AgL2Cl2]+, [Au2CuL2Cl2]+, [CuAuL2]2+ and [AgAuL2]2+ clusters. Theoretical analysis revealed pronounced intermetallic close shell interactions in these di- and trinuclear ensembles. At 298 K, the title compounds exhibit an orange and near-infrared (NIR) phosphorescence with lifetimes of 0.344-38 μs and quantum efficiencies of 1-21%. Theoretical considerations suggest a 3(M+L)LCT type for the observed phosphorescence. In addition, the above clusters exhibit a strong dose-dependent cytotoxic effect on A549, HepG2, Hep2 and MRC5 human cells with IC50 values ranging from 1.26 to 11.1 μM.
Collapse
Affiliation(s)
- Alexander V Artem'ev
- Nikolaev Institute of Inorganic Chemistry, SB RAS, 3, Lavrentiev Ave., 630090 Novosibirsk, Russia.
| | - Maria P Davydova
- Nikolaev Institute of Inorganic Chemistry, SB RAS, 3, Lavrentiev Ave., 630090 Novosibirsk, Russia.
| | - Lyubov S Klyushova
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2/12, 630060 Novosibirsk, Russia
| | - Evgeniy H Sadykov
- Nikolaev Institute of Inorganic Chemistry, SB RAS, 3, Lavrentiev Ave., 630090 Novosibirsk, Russia.
| | - Mariana I Rakhmanova
- Nikolaev Institute of Inorganic Chemistry, SB RAS, 3, Lavrentiev Ave., 630090 Novosibirsk, Russia.
| | - Taisiya S Sukhikh
- Nikolaev Institute of Inorganic Chemistry, SB RAS, 3, Lavrentiev Ave., 630090 Novosibirsk, Russia.
| |
Collapse
|
3
|
Baranova KF, Titov AA, Shakirova JR, Baigildin VA, Smol'yakov AF, Valyaev DA, Ning GH, Filippov OA, Tunik SP, Shubina ES. Substituents' Effect on the Photophysics of Trinuclear Copper(I) and Silver(I) Pyrazolate-Phosphine Cages. Inorg Chem 2024; 63:16610-16621. [PMID: 39193933 DOI: 10.1021/acs.inorgchem.4c00751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
A series of structurally similar trinuclear macrocyclic copper(I) and silver(I) pyrazolate complexes bearing various short-bite diphosphine R2PCH(R')PR2 ligands are reported. Upon diphosphine coordination, the planar geometry of the initial complexes undergoes bending along the line between two metal atoms coordinated to the phosphorus moieties. The complexes based on dcpm ligands (R = cyclohexyl, R' = H, Ph) do not exhibit dynamic behavior in solution at room temperature on the 31P NMR time scale as it was previously observed for similar trinuclear copper complexes bearing the dppm (R = Ph, R' = H) scaffold. All copper(I) complexes exhibit thermally activated delayed fluorescence (TADF) behavior in the solid state. Importantly, the use of aliphatic substituents on the phosphorus atoms instead of aromatic ones leads to an almost double increase in the quantum efficiency (ΦPL) of photoluminescence by eliminating nonradiative decay from the 3LCPh states of the dppm aromatic rings. The higher donating ability of the substituents in the pyrazolate ligand (CF3 vs CH3) lowers the energy of the metal-centered excited state, allowing for a significant metal impact on the T1 state. Finally, the Ag(I) complex displays an emission efficiency of approximately 14%, being the highest among known trinuclear silver(I) pyrazolate homometallic derivatives.
Collapse
Affiliation(s)
- Kristina F Baranova
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str., 28, 119991 Moscow, Russia
| | - Aleksei A Titov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str., 28, 119991 Moscow, Russia
| | - Julia R Shakirova
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr., 26, 198504 St. Petersburg, Russia
| | - Vadim A Baigildin
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr., 26, 198504 St. Petersburg, Russia
| | - Alexander F Smol'yakov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str., 28, 119991 Moscow, Russia
- Plekhanov Russian University of Economics, Stremyanny per. 36, 117997 Moscow, Russia
| | - Dmitry A Valyaev
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
| | - Guo-Hong Ning
- Department College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Oleg A Filippov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str., 28, 119991 Moscow, Russia
| | - Sergey P Tunik
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr., 26, 198504 St. Petersburg, Russia
| | - Elena S Shubina
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str., 28, 119991 Moscow, Russia
| |
Collapse
|
4
|
Jamjah A, Kar SG, Rezaee P, Ghotbi M, Amini S, Samouei H, Mastrorilli P, Todisco S, Jamshidi Z, Jamali S. Dynamic Motions of Ligands around the Metal Centers Afford a Fidget Spinner-Type AIE Luminogen. Inorg Chem 2024; 63:3335-3347. [PMID: 38323844 DOI: 10.1021/acs.inorgchem.3c03766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
A new type of aggregation-induced emission (AIE) luminogen containing a dimeric metal fragment and two or three phthalazine ligands is described, which shows dynamic motions of ligands around the metal centers in solution. Based on the variable-temperature and EXSY NMR spectroscopy data, X-ray crystallography structures, and computational results, three different pathways (i.e., reversible exchange with haptotropic shifts, circulation of ligands around the dimeric metal fragment, and walking on the spot of ligands on the metal centers) were considered for this dynamic behavior. Restriction of these dynamic processes in the aggregate forms of the compounds (in H2O/CH3CN solvent mixtures) contributes to their AIE. DFT calculations and NMR analysis showed that bright excited states for these molecules are not localized on isolated molecules, and the emission of them stemmed from π-dimers or π-oligomers. The morphologies and the mode of associations in the solvent mixtures were determined by using transmission electron microscopy (TEM) and concentration-dependent NMR spectroscopy. The computational results showed the presence of a conical intersection (CI) between the S0 and S1 excited state, which provides an accessible pathway for nonradiative decay in these systems.
Collapse
Affiliation(s)
- Ali Jamjah
- Chemistry Department, Sharif University of Technology, Tehran 11155-9516, Iran
| | - Simindokht Gol Kar
- Chemistry Department, Sharif University of Technology, Tehran 11155-9516, Iran
| | - Parham Rezaee
- Chemistry Department, Sharif University of Technology, Tehran 11155-9516, Iran
| | - Maryam Ghotbi
- Chemistry Department, Sharif University of Technology, Tehran 11155-9516, Iran
| | - Samira Amini
- Chemistry Department, Sharif University of Technology, Tehran 11155-9516, Iran
| | - Hamidreza Samouei
- Chemistry Department, Texas A&M University, College Station 77842-3012, Texas, United States
| | - Piero Mastrorilli
- Department of Civil, Environmental, Land, Building and Chemical Engineering (DICATECh), Polytechnic University of Bari, Via Orabona 4, 70125 Bari, Italy
| | - Stefano Todisco
- Department of Civil, Environmental, Land, Building and Chemical Engineering (DICATECh), Polytechnic University of Bari, Via Orabona 4, 70125 Bari, Italy
| | - Zahra Jamshidi
- Chemistry Department, Sharif University of Technology, Tehran 11155-9516, Iran
| | - Sirous Jamali
- Chemistry Department, Sharif University of Technology, Tehran 11155-9516, Iran
| |
Collapse
|
5
|
Titov AA, Smol'yakov AF, Chernyadyev AY, Godovikov IA, Filippov OA, Shubina ES. Pyrazolate vs. phenylethynide: direct exchange of the anionic bridging ligand in a cyclic trinuclear silver complex. Chem Commun (Camb) 2024; 60:847-850. [PMID: 38131431 DOI: 10.1039/d3cc05659g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Cyclic trinuclear Ag(I) pyrazolate interacts with phenylacetylene forming a mix-ligand complex in which one pyrazolate ligand is changed to phenylethynide. The CC- fragment coordinates only to two silver(I) atoms via one carbon atom demonstrating unique μ2-η1 σ-coordination with close Ag-C bond lengths and Ag-C-C angles. The complex exhibits blue emission under UV irradiation.
Collapse
Affiliation(s)
- Aleksei A Titov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), 119991 Moscow, Vavilov St. 28, bld. 1, Russia.
| | - Alexander F Smol'yakov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), 119991 Moscow, Vavilov St. 28, bld. 1, Russia.
- Plekhanov Russian University of Economics, Stremyanny per. 36, Moscow 117997, Russia
| | - Andrey Yu Chernyadyev
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky prosp. 31/4, 199071 Moscow, Russia
| | - Ivan A Godovikov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), 119991 Moscow, Vavilov St. 28, bld. 1, Russia.
| | - Oleg A Filippov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), 119991 Moscow, Vavilov St. 28, bld. 1, Russia.
| | - Elena S Shubina
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), 119991 Moscow, Vavilov St. 28, bld. 1, Russia.
| |
Collapse
|
6
|
Zhang SS, Havenridge S, Zhang C, Wang Z, Feng L, Gao ZY, Aikens CM, Tung CH, Sun D. Sulfide Boosting Near-Unity Photoluminescence Quantum Yield of Silver Nanocluster. J Am Chem Soc 2022; 144:18305-18314. [PMID: 36169057 DOI: 10.1021/jacs.2c06093] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Silver nanoclusters have emerged as promising candidates for optoelectronic applications, but their room-temperature photoluminescence quantum yield (PLQY) is far from ideal to access cutting-edge device performance. Herein, two supertetrahedral silver nanoclusters with high PLQY in non-degassed solution at room temperature were constructed by interiorly supporting the core with multiple VO43- and E2- anions as structure-directing agents and exteriorly protecting the core with a rigid ligand shell of PhC≡C- and Ph2PE2- (E = S, Ag64-S; E = Se, Ag64-Se). Both clusters have similar outer Ag58 tetrahedral cages and [Ag6E4@(VO4)4] cores, forming a pair of comparable clusters to decrypt the origin of such a high PLQY, particularly in Ag64-S, where the PLQY reached up to 97%. The stronger suppression effect of inner sulfides for nonradiative decay is critical to boost the PLQY to near unity. Transient absorption spectroscopy is employed to confirm the phosphorescence nature. The quadruple-capping assembly mechanism involving Ag7 secondary building units on a Ag36 truncated tetrahedron was also established by collision-induced dissociation studies. This work not only provides a strategy of core engineering for the controlled syntheses of silver nanoclusters with high PLQY but also deciphers the origin of a near-unity PLQY, which lays a foundation for fabricating highly phosphorescent silver nanoclusters in the future.
Collapse
Affiliation(s)
- Shan-Shan Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, People's Republic of China
| | - Shana Havenridge
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Chengkai Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, People's Republic of China
| | - Zhi Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, People's Republic of China
| | - Lei Feng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, People's Republic of China
| | - Zhi-Yong Gao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, People's Republic of China
| | - Christine M Aikens
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, People's Republic of China
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, People's Republic of China
| |
Collapse
|
7
|
Housecroft CE, Constable EC. TADF: Enabling luminescent copper(i) coordination compounds for light-emitting electrochemical cells. JOURNAL OF MATERIALS CHEMISTRY. C 2022; 10:4456-4482. [PMID: 35433007 PMCID: PMC8944257 DOI: 10.1039/d1tc04028f] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/11/2021] [Indexed: 05/07/2023]
Abstract
The last decade has seen a surge of interest in the emissive behaviour of copper(i) coordination compounds, both neutral compounds that may have applications in organic light-emitting doides (OLEDs) and copper-based ionic transition metal complexes (Cu-iTMCs) with potential use in light-emitting electrochemical cells (LECs). One of the most exciting features of copper(i) coordination compounds is their possibility to exhibit thermally activated delayed fluorescence (TADF) in which the energy separation of the excited singlet (S1) and excited triplet (T1) states is very small, permitting intersystem crossing (ISC) and reverse intersystem crossing (RISC) to occur at room temperature without the requirement for the large spin-orbit coupling inferred by the presence of a heavy metal such as iridium. In this review, we focus mainly in Cu-iTMCs, and illustrate how the field of luminescent compounds and those exhibiting TADF has developed. Copper(i) coordination compounds that class as Cu-iTMCs include those containing four-coordinate [Cu(P^P)(N^N)]+ (P^P = large-bite angle bisphosphane, and N^N is typically a diimine), [Cu(P)2(N^N)]+ (P = monodentate phosphane ligand), [Cu(P)(tripodal-N3)]+, [Cu(P)(N^N)(N)]+ (N = monodentate N-donor ligand), [Cu(P^P)(N^S)]+ (N^S = chelating N,S-donor ligand), [Cu(P^P)(P^S)]+ (P^S = chelating P,S-donor ligand), [Cu(P^P)(NHC)]+ (NHC = N-heterocyclic carbene) coordination domains, dinuclear complexes with P^P and N^N ligands, three-coordinate [Cu(N^N)(NHC)]+ and two-coordinate [Cu(N)(NHC)]+ complexes. We pay particular attention to solid-state structural features, e.g. π-stacking interactions and other inter-ligand interactions, which may impact on photoluminescence quantum yields. Where emissive Cu-iTMCs have been tested in LECs, we detail the device architectures, and this emphasizes differences which make it difficult to compare LEC performances from different investigations.
Collapse
Affiliation(s)
- Catherine E Housecroft
- Department of Chemistry, University of Basel Mattenstrasse 24a, BPR 1096 4058-Basel Switzerland
| | - Edwin C Constable
- Department of Chemistry, University of Basel Mattenstrasse 24a, BPR 1096 4058-Basel Switzerland
| |
Collapse
|
8
|
Mononuclear Copper(I) 3-(2-pyridyl)pyrazole Complexes: The Crucial Role of Phosphine on Photoluminescence. Molecules 2021; 26:molecules26226869. [PMID: 34833961 PMCID: PMC8620892 DOI: 10.3390/molecules26226869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 12/02/2022] Open
Abstract
A series of emissive Cu(I) cationic complexes with 3-(2-pyridyl)-5-phenyl-pyrazole and various phosphines: dppbz (1), Xantphos (2), DPEPhos (3), PPh3 (4), and BINAP (5) were designed and characterized. Complexes obtained exhibit bright yellow-green emission (ca. 520–650 nm) in the solid state with a wide range of QYs (1–78%) and lifetimes (19–119 µs) at 298 K. The photoluminescence efficiency dramatically depends on the phosphine ligand type. The theoretical calculations of buried volumes and excited states explained the emission behavior for 1–5 as well as their lifetimes. The bulky and rigid phosphines promote emission efficiency through the stabilization of singlet and triplet excited states.
Collapse
|
9
|
Heterobimetallic Silver(I) and Copper(I) pyrazolates supported with 1,1′-bis(diphenylphosphino)ferrocene. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Hernández-Toledo H, Torrens H, Flores-Álamo M, De Cola L, Moreno-Alcántar G. Self-Assembly and Aggregation-Induced Emission in Aqueous Media of Responsive Luminescent Copper(I) Coordination Polymer Nanoparticles. Chemistry 2021; 27:8308-8314. [PMID: 33899291 DOI: 10.1002/chem.202100865] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Indexed: 01/08/2023]
Abstract
Luminescent copper(I)-based compounds have recently attracted much attention since they can reach very high emission quantum yields. Interestingly, Cu(I) clusters can also be emissive, and the extension from small molecules to larger architecture could represent the first step towards novel materials that could be obtained by programming the units to undergo self-assembly. However, for Cu(I) compounds the formation of supramolecular systems is challenging due to the coordinative diversity of copper centers. This works shows that this diversity can be exploited in the construction of responsive systems. In detail, the changes in the emissive profile of different aggregates formed in water by phosphine-thioether copper(I) derivatives were followed. Our results demonstrate that the self-assembly and disassembly of Cu(I)-based coordination polymeric nanoparticles (CPNs) is sensitive to solvent composition. The solvent-induced changes are related to modifications in the coordination sphere of copper at the molecular level, which alters not only the emission profile but also the morphology of the aggregates. Our findings are expected to inspire the construction of smart supramolecular systems based on dynamic coordinative metal centers.
Collapse
Affiliation(s)
- Hugo Hernández-Toledo
- Facultad de Química, Universidad Nacional Autónoma de México Ciudad Universitaria, 04510 Cd., De Mx., Mexico
| | - Hugo Torrens
- Facultad de Química, Universidad Nacional Autónoma de México Ciudad Universitaria, 04510 Cd., De Mx., Mexico
| | - Marcos Flores-Álamo
- Facultad de Química, Universidad Nacional Autónoma de México Ciudad Universitaria, 04510 Cd., De Mx., Mexico
| | - Luisa De Cola
- Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg, 8 allée Gaspard Monge, 67000, Strasbourg, France.,Institute for Nanotechnology (INT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.,Dipartimento di Scienze Farmaceutiche, DISFARM, Istituto di ricerche farmacologiche Mario Negri, IRCCS, University of Milano, Milano, Italy
| | - Guillermo Moreno-Alcántar
- Facultad de Química, Universidad Nacional Autónoma de México Ciudad Universitaria, 04510 Cd., De Mx., Mexico.,Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg, 8 allée Gaspard Monge, 67000, Strasbourg, France
| |
Collapse
|
11
|
Boden P, Di Martino‐Fumo P, Busch JM, Rehak FR, Steiger S, Fuhr O, Nieger M, Volz D, Klopper W, Bräse S, Gerhards M. Investigation of Luminescent Triplet States in Tetranuclear Cu I Complexes: Thermochromism and Structural Characterization. Chemistry 2021; 27:5439-5452. [PMID: 33176033 PMCID: PMC8048975 DOI: 10.1002/chem.202004539] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/09/2020] [Indexed: 11/10/2022]
Abstract
To develop new and flexible CuI containing luminescent substances, we extend our previous investigations on two metal-centered species to four metal-centered complexes. These complexes could be a basis for designing new organic light-emitting diode (OLED) relevant species. Both the synthesis and in-depth spectroscopic analysis, combined with high-level theoretical calculations are presented on a series of tetranuclear CuI complexes with a halide containing Cu4 X4 core (X=iodide, bromide or chloride) and two 2-(diphenylphosphino)pyridine bridging ligands with a methyl group in para (4-Me) or ortho (6-Me) position of the pyridine ring. The structure of the electronic ground state is characterized by X-ray diffraction, NMR, and IR spectroscopy with the support of theoretical calculations. In contrast to the para system, the complexes with ortho-substituted bridging ligands show a remarkable and reversible temperature-dependent dual phosphorescence. Here, we combine for the first time the luminescence thermochromism with time-resolved FTIR spectroscopy. Thus, we receive experimental data on the structures of the two triplet states involved in the luminescence thermochromism. The transient IR spectra of the underlying triplet metal/halide-to-ligand charge transfer (3 M/XLCT) and cluster-centered (3 CC) states were obtained and interpreted by comparison with calculated vibrational spectra. The systematic and significant dependence of the bridging halides was analyzed.
Collapse
Affiliation(s)
- Pit Boden
- Chemistry Department and Research Center OptimasTU KaiserslauternErwin-Schrödinger-Straße 5267663KaiserslauternGermany
| | - Patrick Di Martino‐Fumo
- Chemistry Department and Research Center OptimasTU KaiserslauternErwin-Schrödinger-Straße 5267663KaiserslauternGermany
| | - Jasmin M. Busch
- Institute of Organic Chemistry (IOC)Karlsruhe Institute of, Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
| | - Florian R. Rehak
- Institute of Physical Chemistry–Theoretical ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 276131KarlsruheGermany
| | - Sophie Steiger
- Chemistry Department and Research Center OptimasTU KaiserslauternErwin-Schrödinger-Straße 5267663KaiserslauternGermany
| | - Oliver Fuhr
- Karlsruhe Institute of Nanotechnology (INT) and Karlsruhe Nano-Micro, Facility (KNMF)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Martin Nieger
- Department of ChemistryUniversity of HelsinkiP.O.Box55 (A.I. Virtasen aukio 1)00014HelsinkiFinland
| | - Daniel Volz
- Institute of Organic Chemistry (IOC)Karlsruhe Institute of, Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
| | - Willem Klopper
- Institute of Physical Chemistry–Theoretical ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 276131KarlsruheGermany
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC)Karlsruhe Institute of, Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
- Institute of Biological and Chemical Systems–Functional Molecular Systems, (IBCS-FMS)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Markus Gerhards
- Chemistry Department and Research Center OptimasTU KaiserslauternErwin-Schrödinger-Straße 5267663KaiserslauternGermany
| |
Collapse
|
12
|
Yang L, Wang L, Lv X, Chen JH, Wang Y, Yang G. Complexation of triangular silver(I) or copper(I) nitropyrazolates with dibenzothiophenes having potential use in adsorptive desulfurization. Dalton Trans 2021; 50:2915-2927. [PMID: 33555282 DOI: 10.1039/d0dt04037a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Triangular silver(i) and copper(i) 3,5-diethyl-4-nitropyrazolates (abbreviated as [Ag(denpz)]3 or Ag3pz3, and [Cu(denpz)]3 or Cu3pz3), as well as their adducts with dibenzothiophene (DBT), 4,6-dimethyldibenzothiophene (DMDBT) and benzothiophene (BT), have been prepared and characterized by a series of techniques. X-ray analyses show that these adducts are stabilized by MS, MC contacts and ππ stacking interactions. NMR measurements and theoretical calculations indicate that the intensity of interaction between the metal complexes and dibenzothiophenes follows the trend: Ag3pz3-DMDBT > Ag3pz3-DBT > Cu3pz3-DMDBT > Cu3pz3-DBT, which can be understood on the basis of a weak interaction between π-acid (Ag3pz3 or Cu3pz3) and π-base (DBT/DMDBT). Both complexes show good adsorptive ability and reusability toward the removal of DBT and DMDBT from model oil (n-octane), with the maximum adsorption capacity at room temperature being 39 mg S (DMDBT) per g Cu3pz3, 34 mg S (DMDBT) per g Ag3pz3, 40 mg S (DBT) per g Cu3pz3, 36 mg S (DBT) per g Ag3pz3, respectively. Compared to Ag3pz3, Cu3pz3 exhibits higher adsorptive capacities for DBT/DMDBT, which has been attributed to its lower molecular mass.
Collapse
Affiliation(s)
- Lin Yang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Lihong Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China.
| | - Xingpu Lv
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Jing-Huo Chen
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China.
| | - Guang Yang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
13
|
Titov AA, Filippov OA, Smol’yakov AF, Averin AA, Shubina ES. New mix-ligand copper(i) and copper(ii) pyrazolate complexes with 2,2′-bipyridine. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Zhan SZ, Chen W, Zheng J, Ng SW, Li D. Luminescent polymorphic aggregates of trinuclear Cu(I)-pyrazolate tuned by intertrimeric CuN Py weak coordination bonds. Dalton Trans 2021; 50:1733-1739. [PMID: 33459321 DOI: 10.1039/d0dt03661g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Five luminescent polymorphic aggregates of trinuclear Cu(i)-pyrazolate, namely [anti-Cu3L3]2 (1), [syn-Cu3L3·C2H5OH]2 (2), [anti-Cu3L3·C2H5OH]n (3), [anti-Cu3L3·0.5C7H8]n (4) and [syn-Cu3L3·C8H10]n (5) (HL = 4-(pyridin-4-ylthio)-3,5-dimethyl-1H-pyrazole), were reported. The trimeric Cu3L3 fragments present syn- and anti-conformations dependent on the dangled direction of 4-pyridyl groups on the two sides of the Cu3Pz3 plane (Pz = pyrazolate). Intertrimeric NPyCu weak coordination bonds associate these Cu3L3 fragments together to form dimeric or polymeric structures, which are further stabilized by crystallized solvent molecules or intertrimeric CuCu interactions. The solvated complexes (3-5) may be transformed into the unsolvated complex 1 by evacuation of the crystallized solvents upon heating. All these complexes emit from green to yellow under UV irradiation, which originated from the triplet excited states of metal to ligand charge transfer (3MLCT) mixed with intertrimeric CuCu interactions. This work provides a novel kind of supramolecular aggregate based on Cu3Pz3 beyond the classical π-acidbase adducts and metallophilicity-dependent dimers/oligomers.
Collapse
Affiliation(s)
- Shun-Ze Zhan
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, P. R. China.
| | - Wei Chen
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, P. R. China.
| | - Ji Zheng
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China.
| | - Seik Weng Ng
- UCSI University, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Dan Li
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China.
| |
Collapse
|
15
|
Kuwahara T, Ohtsu H, Tsuge K. Synthesis and Photophysical Properties of Emissive Silver(I) Halogenido Coordination Polymers Composed of {Ag 2X 2} Units Bridged by Pyrazine, Methylpyrazine, and Aminopyrazine. Inorg Chem 2021; 60:1299-1304. [PMID: 33449686 DOI: 10.1021/acs.inorgchem.0c03329] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Luminescent silver(I) coordination polymers having a {Ag2(μ-X)2} rhombic core (X = I, Br) were prepared using pyrazine (pyz), methylpyrazine (Mepyz), and aminopyrazine (ampyz) as bridging ligands. Photophysical measurements show that the complexes were strongly luminescent in the solid state at room temperature; further, the emissive excited state of the pyz and Mepyz complexes was a triplet charge-transfer (3CT) excited state, similar to that of their copper(I) congeners, whereas that of the ampyz complex was a intraligand (3IL) excited state. The energy of the 3CT excited state of a silver halogenido complex was revealed to be ca. 5000 cm-1 higher than that of the corresponding copper complex.
Collapse
Affiliation(s)
- Taiki Kuwahara
- Graduate School of Science and Engineering, University of Toyama, Toyama, Toyama 930-8555, Japan
| | - Hideki Ohtsu
- Graduate School of Science and Engineering, University of Toyama, Toyama, Toyama 930-8555, Japan
| | - Kiyoshi Tsuge
- Graduate School of Science and Engineering, University of Toyama, Toyama, Toyama 930-8555, Japan
| |
Collapse
|
16
|
Malpicci D, Lucenti E, Forni A, Marinotto D, Previtali A, Carlucci L, Mercandelli P, Botta C, Righetto S, Cariati E. Ag( i) and Cu( i) cyclic-triimidazole coordination polymers: revealing different deactivation channels for multiple room temperature phosphorescences. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01377c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The photophysics of isostructural Ag(i) and Cu(i) 1D and 3D coordination polymers based on cyclic triimidazole reveals excitation wavelength-dependent multiple emissions with different radiative paths according to the coordinated metal.
Collapse
Affiliation(s)
- Daniele Malpicci
- Department of Chemistry
- Università degli Studi di Milano and INSTM RU
- 20133 Milano
- Italy
| | - Elena Lucenti
- Institute of Sciences and Chemical Technologies “Giulio Natta” (SCITEC) of CNR
- 20133 Milano
- Italy
| | - Alessandra Forni
- Institute of Sciences and Chemical Technologies “Giulio Natta” (SCITEC) of CNR
- 20133 Milano
- Italy
| | - Daniele Marinotto
- Institute of Sciences and Chemical Technologies “Giulio Natta” (SCITEC) of CNR
- 20133 Milano
- Italy
| | - Andrea Previtali
- Department of Chemistry
- Università degli Studi di Milano and INSTM RU
- 20133 Milano
- Italy
- Institute of Sciences and Chemical Technologies “Giulio Natta” (SCITEC) of CNR
| | - Lucia Carlucci
- Department of Chemistry
- Università degli Studi di Milano and INSTM RU
- 20133 Milano
- Italy
| | - Pierluigi Mercandelli
- Department of Chemistry
- Università degli Studi di Milano and INSTM RU
- 20133 Milano
- Italy
| | - Chiara Botta
- Institute of Sciences and Chemical Technologies “Giulio Natta” (SCITEC) of CNR
- 20133 Milano
- Italy
| | - Stefania Righetto
- Department of Chemistry
- Università degli Studi di Milano and INSTM RU
- 20133 Milano
- Italy
| | - Elena Cariati
- Department of Chemistry
- Università degli Studi di Milano and INSTM RU
- 20133 Milano
- Italy
- Institute of Sciences and Chemical Technologies “Giulio Natta” (SCITEC) of CNR
| |
Collapse
|
17
|
Mechanistic study in azide-alkyne cycloaddition (CuAAC) catalyzed by bifunctional trinuclear copper(I) pyrazolate complex: Shift in rate-determining step. J Catal 2020. [DOI: 10.1016/j.jcat.2020.07.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
18
|
Dinuclear Silver(I) Nitrate Complexes with Bridging Bisphosphinomethanes: Argentophilicity and Luminescence. CRYSTALS 2020. [DOI: 10.3390/cryst10100881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Two silver nitrate complexes with bisphosphines were obtained and characterized: [Ag(dcypm)]2(NO3)2 (1; dcypm = bis(dicyclohexylphosphino)methane) and [Ag(dppm)]2(Me2PzH)n(NO3)2 (n = 1, 2a; n = 2, 2b; dppm = bis(diphenylphosphino)methane, Me2PzH = 3,5-dimethylpyrazole). The steric repulsions of bulky cyclohexyl substituents prevent additional ligand coordination to the silver atoms in 1. Compounds obtained feature the bimetallic eight-member cyclic core [AgPCP]2. The intramolecular argenthophilic interaction (d(Ag···Ag) = 2.981 Å) was observed in complex 1. In contrast, the coordination of pyrazole led to the elongation of Ag···Ag distance to 3.218(1) Å in 2a and 3.520 Å in 2b. Complexes 1 and 2a possess phosphorescence both in the solution and solid state. Time-dependent density-functional theory (TD-DFT) calculations demonstrate the origin of their different emission profile. In the case of 1, upon excitation, the electron leaves the Ag–P bonding orbital and locates on the intramolecular Ag···Ag bond (metal-centered character). Complex 2a at room temperature exhibits a phosphorescence originating from the 3(M + LP+N)LPhCT state. At 77 K, the photoluminescence spectrum of complex 2a shows two bands of two different characters: 3(M + LP+N)LPhCT and 3LCPh transitions. The contribution of Ag atoms to the excited state in both complexes 2a and 2b decreased relative to 1 in agreement with the structural changes caused by pyrazole coordination.
Collapse
|
19
|
Synthesis and Thermochromic Luminescence of Ag(I) Complexes Based on 4,6-Bis(diphenylphosphino)-Pyrimidine. INORGANICS 2020. [DOI: 10.3390/inorganics8090046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Two Ag(I)-based metal-organic compounds have been synthesized exploiting 4,6-bis(diphenylphosphino)pyrimidine (L). The reaction of this ligand with AgNO3 and AgBF4 in acetonitrile produces dinuclear complex, [Ag2L2(MeCN)2(NO3)2] (1) and 1D coordination polymer, [Ag2L(MeCN)3]n(BF4)2n (2), respectively. In complex 1, µ2-P,P′-bridging coordination pattern of the ligand L is observed, whereas its µ4-P,N,N′,P′-coordination mode appears in 2. Both compounds exhibit pronounced thermochromic luminescence expressed by reversible changing of the emission chromaticity from a yellow at 300 K to an orange at 77 K. At room temperature, the emission lifetimes of 1 and 2 are 15.5 and 9.4 µs, the quantum efficiency being 18 and 56%, respectively. On account of temperature-dependent experimental data, the phenomenon was tentatively ascribed to alteration of the emission nature from thermally activated delayed fluorescence at 300 K to phosphoresce at 77 K.
Collapse
|
20
|
Zheng J, Lu Z, Wu K, Ning GH, Li D. Coinage-Metal-Based Cyclic Trinuclear Complexes with Metal-Metal Interactions: Theories to Experiments and Structures to Functions. Chem Rev 2020; 120:9675-9742. [PMID: 32786416 DOI: 10.1021/acs.chemrev.0c00011] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Among the d10 coinage metal complexes, cyclic trinuclear complexes (CTCs) or trinuclear metallocycles with intratrimer metal-metal interactions are fascinating and important metal-organic or organometallic π-acids/bases. Each CTC of characteristic planar or near-planar trimetal nine-membered rings consists of Au(I)/Ag(I)/Cu(I) cations that linearly coordinate with N and/or C atoms in ditopic anionic bridging ligands. Since the first discovery of Au(I) CTC in the 1970s, research of CTCs has involved several fundamental areas, including noncovalent and metallophilic interaction, excimer/exciplex, acid-base chemistry, metalloaromaticity, supramolecular assemblies, and host/guest chemistry. These allow CTCs to be embraced in a wide range of innovative potential applications that include chemical sensing, semiconducting, gas and liquid adsorption/separation, catalysis, full-color display, and solid-state lighting. This review aims to provide a historic and comprehensive summary on CTCs and their extension to higher nuclearity complexes and coordination polymers from the perspectives of synthesis, structure, theoretical insight, and potential applications.
Collapse
Affiliation(s)
- Ji Zheng
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, People's Republic of China
| | - Zhou Lu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, People's Republic of China
| | - Kun Wu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, People's Republic of China
| | - Guo-Hong Ning
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, People's Republic of China
| | - Dan Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, People's Republic of China
| |
Collapse
|
21
|
Alkorta I, Elguero J, Dias HVR, Parasar D, Martín-Pastor M. An experimental and computational NMR study of organometallic nine-membered rings: Trinuclear silver(I) complexes of pyrazolate ligands. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2020; 58:319-328. [PMID: 31984555 DOI: 10.1002/mrc.5002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 05/26/2023]
Abstract
This work reports the calculation of the nuclear magnetic resonance (NMR) chemical shifts of eight trinuclear Ag(I) complexes of pyrazolate ligands using the relativistic program ZORA. The data from the literature concern exclusively 1 H, 13 C, and 19 F nuclei. For this reason, one of the complexes that is derived from 3,5-bis-trifluoromethyl-1H-pyrazole has been studied anew, and the 15 N and 109 Ag chemical shifts determined for the first time in solution. Solid-state NMR data of this compound have been obtained for some nuclei (1 H, 13 C, and 19 F) but not for others (14 N, 15 N, and 109 Ag).
Collapse
Affiliation(s)
- Ibon Alkorta
- Instituto de Química Médica, CSIC, Madrid, Spain
| | - José Elguero
- Instituto de Química Médica, CSIC, Madrid, Spain
| | - H V Rasika Dias
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas
| | - Devaborniny Parasar
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas
| | - Manuel Martín-Pastor
- Unidad de Resonancia Magnética Nuclear, RIAIDT, CACTUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
22
|
Xing LR, Lu Z, Li M, Zheng J, Li D. Revealing High-Lying Intersystem Crossing in Brightly Luminescent Cyclic Trinuclear Cu I/Ag I Complexes. J Phys Chem Lett 2020; 11:2067-2073. [PMID: 32083873 DOI: 10.1021/acs.jpclett.9b03382] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The increased attention to luminescent copper(I) complexes, mostly mononuclear and dinuclear ones, in the past few years was mainly due to the new pathways established in the intersystem crossing (ISC) for highly efficient singlet/triplet harvesting, which showed great potential in light-emitting devices. Governing the photophysical processes of planar cyclic trinuclear complexes is more challenging owing to the rich intra- and intermolecular metal-metal interactions involved, but new opportunities also accompany this. Herein reported is a hidden route to the ultra-long-lived, highly efficient phosphorescence of cyclic trinuclear two-coordinate CuI-pyrazolate complexes through pushing the unfavorable metal-to-ligand charge transfer events to the high-lying ISC pathways. Moreover, an anomaly of much higher quantum yields of a trinuclear AgI-pyrazolate complex relative to its CuI analogue is observed.
Collapse
Affiliation(s)
- Li-Rui Xing
- Department of Chemistry, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Zhou Lu
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| | - Mian Li
- Department of Chemistry, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Ji Zheng
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| | - Dan Li
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| |
Collapse
|
23
|
Emashova SK, Titov AA, Filippov OA, Smol'yakov AF, Titova EM, Epstein LM, Shubina ES. Luminescent Ag
I
Complexes with 2,2′‐Bipyridine Derivatives Featuring [Ag‐(CF
3
)
2
Pyrazolate]
4
Units. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201901050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Sofia K. Emashova
- A. N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences Vavilov st. 28 119991 Moscow Russia
- Faculty of Chemistry Lomonosov Moscow State University 1‐3 Leninskie Gory 119991 Moscow Russia
| | - Aleksei A. Titov
- A. N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences Vavilov st. 28 119991 Moscow Russia
| | - Oleg A. Filippov
- A. N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences Vavilov st. 28 119991 Moscow Russia
| | - Alexander F. Smol'yakov
- A. N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences Vavilov st. 28 119991 Moscow Russia
- Inorganic Chemistry Department Peoples' Friendship University of Russia Miklukho‐Maklaya str. 6 117198 Moscow Russia
- Plekhanov Russian University of Economics Stremyanny per. 36 117997 Moscow Russia
| | - Ekaterina M. Titova
- A. N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences Vavilov st. 28 119991 Moscow Russia
- Inorganic Chemistry Department Peoples' Friendship University of Russia Miklukho‐Maklaya str. 6 117198 Moscow Russia
| | - Lina M. Epstein
- A. N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences Vavilov st. 28 119991 Moscow Russia
| | - Elena S. Shubina
- A. N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences Vavilov st. 28 119991 Moscow Russia
| |
Collapse
|
24
|
Liu R, Zhang W, Wei D, Chen JH, Ng SW, Yang G. Adducts of triangular silver(i) 3,5-bis(trifluoromethyl)pyrazolate with thiophene derivatives: a weak interaction model of desulfurization. Dalton Trans 2019; 48:16162-16166. [PMID: 31651001 DOI: 10.1039/c9dt03344k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
π-Acidic triangular silver(i) 3,5-bis(trifluoromethyl)pyrazolate (Ag3pz3) can form 1 : 1 adducts with dibenzothiophene (DBT), 4,6-dimethyldibenzothiophene (DMDBT), benzothiophene (BT), and 2,5-dimethylthiophene (DMT), which are stabilized by weak AgS and AgC contacts and sometimes by π-π stacking and, therefore, may represent a weak interaction model for some adsorptive desulfurization processes.
Collapse
Affiliation(s)
- Rongrong Liu
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China.
| | - Wenhua Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China.
| | - Donghui Wei
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China.
| | - Jing-Huo Chen
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China.
| | - Seik Weng Ng
- Department of Chemistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Guang Yang
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China.
| |
Collapse
|
25
|
Chen XW, Yuan HL, He LH, Chen JL, Liu SJ, Wen HR, Zhou G, Wang JY, Wong WY. A Sublimable Dinuclear Cuprous Complex Showing Selective Luminescence Vapochromism in the Crystalline State. Inorg Chem 2019; 58:14478-14489. [DOI: 10.1021/acs.inorgchem.9b01972] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Xing-Wei Chen
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, People’s Republic of China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, People’s Republic of China
| | - Hua-Li Yuan
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, People’s Republic of China
| | - Li-Hua He
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, People’s Republic of China
| | - Jing-Lin Chen
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, People’s Republic of China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, People’s Republic of China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People’s Republic of China
| | - Sui-Jun Liu
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, People’s Republic of China
| | - He-Rui Wen
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, People’s Republic of China
| | - Guijiang Zhou
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Mechanical Behavior of Materials, Department of Chemistry, Faculty of Science, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
| | - Jin-Yun Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People’s Republic of China
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, People’s Republic of China
| |
Collapse
|
26
|
Dias HVR, Diyabalanage HVK, Ghimire MM, Hudson JM, Parasar D, Palehepitiya Gamage CS, Li S, Omary MA. Brightly phosphorescent tetranuclear copper(i) pyrazolates. Dalton Trans 2019; 48:14979-14983. [PMID: 31580351 DOI: 10.1039/c9dt03402a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Described herein is the synthesis and photophysics of two tetranuclear copper complexes, {[3,5-(Pri)2,4-(Br)Pz]Cu}4 and {[3-(CF3),5-(But)Pz]Cu}4 tailor-designed by manipulating the pyrazolyl ring substituents. Unlike their trinuclear analogues, the luminescence of the tetranuclear species is molecular (not supramolecular) in nature with extremely high solid-state quantum yields of ∼80% at room temperature.
Collapse
Affiliation(s)
- H V Rasika Dias
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA.
| | | | | | | | | | | | | | | |
Collapse
|