1
|
Qiu L, Liu Y, Zhang L, Hu A, Ye J, Yan Z. Design, synthesis and antifungal activity of arylhydrazine analogs containing diphenyl ether fragments. PEST MANAGEMENT SCIENCE 2025; 81:990-1002. [PMID: 39467013 DOI: 10.1002/ps.8498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Succinate dehydrogenase (SDH) represents a critical target in the development of novel fungicides. To address the growing issue of resistance and safeguard the economic viability of agricultural production, the pursuit of new succinate dehydrogenase inhibitors (SDHIs) has emerged as a significant focus of contemporary research. RESULTS In this project, 32 arylhydrazine derivatives containing diphenyl ether structural units were synthesized and evaluated for their fungicidal activities against Rhizoctonia solani, Sclerotinia sclerotiorum, Alternaria alternata, Gibberella zeae, Alternaria solani and Colletotrichum gloeosporioides. In an in vitro fungicidal activity assay, compound D6 showed significant inhibitory activity against R. solani with a half-maximum effective concentration (EC50) of 0.09 mg L-1. The in vivo fungicidal activity demonstrated that compound D6 inhibited R. solani by 95.39% in rice leaves, which was significantly better than that of boscalid (85.76%). The results of SDH enzyme assay, molecular docking simulation, mitochondrial membrane potential assay, cytoplasmic release studies and morphological observations demonstrated that the target compound D6 not only had significant SDH inhibitory activity, but also affected the membrane integrity of mycelium. CONCLUSION Bioactivity screening and validation of the mechanism of action indicated that compound D6 was a potentially unique SDHI, acting on SDH while also affecting cell membrane permeability, which deserved further study. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Longjian Qiu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Yaru Liu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Lijuan Zhang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Aixi Hu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Jiao Ye
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Zhongzhong Yan
- Medical College, Anhui University of Science and Technology, Huainan, China
| |
Collapse
|
2
|
Hou ST, Han L, Li WR, Dai GY, Liu Y, Lu AM, Yang CL, Chen M. Design, synthesis and herbicidal activity of novel cyclohexanedione derivations containing pyrazole and pyridine groups as potential HPPD inhibitors. Mol Divers 2025; 29:103-116. [PMID: 38609691 DOI: 10.1007/s11030-024-10836-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/04/2024] [Indexed: 04/14/2024]
Abstract
4-Hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27; HPPD) is one of the important target enzymes in the development of herbicides. To discover novel HPPD inhibitors with unique molecular, 39 cyclohexanedione derivations containing pyrazole and pyridine groups were designed and synthesized. The preliminary herbicidal activity test results showed that some compounds had obvious inhibitory effects on monocotyledon and dicotyledonous weeds. The herbicidal spectrums of the highly active compounds were further determined, and the compound G31 exhibited the best inhibitory rate over 90% against Plantago depressa Willd and Capsella bursa-pastoris at the dosages of 75.0 and 37.5 g ai/ha, which is comparable to the control herbicide mesotrione. Moreover, compound G31 showed excellent crop safety, with less than or equal to 10% injury rates to corn, sorghum, soybean and cotton at a dosage of 225 g ai/ha. Molecular docking and molecular dynamics simulation analysis revealed that the compound G31 could stably bind to Arabidopsis thaliana HPPD (AtHPPD). This study indicated that the compound G31 could be used as a lead molecular structure for the development of novel HPPD inhibitors, which provided an idea for the design of new herbicides with unique molecular scaffold.
Collapse
Affiliation(s)
- Shuai-Tao Hou
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ling Han
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wen-Rui Li
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guang-Yu Dai
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yu Liu
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ai-Min Lu
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chun-Long Yang
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Min Chen
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
3
|
Liu S, Li H, Li S, Sun M, Bao X. Discovery of New Benzohydrazide Derivatives Containing 4-Aminoquinazoline as Effective Agricultural Fungicides, the Related Mechanistic Study, and Safety Assessment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 39846240 DOI: 10.1021/acs.jafc.4c09461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
A total of 38 new benzohydrazide derivatives bearing the 4-aminoquinazoline moiety were designed and synthesized based on the active subunit combination approach and tested in detail for their inhibition activities against eight agricultural phytopathogenic fungi. The bioassay results indicated that many of the synthesized compounds exhibited extraordinary fungicidal activities in vitro against the tested fungi. For example, compounds A5, A6, A11, and A17 had EC50 (half-maximal effective concentration) values of 0.66, 0.71, 0.40, and 0.42 μg/mL against Colletotrichum gloeosporioides, respectively, comparable to that of boscalid (0.36 μg/mL) and much superior to that of carbendazim (6.96 μg/mL). Of particular importance was that compound A6 with a 3,4-difluorophenyl group was found to possess good broad-spectrum antifungal effects, with EC50 values ranging from 0.63 to 3.82 μg/mL against the tested eight fungi. In vivo antifungal assays also revealed that compound A6 had good curative and protective efficacies of 72.6% and 78.9% at 200 μg/mL against Rhizoctonia solani-caused rice sheath blight, higher than those of boscalid (70.7 and 65.2%, respectively). Moreover, the mechanism-of-action studies revealed that compound A6 disrupted the cell membrane integrity of R. solani, as proved by relative conductivity measurements, leakage of cellular contents, fluorescence microscopy, and scanning electron microscopy observations. Significantly, this compound also exhibited an effective inhibition of succinate dehydrogenase (SDH) from R. solani (half-maximal inhibitory concentration/IC50 = 11.02 μM), slightly weaker than that of the SDH inhibitor boscalid (5.17 μM). Further molecular docking analysis revealed that compound A6 could form strong interactions with the key residues of SDH enzyme via hydrogen bond, electrostatic, and π-cation interactions, holding promise for acting as new fungicide leads targeting SDH. Finally, the safety assessments indicated that compound A6 was safe for rice and honeybees.
Collapse
Affiliation(s)
- Songsong Liu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China
| | - Hong Li
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China
| | - Sha Li
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China
| | - Mingman Sun
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China
| | - Xiaoping Bao
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China
| |
Collapse
|
4
|
Chen CY, He HW, Xu D, Lin GT, Li Y, Zhou H, Liu X, Xu G. Design, Synthesis, and Fungicidal Activity of α-Methylene-γ-Butyrolactone Derivatives Bearing a Diphenyl Ether Moiety. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:147-158. [PMID: 39723929 DOI: 10.1021/acs.jafc.4c07402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
The γ-butyrolactone scaffold, commonly present in natural products and bioactive compounds, has played a crucial role in the development of novel pesticides. In this study, a series of α-methylene-γ-butyrolactone derivatives containing a diphenyl ether moiety were designed and synthesized using the scaffold splicing strategy. Bioassays revealed that several target compounds demonstrated potent fungicidal activities, particularly against Phytophthora capsici and Valsa mali. Notably, compound B7 (EC50 = 0.809 mg/L) exhibited the highest antioomycete activity against P. capsici, outperforming famoxadone (EC50 = 41.0 mg/L) but being less effective than dimethomorph (EC50 = 0.180 mg/L). Meanwhile, compound C22 (EC50 = 1.47 mg/L) showed the strongest antifungal activity against V. mali, which was higher than those of famoxadone (EC50 = 1.80 mg/L) and dimethomorph (EC50 = 13.6 mg/L). In vivo experiments confirmed that compound B7 has satisfactory protective and curative effects against P. capsici, which were better than those of famoxadone. Additionally, compound B7 was found to inhibit sporangia formation, zoospore release, and cystospore germination of P. capsici at 10 mg/L. Physiological and biochemical studies indicated that compound B7 can induce changes in the mycelial morphology of P. capsici, increase cell membrane permeability, and modulate respiratory metabolism. Furthermore, both in vitro enzymatic inhibition assays and molecular docking analysis suggested that the primary mechanism of action of compound B7 may involve binding to complex III on the respiratory chain. This work provides valuable insights for the development of α-methylene-γ-butyrolactone derivatives incorporating a diphenyl ether moiety as novel agricultural fungicidal agents.
Collapse
Affiliation(s)
- Cai-Yun Chen
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hong-Wei He
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- Institute of Cotton Research, Shanxi Agricultural University, Yuncheng 044000, Shanxi, China
| | - Dan Xu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Guo-Tai Lin
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yantao Li
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Huan Zhou
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xili Liu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling 712100, Shaanxi, China
| | - Gong Xu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
5
|
Yang Z, Qiu Y, Jin D, Zheng Y, Cui Z, Li J, Gu W. Design, Synthesis, and Antifungal Evaluation of Novel Cuminic Acid Derivatives as Potential Laccase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27726-27736. [PMID: 39602779 DOI: 10.1021/acs.jafc.4c04437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
In search of novel natural product-based fungicides, 49 cuminic acid derivatives were designed, synthesized, and screened for their in vitro antifungal effects toward seven phytopathogenic fungi and oomycetes. Consequently, several derivatives exhibited strong antifungal activities toward Fusarium graminearum, Botryosphaeria dothidea, and Valsa mali. Among them, compound 2b exhibited the most potent antifungal activity toward B. dothidea (EC50 = 0.96 mg/L), more powerful than chlorothalonil. The in vivo assay against B. dothidea found that the protective and curative effects of 2b were comparable to chlorothalonil. Meanwhile, SEM and TEM observations indicated that 2b could ruin the integrity of mycelial morphology and organelles of B. dothidea. Preliminary mechanism research showed that 2b increased the cell membrane permeability and intracellular ROS level, as well as conspicuously decreased the mycelial dry weight and cell wall chitin contents of B. dothidea. The phytotoxicity test revealed that 2b showed good safety on seeds of mung bean and radish. The in vitro laccase inhibitory activity assay and molecular docking study demonstrated that 2b could be a promising laccase inhibitor. This type of cuminic acid hydrazide derivative would provide valuable inspiration for developing novel fungicides against B. dothidea.
Collapse
Affiliation(s)
- Zihui Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yigui Qiu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Daojun Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yiming Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhennan Cui
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jia Li
- School of Foreign Languages, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Wen Gu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
6
|
Zeng LQ, Chen Q, Wei G, Chen W, Zhu XL, Yang GF. Comprehensive Overview of the Amide Linker Modification in the Succinate Dehydrogenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:26027-26039. [PMID: 39540453 DOI: 10.1021/acs.jafc.4c05854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Succinate dehydrogenase inhibitors (SDHIs) have become one of the most important classes of agrochemical fungicides. According to the data from FRAC, the resistance risk for SDHIs had reached up to medium and even to high. In general, the chemical structure of SDHIs mainly contained three fragments: an acid core, a hydrophobic tail, and an amide linker, corresponding to three modification directions for each fragment. Among them, amide linker modification (ALM) has become a research hotspot for the design of novel SDHIs fungicides in recent years. We presented here a detailed review on the ALM strategy in the past decade, and some of them had entered the market. According to their chemical structures, ALM strategy were classified into four parts: (1) linked aliphatic chain between amide bond and hydrophobic tail, (2) introducing substituents to replacing hydrogen atom in the amide bond, (3) reverse extending the amide linker, and (4) changed with other bioisosteres. Moreover, the structure-activity relationship and the interaction mechanism of ALM-SDHI with SDH were discussed. This review aims to provide a global perspective on research and development of novel SDHIs, as well as suggestions for food safety management.
Collapse
Affiliation(s)
- Ling-Qiang Zeng
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P.R. China
| | - Qi Chen
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P.R. China
| | - Ge Wei
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P.R. China
| | - Wei Chen
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P.R. China
| | - Xiao-Lei Zhu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P.R. China
| | - Guang-Fu Yang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P.R. China
| |
Collapse
|
7
|
Zhang W, Guo P, Zhang Y, Zhou Q, Sun Y, Xu H. Application of Difluoromethyl Isosteres in the Design of Pesticide Active Molecules. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21344-21363. [PMID: 39305256 DOI: 10.1021/acs.jafc.4c04239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Difluoromethyl (CF2H) groups have been found in many listed pesticides due to their unique physical and chemical properties and outstanding biological activity. In pesticide molecules, compared with the drastic changes brought by trifluoromethyl, difluoromethyl usually moderately regulates the metabolic stability, lipophilicity, bioavailability, and binding affinity of compounds. Therefore, difluoromethylation has become an effective means to modify the biological activity of pesticide molecules. This paper reviews the representative literatures and patents containing difluoromethyl groups in the past 10 years, and introduces the research progress. The aim is to provide an effective reference value for the study of difluoromethyl in pesticides.
Collapse
Affiliation(s)
- Wanjie Zhang
- Engineering Research Center of Pesticide of Heilongjiang Province, Heilongjiang University, Harbin 150080, China
| | - Pengxiang Guo
- Engineering Research Center of Pesticide of Heilongjiang Province, Heilongjiang University, Harbin 150080, China
| | - Yannian Zhang
- Engineering Research Center of Pesticide of Heilongjiang Province, Heilongjiang University, Harbin 150080, China
| | - Qin Zhou
- Engineering Research Center of Pesticide of Heilongjiang Province, Heilongjiang University, Harbin 150080, China
| | - Yan Sun
- Engineering Research Center of Pesticide of Heilongjiang Province, Heilongjiang University, Harbin 150080, China
| | - Hongliang Xu
- Engineering Research Center of Pesticide of Heilongjiang Province, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
8
|
Zheng Y, Chen M, Zhang R, Xue W. Design, synthesis, antimicrobial activity, and mechanism of novel 3-(2,4-dichlorophenyl)-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazole derivatives. PEST MANAGEMENT SCIENCE 2024; 80:5388-5399. [PMID: 38961685 DOI: 10.1002/ps.8266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/13/2024] [Accepted: 06/09/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Plant pathogens cause substantial crop losses annually, posing a grave threat to global food security. Fungicides have usually been used for their control, but the rapid development of pesticide resistance renders many ineffective, therefore the search for novel and efficient green pesticides to prevent and control plant diseases has become the top priority in crop planting. RESULTS The results of bioassay studies indicated that most of the target compounds showed certain antimicrobial activity in vitro. In particular, compound X7 showed high inhibitory activity against Xanthomonas oryzae pv. oryzae (Xoo), with an EC50 value of 27.47 μg mL-1, surpassing conventional control agents such as thiazole zinc (41.55 μg mL-1) and thiodiazole copper (53.39 μg mL-1). Further studies on molecular docking showed that X7 had a strong binding affinity with 2FBW. The morphological change observed by scanning electron microscopy indicated that the surface of Xoo appears wrinkled and cracked under X7 treatment and a total of 2662 proteins were identified by label-free proteomic analysis. Three experiments have elucidated the mechanism whereby X7 induced considerable changes in the physiological and biochemical properties of Xoo, which in turn affected the reproduction and growth of bacteria. CONCLUSION This work represents a pivotal advancement, offering important reference for the research and development therapeutics in combating plant pathogens. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuguo Zheng
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
- The Key Laboratory of Chemical Synthesis and Environmental Pollution Control-Remediation Technology of Guizhou Province, Minzu Normal University of Xingyi, Xingyi, China
| | - Mei Chen
- The Key Laboratory of Chemical Synthesis and Environmental Pollution Control-Remediation Technology of Guizhou Province, Minzu Normal University of Xingyi, Xingyi, China
| | - Renfeng Zhang
- The Key Laboratory of Chemical Synthesis and Environmental Pollution Control-Remediation Technology of Guizhou Province, Minzu Normal University of Xingyi, Xingyi, China
| | - Wei Xue
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| |
Collapse
|
9
|
Yang Y, Liu S, Yan T, Yi M, Li H, Bao X. Design, Synthesis, Antifungal Activity, and Mechanism of Action of New Piperidine-4-carbohydrazide Derivatives Bearing a Quinazolinyl Moiety. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17283-17294. [PMID: 39074377 DOI: 10.1021/acs.jafc.4c03860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
A series of new piperidine-4-carbohydrazide derivatives bearing a quinazolinyl moiety were prepared and evaluated for their fungicidal activities against agriculturally important fungi. Among these derivatives, the chemical structure of compound A45 was clearly verified by X-ray crystallographic analysis. The antifungal bioassays revealed that many compounds in this series possessed good to excellent inhibition effects toward the tested fungi. For example, compounds A13 and A41 had EC50 values of 0.83 and 0.88 μg/mL against Rhizoctonia solani in vitro, respectively, superior to those of positive controls Chlorothalonil and Boscalid (1.64 and 0.96 μg/mL, respectively). Additionally, the above two compounds also exhibited notable inhibitory activities against Verticillium dahliae (with EC50 values of 1.12 and 3.20 μg/mL, respectively), far better than the positive controls Carbendazim and Chlorothalonil (19.3 and 11.0 μg/mL, respectively). More importantly, compound A13 could potently inhibit the proliferation of R. solani in the potted rice plants, showing good in vivo curative and protective efficiencies of 76.9% and 76.6% at 200 μg/mL, respectively. Furthermore, compound A13 demonstrated an effective inhibition of succinate dehydrogenase (SDH) activity in vitro with an IC50 value of 6.07 μM. Finally, the molecular docking study revealed that this compound could be well embedded into the active pocket of SDH via multiple noncovalent interactions, involving residues like SER39, ARG43, and GLY46.
Collapse
Affiliation(s)
- Yehui Yang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Songsong Liu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Taisen Yan
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Mingyan Yi
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Hong Li
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Xiaoping Bao
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| |
Collapse
|
10
|
Saeedian Moghadam E, Bonyasi F, Bayati B, Sadeghi Moghadam M, Amini M. Recent Advances in Design and Development of Diazole and Diazine Based Fungicides (2014-2023). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15427-15448. [PMID: 38967261 DOI: 10.1021/acs.jafc.4c02187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
With fungal diseases posing a major threat to agricultural production, the application of fungicides to control related diseases is often considered necessary to ensure the world's food supply. The search for new bioactive agents has long been a priority in crop protection due to the continuous development of resistance against currently used types of active compounds. Heterocyclic compounds are an inseparable part of the core structures of numerous lead compounds, these rings constitute pharmacophores of a significant number of fungicides developed over the past decade by agrochemists. Among heterocycles, nitrogen-based compounds play an essential role. To date, diazole (imidazole and pyrazole) and diazine (pyrimidine, pyridazine, and pyrazine) derivatives make up an important series of synthetic fungicides. In recent years, many reports have been published on the design, synthesis, and study of the fungicidal activity of these scaffolds, but there was a lack of a comprehensive classified review on nitrogen-containing scaffolds. Regarding this issue, here we have reviewed the published articles on the fungicidal activity of the diazole and diazine families. In current review, we have classified the molecules synthesized so far based on the size of the ring.
Collapse
Affiliation(s)
- Ebrahim Saeedian Moghadam
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Fahimeh Bonyasi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Bahareh Bayati
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Mahdis Sadeghi Moghadam
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Mohsen Amini
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| |
Collapse
|
11
|
Kong W, Sun S, He X, Wang J, Li S. Multidimensional Optimization of R-LE001 for New Leads with Enhanced Antifungal Profiles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14984-14992. [PMID: 38907719 DOI: 10.1021/acs.jafc.4c00782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Scaffold hopping and structural fine-tuning are important strategies for agrochemical innovation. Multidimensional optimization of the prevalidated antifungal lead R-LE001 was conducted via the design, synthesis, and bioevaluation of 53 new compounds differing in either scaffold or substituent. The antifungal structure-activity relationship (SAR) revealed that a number of amides containing 2-(2-oxazolinyl) aniline (NHPhOx) or 2-(2-thiazolinyl) aniline (NHPhthiOx) demonstrated a more promising antifungal effect than both R-LE001 and the positive control boscalid. Specifically, compound 10 (encoded LEX-K01) shows an excellent antifungal effect against Botrytis cinerea with an EC50 value lower than 0.11 μM. This small change leads to a significant improvement (over 1 order of magnitude) in bioactivity compared to that of either R-LE001 (EC50 = 1.41 μM) or boscalid (EC50 = 2.01 μM) and fluxapyroxad (EC50 = 4.35 μM). With much lower resistance factors, LEX-K01 (10) was more efficacious against the two boscalid-resistant strains of B. cinerea TZ01 and NJBH2017. A combination of LEX-K01 (10) and boscalid in a ratio of 1:3 showed synergistic effects against resistant B. cinerea TZ01 and NJBH2017, with SR values of 3.01 and 2.55, respectively. LEX-K01 (10) has a curative efficacy (70.3%) more prominent than that of boscalid (51.2%) in controlling disease caused by B. cinerea. The molecular docking simulation of LEX-K01 (10) with the SDH protein of B. cinerea displayed four hydrogen bonds with amino acid residues TYR144, ARG88, TRP81, and SER84, rationalizing a stronger affinity than boscalid. The scanning electron microscopy (SEM) characteristic revealed that it could cause an obvious collapse of B. cinerea mycelium. This work indicates that LEX-K01 (10) has the potential to be further explored as a new antifungal agent.
Collapse
Affiliation(s)
- Wenlong Kong
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Shengxin Sun
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiaodan He
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jinbo Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Shengkun Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
12
|
Yang ZH, Qiu YG, Jin DJ, Zheng YM, Li J, Gu W. Synthesis and Antifungal Activity of Norbornene Carboxamide/sulfonamide Derivatives as Potential Fungicides Targeting Laccase. Chem Biodivers 2024; 21:e202302033. [PMID: 38616167 DOI: 10.1002/cbdv.202302033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/31/2024] [Accepted: 04/12/2024] [Indexed: 04/16/2024]
Abstract
To explore more potential fungicides with new scaffolds, thirty-seven norbornene carboxamide/sulfonamide derivatives were designed, synthesized, and assayed for inhibitory activity against six plant pathogenic fungi and oomycetes. The preliminary antifungal assay suggested that the title derivatives showed moderate to good antifungal activity against six plant pathogens. Especially, compound 6 e presented excellent in vitro antifungal activity against Sclerotinia sclerotiorum (EC50=0.71 mg/L), which was substantially stronger than pydiflumetofen. In vivo antifungal assay indicated 6 e displayed prominent protective and curative effects on rape leaves infected by S. sclerotiorum. The preliminary mechanism research displayed that 6 e could damage the surface morphology and inhibit the sclerotia formation of S. sclerotiorum. In addition, the in vitro enzyme inhibition bioassay indicated that 6 e displayed pronounced laccase inhibition activity (IC50=0.63 μM), much stronger than positive control cysteine. Molecular docking elucidated the binding modes between 6 e and laccase. The bioassay results and mechanism investigation demonstrated that this class of norbornene carboxamide/sulfonamide derivatives could be promising laccase inhibitors for novel fungicide development.
Collapse
Affiliation(s)
- Zi-Hui Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yi-Gui Qiu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Dao-Jun Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yi-Ming Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jia Li
- School of Foreign Languages, Nanjing Xiaozhuang University, Nanjing, 211171, China
| | - Wen Gu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
13
|
Xu Z, Cheng X, Cui H, Cao L, Song Y, Chang X, Wang D, Lv X. Design, selective synthesis and biological activities evaluation of novel thiazol-2-ylbenzamide and thiazole-2-ylbenzimidoyl chloride derivatives. Bioorg Chem 2024; 147:107333. [PMID: 38599055 DOI: 10.1016/j.bioorg.2024.107333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
To promote the development and exploitation of novel antifungal agents, a series of thiazol-2-ylbenzamide derivatives (3A-3V) and thiazole-2-ylbenzimidoyl chloride derivatives (4A-4V) were designed and selective synthesis. The bioassay results showed that most of the target compounds exhibited excellent in vitro antifungal activities against five plant pathogenic fungi (Valsa mali, Sclerotinia scleotiorum, Botrytis cinerea, Rhizoctonia solani and Trichoderma viride). The antifungal effects of compounds 3B (EC50 = 0.72 mg/L) and 4B (EC50 = 0.65 mg/L) against S. scleotiorum were comparable to succinate dehydrogenase inhibitors (SDHIs) thifluzamide (EC50 = 1.08 mg/L) and boscalid (EC50 = 0.78 mg/L). Especially, compounds 3B (EC50 = 0.87 mg/L) and 4B (EC50 = 1.08 mg/L) showed higher activity against R. solani than boscalid (EC50 = 2.25 mg/L). In vivo experiments in rice leaves revealed that compounds 3B (86.8 %) and 4B (85.3 %) exhibited excellent protective activities against R. solani comparable to thifluzamide (88.5 %). Scanning electron microscopy (SEM) results exhibited that compounds 3B and 4B dramatically disrupted the typical structure and morphology of R. solani mycelium. Molecular docking demonstrated that compounds 3B and 4B had significant interactions with succinate dehydrogenase (SDH). Meanwhile, SDH inhibition assay results further proved their potential as SDHIs. In addition, acute oral toxicity tests on A. mellifera L. showed only low toxicity for compounds 3B and 4B to A. mellifera L. populations. These results suggested that these two series of compounds had merit for further investigation as potential low-risk agricultural SDHI fungicides.
Collapse
Affiliation(s)
- Zonghan Xu
- College of Materials and Chemistry & School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Xiang Cheng
- College of Materials and Chemistry & School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Hongyun Cui
- College of Materials and Chemistry & School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Linmin Cao
- College of Materials and Chemistry & School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Yaping Song
- College of Materials and Chemistry & School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Xihao Chang
- College of Materials and Chemistry & School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Dandan Wang
- College of Materials and Chemistry & School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| | - Xianhai Lv
- College of Materials and Chemistry & School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Joint Research Center for Food Nutrition and Health of IHM, China.
| |
Collapse
|
14
|
Teng P, Li Y, Fang R, Zhu Y, Dai P, Zhang W. Design, Synthesis, Antifungal Activity, and 3D-QSAR Study of Novel Quinoxaline-2-Oxyacetate Hydrazide. Molecules 2024; 29:2501. [PMID: 38893377 PMCID: PMC11173898 DOI: 10.3390/molecules29112501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Plant pathogenic fungi pose a major threat to global food security, ecosystem services, and human livelihoods. Effective and broad-spectrum fungicides are needed to combat these pathogens. In this study, a novel antifungal 2-oxyacetate hydrazide quinoxaline scaffold as a simple analogue was designed and synthesized. Their antifungal activities were evaluated against Botrytis cinerea (B. cinerea), Altemaria solani (A. solani), Gibberella zeae (G. zeae), Rhizoctonia solani (R. solani), Colletotrichum orbiculare (C. orbiculare), and Alternaria alternata (A. alternata). These results demonstrated that most compounds exhibited remarkable inhibitory activities and possessed better efficacy than ridylbacterin, such as compound 15 (EC50 = 0.87 μg/mL against G. zeae, EC50 = 1.01 μg/mL against C. orbiculare) and compound 1 (EC50 = 1.54 μg/mL against A. alternata, EC50 = 0.20 μg/mL against R. solani). The 3D-QSAR analysis of quinoxaline-2-oxyacetate hydrazide derivatives has provided new insights into the design and optimization of novel antifungal drug molecules based on quinoxaline.
Collapse
Affiliation(s)
| | | | | | | | | | - Weihua Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; (P.T.); (Y.L.); (R.F.); (Y.Z.); (P.D.)
| |
Collapse
|
15
|
Ying Z, Li XM, Yang SQ, Li HL, Li X, Wang BG, Meng LH. Antifungal Pseuboyenes A-J, Bergamotene-Derived Sesquiterpenoids from a Cold-Seep-Derived Pseudallescheria boydii. JOURNAL OF NATURAL PRODUCTS 2024; 87:1347-1357. [PMID: 38701173 DOI: 10.1021/acs.jnatprod.3c01175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
A chemical investigation of a cold-seep-sediment-derived fungus, Pseudallescheria boydii CS-793, resulted in characterization of 10 novel bergamotene-derived sesquiterpenoids, pseuboyenes A-J (1-10). Their structures were elucidated by spectroscopic and X-ray crystallographic analyses as well as using the modified Mosher's method. Compound 1 represents the first example of a β-bergamotene containing a 6-oxobicyclo[3.2.1]octane nucleus adducted with a methyl lactate unit, while 8-10 involve a skeletal rearrangement from bergamotene. Compounds 2-5 showed significant antifungal activities against Colletotrichum gloeosporioides Penz. and Fusarium oxysporum with MICs ranging from 0.5 to 8 μg/mL. Compound 4 exhibited an in vitro anti-F. proliferatum effect with an EC50 value of 1.0 μg/mL.
Collapse
Affiliation(s)
- Zhen Ying
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, People's Republic of China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, People's Republic of China
| | - Xiao-Ming Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, People's Republic of China
| | - Sui-Qun Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, People's Republic of China
| | - Hong-Lei Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, People's Republic of China
| | - Xin Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, People's Republic of China
| | - Bin-Gui Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, People's Republic of China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Wenhai Road 1, Qingdao 266237, People's Republic of China
| | - Ling-Hong Meng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, People's Republic of China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Wenhai Road 1, Qingdao 266237, People's Republic of China
| |
Collapse
|
16
|
Chai JQ, Wang XB, Yue K, Hou ST, Jin F, Liu Y, Tai L, Chen M, Yang CL. Design, Synthesis, Antifungal Activity, and Action Mechanism of Pyrazole-4-carboxamide Derivatives Containing Oxime Ether Active Fragment As Succinate Dehydrogenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11308-11320. [PMID: 38720452 DOI: 10.1021/acs.jafc.3c07880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
The dearomatization at the hydrophobic tail of the boscalid was carried out to construct a series of novel pyrazole-4-carboxamide derivatives containing an oxime ether fragment. By using fungicide-likeness analyses and virtual screening, 24 target compounds with theoretical strong inhibitory effects against fungal succinate dehydrogenase (SDH) were designed and synthesized. Antifungal bioassays showed that the target compound E1 could selectively inhibit the in vitro growth of R. solani, with the EC50 value of 1.1 μg/mL that was superior to that of the agricultural fungicide boscalid (2.2 μg/mL). The observations by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) demonstrated that E1 could reduce mycelial density and significantly increase the mitochondrial number in mycelia cytoplasm, which was similar to the phenomenon treated with boscalid. Enzyme activity assay showed that the E1 had the significant inhibitory effect against the SDH from R. solani, with the IC50 value of 3.3 μM that was superior to that of boscalid (7.9 μM). The mode of action of the target compound E1 with SDH was further analyzed by molecular docking and molecular dynamics simulation studies. Among them, the number of hydrogen bonds was significantly more in the SDH-E1 complex than that in the SDH-boscalid complex. This research on the dearomatization strategy of the benzene ring for constructing pyrazole-4-carboxamides containing an oxime ether fragment provides a unique thought to design new antifungal drugs targeting SDH.
Collapse
Affiliation(s)
- Jian-Qi Chai
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiao-Bin Wang
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing 210095, China
- College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Kai Yue
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuai-Tao Hou
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Fei Jin
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Yv Liu
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Lang Tai
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Min Chen
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Chun-Long Yang
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
17
|
He B, Hu Y, Xing L, Qing Y, Meng K, Zeng W, Sun Z, Wang Z, Xue W. Antifungal Activity of Novel Indole Derivatives Containing 1,3,4-Thiadiazole. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10227-10235. [PMID: 38669314 DOI: 10.1021/acs.jafc.3c09303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
In this study, 24 indole derivatives containing 1,3,4-thiadiazole were discovered and synthesized. The target compounds' antifungal efficacy against 14 plant pathogenic fungal pathogens was then determined in vitro. With an EC50 value of 2.7 μg/mL, Z2 demonstrated the highest level of bioactivity among them against Botrytis cinerea (B.c.), exceeding the concentrations of the control prescription drugs azoxystrobin (Az) (EC50 = 14.5 μg/mL) and fluopyram (Fl) (EC50 = 10.1 μg/mL). Z2 underwent in vivo testing on blueberry leaves in order to evaluate its usefulness in real-world settings. A reasonable protective effect was obtained with a control effectiveness of 93.0% at 200 μg/mL, which was superior to those of Az (83.0%) and Fl (52.0%). At 200 μg/mL, this chemical had an efficacy of 84.0% in terms of curative efficacy. These figures outperformed those of Az (69.0%) and Fl (48.0%). Scanning electron microscopy (SEM) experiments and light microscopy experiments showed that Z2 altered the integrity of the cell wall and cell membrane of the pathogenic fungus B.c., which led to an increase in the content of malondialdehyde (MDA), cellular leakage, and cellular permeability. Enzyme activity assays and molecular docking studies indicated that Z2 could act as a potential succinate dehydrogenase inhibitor (SDHI). It was hypothesized that Z2 could cause disruption of mycelial cell membranes, which in turn leads to mycelial death. According to the research, indole derivatives containing 1,3,4-thiadiazole were expected to evolve into new fungicides due to their significant antifungal effects on plant fungi.
Collapse
Affiliation(s)
- Bangcan He
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Yuzhi Hu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Li Xing
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Yishan Qing
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Kaini Meng
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Wei Zeng
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Zhiling Sun
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Zhenchao Wang
- College of Pharmacy, Guizhou University, Guiyang 550025, P. R. China
| | - Wei Xue
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| |
Collapse
|
18
|
Luo B, Wu Y, Ren X, Li H, Li X, Wang G, Wang M, Dong L, Liu M, Zhou W, Qu L. Novel Pyrazole-4-Carboxamide Derivatives Containing Oxime Ether Group as Potential SDHIs to Control Rhizoctonia solani. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9599-9610. [PMID: 38646697 DOI: 10.1021/acs.jafc.3c06811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
In the search for novel succinate dehydrogenase inhibitor (SDHI) fungicides to control Rhizoctonia solani, thirty-five novel pyrazole-4-carboxamides bearing either an oxime ether or an oxime ester group were designed and prepared based on the strategy of molecular hybridization, and their antifungal activities against five plant pathogenic fungi were also investigated. The results indicated that the majority of the compounds containing oxime ether demonstrated outstanding in vitro antifungal activity against R. solani, and some compounds also displayed pronounced antifungal activities against Sclerotinia sclerotiorum and Botrytis cinerea. Particularly, compound 5e exhibited the most promising antifungal activity against R. solani with an EC50 value of 0.039 μg/mL, which was about 20-fold better than that of boscalid (EC50 = 0.799 μg/mL) and 4-fold more potent than fluxapyroxad (EC50 = 0.131 μg/mL). Moreover, the results of the detached leaf assay showed that compound 5e could suppress the growth of R. solani in rice leaves with significant protective efficacies (86.8%) at 100 μg/mL, superior to boscalid (68.1%) and fluxapyroxad (80.6%), indicating promising application prospects. In addition, the succinate dehydrogenase (SDH) enzymatic inhibition assay revealed that compound 5e generated remarkable SDH inhibition (IC50 = 2.04 μM), which was obviously more potent than those of boscalid (IC50 = 7.92 μM) and fluxapyroxad (IC50 = 6.15 μM). Furthermore, SEM analysis showed that compound 5e caused a remarkable disruption to the characteristic structure and morphology of R. solani hyphae, resulting in significant damage. The molecular docking analysis demonstrated that compound 5e could fit into the identical binding pocket of SDH through hydrogen bond interactions as well as fluxapyroxad, indicating that they had a similar antifungal mechanism. The density functional theory and electrostatic potential calculations provided useful information regarding electron distribution and electron transfer, which contributed to understanding the structural features and antifungal mechanism of the lead compound. These findings suggested that compound 5e could be a promising candidate for SDHI fungicides to control R. solani, warranting further investigation.
Collapse
Affiliation(s)
- Bo Luo
- College of Life Sciences, Xinyang Normal University, Tea Plant Biology Key Laboratory of Henan Province, Xinyang 464000, China
| | - Yuerui Wu
- College of Life Sciences, Xinyang Normal University, Tea Plant Biology Key Laboratory of Henan Province, Xinyang 464000, China
| | - Xinran Ren
- College of Life Sciences, Xinyang Normal University, Tea Plant Biology Key Laboratory of Henan Province, Xinyang 464000, China
| | - Huimin Li
- College of Life Sciences, Xinyang Normal University, Tea Plant Biology Key Laboratory of Henan Province, Xinyang 464000, China
| | - Xuanru Li
- College of Life Sciences, Xinyang Normal University, Tea Plant Biology Key Laboratory of Henan Province, Xinyang 464000, China
| | - Gege Wang
- College of Life Sciences, Xinyang Normal University, Tea Plant Biology Key Laboratory of Henan Province, Xinyang 464000, China
| | - Mengjia Wang
- College of Life Sciences, Xinyang Normal University, Tea Plant Biology Key Laboratory of Henan Province, Xinyang 464000, China
| | - Luqi Dong
- College of Life Sciences, Xinyang Normal University, Tea Plant Biology Key Laboratory of Henan Province, Xinyang 464000, China
| | - Mengxing Liu
- College of Life Sciences, Xinyang Normal University, Tea Plant Biology Key Laboratory of Henan Province, Xinyang 464000, China
| | - Wei Zhou
- College of Life Sciences, Xinyang Normal University, Tea Plant Biology Key Laboratory of Henan Province, Xinyang 464000, China
| | - Lailiang Qu
- College of Medicine, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
19
|
Zhang SG, Wan YQ, Zhang WH. Discovery of Dehydroabietylamine Derivatives as Antibacterial and Antifungal Agents. JOURNAL OF NATURAL PRODUCTS 2024; 87:924-934. [PMID: 38513270 DOI: 10.1021/acs.jnatprod.3c01213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
A diverse array of biologically active derivatives was derived by modifying the chemically active sites of dehydroabietylamine. Herein, we describe the synthesis of a new series of C-19-arylated dehydroabietylamine derivatives using a palladium-catalyzed C(sp3)-H activation reaction. Five analogues (3b, 3d, 3h, 3n, and 4a) exhibited antibacterial activity against Escherichia coli. Compound 4a exhibited strong inhibitory activity against DNA Topo II and Topo IV. Molecular docking modeling indicated that it can bind effectively to the target through interactions with amino acid residues. The synthesized compounds were tested in vitro for their antifungal activity against six common phytopathogenic fungi. The mechanism of action of compound 4c against Rhizoctorzia solani was investigated, revealing that it disrupts the morphology of the mycelium and enhances cell membrane permeability.
Collapse
Affiliation(s)
- Shu-Guang Zhang
- Jiangsu Key Laboratory of Pesticide, College of Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yu-Qiang Wan
- Jiangsu Key Laboratory of Pesticide, College of Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Wei-Hua Zhang
- Jiangsu Key Laboratory of Pesticide, College of Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| |
Collapse
|
20
|
Yan Y, Bao A, Wang Y, Xie X, Wang D, Deng Z, Wang X, Cheng W, Li W, Zhang X, Tang X. Design, Synthesis, Antifungal Activity, and Molecular Docking Studies of Novel Chiral Isoxazoline-Benzofuran-Sulfonamide Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38619015 DOI: 10.1021/acs.jafc.3c05730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Succinate dehydrogenase (SDH) is one of the most important molecular targets for the development of novel fungicides. With the emerging problem of resistance in plant fungal pathogens, novel compounds with high fungicidal activity need to be developed, but the study of chiral pesticides for the inhibition of highly destructive plant pathogens has been rarely reported in recent years. Therefore, a series of novel chiral isoxazoline-benzofuran-sulfonamide derivatives were designed to investigate potential novel antifungal molecules. The chiral target compound 3a was cultured as a single crystal and confirmed using X-ray diffraction. All the target compounds were tested for antifungal activity, and compounds 3c, 3i, 3s, and 3r were found to have significant antifungal effects against S. sclerotiorum with EC50 values of 0.42 mg/L, 0.33 mg/L, 0.37 mg/L, and 0.40 mg/L, respectively, which were superior to the commercial fungicide fluopyram (EC50 = 0.47 mg/L). The IC50 value of compound 3i against the SDH of S. sclerotiorum was 0.63 mg/mL, which was further demonstrated by enzyme activity assays. Scanning electron microscopy showed that 3i had a significant inhibitory effect on S. sclerotiorum. In addition, the fluorescence quenching analysis assay indicated that compound 3i had a similar effect with the positive control fluopyram. Molecular docking exhibited that target compounds with chiral configuration had better affinity than racemic configuration, and 3i possessed stronger action than fluopyram, which was in keeping with the in vitro test results. These results would provide a basis and reference for the development of novel chiral fungicides.
Collapse
Affiliation(s)
- Yingkun Yan
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, PR China
| | - Ailing Bao
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, PR China
| | - Yunfan Wang
- Chinese Academy of Inspection and Quarantine Greater Bay Area, Zhongshan 528437, China
| | - Xiansong Xie
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, PR China
| | - Deyuan Wang
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, PR China
| | - Ziquan Deng
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, PR China
| | - Xuesong Wang
- Chinese Academy of Inspection and Quarantine Greater Bay Area, Zhongshan 528437, China
| | - Wei Cheng
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - Weiyi Li
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, PR China
| | - Xiaomei Zhang
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, PR China
| | - Xiaorong Tang
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, PR China
| |
Collapse
|
21
|
Su Y, Zhang T, An X, Ma H, Wang M. Design, synthesis, antifungal activity and molecular docking of novel pyrazole-4-carboxamides containing tertiary alcohol and difluoromethyl moiety as potential succinate dehydrogenase inhibitors. PEST MANAGEMENT SCIENCE 2024; 80:2032-2041. [PMID: 38105405 DOI: 10.1002/ps.7937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/09/2023] [Accepted: 12/18/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Resistance problems with the long-term and frequent use of existing fungicides, and the lack of structure diversity of traditional pyrazole-4-carboxamide succinate dehydrogenase inhibitors, it is highly required to design and develop new fungicides to address the resistance issue. RESULTS Different from previous pyrazole-4-carboxamide succinate dehydrogenase inhibitors by breaking the norm of difluoromethyl at the C-3 position of pyrazole and introducing a tertiary alcohol group at the C-3 position, 27 novel pyrazole-4-carboxamide derivatives were designed, synthesized and characterized by proton (1 H) nuclear magnetic resonance (NMR), carbon-13 (13 C) NMR, fluorine-19 (19 F) NMR and high-resolution electrospray ionization mass spectrometry (HR-ESI-MS). The crystal structures of compounds A14 and C5 were analyzed by single crystal X-ray diffraction. Their in vitro antifungal activities were evaluated against phytopathogen Fusarium graminearum, Botrytis cinerea, Phytophthora capsica, Sclerotinia sclerotiorum, Thanatephorus cucumeris. The results displayed that most of them exhibited significant antifungal activities against S. sclerotiorum at 50 mg/L, the half maximal effective concentration (EC50 ) data of A8 and A14 were 3.96 and 2.52 mg/L, respectively. Their in vivo antifungal activities were evaluated against Pseudoperonospora cubensis, Puccinia sorghi Schw, Colletotrichum gloeosporioides, F. graminearum, Erysiphe graminis, Thanatephorus cucumeris, the control efficacies of A6, B3, C3, and C6 against E. graminis reached 100% at a concentration of 400 mg/L. The molecular docking results showed that the binding mode of the target compounds containing tertiary alcohols were similar to that of fluxapyroxad in succinate dehydrogenase. In addition, tertiary alcohols were involved in the formation of hydrogen bonds. CONCLUSION The excellent in vitro and in vivo inhibitory activities of novel pyrazole-4-carboxamide derivatives against succinate dehydrogenase were reported for the first time, and they could be used as the potential lead compounds. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yanhao Su
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Tingting Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Xinkun An
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Haoyun Ma
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Mingan Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| |
Collapse
|
22
|
Zhou Q, Xia Z, Zhang Y, Sun Z, Zeng W, Zhang N, Yuan C, Gong C, Zhou Y, Xue W. Design of a delivery vehicle chitosan-based self-assembling: controlled release, high hydrophobicity, and safe treatment of plant fungal diseases. J Nanobiotechnology 2024; 22:121. [PMID: 38504264 PMCID: PMC10949580 DOI: 10.1186/s12951-024-02386-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/07/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Traditional pesticides are poorly water-soluble and suffer from low bioavailability. N-succinyl chitosan (NSCS) is a water-soluble chitosan derivative, has been recently used to encapsulate hydrophobic drugs to improve their bioavailability. However, it remains challenging to synthesize pesticides of a wide variety of water-soluble drugs and to scale up the production in a continuous manner. RESULTS A synthetic method for preparing water-soluble nanopesticides with a polymer carrier was applied. The bioactive molecule BTL-11 was loaded into hollow NSCS to promote drug delivery, improve solubility and anti-fungal activity. The synthesized nanopesticides had well controlled sizes of 606 nm and the encapsulation rate was 80%. The release kinetics, drug toxicity and drug activity were further evaluated. The inhibitory activity of nanopesticides against Rhizoctonia solani (R. solani) was tested in vivo and in vitro. In vivo against R. solani trials revealed that BTL-11 has excellent control efficiency for cultivated rice leaf and sheath was 79.6 and 76.5%, respectively. By contrast, for BTL-11@NSCS NPs, the anti-fungal ability was strongly released and afforded significant control efficiencies of 85.9 and 81.1%. Those effects were significantly better than that of the agricultural fungicide azoxystrobin (51.5 and 66.5%). The proposed mechanism was validated by successfully predicting the synthesis outcomes. CONCLUSIONS This study demonstrates that NSCS is a promising biocompatible carrier, which can enhance the efficacy of pesticides, synergistically improve plant disease resistance, protect crop growth, and can be used for the delivery of more insoluble pesticides.
Collapse
Affiliation(s)
- Qing Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Zhi Xia
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
- College of Chemistry and Chemical Engineering, Guizhou University of Engineering Science, Bijie, 551700, China
| | - Yu Zhang
- College of Chemistry and Chemical Engineering, Guizhou University of Engineering Science, Bijie, 551700, China
| | - Zhiling Sun
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Wei Zeng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Nian Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Chunmei Yuan
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Chenyu Gong
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Yuanxiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Wei Xue
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
23
|
Xue J, Guo X, Xu G, Chen X, Jiao L, Tang X. Discovery, Identification, and Mode of Action of Phenolics from Marine-Derived Fungus Aspergillus ustus as Antibacterial Wilt Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2989-2996. [PMID: 38214488 DOI: 10.1021/acs.jafc.3c07826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
The bacterial wilt caused by Ralstonia solanacearum seriously affects crop yield and safety and is difficult to control. Biological activity-guided screening led to the isolation of 11 phenolic compounds including three undescribed compounds (carnemycin H-I and stromemycin B) from the secondary metabolites of a marine-derived Aspergillus ustus. One new compound is an unusual phenolic dimer. Their structures were elucidated by comprehensive spectroscopic data and J-based configurational analysis. The antibacterial activities of the isolated compounds against R. solanacearum were evaluated. Compound 3 exhibited excellent inhibitory activity with an MIC value of 3 μg/mL, which was comparable to that of streptomycin sulfate. Additionally, 3 significantly changed the morphology and inhibited the activity of succinate dehydrogenase (SDH) to interfere with the growth of R. solanacearum. Molecular docking was conducted to clarify the potential mechanisms of compound 3 with SDH. Further in vivo experiments demonstrated that 3 could remarkably inhibit the occurrence of bacterial wilt on tomatoes.
Collapse
Affiliation(s)
- Jingjing Xue
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography State, Ministry of Natural Resources, Da-Xue Road, Xiamen 361005, People's Republic of China
| | - Xiaopeng Guo
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography State, Ministry of Natural Resources, Da-Xue Road, Xiamen 361005, People's Republic of China
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Guangxin Xu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography State, Ministry of Natural Resources, Da-Xue Road, Xiamen 361005, People's Republic of China
| | - Xi Chen
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography State, Ministry of Natural Resources, Da-Xue Road, Xiamen 361005, People's Republic of China
| | - Lihang Jiao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography State, Ministry of Natural Resources, Da-Xue Road, Xiamen 361005, People's Republic of China
| | - Xixiang Tang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography State, Ministry of Natural Resources, Da-Xue Road, Xiamen 361005, People's Republic of China
| |
Collapse
|
24
|
Kong W, Li N, Lai J, Sun S, Li S. Antifungal Function Oriented Scaffold Hopping for the Discovery of Oxazolyl-oxazoline as a Novel Model against Fusarium graminearum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18260-18269. [PMID: 37756692 DOI: 10.1021/acs.jafc.3c04725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Discovery of novel structural models is extremely important in agrochemical innovation. Scaffold hopping was conducted, and 16 kinds of novel models were synthesized and biologically evaluated. Oxazolyl-oxazoline 25 showed a promising in vitro potential against Fusarium graminearum with EC50 value of 18.25 μM, which was 2.4 times more potent than that of carbendazim (EC50 = 43.06 μM). The antifungal structure-activity relationship (SAR) revealed that compound 25am had the most promising antifungal activity against F. graminearum, with an EC50 value of 13.46 μM, which was 3.2 more potent than that of carbendazim. Different from carbendazim, the candidate 25am could form five hydrogen bonds with the amino acid residues in β-tubulin in the molecular docking and could effectively inhibit the carbendazim-resistant F. graminearum strain. Scanning electron microscopy (SEM) revealed that compound 25am induced the mycelia of F. graminearum slight collapse. This work suggests that compound 25am should be prioritized for further evaluation for new antifungal agents.
Collapse
Affiliation(s)
- Wenlong Kong
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Nannan Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jixing Lai
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Shengxin Sun
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Shengkun Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
25
|
Yin YM, Sun ZY, Wang DW, Xi Z. Discovery of Benzothiazolylpyrazole-4-Carboxamides as Potent Succinate Dehydrogenase Inhibitors through Active Fragment Exchange and Link Approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14471-14482. [PMID: 37775473 DOI: 10.1021/acs.jafc.3c03646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Succinate dehydrogenase (SDH) is an attractive target for developing green fungicides to manage agricultural pathogens in modern agriculture research. Herein, in this work, we report the discovery of benzothiazolylpyrazole-4-carboxamides I-III as potent SDH inhibitors using active fragment exchange and link approach. The results of the fungicidal activity assays showed that some of the synthesized compounds exhibited excellent inhibition against the tested fungi. Systematic structure-activity relationship studies led to the discovery of compound Ip, N-(1-((4,6-difluorobenzo[d]thiazol-2-yl)thio)propan-2-yl)-3-(difluoromethyl)-N-methoxy-1-methyl-1H-pyrazole-4-carboxamide, which showed higher fungicidal activity against Fusarium graminearum Schw (EC50 = 0.93 μg/mL) than the commercial fungicides thifluzamide (EC50 > 50 μg/mL) and boscalid (EC50 > 50 μg/mL). The molecular simulation studies suggested that hydrophobic interactions were the primary driving forces between ligands and SDH. Promisingly, we found that Ip could stimulate the growth of wheat seedlings and Arabidopsis thaliana and increase the biomass of the treated plants. Preliminary studies on the plant growth promoter mechanism of Ip indicated that it could increase nitrate reductase activity in planta, that, in turn, stimulates the growth of plants.
Collapse
Affiliation(s)
- Yan-Ming Yin
- State Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Zong-Yue Sun
- State Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Da-Wei Wang
- State Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
26
|
Yang Z, Sun X, Qiu Y, Jin D, Zheng Y, Li J, Gu W. Design, Synthesis, and Biological Evaluation of Novel Camphor-Based Hydrazide and Sulfonamide Derivatives as Laccase Inhibitors against Plant Pathogenic Fungi/Oomycetes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14151-14163. [PMID: 37748922 DOI: 10.1021/acs.jafc.3c02966] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
To discover novel natural product-based fungicidal agrochemicals, 41 novel camphanic acid hydrazide and camphor sulfonamide derivatives were designed, synthesized, and tested for their antifungal profile against four plant pathogenic fungi and three oomycetes. As a result, some derivatives presented pronounced inhibitory activities toward Botryosphaeria dothidea, Fusarium graminearum, Phytophthora capsici, and Phytophthora nicotianae. Especially, compound 4b demonstrated the most potent anti-B. dothidea activity (EC50 = 1.28 mg/L), much stronger than positive control chlorthalonil. The in vivo assay showed that 4b displayed significant protective and curative effects on apple fruits infected by B. dothidea. The primary antifungal mechanism study revealed that 4b could obviously enhance the cell membrane permeability, destroy the mycelial surface morphology and the cell ultrastructure, and reduce the ergosterol and exopolysaccharide contents of B. dothidea. Further, 4b showed potent laccase inhibitory activity in vitro with an IC50 value of 11.3 μM, superior to positive control cysteine. The molecular docking study revealed that 4b could dock well into the active site of laccase by forming multiple interactions with the key residues in the pocket. The acute oral toxicity test in rats presented that 4b had slight toxicity with an LD50 value of 849.1 mg/kg bw (95% confidence limit: 403.9-1785.3 mg/kg bw). This research identified that the camphanic acid hydrazide derivatives could be promising leads for the development of novel laccase-targeting fungicides.
Collapse
Affiliation(s)
- Zihui Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xuebao Sun
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yigui Qiu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Daojun Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yiming Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jia Li
- School of Foreign Languages, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Wen Gu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
27
|
Wang X, Diao Z, Liu Z, Qi P, Wang Z, Cang T, Chu Y, Zhao H, Zhang C, Xu H, Di S. Development of S-penthiopyrad for bioactivity improvement and risk reduction from the systemic evaluation at the enantiomeric level. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122012. [PMID: 37307862 DOI: 10.1016/j.envpol.2023.122012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
For the purpose of screening high-efficiency and low-risk green pesticides, a systematic study on fungicide penthiopyrad was conducted at the enantiomeric level. The bioactivity of S-(+)-penthiopyrad (median effective concentration (EC50), 0.035 mg/L) against Rhizoctonia solani was 988 times higher than R-(-)-penthiopyrad (EC50, 34.6 mg/L), which would reduce 75% usage of rac-penthiopyrad under the same efficacy. Furthermore, their antagonistic interaction (toxic unit (TUrac), 2.07) indicated the existence of R-(-)-penthiopyrad would reduce the fungicidal activity of S-(+)-penthiopyrad. AlphaFold2 modeling and molecular docking illustrated that S-(+)-penthiopyrad had the higher binding ability with the target protein than R-(-)-penthiopyrad, showing higher bioactivity. For model organism Danio rerio, S-(+)-penthiopyrad (median lethal concentrations (LC50), 3.02 mg/L) and R-(-)-penthiopyrad (LC50, 4.89 mg/L) were both less toxic than rac-penthiopyrad (LC50, 2.73 mg/L), and the existence of R-(-)-penthiopyrad could synergistically enhance the toxicity of S-(+)-penthiopyrad (TUrac, 0.73), using S-(+)-penthiopyrad would reduce at least 23% toxicity to fish. The enantioselective dissipation and residues of rac-penthiopyrad were tested in three kinds of fruits, and their dissipation half-lives ranged from 1.91 to 23.7 d. S-(+)-penthiopyrad was dissipated preferentially in grapes, which was R-(-)-penthiopyrad in pears. On the 60th d, the residue concentrations of rac-penthiopyrad in grapes were still higher than its maximum residue limit (MRL), but the initial concentrations were lower than their MRL values in watermelons and pears. Thus, more tests in different cultivars of grapes and planting environments should be encouraged. Based on the acute and chronic dietary intake risk assessments, the risks in the three fruits were all acceptable. In conclusion, S-(+)-penthiopyrad is a high-efficiency and low-risk alternative to rac-penthiopyrad.
Collapse
Affiliation(s)
- Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, 310021, PR China
| | - Ziyang Diao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, 310021, PR China; College of Food Science & Engineering, Hainan University, No. 158 Renmin Avenue, Haikou, 570100, PR China
| | - Zhenzhen Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, 310021, PR China
| | - Peipei Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, 310021, PR China
| | - Zhiwei Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, 310021, PR China
| | - Tang Cang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, 310021, PR China
| | - Yanyan Chu
- School of Medicine and Pharmacy, Ocean University of China/ Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266200, China
| | - Huiyu Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, 310021, PR China
| | - Chenghui Zhang
- College of Food Science & Engineering, Hainan University, No. 158 Renmin Avenue, Haikou, 570100, PR China
| | - Hao Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, 310021, PR China
| | - Shanshan Di
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, 310021, PR China.
| |
Collapse
|
28
|
Luo B, Zhang C, Liang S, Zhou W, Hu Y, Li Y, Hu J, Qu L. Design, Synthesis, and Antifungal Activities of Novel Carboxamides Derivatives Bearing a Chalcone Scaffold as Potential SDHIs. Chem Biodivers 2023; 20:e202300958. [PMID: 37492004 DOI: 10.1002/cbdv.202300958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 07/27/2023]
Abstract
In search for SDHIs fungicides, twenty-five novel carboxamides containing a chalcone scaffold were designed, synthesized, and evaluated for antifungal activities against five pathogenic fungi. The results showed that compound 5 k exhibited outstanding antifungal activity against R. solani with an EC50 value of 0.20 μg/mL, which was much better than that of commercial SDHIs Boscalid (EC50 =0.74 μg/mL). Moreover, compound 5 k also displayed promising antifungal activities against S. sclerotiorum, B. cinerea, and A. alternate (IC50 =2.53-4.06 μg/mL), indicating that 5 k had broad-spectrum antifungal activity. Additionally, in vivo antifungal activities results showed that 5 k could significantly inhibit the growth of R. solani in rice leaves with good protective efficacy (57.78 %) and curative efficacy (58.45 %) at 100 μg/mL, both of which were much better than those of Boscalid, indicating a promising application prospect. Moreover, SEM analysis showed that compound 5 k could remarkably disrupt the typical structure and morphology of R. solani hyphae. Further SDH enzyme inhibition assay and molecular docking study revealed that lead compound 5 k had a similar mechanism of action as commercial SDHI Boscalid. These results indicated that compound 5 k showed potential as a SDHIs fungicide and deserved further investigation.
Collapse
Affiliation(s)
- Bo Luo
- College of Life Sciences, Xinyang Normal University, Tea Plant Biology Key Laboratory of Henan Province, Xinyang, 464000, China
| | - Chongchong Zhang
- College of Life Sciences, Xinyang Normal University, Tea Plant Biology Key Laboratory of Henan Province, Xinyang, 464000, China
| | - Suya Liang
- College of Life Sciences, Xinyang Normal University, Tea Plant Biology Key Laboratory of Henan Province, Xinyang, 464000, China
| | - Wei Zhou
- College of Life Sciences, Xinyang Normal University, Tea Plant Biology Key Laboratory of Henan Province, Xinyang, 464000, China
| | - Yihan Hu
- College of Life Sciences, Xinyang Normal University, Tea Plant Biology Key Laboratory of Henan Province, Xinyang, 464000, China
| | - Yulin Li
- College of Life Sciences, Xinyang Normal University, Tea Plant Biology Key Laboratory of Henan Province, Xinyang, 464000, China
| | - Jiayi Hu
- College of Life Sciences, Xinyang Normal University, Tea Plant Biology Key Laboratory of Henan Province, Xinyang, 464000, China
| | - Lailiang Qu
- College of Medicine, Xinyang Normal University, Xinyang, 464000, China
| |
Collapse
|
29
|
Qiu YG, Yang ZH, Sun XB, Jin DJ, Zheng YM, Li J, Gu W. Synthesis and Antifungal Activity of Novel L-Menthol Hydrazide Derivatives as Potential Laccase Inhibitors. Chem Biodivers 2023; 20:e202300539. [PMID: 37317940 DOI: 10.1002/cbdv.202300539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/16/2023]
Abstract
To discover novel laccase inhibitors as potential fungicides, twenty-six novel L-menthol hydrazide derivatives were designed and synthesized. In the in vitro antifungal assay, most of the target compounds displayed pronounced antifungal activity against Sclerotinia sclerotiorum, Fusarium graminearum, and Botryosphaeria dothidea. Especially, the EC50 of compounds 3 b and 3 q against B. dothidea was 0.465 and 0.622 mg/L, which was close to the positive compound fluxapyroxad (EC50 =0.322 mg/L). Scanning electron microscopy (SEM) analysis showed that compound 3 b could significantly damage the mycelial morphology of B. dothidea. In vivo antifungal experiments on apple fruits showed that 3 b exhibited excellent protective and curative effects. Furthermore, in the in vitro laccase inhibition assay, 3 b showed outstanding inhibitory activity with the IC50 value of 2.08 μM, which is much stronger than positive control cysteine and PMDD-5Y. These results indicated that this class of L-menthol derivatives could be promising leads for the discovery of laccase-targeting fungicides.
Collapse
Affiliation(s)
- Yi-Gui Qiu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Zi-Hui Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Xue-Bao Sun
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Dao-Jun Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yi-Ming Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jia Li
- School of Foreign Languages, Nanjing Xiaozhuang University, Nanjing, 211171, China
| | - Wen Gu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
30
|
She Z, Yao Y, Wang C, Li Y, Xiong X, Liu Y. M pro-targeted anti-SARS-CoV-2 inhibitor-based drugs. JOURNAL OF CHEMICAL RESEARCH 2023; 47:17475198231184799. [PMID: 37455837 PMCID: PMC10333551 DOI: 10.1177/17475198231184799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023]
Abstract
The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 is a global health emergency. The main protease is an important drug target in coronaviruses. It plays an important role in the processing of viral RNA-translated polyproteins and is highly conserved in the amino acid sequence and three-dimensional structure, making it a good drug target for which several small molecule inhibitors are available. This paper describes the various anti-severe acute respiratory syndrome coronavirus 2 inhibitor drugs targeting Mpro discovered since the severe acute respiratory syndrome coronavirus 2 outbreak at the end of 2019, with all these compounds inhibiting severe acute respiratory syndrome coronavirus 2 Mpro activity in vitro. This provides a reference for the development of severe acute respiratory syndrome coronavirus 2 Mpro-targeted inhibitors and the design of therapeutic approaches to address newly emerged severe acute respiratory syndrome coronavirus 2 mutant strains with immune evasion capabilities.
Collapse
Affiliation(s)
- Zhuxin She
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, P.R. China
| | - Yinuo Yao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, P.R. China
| | - Conglong Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, P.R. China
| | - Yi Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, P.R. China
| | - Xiaohui Xiong
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, P.R. China
| | - Yuanyuan Liu
- School of Pharmaceutical and Chemical Engineering, ChengXian College, Southeast University, Nanjing, P.R. China
| |
Collapse
|
31
|
Sun XB, Yang ZH, Jin DJ, Qiu YG, Gu W. Design, synthesis and antifungal evaluation of novel nopol derivatives as potent laccase inhibitors. PEST MANAGEMENT SCIENCE 2023; 79:2469-2481. [PMID: 36827223 DOI: 10.1002/ps.7426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/20/2023] [Accepted: 02/24/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND To explore further potential natural product-based antifungal agents, a series of novel nopol-based carboxamide and hydrazide derivatives containing a natural pinene structure were designed, synthesized, and evaluated for their inhibitory activities against seven phytopathogenic fungi and oomycetes. RESULTS The bioassay results indicated that some compounds exhibited good inhibitory activities against Gibberella zeae, Sclerotinia sclerotiorum, and Phytophthora capsici. Among them, compound 3h displayed excellent in vitro activities against G. zeae, with EC50 values of 1.09 mg L-1 , which was comparable with the commercial fungicides bixafen and carbendazim (median effective concentration [EC50 ] = 1.21 and 0.89 mg L-1 , respectively). Notably, in vivo bioassay results suggested that compound 3h also showed prominent protective and curative effects (95.6% and 94.2%) at 200 mg L-1 against G. zeae. The scanning electron microscopy study indicated that compound 3h could destroy the morphological integrity of G. zeae hyphae. The in vitro enzyme inhibitory bioassay revealed that compound 3h exhibited potent inhibitory activity against laccase with median inhibitory concentration (IC50 ) values of 4.93 μm, superior to positive control cysteine (IC50 = 35.50 μm), and its binding modes with laccase were elucidated by molecular docking study. In addition, the fluorescent imaging of the dansylamide-labeled derivatives 8 on wheat leaf epidermal cells and the hyphae of G. zeae revealed that this class of hydrazide derivatives could readily permeate into wheat leaves and reached the laccase target in fungal cells. CONCLUSION Some nopol-based hydrazide derivatives exhibited excellent anti-G. zeae activity and laccase inhibitory activity, which merits further development as a new fungicide candidate for controlling Fusarium head blight. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xue-Bao Sun
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Zi-Hui Yang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Dao-Jun Jin
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Yi-Gui Qiu
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Wen Gu
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
32
|
Liu F, Cao X, Zhang T, Xing L, Sun Z, Zeng W, Xin H, Xue W. Synthesis and Biological Activity of Myricetin Derivatives Containing Pyrazole Piperazine Amide. Int J Mol Sci 2023; 24:10442. [PMID: 37445627 DOI: 10.3390/ijms241310442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023] Open
Abstract
In this paper, a series of derivatives were synthesized by introducing the pharmacophore pyrazole ring and piperazine ring into the structure of the natural product myricetin through an amide bond. The structures were determined using carbon spectrum and hydrogen spectrum high-resolution mass spectrometry. Biological activities of those compounds against bacteria, including Xac (Xanthomonas axonopodis pv. Citri), Psa (Pseudomonas syringae pv. Actinidiae) and Xoo (Xanthomonas oryzae pv. Oryzae) were tested. Notably, D6 exhibited significant bioactivity against Xoo with an EC50 value of 18.8 μg/mL, which was higher than the control drugs thiadiazole-copper (EC50 = 52.9 μg/mL) and bismerthiazol (EC50 = 69.1 μg/mL). Furthermore, the target compounds were assessed for their antifungal activity against ten plant pathogenic fungi. Among them, D1 displayed excellent inhibitory activity against Phomopsis sp. with an EC50 value of 16.9 μg/mL, outperforming the control agents azoxystrobin (EC50 = 50.7 μg/mL) and fluopyram (EC50 = 71.8 μg/mL). In vitro tests demonstrated that D1 possessed curative (60.6%) and protective (74.9%) effects on postharvest kiwifruit. To investigate the active mechanism of D1, its impact on SDH activity was evaluated based on its structural features and further confirmed through molecular docking. Subsequently, the malondialdehyde content of D1-treated fungi was measured, revealing that D1 could increase malondialdehyde levels, thereby causing damage to the cell membrane. Additionally, the EC50 value of D16 on P. capsici was 11.3 μg/mL, which was superior to the control drug azoxystrobin (EC50 = 35.1 μg/mL), and the scanning electron microscopy results indicated that the surface of drug-treated mycelium was ruffled, and growth was significantly affected.
Collapse
Affiliation(s)
- Fang Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiao Cao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Tao Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Li Xing
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhiling Sun
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Wei Zeng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Hui Xin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Wei Xue
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
33
|
Chai JQ, Mei YD, Tai L, Wang XB, Chen M, Kong XY, Lu AM, Li GH, Yang CL. Potential Succinate Dehydrogenase Inhibitors Bearing a Novel Pyrazole-4-sulfonohydrazide Scaffold: Molecular Design, Antifungal Evaluation, and Action Mechanism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37294885 DOI: 10.1021/acs.jafc.3c00126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Aiming to develop novel antifungal agents with a distinctive molecular scaffold targeting succinate dehydrogenase (SDH), 24 N'-phenyl-1H-pyrazole-4-sulfonohydrazide derivatives were first devised, synthesized, and verified by 1H NMR, 13C NMR, high-resolution mass spectrometry (HRMS), and single-crystal X-ray diffraction analysis. The bioassays revealed that the target compounds possessed highly efficient and broad-spectrum antifungal activities against four tested plant pathogenic fungi Rhizoctonia solani (R. solani), Botrytis cinerea, Fusarium graminearum, and Alternaria sonali. Strikingly, compound B6 was assessed as the selective inhibitor against R. solani, with an in vitro EC50 value (0.23 μg/mL) that was similar to that of thifluzamide (0.20 μg/mL). The in vivo preventative effect of compound B6 (75.76%) at 200 μg/mL against R. solani was roughly comparable to thifluzamide (84.31%) under the same conditions. The exploration of morphological observations indicated that compound B6 could strongly damage the mycelium morphology, obviously increase the permeability of the cell membrane, and dramatically increase the number of mitochondria. Compound B6 also significantly inhibited SDH enzyme activity with an IC50 value of 0.28 μg/mL, and its fluorescence quenching dynamic curves were similar to that of thifluzamide. Molecular docking and molecular dynamics simulations demonstrated that compound B6 could strongly interact with similar residues around the SDH active pocket as thifluzamide. The present study revealed that the novel N'-phenyl-1H-pyrazole pyrazole-4-sulfonohydrazide derivatives are worthy of being further investigated as the promising replacements of traditional carboxamide derivatives targeting SDH of fungi.
Collapse
Affiliation(s)
- Jian-Qi Chai
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu-Dong Mei
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Nanjing Zhuoran Inspection Limited Corporation, Nanjing 210095, China
| | - Lang Tai
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiao-Bin Wang
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing 210095, China
- College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Min Chen
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiang-Yi Kong
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ai-Min Lu
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Guo-Hua Li
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Chun-Long Yang
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
34
|
Qiao Y, Zhang AP, Ma LY, Zhang N, Liu J, Yang H. An ABCG-type transporter intensifies ametryn catabolism by Phase III reaction mechanism in rice. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131804. [PMID: 37302187 DOI: 10.1016/j.jhazmat.2023.131804] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Pesticide residues in food crops are one of the seriously environmental contaminants that risk food safety and human health. Understanding the mechanism for pesticide catabolism is critical to develop effective biotechniques for rapid eliminating the residues in food crops. In this study we characterized a novel ABC transporter family gene ABCG52 (PDR18) in regulating rice response to pesticide ametryn (AME) widely used in the farmland. Efficient biodegradation of AME was evaluated by measuring its biotoxicity, accumulation, and metabolites in rice plants. OsPDR18 was localized to the plasma membrane and strongly induced under AME exposure. Transgenic rice overexpressing OsPDR18 (OE) conferred rice resistance and detoxification to AME by increasing chlorophyll contents, improving growth phenotypes, and reducing AME accumulation in plants. The AME concentrations in OE plants were only 71.8-78.1% (shoots) and 75.0-83.3% (roots) of the wild type. Mutation of OsPDR18 by CRISPR/Cas9 protocol led to the compromised growth and enhanced AME accumulation in rice. Five AME metabolites for Phase I and 13 conjugates for Phase II reactions in rice were characterized by HPLC/Q-TOF-HRMS/MS. Relative content analysis revealed that the AME metabolic products in OE plants were significantly reduced compared with wild-type. Importantly, the OE plants accumulated less AME metabolites and conjugates in rice grains, suggesting that OsPDR18 expression may actively facilitate the transport of AME for catabolism. These data unveil a AME catabolic mechanism by which OsPDR18 contributes to the AME detoxification and degradation in rice crops.
Collapse
Affiliation(s)
- Yuxin Qiao
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ai Ping Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Li Ya Ma
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Nan Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Jintong Liu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Hong Yang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
35
|
Zhou C, Sun X, Fu W, Li Z, Cheng J, Maienfisch P. Rational Exploration of Novel SDHI Fungicide through an Amide-β-ketonitrile Bioisosteric Replacement Strategy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5483-5495. [PMID: 36975160 DOI: 10.1021/acs.jafc.2c08606] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The identification of succinate dehydrogenase inhibitor (SDHI) fungicides bearing a novel scaffold is of great importance to control pathogenic fungi. Difluoromethyl-pyrazole β-ketonitrile derivatives were rationally designed through an innovative amide-β-ketonitrile bioisosteric replacement strategy and evaluated for their antifungal activities. In preliminary fungicidal screening, our new β-ketonitrile compounds showed outstanding in vitro activity. Compounds A7 and A14 exhibited EC50 values of 0.116 and 0.165 μg/mL against Sclerotinia sclerotiorum, respectively, and A14 also displayed an EC50 of 0.0774 μg/mL against Rhizoctonia solani. Furthermore, A14 exhibited moderate in vivo protective activity against rice sheath blight on rice plants. Results from SDH enzymatic assays demonstrated that A14 possesses significant inhibitory effect toward porcine heart SDH, with an IC50 value of 0.183 μM, which was 20-fold more potent than that of fluxapyroxad (IC50 = 3.76 μM). A docking study indicated that H-bonds, cation-π interactions, and edge-to-face π-π interactions play key roles in the binding of A14 with R. solani SDH. The CoMSIA model guided the approach to further structural optimizations and indicated that hydrophobic and steric substituents on the benzene ring have decisive effects on the fungicidal activity against R. solani. The present work describes for the first time the successful bioisosteric replacement of the common SDHI amide moiety by a β-ketonitrile group and highlights the potential of β-ketonitriles as an innovative novel SDHI subclass.
Collapse
Affiliation(s)
- Cong Zhou
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xujuan Sun
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wen Fu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Peter Maienfisch
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- CreInSol MCB, Aegertenstrasse 21, Rodersdorf CH-4118, Switzerland
| |
Collapse
|
36
|
Makvandi P, Song H, Yiu CKY, Sartorius R, Zare EN, Rabiee N, Wu WX, Paiva-Santos AC, Wang XD, Yu CZ, Tay FR. Bioengineered materials with selective antimicrobial toxicity in biomedicine. Mil Med Res 2023; 10:8. [PMID: 36829246 PMCID: PMC9951506 DOI: 10.1186/s40779-023-00443-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/31/2023] [Indexed: 02/26/2023] Open
Abstract
Fungi and bacteria afflict humans with innumerous pathogen-related infections and ailments. Most of the commonly employed microbicidal agents target commensal and pathogenic microorganisms without discrimination. To distinguish and fight the pathogenic species out of the microflora, novel antimicrobials have been developed that selectively target specific bacteria and fungi. The cell wall features and antimicrobial mechanisms that these microorganisms involved in are highlighted in the present review. This is followed by reviewing the design of antimicrobials that selectively combat a specific community of microbes including Gram-positive and Gram-negative bacterial strains as well as fungi. Finally, recent advances in the antimicrobial immunomodulation strategy that enables treating microorganism infections with high specificity are reviewed. These basic tenets will enable the avid reader to design novel approaches and compounds for antibacterial and antifungal applications.
Collapse
Affiliation(s)
- Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interfaces, Pontedera, 56025, Italy. .,The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, Zhejiang, China.
| | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Cynthia K Y Yiu
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong SAR, China
| | - Rossella Sartorius
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), 80131, Naples, Italy
| | | | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia.,Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, 6150, Australia
| | - Wei-Xi Wu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal.,REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Xiang-Dong Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Cheng-Zhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.,School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
37
|
Jiang W, Zhang T, Wang J, Cheng W, Lu T, Yan Y, Tang X. Design, Synthesis, Inhibitory Activity, and Molecular Modeling of Novel Pyrazole-Furan/Thiophene Carboxamide Hybrids as Potential Fungicides Targeting Succinate Dehydrogenase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:729-738. [PMID: 36562616 DOI: 10.1021/acs.jafc.2c05054] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
To discover new fungicides targeting succinate dehydrogenase (SDH), 36 new furan/thiophene carboxamides containing 4,5-dihydropyrazole rings were designed, synthesized, and characterized. The crystal structure of compound 5l was determined with the X-ray diffraction (XRD) of single crystals. The antifungal activity of these compounds was studied against Botrytis cinerea, Pyricularia oryzae, Erysiphe graminis, Physalospora piricola, and Penicillium digitatum. Bioassay results were that most compounds had obvious inhibitory activity at 20 μg/mL. Compounds 5j, 5k, and 5l possessed outstanding inhibitory activity against B. cinerea. Their EC50 values were 0.540, 0.676, and 0.392 μg/mL, respectively. They owned better effects than fluxapyroxad (EC50 = 0.791 μg/mL). In the meantime, the inhibitory activity of 16 compounds was evaluated against SDH. It turned out that these compounds displayed excellent activity. The IC50 values of compounds 5j, 5k, and 5l reached 0.738, 0.873, and 0.506 μg/mL, respectively, whereas the IC50 value of fluxapyroxad was 1.031 μg/mL. The results of molecular dynamics (MD) simulation showed that compound 5l possessed a stronger affinity to SDH than fluxapyroxad.
Collapse
Affiliation(s)
- Wenjing Jiang
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, P. R. China
| | - Tingting Zhang
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, P. R. China
| | - Jingwen Wang
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, P. R. China
| | - Wei Cheng
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, P. R. China
| | - Tong Lu
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, P. R. China
| | - Yingkun Yan
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, P. R. China
| | - Xiaorong Tang
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, P. R. China
| |
Collapse
|
38
|
Li M, Xia D, Wang Y, Cheng X, Gong J, Chen Y, Lü X. Design, Synthesis and Antifungal Bioactivity Evaluation of Thiazole Benzoate Derivatives. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202206030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
39
|
Yang Z, Sun X, Jin D, Qiu Y, Wang S, Gu W. Synthesis and antifungal/anti-oomycete activity of novel camphor-based sulfonate derivatives as potential SDH inhibitors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
40
|
Huang YH, Wei G, Liu Z, Lu Q, Jiang JJ, Zhu XL, Yang GF. Discovery of N-Methoxy-(biphenyl-ethyl)-pyrazole-carboxamides as Novel Succinate Dehydrogenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14480-14487. [PMID: 36321207 DOI: 10.1021/acs.jafc.2c04770] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Succinate dehydrogenase (SDH) inhibitor is one of the research hotspots for the development of fungicides. Herein, we describe the design and synthesis of N-methoxy-(biphenyl-ethyl)-pyrazole-carboxamide derivatives with enhanced fungicidal activity by employing fragment combination strategy. The SDH enzymatic activity was evaluated for 24 title compounds, and compound 7s was identified as the highest activity against porcine SDH with an IC50 value of 0.014 μM, 205-fold greater than that of fluxapyroxad. Furthermore, the greenhouse experiments showed that compound 7u exhibited potent fungicidal activity against wheat powdery mildew with an EC50 value of 0.633 mg/L, higher activity than fluxapyroxad and benzovindiflupyr. The computational results showed that the fluorine atom substituted on the pyrazole ring formed an extra dipolar-dipolar interaction with C_S42 and then increased the van der Waals interaction between the compound and SDH. The structural and mechanistic insights obtained from the present work will provide a valuable clue to developing novel SDH inhibitors.
Collapse
Affiliation(s)
- Yuan-Hui Huang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Ge Wei
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Zheng Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Qiang Lu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Jia-Jia Jiang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Xiao-Lei Zhu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, People's Republic of China
| |
Collapse
|
41
|
Molecular engineering and activity improvement of acetylcholinesterase inhibitors: Insights from 3D-QSAR, docking, and molecular dynamics simulation studies. J Mol Graph Model 2022; 116:108239. [PMID: 35696774 DOI: 10.1016/j.jmgm.2022.108239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/10/2022] [Accepted: 05/27/2022] [Indexed: 12/14/2022]
Abstract
The carbamate molecule rivastigmine was found to possess promising anti-acetylcholinesterase activity, enabling to target and occupy choline binding sites, and as a result, widely used to improve the treatment of Alzheimer's disease (AD). Higher dose of rivastigmine indicates rapid onset but more adverse effects, such as the large fluctuations in plasma concentration level and frequent incidence of gastrointestinal side effect. To solve the dilemma, we developed a three-dimensional quantitative structure-activity relationship (3D-QSAR), docking and molecular dynamics (MD) simulation strategy to construct a dismountable nanoplatform of inhibitor engineering, verification and application for improving the inhibitory activity per unit concentration. With the aid of 3D-QSAR method, we constructed a model by using 25 molecules reported, and verified well the rationality of these QSAR models by non-cross validation coefficient (r2 = 0.902). Docking and MD results show that rivastigmine, as a control, does target exactly the binding sites of acetylcholinesterase, those already observed experimentally, in turn, confirming the reliability of the present 3D-QSAR results. The method suggests that groups with electron-donating chemical property can improve the inhibitory activity, and screens out two novel inhibitors L-1 and L-2 with more activity from database (about 8000 compounds). Moreover, L-1 and L-2 not only target exactly the same binding sites of acetylcholinesterase as the rivastigmine does, but also hold stronger binding energy, showing a more powerful inhibitory ability. More broadly, this work showcases an approach in the engineering of carbamate inhibitors to enhance their inhibitory activity using electron-donating groups, which simplifies the design process of complex bioactive molecules.
Collapse
|
42
|
Wang X, Chai J, Gu Y, Zhang D, Meng F, Si X, Yang C, Xue W. Expedient Discovery for Novel Antifungal Leads Inhibiting Fusarium graminearum: 3-(Phenylamino)quinazolin-4(3 H)-ones Deriving from Systematic Optimizations on a Tryptanthrin Structure. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13165-13175. [PMID: 36194787 DOI: 10.1021/acs.jafc.2c04933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The ever-increasing resistance of Fusarium graminearum has emerged as a pressing agricultural issue that could be settled by developing novel fungicides owning inimitable action mechanisms. With the aim of discovering novel antifungal leads inhibiting F. graminearum, a tryptanthrin structure was dexterously optimized to generate 30 novel quinazolin-4(3H)-one derivatives. The aforementioned optimization generated the molecule C17 that owned exhilarating in vitro anti-F. graminearum effect (EC50 value = 0.76 μg/mL). Whereafter, the in vivo anti-F. graminearum preventative efficacy of the molecule C17 was measured to be 59.5% at 200 μg/mL, which was approximately comparable with that of carbendazim (64.9%). Furthermore, morphological observations indicated that the molecule C17 could cause the hypha to become slender and dense, distort the outline of cell walls, induce an increase in liposome numbers, and cause the reduction of mitochondria numbers. The above results have emerged as an obbligato complement for developing novel antifungal leads that could effectively control Fusarium head blight.
Collapse
Affiliation(s)
- Xiaobin Wang
- College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jianqi Chai
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yifei Gu
- College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Di Zhang
- College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Fei Meng
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinxin Si
- College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Chunlong Yang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Xue
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
43
|
Synthesis and Anti‐Fungal/Oomycete Activity of Novel Sulfonamide Derivatives Containing Camphor Scaffold. Chem Biodivers 2022; 19:e202200608. [DOI: 10.1002/cbdv.202200608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/25/2022] [Indexed: 11/07/2022]
|
44
|
Lei ZW, Yao J, Liu H, Ma C, Yang W. Synthesis and Bioactivity of Novel Sulfonate Scaffold-Containing Pyrazolecarbamide Derivatives as Antifungal and Antiviral Agents. Front Chem 2022; 10:928842. [PMID: 35815220 PMCID: PMC9257181 DOI: 10.3389/fchem.2022.928842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/13/2022] [Indexed: 12/02/2022] Open
Abstract
Novel pyrazolecarbamide derivatives bearing a sulfonate fragment were synthesized to identify potential antifungal and antiviral agents. All the structures of the key intermediates and target compounds were confirmed by nuclear magnetic resonance (NMR) and high-resolution mass spectrometry (HRMS). The single-crystal X-ray diffraction of the compound T22 showed that pyrazole carbamide is a sulfonate. The in vitro antifungal activities of the target compounds against Colletotrichum camelliae, Pestalotiopsis theae, Gibberella zeae, and Rhizoctonia solani were evaluated at 50 μg/ml. Among the four pathogens, the target compounds exhibited the highest antifungal activity against Rhizoctonia solani. The compound T24 (EC50 = 0.45 mg/L) had higher antifungal activity than the commercial fungicide hymexazol (EC50 = 10.49 mg/L) against R. solani, almost similar to bixafen (EC50 = 0.25 mg/L). Additionally, the target compounds exhibited protective effects in vivo against TMV. Thus, this study reveals that pyrazolecarbamide derivatives bearing a sulfonate fragment exhibit potential antifungal and antiviral activities.
Collapse
Affiliation(s)
- Zhi-Wei Lei
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, China
- *Correspondence: Zhi-Wei Lei,
| | - Jianmei Yao
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Huifang Liu
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Chiyu Ma
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Wen Yang
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, China
| |
Collapse
|
45
|
Ebenezer O, Shapi M, Tuszynski JA. A Review of the Recent Development in the Synthesis and Biological Evaluations of Pyrazole Derivatives. Biomedicines 2022; 10:biomedicines10051124. [PMID: 35625859 PMCID: PMC9139179 DOI: 10.3390/biomedicines10051124] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 12/12/2022] Open
Abstract
Pyrazoles are five-membered heterocyclic compounds that contain nitrogen. They are an important class of compounds for drug development; thus, they have attracted much attention. In the meantime, pyrazole derivatives have been synthesized as target structures and have demonstrated numerous biological activities such as antituberculosis, antimicrobial, antifungal, and anti-inflammatory. This review summarizes the results of published research on pyrazole derivatives synthesis and biological activities. The published research works on pyrazole derivatives synthesis and biological activities between January 2018 and December 2021 were retrieved from the Scopus database and reviewed accordingly.
Collapse
Affiliation(s)
- Oluwakemi Ebenezer
- Department of Chemistry, Faculty of Natural Science, Mangosuthu University of Technology, Durban 4026, South Africa; (O.E.); (M.S.)
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Michael Shapi
- Department of Chemistry, Faculty of Natural Science, Mangosuthu University of Technology, Durban 4026, South Africa; (O.E.); (M.S.)
| | - Jack A. Tuszynski
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada
- Department of Mechanical and Aerospace Engineering, (DIMEAS), Politecnico di Torino, 10129 Turin, Italy
- Correspondence:
| |
Collapse
|
46
|
Yang J, Xie D, Zhang C, Zhao C, Wu Z, Xue W. Synthesis, antifungal activity and in vitro mechanism of novel 1-substituted-5-trifluoromethyl-1H-pyrazole-4-carboxamide derivatives. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
47
|
Das T, Mohapatra S, Priyadarsini Mishra N, Nayak S. Catalyst and base free aza-Michael addition reaction: Synthesis of poly-substituted 4-pyrazole based benzopyrans. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
48
|
Zhu JJ, Wang PY, Long ZQ, Xiang SZ, Zhang JR, Li ZX, Wu YY, Shao WB, Zhou X, Liu LW, Yang S. Design, Synthesis, and Biological Profiles of Novel 1,3,4-Oxadiazole-2-carbohydrazides with Molecular Diversity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2825-2838. [PMID: 35201749 DOI: 10.1021/acs.jafc.1c07190] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
To unceasingly expand the molecular diversity of 1,3,4-oxadiazole-2-carbohydrazides, herein, small fragments (including -CH2-, -OCH2-, and -SCH2-) were incorporated into the target compounds to screen out the potential succinate dehydrogenase inhibitors (SDHIs). The bioassay results showed that the antifungal effects (expressed by EC50) against Sclerotinia sclerotiorum, Botryosphaeria dothidea, Fusarium oxysporum, and Colletotrichun higginsianum could reach 1.29 (10a), 0.63 (8h), 1.50 (10i), and 2.09 (10i) μg/mL, respectively, which were slightly lower than those of carbendazim (EC50 were 0.69, 0.13, 0.55, and 0.80 μg/mL, respectively). Especially, compound 10h was extremely bioactive against Gibberella zeae (G. z.) with an EC50 value of 0.45 μg/mL. This outcome was better than that of fluopyram (3.76 μg/mL) and was similar to prochloraz (0.47 μg/mL). In vivo trials against the corn scab (infected by G. z.) showed that compound 10h had control activity of 86.8% at 200 μg/mL, which was better than that of boscalid (79.6%). Further investigations found that compound 10h could inhibit the enzymatic activity of SDH in the G. z. strain with an IC50 value of 3.67 μM, indicating that potential SDHIs might be developed. Additionally, the other biological activities of these molecules were screened simultaneously. The anti-oomycete activity toward Phytophthora infestans afforded a minimal EC50 value of 3.22 μg/mL (10h); compound 4d could strongly suppress the growth of bacterial strains Xanthomonas axonopodis pv. citri and Xanthomonas oryzae pv. oryzae with EC50 values of 3.79 and 11.4 μg/mL, respectively; and compound 10a displayed some insecticidal activity toward Plutella xylostella. Given their multipurpose features, these frameworks could be actively studied as potential pesticide leads.
Collapse
Affiliation(s)
- Jian-Jun Zhu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Pei-Yi Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhou-Qing Long
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Shu-Zhen Xiang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jun-Rong Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhen-Xing Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yuan-Yuan Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Wu-Bin Shao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiang Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Li-Wei Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
49
|
Luo B, Ning Y. Comprehensive Overview of Carboxamide Derivatives as Succinate Dehydrogenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:957-975. [PMID: 35041423 DOI: 10.1021/acs.jafc.1c06654] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Up to now, a total of 24 succinate dehydrogenase inhibitors (SDHIs) fungicides have been commercialized, and SDHIs fungicides were also one of the most active fungicides developed in recent years. Carboxamide derivatives represented an important class of SDHIs with broad spectrum of antifungal activities. In this review, the development of carboxamide derivatives as SDHIs with great significances were summarized. In addition, the structure-activity relationships (SARs) of antifungal activities of carboxamide derivatives as SDHIs was also summarized based on the analysis of the structures of the commercial SDHIs and lead compounds. Moreover, the cause of resistance of SDHIs and some solutions were also introduced. Finally, the development trend of SDHIs fungicides was prospected. We hope this review will give a guide for the development of novel SDHIs fungicides in the future.
Collapse
Affiliation(s)
- Bo Luo
- College of Life Sciences, Xinyang Normal University, Tea Plant Biology Key Laboratory of Henan Province, Xinyang 464000, China
| | - Yuli Ning
- College of Life Sciences, Xinyang Normal University, Tea Plant Biology Key Laboratory of Henan Province, Xinyang 464000, China
| |
Collapse
|
50
|
Novel 4,5-dihydro-1H-pyrazole derivatives as potential succinate dehydrogenase inhibitors: design, synthesis, crystal structure, biological activity and molecular modeling. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131537] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|