1
|
Shahid M, Singh UB, Farah MA, Al-Anazi KM. Short-term responses of identified soil beneficial-bacteria to the insecticide fipronil: toxicological impacts. World J Microbiol Biotechnol 2024; 40:403. [PMID: 39627469 DOI: 10.1007/s11274-024-04203-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/13/2024] [Indexed: 12/15/2024]
Abstract
Pesticides including insecticides are often applied to prevent distortion posed by plant insect pests. However, the application of these chemicals detrimentally affected the non-target organisms including soil biota. Fipronil (FIP), a broad-spectrum insecticide, is extensively used to control pests across the globe. The frequent usage calls for attention regarding risk assessment of undesirable effects on non-target microorganisms. Here, laboratory-based experiments were conducted to assess the effect of FIP on plant-beneficial bacteria (PBB); Rhizobium leguminosarum (Acc. No. PQ578652), Azotobacter salinestris (Acc. No. PQ578649) and Serratia marcescens (Acc. No. PQ578651). PBB synthesized growth regulating substances were negatively affected by increasing fipronil concentrations. For instance, at 100 µg FIPmL-1, a decrease in indole-3-acetic acid (IAA) synthesis by bacterial strains followed the order: A. salinestris (95.6%) S. marcescens (91.6%) > R. leguminosarum (87%). Also, exposure of bacteria cells to FIP hindered the growth and morphology of PBB observed as distortion, cracking, and aberrant structure under scanning electron microscopy (SEM). Moreover, FIP-treated and propidium iodide (PI)-stained bacterial cells displayed an insecticide dose-dependent increase in cellular permeability as observed under a confocal laser microscope (CLSM). Colony counts (log10 CFU mL-1) and growth of A. salinestris was completely inhibited at 150 µg FIPmL-1. The surface adhering ability (biofilm formation) of PBB was also disrupted/inhibited in a FIP dose-related manner. The respiration loss due to FIP was coupled with a reduction in population size. Fipronil at 150 µgmL-1 decreased cellular respiration in A. salinestris (72%) S. marcescens (53%) and R. leguminosarum (85%). Additionally, biomarker enzymes; lactate dehydrogenase (LDH), lipid peroxidation (LPO), and oxidative stress (catalase; CAT) induced by FIP represented significant (p ≤ 0.05) toxicity towards PBB strains. Conclusively, fipronil suggests a toxic effect that emphasizes their careful monitoring in soils before application and their optimum addition in the soil-plant system. It is high time to prepare both target-specific and slow-released agrochemical formulation for crop protection with concurrent safeguarding of soils.
Collapse
Affiliation(s)
- Mohammad Shahid
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Kushmaur, Mua Nath Bhanjan, Mau, Uttar Pradesh, 275103, India.
| | - Udai B Singh
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Kushmaur, Mua Nath Bhanjan, Mau, Uttar Pradesh, 275103, India
| | - Mohammad Abul Farah
- Department of Zoology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Khalid Mashay Al-Anazi
- Department of Zoology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Huang Y, Peng X, Chen J, Shu L, Zhang M, Jin J, Jin Z, Chi YR. Discovery of Novel Chiral Indole Derivatives Containing the Oxazoline Moiety as Potential Antiviral Agents for Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6979-6987. [PMID: 38520352 DOI: 10.1021/acs.jafc.4c00119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
Potato virus Y (PVY) is an important plant virus that has spread worldwide, causing significant economic losses. To search for novel structures as potent antiviral agents, a series of chiral indole derivatives containing oxazoline moieties were designed and synthesized and their anti-PVY activities were evaluated. Biological activity tests demonstrated that many chiral compounds exhibited promising anti-PVY activities and that their absolute configurations exhibited obvious distinctions in antiviral bioactivities. Notably, compound (S)-4v displayed excellent curative and protective efficacy against PVY, with EC50 values of 328.6 and 256.1 μg/mL, respectively, which were superior to those of commercial virucide ningnanmycin (NNM, 437.4 and 397.4 μg/mL, respectively). The preliminary antiviral mechanism was investigated to determine the difference in antiviral activity between the two enantiomers of 4v chiral compounds. Molecular docking indicated a stronger binding affinity between the coating proteins of PVY (PVY-CP) and (S)-4v (-6.5 kcal/mol) compared to (R)-4v (-6.2 kcal/mol). Additionally, compound (S)-4v can increase the chlorophyll content and defense-related enzyme activities more effectively than its enantiomer. Therefore, this study provides an important basis for the development of chiral indole derivatives containing oxazoline moieties as novel agricultural chemicals.
Collapse
Affiliation(s)
- Yixian Huang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Xiaolin Peng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Jinli Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Liangzhen Shu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Meng Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Jiamiao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Zhichao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Yonggui Robin Chi
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
3
|
Yang C, Li H, Liang H, Huang B, Sun Y, Yang W, Wu Y, Cui Y, Hai J, Dong Z. Stereoselectivity of paclobutrazol enantiomers to oxidative stress in wheat. Chirality 2024; 36:e23638. [PMID: 38384151 DOI: 10.1002/chir.23638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 02/23/2024]
Abstract
Chiral pesticides have the special chiral structures, so enantioselective biological effects are usually observed in living organisms. Current study used paclobutrazol as a case study and explored the enantioselective degradation and oxidative stress effect on wheat. The results demonstrated that the degradation of R-paclobutrazol was faster than S-paclobutrazol significantly and improved the content of MDA and O2 - in wheat plants, which proved that the R-paclobutrazol induced oxidative damage in wheat, showing selective biological effects, and S-paclobutrazol was friendly to wheat. This study provided a theoretical basis for the selective activity of chiral pesticides and the development of chiral pesticide monomers.
Collapse
Affiliation(s)
- Chao Yang
- College of Agronomy, Northwest A&F University, Xianyang, Shaanxi Province, People's Republic of China
| | - Hao Li
- College of Agronomy, Northwest A&F University, Xianyang, Shaanxi Province, People's Republic of China
| | - Huajun Liang
- Maanshan Agricultural and Rural Bureau, Xianyang, Shaanxi Province, People's Republic of China
| | - Bo Huang
- College of Agronomy, Northwest A&F University, Xianyang, Shaanxi Province, People's Republic of China
| | - Yitao Sun
- College of Agronomy, Northwest A&F University, Xianyang, Shaanxi Province, People's Republic of China
| | - Wenlong Yang
- College of Agronomy, Northwest A&F University, Xianyang, Shaanxi Province, People's Republic of China
| | - Yilun Wu
- College of Agronomy, Northwest A&F University, Xianyang, Shaanxi Province, People's Republic of China
| | - Youhe Cui
- College of Agronomy, Northwest A&F University, Xianyang, Shaanxi Province, People's Republic of China
| | - Jiangbo Hai
- College of Agronomy, Northwest A&F University, Xianyang, Shaanxi Province, People's Republic of China
| | - Zhoujia Dong
- Qinghai Tongren City Agriculture and Animal Husbandry Comprehensive Service Center, Xianyang, Shaanxi Province, People's Republic of China
| |
Collapse
|
4
|
Wang F, Li X, Jiang S, Han J, Wu J, Yan M, Yao Z. Enantioselective Behaviors of Chiral Pesticides and Enantiomeric Signatures in Foods and the Environment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12372-12389. [PMID: 37565661 DOI: 10.1021/acs.jafc.3c02564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Unreasonable application of pesticides may result in residues in the environment and foods. Chiral pesticides consist of two or more enantiomers, which may exhibit different behaviors. This Review intends to provide progress on the enantioselective residues of chiral pesticides in foods. Among the main chiral analytical methods, high performance liquid chromatography (HPLC) is the most frequently utilized. Most chiral pesticides are utilized as racemates; however, due to enantioselective dissipation, bioaccumulation, biodegradation, and chiral conversion, enantiospecific residues have been found in the environment and foods. Some chiral pesticides exhibit strong enantioselectivity, highlighting the importance of evaluation on an enantiomeric level. However, the occurrence characteristics of chiral pesticides in foods and specific enzymes or transport proteins involved in enantioselectivity needs to be further investigated. This Review could help the production of some chiral pesticides to single-enantiomer formulations, thereby reducing pesticide consumption as well as increasing food production and finally reducing human health risks.
Collapse
Affiliation(s)
- Fang Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Xiaoyun Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Shanxue Jiang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Jiajun Han
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Junxue Wu
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Meilin Yan
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
5
|
Kong Y, Si M, Wang P, Guo H, Liu X, Zhao M. Enantioselectivity effects of energy metabolism in honeybees (Apis mellifera) by triticonazole. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162884. [PMID: 36933730 DOI: 10.1016/j.scitotenv.2023.162884] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/05/2023] [Accepted: 03/11/2023] [Indexed: 05/06/2023]
Abstract
The heavy use of agrochemicals is considered a major factor contributing to the decline in wild honeybee populations. Development of low-toxicity enantiomers of chiral fungicides is the key to reducing the potential threats to honeybees. In this study, we evaluated the enantioselective toxic effects of triticonazole (TRZ) on honeybees and its molecular mechanisms. The results showed that after long-term exposure to TRZ, the content of thoracic ATP decreased significantly, by 41 % in R-TRZ treatments and by 46 % in S-TRZ treatments. Furthermore, the transcriptomic results indicated that S-TRZ and R-TRZ significantly altered the expression of 584 genes and 332 genes, respectively. Pathway analysis indicated that R- and S-TRZ could affect different genes expressed in GO terms and metabolic pathways, especially the transport GO terms (GO: 0006810) and pathways of alanine, aspartate and glutamate metabolism, drug metabolism - cytochrome P450, and pentose phosphate. Additionally, S-TRZ had a more pronounced effect on honeybee energy metabolism, disrupting a greater number of genes involved in the TCA cycle and glycolysis/glycogenesis, exerting a stronger effect on energy metabolic pathways, including nitrogen metabolism, sulfur metabolism, and oxidative phosphorylation. In summary, we recommend reducing the proportion of S-TRZ in racemate to minimize the threat to the survival of honeybees and protect the diversity of economic insects.
Collapse
Affiliation(s)
- Yuan Kong
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Min Si
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Ping Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Haikun Guo
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Xinju Liu
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China.
| |
Collapse
|
6
|
Zhang H, Ren X, Liu T, Zhao Y, Gan Y, Zheng L. The stereoselective toxicity of dinotefuran to Daphnia magna: A systematic assessment from reproduction, behavior, oxidative stress and digestive function. CHEMOSPHERE 2023; 327:138489. [PMID: 36996914 DOI: 10.1016/j.chemosphere.2023.138489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Dinotefuran is a promising neonicotinoid insecticide with chiral structure. In the present study, the stereoselective toxicity of dinotefuran to Daphnia magna (D. magna) was studied. The present result showed that S-dinotefuran inhibited the reproduction of D. magna at 5.0 mg/L. However, both R-dinotefuran and S-dinotefuran had no genotoxicity to D. magna. Additionally, neither R-dinotefuran nor S-dinotefuran had negative influences on the motor behavior of D. magna. However, S-dinotefuran inhibited the feeding behavior of D. magna at 5.0 mg/L. Both R-dinotefuran and S-dinotefuran induced oxidative stress effect in D. magna after exposure. R-dinotefuran significantly activated the activities of superoxide dismutase (SOD) and glutathione S-transferase (GST), while S-dinotefuran showed the opposite effect. S-dinotefuran had more obvious activation effect on the acetylcholinesterase (AchE) activity and trypsin activity compared to R-dinotefuran. The transcriptome sequencing results showed that S-dinotefuran induced more DEGs in D. magna, and affected the normal function of ribosome. The DEGs were mainly related to the synthesis and metabolism of biomacromolecules, indicating the binding mode between dinotefuran enantiomer and biomacromolecules were different. Additionally, the present result indicated that the digestive enzyme activity and digestive gene expression levels in D. magna were greatly enhanced to cope with the inhibition of S-dinotefuran on the feeding.
Collapse
Affiliation(s)
- Hongyuan Zhang
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Xiangyu Ren
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao, 266101, China
| | - Tong Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao, 266101, China.
| | - Ying Zhao
- College of Resources and Environmental Engineering, Ludong University, Yantai, Shandong, 264025, China
| | - Yantai Gan
- College of Resources and Environmental Engineering, Ludong University, Yantai, Shandong, 264025, China
| | - Lei Zheng
- State Environmental Protection Key Laboratory of Dioxin Pollution, National Research Center of Environmental Analysis and Measurement, Sino-Japan Friendship Center for Environmental Protection, Beijing, 100029, China.
| |
Collapse
|
7
|
Liu R, Deng Y, Wu D, Liu Y, Wang Z, Yu S, Nie Y, Zhu W, Zhou Z, Diao J. Systemic enantioselectivity study of penthiopyrad: enantioselective bioactivity, acute toxicity, degradation and influence on tomato. PEST MANAGEMENT SCIENCE 2023; 79:2107-2116. [PMID: 36722434 DOI: 10.1002/ps.7388] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/03/2023] [Accepted: 02/01/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND In order to promote the green development of agriculture, it is important to study the enantioselective effect of chiral pesticides. The bioactivity of the chiral fungicide penthiopyrad (PEN) racemate and enantiomers against phytopathogens, toxicity to non-target organisms, effect on tomato fruit growth and maturation, and environmental fate in tomato cultivation were evaluated at an enantioselective level in this study. RESULTS The results indicated that at the same efficacy, the optically pure S-(+)-PEN could lower the dosage of racemate by 20-96%. The S-enantiomer had low toxicity to earthworms. Besides, the S-(+)-PEN did not cause significant abiotic stress to the tomato and increased fruit fresh weight and size via modulating the contents of plant hormones. However, the content of hydrogen peroxide (H2 O2 ), superoxide (O2 - ) and malondialdehyde in the R-enantiomer treatment group was significantly higher than the control group. The effect of the racemate on tomato fruit was between the enantiomers. Furthermore, compared to R-(-)-PEN and racemate, the S-enantiomer degraded more quickly in tomato fruit, leaves, and soil, reducing the danger of human exposure. CONCLUSION The S-enantiomer is highly effective and less toxic. The development of enantiomer pure S-(+)-PEN products might be an efficient and low-risk strategy. The results lay the foundation for comprehensive evaluation and proper application of PEN. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rui Liu
- Department of Applied Chemistry, China Agricultural University, Beijing, China
| | - Yue Deng
- Department of Applied Chemistry, China Agricultural University, Beijing, China
| | - Di Wu
- Beijing Plant Protection Station, Beijing, China
| | - Yuping Liu
- Department of Applied Chemistry, China Agricultural University, Beijing, China
| | - Zikang Wang
- Department of Applied Chemistry, China Agricultural University, Beijing, China
| | - Simin Yu
- Department of Applied Chemistry, China Agricultural University, Beijing, China
| | - Yufan Nie
- Department of Applied Chemistry, China Agricultural University, Beijing, China
| | - Wentao Zhu
- Department of Applied Chemistry, China Agricultural University, Beijing, China
| | - Zhiqiang Zhou
- Department of Applied Chemistry, China Agricultural University, Beijing, China
| | - Jinling Diao
- Department of Applied Chemistry, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Zhang C, Zhao C, Zheng H, Li L, Zheng Y, Wu Z. Design, Synthesis, and Study of the Dual Action Mode of Novel N-Thienyl-1,5-disubstituted-4-pyrazole Carboxamides against Nigrospora oryzae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7210-7220. [PMID: 37141153 DOI: 10.1021/acs.jafc.3c00269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Due to the single target but extensive application of commercialized succinate dehydrogenase inhibitors (SDHIs), resistance problems have gradually become apparent in recent years. To solve this problem, a series of novel N-thienyl-1,5-disubstituted-1H-4-pyrazole carboxamide derivatives were designed and synthesized in this work based on the active skeleton 5-trifluoromethyl-4-pyrazole carboxamide. The bioassay results indicated that some target compounds exhibited excellent in vitro antifungal activities against the eight phytopathogenic fungi tested. Among them, the EC50 values of T4, T6, and T9 against Nigrospora oryzae were 5.8, 1.9, and 5.5 mg/L, respectively. The in vivo protective and curative activities of 40 mg/L T6 against rice infected with N. oryzae were 81.5% and 43.0%, respectively. Further studies revealed that T6 not only significantly inhibited the growth of N. oryzae mycelia but also effectively hindered spore germination and germ tube elongation. Morphological studies using scanning electron microscopy (SEM), fluorescence microscopy (FM), and transmission electron microscopy (TEM) found that T6 could affect the mycelium membrane integrity by increasing cell membrane permeability and causing peroxidation of cellular lipids, and these results were further verified by measuring the malondialdehyde (MDA) content. The IC50 value of T6 against succinate dehydrogenase (SDH) was 7.2 mg/L, lower than that of the commercialized SDHI penthiopyrad (3.4 mg/L). Further, ATP content detection and the results after docking T6 and penthiopyrad suggested that T6 was a potential SDHI. These studies demonstrated that active compound T6 could both inhibit the activity of SDH and affect the integrity of the cell membrane at the same time via a dual action mode, which is different from the mode of action of penthiopyrad. Thus, this study provides a new idea for a strategy to delay resistance and diversify the structures of SDHIs.
Collapse
Affiliation(s)
- Chengzhi Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Cailong Zhao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Huanlin Zheng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Longju Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Ya Zheng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Zhibing Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| |
Collapse
|
9
|
Zhu M, Pang X, Wang K, Sun L, Wang Y, Hua R, Shi C, Yang X. Enantioselective effect of chiral prothioconazole on the conformation of bovine serum albumin. Int J Biol Macromol 2023; 240:124541. [PMID: 37086758 DOI: 10.1016/j.ijbiomac.2023.124541] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 04/24/2023]
Abstract
As a typical chiral triazole fungicide, the enantioselective toxicity of prothioconazole to environmental organisms is of increasing concern. Herein, the binding mechanism of chiral PTCs to BSA was investigated by multi-spectral technique and molecular docking. Fluorescence titration and fluorescence lifetime experiments fully established that quenching BSA fluorescence by chiral PTCs is static quenching and could spontaneously bind to BSA. Hydrophobic interactions dominate the binding process of chiral PTCs to BSA. Differently, although both chiral PTCs and BSA have a primary binding site, the difference in chiral isomerism leads to a stronger binding ability of S-PTC than R-PTC. Both configurations of PTC can change the conformation of BSA and induce changes in the microenvironment around its amino acid residues, and the effect of S-PTC is more significant. Overall, S-PTC exhibited a more substantial effect on BSA structure relative to R-PTC. That is, S-PTC may lead to more potent potential toxicological effects on environmental organisms. This study provides a comprehensive assessment of the environmental behavior of chiral pesticides and their potential toxicity to environmental organisms at the molecular level and provides a theoretical basis for the screening of highly effective and biologically less toxic enantiomers of chiral pesticides.
Collapse
Affiliation(s)
- Meiqing Zhu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China.
| | - Xiaohui Pang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Kangquan Wang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Long Sun
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Yi Wang
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China.
| | - Rimao Hua
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China
| | - Ce Shi
- College of Agronomy, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China
| | - Xiaofan Yang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| |
Collapse
|
10
|
An X, Pan X, Li R, Dong F, Zhu W, Xu J, Wu X, Zheng Y. Comprehensive evaluation of novel fungicide benzovindiflupyr at the enantiomeric level: Bioactivity, toxicity, mechanism, and dissipation behavior. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160535. [PMID: 36574547 DOI: 10.1016/j.scitotenv.2022.160535] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Racemates in the environment can lead to inaccurate risk assessment. To obtain the enantiomeric level information of benzovindiflupyr for accurate risk assessment, the absolute configuration of benzovindiflupyr was first confirmed, and the enantioseparation method was developed by supercritical fluid chromatography tandem mass spectrometry. The enantioselectivity for bioactivity and toxicity was investigated, and the mechanism was explored by molecular docking and detecting succinate dehydrogenase (SDH) activity and content of succinate acid. 1S,4R-(-)-benzovindiflupyr was identified as the most active against the six targeted phytopathogens, which showed higher 1.7-54.5 times than 1R,4S-(+)-benzovindiflupyr. Additionally, 1S,4R-(-)-benzovindiflupyr (LD50: 21.54 μg L-1) was 103.7 times more toxic than 1R,4S-(+)-benzovindiflupyr against Daphnia magna. 1S,4R-(-)-benzovindiflupyr had a stronger affinity for SDH and significantly inhibited SDH activity, resulting in an increase in succinate acid in the tricarboxylic acid cycle, while its downstream products, fumaric and L-malic acid were significantly reduced. Moreover, the dissipation behavior of benzovindiflupyr on three vegetables was evaluated. 1S,4R-(-)-benzovindiflupyr was preferentially degraded in tomato, but opposite in leaves. The enantioselectivity in pepper and cucumber leaves was the same as in tomato, while there was no enantioselectivity in pepper and cucumber. The study provides a basis for accurate risk assessment and the development of high-effective and low-risk fungicides.
Collapse
Affiliation(s)
- Xiaokang An
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China; Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Xinglu Pan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Runan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Wentao Zhu
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Jun Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaohu Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yongquan Zheng
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
11
|
Assessment of the Effects of Triticonazole on Soil and Human Health. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196554. [PMID: 36235091 PMCID: PMC9572687 DOI: 10.3390/molecules27196554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022]
Abstract
Triticonazole is a fungicide used to control diseases in numerous plants. The commercial product is a racemate containing (R)- and (S)-triticonazole and its residues have been found in vegetables, fruits, and drinking water. This study considered the effects of triticonazole on soil microorganisms and enzymes and human health by taking into account the enantiomeric structure when applicable. An experimental method was applied for assessing the effects of triticonazole on soil microorganisms and enzymes, and the effects of the stereoisomers on soil enzymes and human health were assessed using a computational approach. There were decreases in dehydrogenase and phosphatase activities and an increase in urease activity when barley and wheat seeds treated with various doses of triticonazole were sown in chernozem soil. At least 21 days were necessary for the enzymes to recover the activities. This was consistent with the diminution of the total number of soil microorganisms in the 14 days after sowing. Both stereoisomers were able to bind to human plasma proteins and were potentially inhibitors of human cytochromes, revealing cardiotoxicity and low endocrine disruption potential. As distinct effects, (R)-TTZ caused skin sensitization, carcinogenicity, and respiratory toxicity. There were no significant differences in the interaction energies of the stereoisomers and soil enzymes, but (S)-TTZ exposed higher interaction energies with plasma proteins and human cytochromes.
Collapse
|
12
|
Ji C, Guo D, He R, Zhao M, Fan J. Triticonazole enantiomers induced enantioselective metabolic phenotypes in Fusarium graminearum and HepG2 cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:75978-75988. [PMID: 35665887 DOI: 10.1007/s11356-022-21137-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
The management of Fusarium head blight relies heavily on triazole fungicides. Most of triazole fungicides are chiral, and their enantioselective effects on metabolic phenotypes are poorly understood. Herein, we analyzed the bioactivity of triticonazole against Fusarium graminearum, and 1H-nuclear magnetic resonance-based metabolomics was used to assess the metabolic disturbances of triticonazole enantiomers in Fusarium graminearum and human hepatocarcinoma cells. Results indicated that the bioactivity of R-triticonazole was 4.28-fold higher than its antipode since it bound stronger with fungal CYP51B and induced more abnormal metabolic processes of Fusarium graminearum, including lipid metabolism, glycolysis, and amino acid metabolism. In human hepatocarcinoma cells, pathways of "alanine, aspartic acid and glutamate metabolism" and "pyruvate metabolism" were disturbed significantly by R-triticonazole; "phenylalanine metabolism" and "taurine-hypotaurine metabolism" were abnormal in the exposure of S-triticonazole. These results suggested that R- and S-triticonazole could affect different metabolic pathways of human hepatocarcinoma cells, and the massively use of inefficient S-triticonazole should be avoided. Our data will help to better understand the enantioselectivity of chiral pesticides and provide a reference for the development of green pesticides.
Collapse
Affiliation(s)
- Chenyang Ji
- Zhejiang Provincial Key Laboratory of Pollution Exposure and Health Intervention Technology, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Dong Guo
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Rujian He
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jun Fan
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
13
|
Zheng Y, Zhang D, Sun Z, Yang Q, Liu Y, Cao T, Chen R, Dzakpasu M, Wang XC. Stereoselective degradation pathway of amide chiral herbicides and its impacts on plant and bacterial communities in integrated vertical flow constructed wetlands. BIORESOURCE TECHNOLOGY 2022; 351:126997. [PMID: 35292382 DOI: 10.1016/j.biortech.2022.126997] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
This study demonstrates the stereoselective degradation patterns and biodegradation mechanisms of metolachlor (MET) and napropamide (NAP) in integrated vertical flow constructed wetlands (IVCW). The higher interphase transferability of NAP resulted in higher degradation rates of 90.60 ± 4.09%. The enantiomeric fraction (EF) values of 0.38 ± 0.02 and 0.54 ± 0.03, respectively, recorded for the enantiomers S-MET and R-NAP, with higher herbicidal activities, demonstrated their highly selective biodegradation patterns. The antioxidant enzyme activities and fluorescence parameters of plants showed positive correlations with the degradation efficiency and enantioselectivity of MET and NAP. Adaptive regulations by plants promoted the proliferation of microbial genera like Enterobacter and unclassified_Burkholderiales, which could facilitate plant growth. Moreover, enrichment of the herbicide-degrading functional bacteria Terrimonas (5.10%), Comamonas (4.05%) Pseudoxanthomonas (4.49%) and Mycobacterium (1.42%) demonstrably promoted the preferential degradation of S-MET and R-NAP. Furthermore, the abundance of Ferruginibacter favored the use of R-NAP as carbon source to achieve co-removal of R-NAP and NO3--N.
Collapse
Affiliation(s)
- Yucong Zheng
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Dongxian Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Zhuanzhuan Sun
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Qian Yang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Ying Liu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Ting Cao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Rong Chen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Mawuli Dzakpasu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an 710055, PR China.
| | - Xiaochang C Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| |
Collapse
|
14
|
Liu R, Deng Y, Zhang W, He R, Fan J, Zhu W, Zhou Z, Diao J. Risk Assessment of the Chiral Fungicide Triticonazole: Enantioselective Effects, Toxicity, and Fate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2712-2721. [PMID: 35142511 DOI: 10.1021/acs.jafc.1c05975] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The enantioselective toxicity of triticonazole (TRZ) to non-target organisms, the effect on wheat growth and quality, and the environmental fate of TRZ were investigated systematically in this study. The acute toxicity of S-TRZ to non-target aquatic and terrestrial organisms was greater than that of rac-TRZ and R-TRZ. The S-enantiomer significantly inhibited the growth and lodging resistance of wheat. S- and R-TRZ not only reduced the grain yield but also inhibited the activities of ADP-glucose pyrophosphorylase (AGPase) and starch synthase. The results of homology modeling and molecular docking further showed that the inhibition of AGPase activity by the two enantiomers hindered the accumulation of starch. By contrast, the racemate promoted the growth and development of wheat and improved grain quality. And the half-lives of the racemate in stems, grains, leaves, and soils were shorter than those of the enantiomers. The results of risk quotient (RQ) values showed that the application of TRZ enantiomers during wheat planting would bring a higher potential dietary risk to Chinese consumers. In comprehensive consideration of these results, the application of the racemate may be safer and more reasonable at the flowering stage of wheat.
Collapse
Affiliation(s)
- Rui Liu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Yue Deng
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Weiguang Zhang
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China
| | - Rujian He
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China
| | - Jun Fan
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China
| | - Wentao Zhu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Zhiqiang Zhou
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Jinling Diao
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| |
Collapse
|