1
|
Masand VH, Al-Hussain SA, Alzahrani AY, Al-Mutairi AA, Hussien RA, Samad A, Zaki MEA. Estrogen Receptor Alpha Binders for Hormone-Dependent Forms of Breast Cancer: e-QSAR and Molecular Docking Supported by X-ray Resolved Structures. ACS OMEGA 2024; 9:16759-16774. [PMID: 38617692 PMCID: PMC11007693 DOI: 10.1021/acsomega.4c00906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 04/16/2024]
Abstract
Cancer, a life-disturbing and lethal disease with a high global impact, causes significant economic, social, and health challenges. Breast cancer refers to the abnormal growth of cells originating from breast tissues. Hormone-dependent forms of breast cancer, such as those influenced by estrogen, prompt the exploration of estrogen receptors as targets for potential therapeutic interventions. In this study, we conducted e-QSAR molecular docking and molecular dynamics analyses on a diverse set of inhibitors targeting estrogen receptor alpha (ER-α). The e-QSAR model is based on a genetic algorithm combined with multilinear regression analysis. The newly developed model possesses a balance between predictive accuracy and mechanistic insights adhering to the OECD guidelines. The e-QSAR model pointed out that sp2-hybridized carbon and nitrogen atoms are important atoms governing binding profiles. In addition, a specific combination of H-bond donors and acceptors with carbon, nitrogen, and ring sulfur atoms also plays a crucial role. The results are supported by molecular docking, MD simulations, and X-ray-resolved structures. The novel results could be useful for future drug development for ER-α.
Collapse
Affiliation(s)
- Vijay H Masand
- Department of Chemistry, Vidya Bharati Mahavidyalaya, Amravati 444 602, Maharashtra, India
| | - Sami A Al-Hussain
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
| | - Abdullah Y Alzahrani
- Department of Chemistry, Faculty of Science and Arts, King Khalid University, Mohail 61421, Saudi Arabia
| | - Aamal A Al-Mutairi
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
| | - Rania A Hussien
- Department of Chemistry, Faculty of Science, Al-Baha University, Al-Baha 65799, Kingdom of Saudi Arabia
| | - Abdul Samad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tishk International University, Erbil 44001, Iraq
| | - Magdi E A Zaki
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
| |
Collapse
|
2
|
Khaled SE, Hashem FAM, Shabana MH, Hammam AMM, Madboli ANA, Farag MA, Al-Mahdy DA. A metabolomics approach for the evaluation of Ficus benghalensis female in vivo reproductive effects relative to its metabolite fingerprint as determined via UPLC-MS and GC-MS. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117519. [PMID: 38043752 DOI: 10.1016/j.jep.2023.117519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/20/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ficus benghalensis, commonly known as Banyan Fig, is the national tree of India and its aerial roots are used traditionally to treat female reproductive disorders. However, despite this traditional use, no pharmacological evidence could be traced supporting this use. Additionally, no comprehensive metabolite profiling was reported for F. benghalensis aerial roots. AIM OF THE STUDY This study attempts to justify biochemically the traditional use of F. benghalensis aerial roots in treatment of female reproductive disorders and in relation to its secondary metabolite profile. MATERIALS AND METHODS Total ethanol extract (TEE) and subfractions [petroleum ether (PEF), chloroform (CHF), ethyl acetate (EAF) and n-butanol (BUF] were prepared from air-dried powdered aerial roots of F. benghalensis. Detailed in-vivo investigation of the hormonal activity and action mechanism of the total ethanol extract and subfractions was carried out through evaluation of estrogenic and gonadotropic activities. The estrogenic activity was evaluated on ovariectomized immature female rats through estimating uterine weight, vaginal cornification and serum estradiol level along with histological examination of uteri. The gonadotropic activity was measured by assay of follicle stimulating hormone (FSH) and luteinizing hormone (LH) like activities. Total follicular and corpora lutea counts in immature female rats were used to determine FSH and LH like activities, respectively in addition to histological picture of the genitalia. Comprehensive non-targeted metabolite profiling was carried out for the TEE and subfractions using UPLC-HRMS in negative and positive ionization modes. UPLC-MS fingerprint was subjected to principal component analysis (PCA) and partial least squares analyses to correlate the bioactivities to specific chemical constituents in F. benghalensis different subfractions. GC-MS was further used for non-polar silylated fractions. RESULTS Results revealed that only the non-polar PEF and CHF displayed moderate estrogenic and FSH-like activities but with no LH-like activity. Metabolites profiling via (UPLC-HRMS) and multivariate PCA analysis enabled identification and comparison of various chemical classes in F. benghalensis extract and fractions. The active non-polar fractions revealed nearly similar metabolites profile being composed of isoflavonoids, triterpenes, sterols, fatty acids and cyclic peptides. In contrast, polar fractions were more abundant in apocarotenoids, fatty acyl amides, hydroxybenzoates and hydroxycinnamates in addition to two lignans. PLS analysis revealed strong correlation between hydroxylated fatty acids and pyranoisoflavones with estrogenic and FSH-like activities. GC-MS analysis was further employed for non-polar fractions profiling revealing for their enrichment in fatty acids/esters, terpenes, organic acids and phenolics. CONCLUSION This is the first study to rationalize the use of F. benghalensis aerial root traditionally in treatment of gynecological disorders, revealing that the petroleum ether and chloroform non-polar subfractions of F. benghalensis showed estrogenic and FSH-like activity with absence of LH-like activity. This biological activity could possibly be attributed to its metabolites profile of isoflavonoids, fatty acids, triterpenes, sterols and cyclic peptides identified via UPLC-MS and GC-MS techniques. Consequently, F. benghalensis aerial roots should be used with caution in traditional treatment of female infertility or other reproductive disorders.
Collapse
Affiliation(s)
- Sally E Khaled
- Department of Pharmacognosy, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Giza, 12622, Egypt.
| | - Fatma A-M Hashem
- Department of Pharmacognosy, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Giza, 12622, Egypt.
| | - Manal H Shabana
- Department of Phytochemistry and Plant Systematic, National Research Centre, Giza, 12622, Egypt.
| | - Abdel-Mohsen M Hammam
- Department of Animal Reproduction & A.I., Veterinary Research Institute, National Research Centre, Giza, 12622, Egypt.
| | - Abdel Nasser A Madboli
- Department of Animal Reproduction & A.I., Veterinary Research Institute, National Research Centre, Giza, 12622, Egypt.
| | - Mohamed A Farag
- Department of Pharmacognosy, College of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Dalia A Al-Mahdy
- Department of Pharmacognosy, College of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
3
|
Nishi K, Imamura I, Hoashi K, Kiyama R, Mitsuiki S. Estrogenic Prenylated Flavonoids in Sophora flavescens. Genes (Basel) 2024; 15:204. [PMID: 38397194 PMCID: PMC10887985 DOI: 10.3390/genes15020204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Sophora flavescens is a medicinal herb distributed widely in Japan and it has been used to treat various diseases and symptoms. To explore its pharmacological use, we examined the estrogenic activity of four prenylated flavonoids, namely kurarinone, kushenols A and I, and sophoraflavanone G, which are characterized by the lavandulyl group at position 8 of ring A, but have variations in the hydroxyl group at positions 3 (ring C), 5 (ring A) and 4' (ring B). These prenylated flavonoids were examined via cell proliferation assays using sulforhodamine B, Western blotting, and RT-PCR, corresponding to cell, protein, and transcription assays, respectively, based on estrogen action mechanisms. All the assays employed here found weak but clear estrogenic activities for the prenylated flavonoids examined. Furthermore, the activities were inhibited by an estrogen receptor antagonist, suggesting that the activities were likely being mediated by the estrogen receptors. However, there were differences in the activity, attributable to the hydroxyl group at position 4', which is absent in kushenol A. While the estrogenic activity of kurarinone and sophoraflavanone G has been reported before, to the best of our knowledge, there are no such reports on kushenols A and I. Therefore, this study represents the first report of their estrogenic activity.
Collapse
Affiliation(s)
| | | | | | | | - Shinji Mitsuiki
- Faculty of Life Science, Kyushu Sangyo University, Fukuoka 813-8503, Japan; (K.N.); (I.I.); (K.H.); (R.K.)
| |
Collapse
|
4
|
Estrogenic flavonoids and their molecular mechanisms of action. J Nutr Biochem 2023; 114:109250. [PMID: 36509337 DOI: 10.1016/j.jnutbio.2022.109250] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Flavonoids are a major group of phytoestrogens associated with physiological effects, and ecological and social impacts. Although the estrogenic activity of flavonoids was reported by researchers in the fields of medical, environmental and food studies, their molecular mechanisms of action have not been comprehensively reviewed. The estrogenic activity of the respective classes of flavonoids, anthocyanidins/anthocyanins, 2-arylbenzofurans/3-arylcoumarins/α-methyldeoxybenzoins, aurones/chalcones/dihydrochalcones, coumaronochromones, coumestans, flavans/flavan-3-ols/flavan-4-ols, flavanones/dihydroflavonols, flavones/flavonols, homoisoflavonoids, isoflavans, isoflavanones, isoflavenes, isoflavones, neoflavonoids, oligoflavonoids, pterocarpans/pterocarpenes, and rotenone/rotenoids, was summarized through a comprehensive literature search, and their structure-activity relationship, biological activities, signaling pathways, and applications were discussed. Although the respective classes of flavonoids contained at least one chemical mimicking estrogen, the mechanisms varied, such as those with estrogenic, anti-estrogenic, non-estrogenic, and biphasic activities, and additional activities through crosstalk/bypassing, which exert biological activities through cell signaling pathways. Such mechanistic variations of estrogen action are not limited to flavonoids and are observed among other broad categories of chemicals, thus this group of chemicals can be termed as the "estrogenome". This review article focuses on the connection of estrogen action mainly between the outer and the inner environments, which represent variations of chemicals and biological activities/signaling pathways, respectively, and form the basis to understand their applications. The applications of chemicals will markedly progress due to emerging technologies, such as artificial intelligence for precision medicine, which is also true of the study of the estrogenome including estrogenic flavonoids.
Collapse
|
5
|
Albitz K, Csókás D, Dobi Z, Pápai I, Soós T. Late-Stage Formal Double C-H Oxidation of Prenylated Molecules to Alkylidene Oxetanes and Azetidines by Strain-Enabled Cross-Metathesis. Angew Chem Int Ed Engl 2023; 62:e202216879. [PMID: 36629402 DOI: 10.1002/anie.202216879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/12/2023]
Abstract
Prenylation is a ubiquitous late-stage modification in nature that often confers significantly improved bioactivity for secondary metabolites. While this lipophilic modification renders enhanced potency, the lipophilic tag(s) can diminish bioavailability and adversely alter drug transportation and metabolism. Thus, a functional-group-tolerant, mild, and selective late-stage C-H functionalization of prenyl tags would present a great potential in drug discovery programs but could also impact other fields, such as agrochemistry and chemical biology. Herein we report an exocyclic-strain-driven cross-metathesis reaction of prenyl tags, a formal double C-H oxidation protocol, that can be used for the selective late-stage derivatization of prenylated compounds and natural products. This methodology avoids the need for prefunctionalization of target molecules and affords ready access to an unprecedented library of oxo- and aza-prenylated complex molecules. Thus, in a broader context, this methodology extends late-stage functionalization beyond that available to nature.
Collapse
Affiliation(s)
- Krisztián Albitz
- Organocatalysis Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, 2 Magyar tudósok körútja, 1117, Budapest, Hungary.,Hevesy György PhD School of Chemistry, Eötvös Loránd University, 1/A Pázmány Péter sétány, 1117, Budapest, Hungary
| | - Dániel Csókás
- Theoretical Chemistry Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, 2 Magyar tudósok körútja, 1117, Budapest, Hungary
| | - Zoltán Dobi
- Organocatalysis Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, 2 Magyar tudósok körútja, 1117, Budapest, Hungary
| | - Imre Pápai
- Theoretical Chemistry Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, 2 Magyar tudósok körútja, 1117, Budapest, Hungary
| | - Tibor Soós
- Organocatalysis Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, 2 Magyar tudósok körútja, 1117, Budapest, Hungary
| |
Collapse
|
6
|
Ebihara K, Niwa R. Compounds Inhibiting Noppera-bo, a Glutathione S-transferase Involved in Insect Ecdysteroid Biosynthesis: Novel Insect Growth Regulators. Biomolecules 2023; 13:biom13030461. [PMID: 36979396 PMCID: PMC10046418 DOI: 10.3390/biom13030461] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Glutathione S-transferases (GSTs) are conserved in a wide range of organisms, including insects. In 2014, an epsilon GST, known as Noppera-bo (Nobo), was shown to regulate the biosynthesis of ecdysteroid, the principal steroid hormone in insects. Studies on fruit flies, Drosophila melanogaster, and silkworms, Bombyx mori, demonstrated that loss-of-function mutants of nobo fail to synthesize ecdysteroid and die during development, consistent with the essential function of ecdysteroids in insect molting and metamorphosis. This genetic evidence suggests that chemical compounds that inhibit activity of Nobo could be insect growth regulators (IGRs) that kill insects by disrupting their molting and metamorphosis. In addition, because nobo is conserved only in Diptera and Lepidoptera, a Nobo inhibitor could be used to target IGRs in a narrow spectrum of insect taxa. Dipterans include mosquitoes, some of which are vectors of diseases such as malaria and dengue fever. Given that mosquito control is essential to reduce mosquito-borne diseases, new IGRs that specifically kill mosquito vectors are always in demand. We have addressed this issue by identifying and characterizing several chemical compounds that inhibit Nobo protein in both D. melanogaster and the yellow fever mosquito, Aedes aegypti. In this review, we summarize our findings from the search for Nobo inhibitors.
Collapse
Affiliation(s)
- Kana Ebihara
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8572, Ibaraki, Japan
| | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8577, Ibaraki, Japan
- Correspondence:
| |
Collapse
|
7
|
Wang Y, Jiang D, Guo K, Zhao L, Meng F, Xiao J, Niu Y, Sun Y. Comparative analysis of codon usage patterns in chloroplast genomes of ten Epimedium species. BMC Genom Data 2023; 24:3. [PMID: 36624369 PMCID: PMC9830715 DOI: 10.1186/s12863-023-01104-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The Phenomenon of codon usage bias exists in the genomes of prokaryotes and eukaryotes. The codon usage pattern is affected by environmental factors, base mutation, gene flow and gene expression level, among which natural selection and mutation pressure are the main factors. The study of codon preference is an effective method to analyze the source of evolutionary driving forces in organisms. Epimedium species are perennial herbs with ornamental and medicinal value distributed worldwide. The chloroplast genome is self-replicating and maternally inherited which is usually used to study species evolution, gene expression and genetic transformation. RESULTS The results suggested that chloroplast genomes of Epimedium species preferred to use codons ending with A/U. 17 common high-frequency codons and 2-6 optimal codons were found in the chloroplast genomes of Epimedium species, respectively. According to the ENc-plot, PR2-plot and neutrality-plot, the formation of codon preference in Epimedium was affected by multiple factors, and natural selection was the dominant factor. By comparing the codon usage frequency with 4 common model organisms, it was found that Arabidopsis thaliana, Populus trichocarpa, and Saccharomyces cerevisiae were suitable exogenous expression receptors. CONCLUSION The evolutionary driving force in the chloroplast genomes of 10 Epimedium species probably comes from mutation pressure. Our results provide an important theoretical basis for evolutionary analysis and transgenic research of chloroplast genes.
Collapse
Affiliation(s)
- Yingzhe Wang
- grid.449428.70000 0004 1797 7280College of Pharmacy, Jining Medical University, Rizhao, Shandong China ,grid.440665.50000 0004 1757 641XSchool of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin China
| | - Dacheng Jiang
- grid.440665.50000 0004 1757 641XSchool of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin China
| | - Kun Guo
- grid.440665.50000 0004 1757 641XSchool of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin China
| | - Lei Zhao
- grid.440665.50000 0004 1757 641XSchool of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin China
| | - Fangfang Meng
- grid.440665.50000 0004 1757 641XSchool of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin China
| | - Jinglei Xiao
- grid.440665.50000 0004 1757 641XSchool of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin China
| | - Yuan Niu
- Lanzhou Agro-Technical Research and Popularization Center, Lanzhou, Gansu China
| | - Yunlong Sun
- grid.449428.70000 0004 1797 7280College of Pharmacy, Jining Medical University, Rizhao, Shandong China
| |
Collapse
|
8
|
Shen G, Luo Y, Yao Y, Meng G, Zhang Y, Wang Y, Xu C, Liu X, Zhang C, Ding G, Pang Y, Zhang H, Guo B. The discovery of a key prenyltransferase gene assisted by a chromosome-level Epimedium pubescens genome. FRONTIERS IN PLANT SCIENCE 2022; 13:1034943. [PMID: 36452098 PMCID: PMC9702526 DOI: 10.3389/fpls.2022.1034943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/21/2022] [Indexed: 06/17/2023]
Abstract
Epimedium pubescens is a species of the family Berberidaceae in the basal eudicot lineage, and a main plant source for the traditional Chinese medicine "Herba Epimedii". The current study achieved a chromosome-level genome assembly of E. pubescens with the genome size of 3.34 Gb, and the genome guided discovery of a key prenyltransferase (PT) in E. pubescens. Our comparative genomic analyses confirmed the absence of Whole Genome Triplication (WGT-γ) event shared in core eudicots and further revealed the occurrence of an ancient Whole Genome Duplication (WGD) event approximately between 66 and 81 Million Years Ago (MYA). In addition, whole genome search approach was successfully applied to identify 19 potential flavonoid PT genes and an important flavonoid PT (EpPT8) was proven to be an enzyme for the biosynthesis of medicinal compounds, icaritin and its derivatives in E. pubescens. Therefore, our results not only provide a good reference genome to conduct further molecular biological studies in Epimedium genus, but also give important clues for synthetic biology and industrial production of related prenylated flavonoids in future.
Collapse
Affiliation(s)
- Guoan Shen
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Yanjiao Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
- Institute of Animal Sciences, The Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu Yao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Guoqing Meng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yixin Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Yuanyue Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Chaoqun Xu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Xiang Liu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
- Chongqing Key Laboratory of Traditional Chinese Medicine Resource, Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Cheng Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
- Key Laboratory of Biodiversity Science and Ecological Engineering, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Gang Ding
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Yongzhen Pang
- Institute of Animal Sciences, The Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hui Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Baolin Guo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Regiospecific 3’-C-prenylation of Naringenin by Nocardiopsis gilva Prenyltransferase. Enzyme Microb Technol 2022; 163:110154. [DOI: 10.1016/j.enzmictec.2022.110154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/20/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
|
10
|
Sánchez-Ruiz A, Colmenarejo G. Systematic Analysis and Prediction of the Target Space of Bioactive Food Compounds: Filling the Chemobiological Gaps. J Chem Inf Model 2022; 62:3734-3751. [PMID: 35938782 DOI: 10.1021/acs.jcim.2c00888] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Food compounds and their molecular interactions are crucial for health and provide new chemotypes and targets for drug and nutraceutic design. Here, we retrieve and analyze the complete set of published interactions of food compounds with human proteins using the FooDB as a compound set and ChEMBL as a source of interactions. The data are analyzed in terms of 19 target classes and 19 compound classes, showing a small fraction of target assignment for the compounds (1.6%) and unraveling multiple gaps in the chemobiological space for these molecules. By using well-established cheminformatic approaches [similarity ensemble approach (SEA) combined with the maximum Tanimoto coefficient to the nearest bioactive, "SEA + TC"], we achieve a much enhanced target assignment (64.2%), filling many of the gaps with target hypothesis for fast focused testing. By publishing these data sets and analyses, we expect to provide a set of resources to speed up the full clarification of the chemobiological space of food compounds, opening new opportunities for drug and nutraceutic design.
Collapse
Affiliation(s)
- Andrés Sánchez-Ruiz
- Biostatistics and Bioinformatics Unit, IMDEA Food, CEI UAM+CSIC, E28049 Madrid, Spain
| | - Gonzalo Colmenarejo
- Biostatistics and Bioinformatics Unit, IMDEA Food, CEI UAM+CSIC, E28049 Madrid, Spain
| |
Collapse
|
11
|
Ronzheimer A, Schreiner T, Morlock GE. Multiplex planar bioassay detecting estrogens, antiestrogens, false-positives and synergists as sharp zones on normal phase. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 103:154230. [PMID: 35724612 DOI: 10.1016/j.phymed.2022.154230] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Phytoestrogens are found in many plants used in traditional medicines. Increasingly, plant extracts (botanicals) are also being added to foods or marketed as dietary supplements. Especially such powder formulations are susceptible to adulteration and falsification, given the global processing chain. To detect estrogen-like compounds in such multicomponent mixtures, non-target screening for hormonally active or endocrine disrupting compounds in plant products is becoming more important. Unfortunately, the current planar yeast estrogen screen (pYES) is prone to zone diffusion on the normal-phase high-performance thin-layer chromatography (NP-HPTLC) plate due to long incubation times in the aqueous bioassay. PURPOSE The present study aimed to reduce zone diffusion on NP plates, which provides the basis for extending pYES to a multiplex bioassay, offering 4 different biological activity principles, followed by targeted identification of active zones. STUDY DESIGN AND METHODS The reduction of substance diffusion via a polyisobutyl methacrylate polymer coating was studied. After successful zone fixation (fix), a multiplex bioassay was developed, in which a 17β-estradiol-strip was applied along each sample track to detect synergists and antagonists (A), and for verification (V), a 4-methyl umbelliferone-strip to exclude false-positives. After multiplex bioassay screening of 68 botanicals, the zones with hormonal activities were heart-cut eluted to reversed-phase high-performance liquid chromatography-diode array detection-high-resolution tandem mass spectrometry (RP-HPLC-DAD-HESI-HRMS/MS). RESULTS The separated substances were successfully fixed by the chromatogram coating. The zone sharpness (achieved after the bioassay) made it possible to add two strips, the 17β-estradiol-strip for antagonistic and synergistic, and the 4-methyl umbelliferone-strip for false-positive effect detection, resulting in a multiplex bioassay. Using the 12D hyphenation NP-HPTLCfix-UV/Vis/FLD-pYAVES-FLD heart-cut RP-HPLC-DAD-HESI-HRMS/MS, it was possible to obtain information on estrogens, antiestrogens, false-positives, and synergists, and (tentatively) assign 17 hormonally active compounds, of which only 7 have been known to affect the human estrogen receptor, while another 4 had structural similarity to common phytoestrogens and antiestrogens. CONCLUSIONS The streamlined 12D hyphenation including a multiplex bioassay has been shown to differentiate hormonal effects, leading to new insights and better understanding. It can generally be used to identify unknown hormonally active compounds in complex samples.
Collapse
Affiliation(s)
- A Ronzheimer
- Justus Liebig University Giessen, Institute of Nutritional Science, Chair of Food Science, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - T Schreiner
- Justus Liebig University Giessen, Institute of Nutritional Science, Chair of Food Science, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - G E Morlock
- Justus Liebig University Giessen, Institute of Nutritional Science, Chair of Food Science, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
| |
Collapse
|
12
|
Wang X, Cao Y, Chen S, Lin J, Yang X, Huang D. Structure-Activity Relationship (SAR) of Flavones on Their Anti-Inflammatory Activity in Murine Macrophages in Culture through the NF-κB Pathway and c-Src Kinase Receptor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8788-8798. [PMID: 35816492 DOI: 10.1021/acs.jafc.2c03050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Flavones benefit human health through their anti-inflammatory activity; however, their structure-activity relationship is unclear. Herein, we selected 15 flavones with the same backbone but different substituents and systematically assessed their anti-inflammatory activities in RAW 264.7 regarding cellular-Src kinase (c-Src) affinity, suppression of IκBα phosphorylation, inhibition of nitric oxide (NO) and inducible nitric oxidase (iNOS) production, and downregulation of genes of proinflammatory cytokines interleukin 6 (IL-6), interleukin 1β (IL-1β), and tumor necrosis factor α (TNF-α). Overall, our results showed that the double bond between C2-C3 and C3'- and C4'-OH promoted anti-inflammatory activity, while C8- and C5'-OH and the methoxy group on C4' attenuated the overall anti-inflammatory and antioxidant activities. The hydroxyl groups at other positions exhibited more complicated functions. The two most effective flavones are 3',4'-dihydroxyflavone and luteolin with inhibitory concentration (IC50) values for inhibiting the LPS-induced nitric oxide level are 9.61 ± 1.36 and 16.90 ± 0.74 μM, respectively. Furthermore, they suppressed the production of iNOS by approximately 90% and inhibited IL-1β and IL-6 by more than 95%. Taken together, our results established a relationship between the flavone structure and anti-inflammatory activity in vitro.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore 117542
| | - Yujia Cao
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore 117542
| | - Siyu Chen
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore 117542
| | - Jiachen Lin
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore 117542
| | - Xin Yang
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore 117542
| | - Dejian Huang
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore 117542
- National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou, Jiangsu 215123, China
| |
Collapse
|
13
|
Schreiner T, Ronzheimer A, Friz M, Morlock G. Multiplex planar bioassay with reduced diffusion on normal phase, identifying androgens, verified antiandrogens and synergists in botanicals via 12D hyphenation. Food Chem 2022; 395:133610. [DOI: 10.1016/j.foodchem.2022.133610] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/29/2022] [Accepted: 06/28/2022] [Indexed: 01/07/2023]
|
14
|
Chou PH, Luo CK, Wali N, Lin WY, Ng SK, Wang CH, Zhao M, Lin SW, Yang PM, Liu PJ, Shie JJ, Wei TT. A chemical probe inhibitor targeting STAT1 restricts cancer stem cell traits and angiogenesis in colorectal cancer. J Biomed Sci 2022; 29:20. [PMID: 35313878 PMCID: PMC8939146 DOI: 10.1186/s12929-022-00803-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/14/2022] [Indexed: 01/05/2023] Open
Abstract
Background Colorectal cancer (CRC) is a worldwide cancer with rising annual incidence. New medications for patients with CRC are still needed. Recently, fluorescent chemical probes have been developed for cancer imaging and therapy. Signal transducer and activator of transcription 1 (STAT1) has complex functions in tumorigenesis and its role in CRC still needs further investigation. Methods RNA sequencing datasets in the NCBI GEO repository were analyzed to investigate the expression of STAT1 in patients with CRC. Xenograft mouse models, tail vein injection mouse models, and azoxymethane/dextran sodium sulfate (AOM/DSS) mouse models were generated to study the roles of STAT1 in CRC. A ligand-based high-throughput virtual screening approach combined with SWEETLEAD chemical database analysis was used to discover new STAT1 inhibitors. A newly designed and synthesized fluorescently labeled 4’,5,7-trihydroxyisoflavone (THIF) probe (BODIPY-THIF) elucidated the mechanistic actions of STAT1 and THIF in vitro and in vivo. Colonosphere formation assay and chick chorioallantoic membrane assay were used to evaluate stemness and angiogenesis, respectively. Results Upregulation of STAT1 was observed in patients with CRC and in mouse models of AOM/DSS-induced CRC and metastatic CRC. Knockout of STAT1 in CRC cells reduced tumor growth in vivo. We then combined a high-throughput virtual screening approach and analysis of the SWEETLEAD chemical database and found that THIF, a flavonoid abundant in soybeans, was a novel STAT1 inhibitor. THIF inhibited STAT1 phosphorylation and might bind to the STAT1 SH2 domain, leading to blockade of STAT1-STAT1 dimerization. The results of in vitro and in vivo binding studies of THIF and STAT1 were validated. The pharmacological treatment with BODIPY-THIF or ablation of STAT1 via a CRISPR/Cas9-based strategy abolished stemness and angiogenesis in CRC. Oral administration of BODIPY-THIF attenuated colitis symptoms and tumor growth in the mouse model of AOM/DSS-induced CRC. Conclusions This study demonstrates that STAT1 plays an oncogenic role in CRC. BODIPY-THIF is a new chemical probe inhibitor of STAT1 that reduces stemness and angiogenesis in CRC. BODIPY-THIF can be a potential tool for CRC therapy as well as cancer cell imaging. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-022-00803-4.
Collapse
Affiliation(s)
- Pei-Hsuan Chou
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, No. 1, Jen-Ai Road, 1st Section, Taipei, 10051, Taiwan
| | - Cong-Kai Luo
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, No. 1, Jen-Ai Road, 1st Section, Taipei, 10051, Taiwan
| | - Niaz Wali
- Institute of Chemistry, Academia Sinica, 128 Academia Road, Section 2, Taipei, 11529, Taiwan.,Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan.,Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program in Chemical Biology and Molecular Biophysics (TIGP-CBMB), Academia Sinica, Taipei, 11529, Taiwan
| | - Wen-Yen Lin
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Shang-Kok Ng
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, No. 1, Jen-Ai Road, 1st Section, Taipei, 10051, Taiwan
| | - Chun-Hao Wang
- School of Medicine, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Mingtao Zhao
- Center for Cardiovascular Research, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, 43210, USA.,The Heart Center, Nationwide Children's Hospital, Columbus, OH, 43210, USA.,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Sheng-Wei Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Pei-Ming Yang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Pin-Jung Liu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
| | - Jiun-Jie Shie
- Institute of Chemistry, Academia Sinica, 128 Academia Road, Section 2, Taipei, 11529, Taiwan.
| | - Tzu-Tang Wei
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, No. 1, Jen-Ai Road, 1st Section, Taipei, 10051, Taiwan. .,Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program in Chemical Biology and Molecular Biophysics (TIGP-CBMB), Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
15
|
Molecular action of larvicidal flavonoids on ecdysteroidogenic glutathione S-transferase Noppera-bo in Aedes aegypti. BMC Biol 2022; 20:43. [PMID: 35172816 PMCID: PMC8851771 DOI: 10.1186/s12915-022-01233-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/14/2022] [Indexed: 12/05/2022] Open
Abstract
Background Mosquito control is a crucial global issue for protecting the human community from mosquito-borne diseases. There is an urgent need for the development of selective and safe reagents for mosquito control. Flavonoids, a group of chemical substances with variable phenolic structures, such as daidzein, have been suggested as potential mosquito larvicides with less risk to the environment. However, the mode of mosquito larvicidal action of flavonoids has not been elucidated. Results Here, we report that several flavonoids, including daidzein, inhibit the activity of glutathione S-transferase Noppera-bo (Nobo), an enzyme used for the biosynthesis of the insect steroid hormone ecdysone, in the yellow fever mosquito Aedes aegypti. The crystal structure of the Nobo protein of Ae. aegypti (AeNobo) complexed with the flavonoids and its molecular dynamics simulation revealed that Glu113 forms a hydrogen bond with the flavonoid inhibitors. Consistent with this observation, substitution of Glu113 with Ala drastically reduced the inhibitory activity of the flavonoids against AeNobo. Among the identified flavonoid-type inhibitors, desmethylglycitein (4′,6,7-trihydroxyisoflavone) exhibited the highest inhibitory activity in vitro. Moreover, the inhibitory activities of the flavonoids correlated with the larvicidal activity, as desmethylglycitein suppressed Ae. aegypti larval development more efficiently than daidzein. Conclusion Our study demonstrates the mode of action of flavonoids on the Ae. aegypti Nobo protein at the atomic, enzymatic, and organismal levels. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01233-2.
Collapse
|
16
|
Daniela SV, Gabriela OM, Andrea PM. A state-of-the-art review and prospective therapeutic applications of prenyl flavonoids as chemosensitizers against antifungal multidrug resistance in Candida albicans. Curr Med Chem 2022; 29:4251-4281. [PMID: 35139777 DOI: 10.2174/0929867329666220209103538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/01/2021] [Accepted: 12/17/2021] [Indexed: 11/22/2022]
Abstract
Multidrug resistance (MDR) in the opportunistic pathogen Candida albicans is defined as non-susceptibility to at least one agent in two or more drug classes. This phenomenon has been increasingly reported since the rise in the incidence of fungal infections in immunocompromised patients at the end of the last century. After the discovery of efflux pump overexpression as a principal mechanism causing MDR in Candida strains, drug discovery targeting fungal efflux transporters has had a growing impact. Chemosensitization aims to enhance azole intracellular concentrations through combination therapy with transporter inhibitors. Consequently, the use of drug efflux inhibitors combined with the antifungal agent will sensitize the pathogen. As a result, the use of lower drug concentrations will reduce possible adverse effects on the host. Through an extensive revision of the literature, this review aims to provide an exhaustive and critical analysis of the studies carried out in the past two decades, regarding the chemosensitization strategy to cope with multidrug resistance in C. albicans. This work provides a deep analysis of the research about the inhibition of drug-efflux membrane transporters by prenylated flavonoids and the interactions of these phytocompounds with azole antifungals as an approach to chemosensitize multidrug-resistant C. albicans strains. We highlight the importance of prenylflavonoids and their particular chemical and pharmacological characteristics that make them excellent candidates with therapeutic potential as chemosensitizers. Finally, we propose the need for further research of prenyl flavonoids as inhibitors of drug-efflux mediated fungal resistance.
Collapse
Affiliation(s)
- Santi V Daniela
- Farmacognosia, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Haya de la torre y Medina Allende, Edificio Ciencias II, X5000HUA Córdoba, Argentina
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Ciudad Universitaria. X5000HUA Córdoba, Argentina
| | - Ortega María Gabriela
- Farmacognosia, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Haya de la torre y Medina Allende, Edificio Ciencias II, X5000HUA Córdoba, Argentina
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Ciudad Universitaria. X5000HUA Córdoba, Argentina
| | - Peralta Mariana Andrea
- Farmacognosia, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Haya de la torre y Medina Allende, Edificio Ciencias II, X5000HUA Córdoba, Argentina
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Ciudad Universitaria. X5000HUA Córdoba, Argentina
| |
Collapse
|
17
|
Schreiner T, Sauter D, Friz M, Heil J, Morlock GE. Is Our Natural Food Our Homeostasis? Array of a Thousand Effect-Directed Profiles of 68 Herbs and Spices. Front Pharmacol 2021; 12:755941. [PMID: 34955829 PMCID: PMC8696259 DOI: 10.3389/fphar.2021.755941] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/03/2021] [Indexed: 12/11/2022] Open
Abstract
The beneficial effects of plant-rich diets and traditional medicines are increasingly recognized in the treatment of civilization diseases due to the abundance and diversity of bioactive substances therein. However, the important active portion of natural food or plant-based medicine is presently not under control. Hence, a paradigm shift from quality control based on marker compounds to effect-directed profiling is postulated. We investigated 68 powdered plant extracts (botanicals) which are added to food products in food industry. Among them are many plants that are used as traditional medicines, herbs and spices. A generic strategy was developed to evaluate the bioactivity profile of each botanical as completely as possible and to straightforwardly assign the most potent bioactive compounds. It is an 8-dimensional hyphenation of normal-phase high-performance thin-layer chromatography with multi-imaging by ultraviolet, visible and fluorescence light detection as well as effect-directed assay and heart-cut of the bioactive zone to orthogonal reversed-phase high-performance liquid chromato-graphy-photodiode array detection-heated electrospray ionization mass spectrometry. In the non-target, effect-directed screening via 16 different on-surface assays, we tentatively assigned more than 60 important bioactive compounds in the studied botanicals. These were antibacterials, estrogens, antiestrogens, androgens, and antiandrogens, as well as acetylcholinesterase, butyrylcholinesterase, α-amylase, α-glucosidase, β-glucosidase, β-glucuronidase, and tyrosinase inhibitors, which were on-surface heart-cut eluted from the bioautogram or enzyme inhibition autogram to the next dimension for further targeted characterization. This biological-physicochemical hyphenation is able to detect and control active mechanisms of traditional medicines or botanicals as well as the essentials of plant-based food. The array of 1,292 profiles (68 samples × 19 detections) showed the versatile bioactivity potential of natural food. It reveals how efficiently and powerful our natural food contributes to our homeostasis.
Collapse
Affiliation(s)
- Tamara Schreiner
- Institute of Nutritional Science, Chair of Food Science, and TransMIT Center for Effect-Directed Analysis, Justus Liebig University Giessen, Giessen, Germany
| | - Dorena Sauter
- Institute of Nutritional Science, Chair of Food Science, and TransMIT Center for Effect-Directed Analysis, Justus Liebig University Giessen, Giessen, Germany
| | - Maren Friz
- Institute of Nutritional Science, Chair of Food Science, and TransMIT Center for Effect-Directed Analysis, Justus Liebig University Giessen, Giessen, Germany
| | - Julia Heil
- Institute of Nutritional Science, Chair of Food Science, and TransMIT Center for Effect-Directed Analysis, Justus Liebig University Giessen, Giessen, Germany
| | - Gertrud Elisabeth Morlock
- Institute of Nutritional Science, Chair of Food Science, and TransMIT Center for Effect-Directed Analysis, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
18
|
Sánchez-Ruiz A, Colmenarejo G. Updated Prediction of Aggregators and Assay-Interfering Substructures in Food Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15184-15194. [PMID: 34878782 DOI: 10.1021/acs.jafc.1c05918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Positive outcomes in biochemical and biological assays of food compounds may appear due to the well-described capacity of some compounds to form colloidal aggregates that adsorb proteins, resulting in their denaturation and loss of function. This phenomenon can lead to wrongly ascribing mechanisms of biological action for these compounds (false positives) as the effect is nonspecific and promiscuous. Similar false positives can show up due to chemical (photo)reactivity, redox cycling, metal chelation, interferences with the assay technology, membrane disruption, etc., which are more frequently observed when the tested molecule has some definite interfering substructures. Although discarding false positives can be achieved experimentally, it would be very useful to have in advance a prognostic value for possible aggregation and/or interference based only in the chemical structure of the compound tested in order to be aware of possible issues, help in prioritization of compounds to test, design of appropriate assays, etc. Previously, we applied cheminformatic tools derived from the drug discovery field to identify putative aggregators and interfering substructures in a database of food compounds, the FooDB, comprising 26,457 molecules at that time. Here, we provide an updated account of that analysis based on a current, much-expanded version of the FooDB, comprising a total of 70,855 compounds. In addition, we also apply a novel machine learning model (SCAM Detective) to predict aggregators with 46-53% increased accuracies over previous models. In this way, we expect to provide the researchers in the mode of action of food compounds with a much improved, robust, and widened set of putative aggregators and interfering substructures of food compounds.
Collapse
Affiliation(s)
- Andrés Sánchez-Ruiz
- Biostatistics and Bioinformatics Unit, IMDEA Food CEI UAM+CSIC, E28049 Madrid, Spain
| | - Gonzalo Colmenarejo
- Biostatistics and Bioinformatics Unit, IMDEA Food CEI UAM+CSIC, E28049 Madrid, Spain
| |
Collapse
|
19
|
Qiu C, Liu Y, Wu Y, Zhao L, Pei J. Biochemical Characterization of a Novel Prenyltransferase from Streptomyces sp. NT11 and Development of a Recombinant Strain for the Production of 6-Prenylnaringenin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14231-14240. [PMID: 34793146 DOI: 10.1021/acs.jafc.1c06094] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Prenyl groups increase the lipophilicity of flavonoids, endowing them with a special activity, selectivity, and pharmacological properties by prenylation. Herein, a novel prenyltransferase (ShFPT) gene from Streptomyces sp. NT11 was expressed in Escherichia coli, and its biochemical characteristics were determined. ShFPT exhibited high selectivity to prenylate naringenin at C-6 to generate 6-prenylnaringenin. The optimal activity was observed at pH 6.0 and 55 °C. The Kcat and Km for naringenin were 0.0095 s-1 and 0.20 mM, respectively. Several promiscuous kinase and isopentenyl phosphate kinase genes were screened to develop the most efficient dimethylallyl diphosphate (DMAPP) synthesis pathway for 6-prenylnaringenin synthesis in E. coli. The 6-prenylnaringenin production was improved by changing the induction strategies and optimizing the bioconversion conditions. Finally, 6-prenylnaringenin production reached the highest yield of 69.9 mg/L with average productivity of 4.0 mg/L/h after 16 h incubation, which is the highest yield for any prenylated flavonoid reported to date in E. coli. Therefore, this study provides an efficient method for 6-prenylnaringenin production and reveals the DMAPP synthesis pathway.
Collapse
Affiliation(s)
- Cong Qiu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Laboratory of Biomass-Based Green Fuels and Chemicals, Nanjing 210037, China
| | - Yang Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Laboratory of Biomass-Based Green Fuels and Chemicals, Nanjing 210037, China
| | - Yangbao Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Laboratory of Biomass-Based Green Fuels and Chemicals, Nanjing 210037, China
| | - Linguo Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Laboratory of Biomass-Based Green Fuels and Chemicals, Nanjing 210037, China
| | - Jianjun Pei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Laboratory of Biomass-Based Green Fuels and Chemicals, Nanjing 210037, China
| |
Collapse
|
20
|
Nowak B, Matuszewska A, Popłoński J, Nikodem A, Filipiak J, Tomanik M, Dziewiszek W, Danielewski M, Belowska-Bień K, Kłobucki M, Sordon S, Jędrzejuk D, Ceremuga I, Trocha M, Sozański T, Piasecki T, Bolanowski M, Huszcza E, Szeląg A. Prenylflavonoids counteract ovariectomy-induced disturbances in rats. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
21
|
Jin H, Wang Y, Zhao P, Wang L, Zhang S, Meng D, Yang Q, Cheong LZ, Bi Y, Fu Y. Potential of Producing Flavonoids Using Cyanobacteria As a Sustainable Chassis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12385-12401. [PMID: 34649432 DOI: 10.1021/acs.jafc.1c04632] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Numerous plant secondary metabolites have remarkable impacts on both food supplements and pharmaceuticals for human health improvement. However, higher plants can only generate small amounts of these chemicals with specific temporal and spatial arrangements, which are unable to satisfy the expanding market demands. Cyanobacteria can directly utilize CO2, light energy, and inorganic nutrients to synthesize versatile plant-specific photosynthetic intermediates and organic compounds in large-scale photobioreactors with outstanding economic merit. Thus, they have been rapidly developed as a "green" chassis for the synthesis of bioproducts. Flavonoids, chemical compounds based on aromatic amino acids, are considered to be indispensable components in a variety of nutraceutical, pharmaceutical, and cosmetic applications. In contrast to heterotrophic metabolic engineering pioneers, such as yeast and Escherichia coli, information about the biosynthesis flavonoids and their derivatives is less comprehensive than that of their photosynthetic counterparts. Here, we review both benefits and challenges to promote cyanobacterial cell factories for flavonoid biosynthesis. With increasing concerns about global environmental issues and food security, we are confident that energy self-supporting cyanobacteria will attract increasing attention for the generation of different kinds of bioproducts. We hope that the work presented here will serve as an index and encourage more scientists to join in the relevant research area.
Collapse
Affiliation(s)
- Haojie Jin
- College of Forestry, Beijing Forestry University, Beijing 100083, P.R. China
| | - Yan Wang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Pengquan Zhao
- College of Forestry, Beijing Forestry University, Beijing 100083, P.R. China
| | - Litao Wang
- College of Forestry, Beijing Forestry University, Beijing 100083, P.R. China
| | - Su Zhang
- College of Forestry, Beijing Forestry University, Beijing 100083, P.R. China
| | - Dong Meng
- College of Forestry, Beijing Forestry University, Beijing 100083, P.R. China
| | - Qing Yang
- College of Forestry, Beijing Forestry University, Beijing 100083, P.R. China
| | - Ling-Zhi Cheong
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Yonghong Bi
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430070, P.R. China
| | - Yujie Fu
- College of Forestry, Beijing Forestry University, Beijing 100083, P.R. China
| |
Collapse
|