1
|
Thakur S, Mutreja V, Kaur R. Synergistic integration of ZrO 2-enriched reduced graphene oxide-based nanostructures for advanced photodegradation of tetracycline hydrochloride. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:31562-31576. [PMID: 38632202 DOI: 10.1007/s11356-024-33196-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/29/2024] [Indexed: 04/19/2024]
Abstract
The escalating demand for the antibiotic drug tetracycline hydrochloride (TCH) contributes to an increased release of its residues into land and water bodies, which poses risks to both aquatic life and human health. Therefore, it is precedence to effectively degrade TCH residues to protect environment from their long-term impacts. In this aspect, the present study entails the synthesis of zirconia (ZrO2) nanostructures and focuses on the enhancement in the catalytic performance of ZrO2 nanostructures by employing reduced graphene oxide (RGO) as a solid support to synthesize ZrO2-enriched RGO-based photocatalysts (ZrO2-RGO) for the degradation of TCH. The study delves into comprehensive spectroscopic and microscopic investigations and their photodegradation assessments. Powder XRD and HR-TEM studies depicted the phase crystallinity and also displayed uniform distribution of ZrO2 nanostructures with spherical morphology within ZrO2-RGO. This corresponds to high surface-to-volume ratios, providing a substantial number of active sites for light absorption and generation of e--h+ pairs. Moreover, the heterojunctions created between RGO and ZrO2 nanostructures promoted the interspecies electron transfer which prolonged the recombination time of e- and h+ than pure ZrO2 nanostructures, accounted for enhanced degradation of TCH using ZrO2-RGO. The photocatalytic activity of as-synthesized materials were examined under visible and UV light irradiation. The degradation efficiency of ~ 73.82% was achieved using ZrO2-RGO-based photocatalyst with rate constant k = 0.007023 min-1 under visible-light illumination. Moreover, under UV-light, the degradation rate was explicated to be k = 0.01017 min-1 with ~ 85.56% degradation of TCH antibiotics within 180 mins. Hence, the synthesized ZrO2-enriched RGO-based photocatalysts represents a promising potential for the effective degradation of pharmaceutical compounds, particularly TCH under visible and UV-light irradiation.
Collapse
Affiliation(s)
- Sakshi Thakur
- Department of Chemistry, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Vishal Mutreja
- Department of Chemistry, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Ranjeet Kaur
- University Centre for Research & Development (UCRD), Department of Chemistry, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India.
| |
Collapse
|
2
|
Goossens E, Aalling-Frederiksen O, Tack P, Van den Eynden D, Walsh-Korb Z, Jensen KMØ, De Buysser K, De Roo J. From Gel to Crystal: Mechanism of HfO 2 and ZrO 2 Nanocrystal Synthesis in Benzyl Alcohol. J Am Chem Soc 2024; 146:10723-10734. [PMID: 38588404 PMCID: PMC11027147 DOI: 10.1021/jacs.4c00678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/08/2024] [Accepted: 03/25/2024] [Indexed: 04/10/2024]
Abstract
Nonaqueous sol-gel syntheses have been used to make many types of metal oxide nanocrystals. According to the current paradigm, nonaqueous syntheses have slow kinetics, thus favoring the thermodynamic (crystalline) product. Here we investigate the synthesis of hafnium (and zirconium) oxide nanocrystals from the metal chloride in benzyl alcohol. We follow the transition from precursor to nanocrystal through a combination of rheology, EXAFS, NMR, TEM, and X-ray total scattering (PDF analysis). Upon dissolving the metal chloride precursor, the exchange of chloride ligands for benzylalkoxide liberates HCl. The latter catalyzes the etherification of benzyl alcohol, eliminating water. During the temperature ramp to the reaction temperature (220 °C), sufficient water is produced to turn the reaction mixture into a macroscopic gel. Rheological analysis shows a network consisting of strong interactions with temperature-dependent restructuring. After a few minutes at the reaction temperature, crystalline particles emerge from the gel, and nucleation and growth are complete after 30 min. In contrast, 4 h are required to obtain the highest isolated yield, which we attribute to the slow in situ formation of water (the extraction solvent). We used our mechanistic insights to optimize the synthesis, achieving high isolated yields with a reduced reaction time. Our results oppose the idea that nonaqueous sol-gel syntheses necessarily form crystalline products in one step, without a transient, amorphous gel state.
Collapse
Affiliation(s)
- Eline Goossens
- Department
of Chemistry, Ghent University, 9000 Ghent, Belgium
- Department
of Chemistry, University of Basel, 4058 Basel, Switzerland
| | | | - Pieter Tack
- Department
of Chemistry, Ghent University, 9000 Ghent, Belgium
| | - Dietger Van den Eynden
- Department
of Chemistry, Ghent University, 9000 Ghent, Belgium
- Department
of Chemistry, University of Basel, 4058 Basel, Switzerland
| | - Zarah Walsh-Korb
- Department
of Chemistry, University of Basel, 4058 Basel, Switzerland
| | | | | | - Jonathan De Roo
- Department
of Chemistry, University of Basel, 4058 Basel, Switzerland
| |
Collapse
|
3
|
Van den Eynden D, Pokratath R, De Roo J. Nonaqueous Chemistry of Group 4 Oxo Clusters and Colloidal Metal Oxide Nanocrystals. Chem Rev 2022; 122:10538-10572. [PMID: 35467844 DOI: 10.1021/acs.chemrev.1c01008] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We review the nonaqueous precursor chemistry of the group 4 metals to gain insight into the formation of their oxo clusters and colloidal oxide nanocrystals. We first describe the properties and structures of titanium, zirconium, and hafnium oxides. Second, we introduce the different precursors that are used in the synthesis of oxo clusters and oxide nanocrystals. We review the structures of group 4 metal halides and alkoxides and their reactivity toward alcohols, carboxylic acids, etc. Third, we discuss fully condensed and atomically precise metal oxo clusters that could serve as nanocrystal models. By comparing the reaction conditions and reagents, we provide insight into the relationship between the cluster structure and the nature of the carboxylate capping ligands. We also briefly discuss the use of oxo clusters. Finally, we review the nonaqueous synthesis of group 4 oxide nanocrystals, including both surfactant-free and surfactant-assisted syntheses. We focus on their precursor chemistry and surface chemistry. By putting these results together, we connect the dots and obtain more insight into the fascinating chemistry of the group 4 metals. At the same time, we also identify gaps in our knowledge and thus areas for future research.
Collapse
Affiliation(s)
- Dietger Van den Eynden
- Department of Chemistry, University of Basel, Mattenstrasse 24, BPR 1096, Basel 4058, Switzerland
| | - Rohan Pokratath
- Department of Chemistry, University of Basel, Mattenstrasse 24, BPR 1096, Basel 4058, Switzerland
| | - Jonathan De Roo
- Department of Chemistry, University of Basel, Mattenstrasse 24, BPR 1096, Basel 4058, Switzerland
| |
Collapse
|
4
|
Abd El-Aal M, Mogharbel RT, Ibrahim A, Almutlaq N, Sh Zoromba M, Al-Hossainy AF, Ibrahim SM. Synthesis, characterization, and photosensitizer applications for dye-based on ZrO2- acriflavine nanocomposite thin film [ZrO2+ACF]C. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131827] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Fiorati A, Florit F, Mazzei A, Buzzaccaro S, Rossi B, Piazza R, Rota R, De Nardo L. Dispersions of Zirconia Nanoparticles Close to the Phase Boundary of Surfactant-Free Ternary Mixtures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4072-4081. [PMID: 33797907 PMCID: PMC8154878 DOI: 10.1021/acs.langmuir.0c03401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The achievement of a homogeneous dispersion of nanoparticles is of paramount importance in supporting their technological application. In wet processing, stable dispersions were largely obtained via surfactant or surface functionalization: although effective, the use of dispersant can alter, or even impair, the functional properties of the resulting nanostructured systems. Herein, we report a novel integrated modeling and experimental approach to obtain stable ZrO2 nanoparticle (NP) dispersions at native dimensions (about 5 nm) in homogeneous ternary mixtures of solvents (i.e., water, ethanol, and 1,2-dichlorobenzene) without any further surface functionalization. A miscibility ternary diagram was computed exploiting the universal quasi-chemical functional-group activity coefficient (UNIFAC) model, which was then experimentally validated. Dynamic light scattering (DLS) on these mixtures highlights that nanometric structures, resembling nanoemulsion droplets, form close to the mixture two-phase boundary, with a size that depends on the ternary mixture composition. ZrO2-NPs were then synthesized following a classic sol-gel approach and characterized by XRD and Raman spectroscopy. ZrO2-NPs were dispersed in HCl and mixed with different mixtures of ethanol and 1,2-dichlorobenzene (DCB), obtaining homogeneous and stable dispersions. These dispersions were then studied by means of DLS as a function of DCB concentration, observing that the nanoparticles can be dispersed at their native dimensions when the mass fraction of DCB was lower than 60%, whereas the increase of the hydrophobic solvent leads to the NPs' agglomeration and sedimentation. The proposed approach not only offers specific guidelines for the design of ZrO2-NPs dispersions in a ternary solvent mixture but can also be extended to other complex solvent mixtures in order to achieve stable dispersions of nanoparticles with no functionalization.
Collapse
Affiliation(s)
- Andrea Fiorati
- Department
of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milano, Italy
- INSTM
- Local Unit Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milano, Italy
| | - Federico Florit
- Department
of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milano, Italy
| | - Andrea Mazzei
- Department
of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milano, Italy
| | - Stefano Buzzaccaro
- Department
of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milano, Italy
| | - Barbara Rossi
- Elettra
Sincrotrone Trieste, Strada Statale 14 km 163.5, Area Science Park, 34149 Basovizza, Trieste, Italy
- Department
of Physics, University of Trento, Via Sommarive 14, 38123 Povo, Trento, Italy
| | - Roberto Piazza
- Department
of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milano, Italy
| | - Renato Rota
- Department
of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milano, Italy
| | - Luigi De Nardo
- Department
of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milano, Italy
- INSTM
- Local Unit Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milano, Italy
| |
Collapse
|
6
|
Wang Y, Bouchneb M, Mighri R, Alauzun JG, Mutin PH. Water Formation in Non-Hydrolytic Sol-Gel Routes: Selective Synthesis of Tetragonal and Monoclinic Mesoporous Zirconia as a Case Study. Chemistry 2021; 27:2670-2682. [PMID: 32715539 PMCID: PMC7898917 DOI: 10.1002/chem.202003081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Indexed: 11/07/2022]
Abstract
Several non-hydrolytic sol-gel syntheses involving different precursors, oxygen donors, and conditions have been screened aiming to selectively produce mesoporous t-ZrO2 or m-ZrO2 with significant specific surface areas. The in situ water formation was systematically investigated by Karl Fisher titration of the syneresis liquids. XRD and nitrogen physisorption were employed to characterize the structure and texture of the ZrO2 samples. Significant amounts of water were found in several cases, notably in the reactions of Zr(OnPr)4 with ketones (acetone, 2-pentanone, acetophenone), and of ZrCl4 with alcohols (benzyl alcohol, ethanol) or acetone. Conversely, the reactions of Zr(OnPr)4 with acetic anhydride or benzyl alcohol at moderate temperature (200 °C) and of ZrCl4 with diisopropyl ether appear strictly non-hydrolytic. Although reaction time and reaction temperature were also important parameters, the presence of water played a crucial role on the structure of the final zirconia: t-ZrO2 is favored in strictly non-hydrolytic routes, while m-ZrO2 is favored in the presence of significant amounts of water. 1 H and 13 C NMR analysis of the syneresis liquids allowed us to identify the main reactions responsible for the formation of water and of the oxide network. The morphology of the most interesting ZrO2 samples was further investigated by electron microscopy (SEM, TEM).
Collapse
Affiliation(s)
- Yanhui Wang
- Institut Charles Gerhardt MontpellierUMR 5253Université de MontpellierMontpellierFrance
| | - Maroua Bouchneb
- Institut Charles Gerhardt MontpellierUMR 5253Université de MontpellierMontpellierFrance
| | - Rimeh Mighri
- Institut Charles Gerhardt MontpellierUMR 5253Université de MontpellierMontpellierFrance
| | - Johan G. Alauzun
- Institut Charles Gerhardt MontpellierUMR 5253Université de MontpellierMontpellierFrance
| | - P. Hubert Mutin
- Institut Charles Gerhardt MontpellierUMR 5253Université de MontpellierMontpellierFrance
| |
Collapse
|