1
|
Ma Y, Liu X, Pang L, Yang H, Zhu S, Xing G, Li Y, Liu J. MnO 4--triggered wavelength-changeable and rapid-response fluorescence sensor for paper-based on-site sensing of tyrosinase activity in potato. Talanta 2024; 282:127021. [PMID: 39413716 DOI: 10.1016/j.talanta.2024.127021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
Rapid-response in situ fluorogenic reactions in aqueous solution are important for designing sensitive and stable sensing platforms. Herein, a wavelength-changeable and rapid-response (within 5 s) fluorescence sensing platform for monitoring tyrosinase (TYR) activity is constructed. The developed assay is based on TYR catalyzing the hydroxylation of mono-phenol to o-diphenol and MnO4--triggered fluorogenic between dopamine (DA) and phenol derivatives in aqueous solution. The fluorescence wavelength can be changeable from 470 to 550 nm with strong fluorescence according to different phenol derivatives. Our proposed sensor not only exhibits a good recovery for TYR in high serum concentration (20 %), but also has been successfully applied to the screening of TYR inhibitors modeled on kojic acid. Furthermore, a paper-based wavelength-changeable fluorescence sensor was developed for on-site detection of TYR activity in potatoes with high recovery, which is consistent with our previously reported method. Consequently, the proposed sensing system has broad prospects in the practical application of TYR-associated food monitoring and clinical diagnosis.
Collapse
Affiliation(s)
- Yifei Ma
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Xiaoxue Liu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Lihua Pang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Hong Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Shanshan Zhu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Guichuan Xing
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Yinhui Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry, Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Jinhua Liu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China.
| |
Collapse
|
2
|
Xu K, Tang N, Liu F, Ai Y, Ding H, Fan C, Liu G, Pu S. A mitochondrial targeted dual ratiometric near-infrared fluorescent probe based on ICT effect for the detection of SO 2 derivative and its bioimaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 317:124415. [PMID: 38733918 DOI: 10.1016/j.saa.2024.124415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/01/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
SO2 derivatives play an important role in many metabolic processes, excessive ingestion of them can lead to serious complications of various diseases. In this work, a novel dual ratiometric NIR fluorescent probe XT-CHO based on ICT effect was synthesized for detecting SO2 derivative. In the design of the probe, the α, β-unsaturated bond formed between benzopyran and coumarin was used as the reaction site for SO2, meanwhile, the extended π-conjugate system promoted maximum emission wavelength of the probe up to 708 nm. Notably, the probe exhibited high selectivity and sensitivity for detecting SO2, the limit of detection reached 2.13 nM and 58.5 nM in fluorescence spectra and UV-Vis absorption spectra, respectively. The reaction mechanism of SO2 and XT-CHO had been verified by 1H NMR, ESI-MS spectra and DFT calculation. Moreover, the probe was successfully applied in detecting endogenous and exogenous SO2 in living cells and proved possessed the mitochondrial targeted ability.
Collapse
Affiliation(s)
- Kangshuo Xu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Na Tang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Furong Liu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Yin Ai
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Haichang Ding
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China.
| | - Congbin Fan
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Gang Liu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China.
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China; Department of Ecology and Environment, Yuzhang Normal University, Nanchang 330103, PR China.
| |
Collapse
|
3
|
Ding N, Liu R, Zhang B, Yang N, Qin M, Zhang Y, Wang Z. A fluorescent nanoprobe and paper-based nanofiber platform for detection and imaging of Fe 3+ in actual samples and living cells. Talanta 2024; 271:125713. [PMID: 38310757 DOI: 10.1016/j.talanta.2024.125713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 02/06/2024]
Abstract
In this study, a novel fluorescent nanoprobe (ZIF-90@FSS) was constructed using a zeolite imidazolium ester skeleton (ZIF-90) incorporating sodium fluorescein within its porous structure. Notably, this nanoprobe exhibited regular fluorescence "off" detection performance of Fe3+ in actual samples and living cells. The concentration range of 0-150 ng/mL exhibited a lowest detection limit of 0.26 ng/mL. A nanofiber paper-based platform (VL78/ZIF-90@FSS) was further developed by coupling the prepared nanoprobe to a multi-dimensional fiber paper via CN bonds, enabling rapid visual white light colorimetric and fluorescence imaging of Fe3+ within 2 min. The constructed nanoprobe and its paper-based detection platforms demonstrated a stable recovery range in tap water, beer, and soy sauce samples during spiking-recovery assessments. The recovery rates ranged from 98.46 % to 108.24 % for the nanoprobe and from 91.75 % to 108.71 % for the nanofiber paper-based platform. Therefore, the developed nano-fluorescent sensor and paper-based nanofiber sensing platform offer a promising strategy for the visual detection of Fe3+, while also presenting novel and valuable methods to investigate the regulatory mechanisms of Fe3+ in living cells.
Collapse
Affiliation(s)
- Ning Ding
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Ruoqing Liu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Bo Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Ningru Yang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Mingwei Qin
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, 610106, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, 610106, China; National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
4
|
Qiu L, Gao M, Li J, Xu G, Wei F, Yang J, Hu Q, Cen Y. Fluorometric Assay of Tyrosinase and Atrazine Based on the Use of Carbon Dots and the Inhibition of Tyrosinase Activity. J Fluoresc 2024; 34:765-774. [PMID: 37358758 DOI: 10.1007/s10895-023-03308-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/12/2023] [Indexed: 06/27/2023]
Abstract
Sensitive and convenient strategy of tyrosinase (TYR) and its inhibitor atrazine is in pressing demand for essential research as well as pragmatic application. In this work, an exquisite label-free fluorometric assay with high sensitivity, convenience and efficiency was described for detecting TYR and the herbicide atrazine on the basis of fluorescent nitrogen-doped carbon dots (CDs). The CDs were prepared via one-pot hydrothermal reaction starting from citric acid and diethylenetriamine. TYR catalyzed the oxidation of dopamine to dopaquinone derivative which could quench the fluorescence of CDs through a fluorescence resonance energy transfer (FRET) process. Thus, a sensitive and selective quantitative evaluation of TYR can be constructed on the basis of the relationship between the fluorescence of CDs and TYR activity. Atrazine, a typical inhibitor of TYR, inhibited the catalytic activity of TYR, leading to the reduced dopaquinone and the fluorescence was retained. The strategy covered a broad linear range of 0.1-150 U/mL and 4.0-80.0 nM for TYR and atrazine respectively with a low detection limit of 0.02 U/mL and 2.4 nM/mL. It is also demonstrated that the assay can be applied to detect TYR and atrazine in spiked complex real samples, which provides infinite potential in application of disease monitoring along with environmental analysis.
Collapse
Affiliation(s)
- Lei Qiu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
- Department of Pharmacy, Jiuting hospital of Songjiang District, Shanghai, 201651, PR China
| | - Mingcong Gao
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Jiawei Li
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Guanhong Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Fangdi Wei
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Jing Yang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Qin Hu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China.
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China.
| | - Yao Cen
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China.
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China.
| |
Collapse
|
5
|
Zhang Y, Cui X, Wang X, Feng X, Cheng W, Xiong R, Huang C. Biomass-based indole derived fluorescence sensor composited with cellulose paper: Detection of picric acid in food and environment samples. Int J Biol Macromol 2023; 253:126963. [PMID: 37722642 DOI: 10.1016/j.ijbiomac.2023.126963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/26/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
Picric acid (PA) is highly water-soluble, the fact makes it stand out as the most hazardous environment pollutant. Therefore, accurate determination of PA is of great significance for human health and environmental protection. Herein, a novel indole-based fluorescent sensor (H1) with good water solubility and fluorescence stability was reported. H1 exhibited 'turn-off' fluorescence response for PA with fast reaction rate (<30 s), unique specificity and excellent selectivity and high sensitivity (limit of detection = 34 nM). Further, H1 was successfully applied to detect PA in real samples (tap water, Yangtze River, Xuanwu Lake, soil, food, fish and shrimp) with satisfactory recoveries at three spiking levels ranging from 98.0 to 112.0 %. In addition, H1 displayed high biocompatibility in mung beans and fresh blood. Moreover, aiming to attain portable analysis, H1 was composited with biomass cellulose paper (H1-FP) and integrated with smartphone for construction as a solid-state fluorescence platform to achieve fast and visual detection of PA in suit with significant stability, high sensitively and selectivity. The establishment of this sensing approach is expected to offer new insight into rapid, selective, and sensitive detection of major pollutants for food and environmental safety.
Collapse
Affiliation(s)
- Yingying Zhang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Xiaoci Cui
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Xin Wang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Xiuyuan Feng
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Weixia Cheng
- Children's Hospital of Nanjing Medical University, Nanjing, China.
| | - Ranhua Xiong
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China.
| |
Collapse
|
6
|
Novel Green Fluorescent Probe Stem From Carbon Quantum Dots for Specific Recognition of Tyrosinase in Serum and Living Cells. J Fluoresc 2023; 33:739-750. [PMID: 36515759 DOI: 10.1007/s10895-022-03101-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022]
Abstract
Tyrosinase (TYR), an important biomarker for melanoma, offered significant information early detection of melanoma and may decrease the likelihood of mortality. Therefore, this article constructed a highly sensitive and selective green fluorescent functionalized carbon quantum dots (TYR-CQDs) for tyrosinase (TYR) activity detection by one-step hydrothermal protocol utilizing catechol, citric acid and urea as precursors. The prepared TYR-CQDs illustrated excellent linear relationship and broad linear range with a low detection limit, which exhibited high accuracy and recovery in quantitative determination of TYR in human serum samples. Furthermore, the TYR-CQDs had successfully realized intracellular TYR detection owing to excellent biocompatibility, high anti-interference ability and good cellular imaging capability, suggesting the potential biomedical applications in early diagnosis of melanoma and other tyrosinase-related diseases.
Collapse
|
7
|
Fluorescent molecular probes for imaging and detection of oxidases and peroxidases in biological samples. Methods 2023; 210:20-35. [PMID: 36634727 DOI: 10.1016/j.ymeth.2023.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/06/2022] [Accepted: 01/07/2023] [Indexed: 01/11/2023] Open
Abstract
Oxidases and peroxidases are two subclasses of oxidoreductases. The abnormal expression of oxidases (such as tyrosinase, cytochrome P450 oxidases, and monoamine oxidases) and peroxidases (such as glutathione peroxidase, myeloperoxidase, and eosinophil peroxidase) is relative with some diseases. Therefore, the analysis of oxidases and peroxidases is great important for disease diagnosis and treatment. Fluorescent probes present simple protocol, high sensitivity and good stability in sensing field. Molecule fluorescent probes are constructed with chemical groups that tunes their fluorescence emission in response to binding events, chemical reactions, and the surrounding environment. A fluorescent probe is an efficient tool for visualizing the activity of enzymes in living organisms on the basis of its high specificity, sensitivity, and noninvasiveness characteristics. In this review, we focus on the sensing of oxidases and peroxidases by molecule fluorescent probes, and hope to bring new insight to wide researchers about oxidases and peroxidases in biological samples.
Collapse
|
8
|
Sun Q, Guo Y, Li X, Luo X, Qiu Y, Liu G. A tyrosinase fluorescent probe with large Stokes shift and high fluorescence enhancement for effective identification of liver cancer cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121831. [PMID: 36150261 DOI: 10.1016/j.saa.2022.121831] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Tyrosinase is widely regarded as an important biomarker for melanocytic and liver cancer. However, most currently reported tyrosinase probes have been focused on malignant melanoma study, and few tyrosinase probe have been applied for liver cancer investigation. Herein, we developed a novel probe HFC-TYR for sensitive and selective tracking of tyrosinase activity at enzyme and cellular level, and investigated its application for liver cancer diagnosis. As expected, HFC-TYR has excellent response ability for tyrosinase sensing at enzyme level, such as large Stokes shift (170 nm), high fluorescence enhancement (178-fold), low detection limit (0.12 U/mL), which indicates its potential for efficient identification of endogenous tyrosinase activity at cellular levels. Unsurprisingly, HFC-TYR is proved to be able detect endogenous tyrosinase levels in various living cells. More importantly, HFC-TYR is successfully used to distinguish HepG2 cells from other cells (SKOV3, HeLa and 293T), indicating that tyrosinase is overexpressed in HepG2 cells and HFC-TYR can specifically identify HepG2 cells at cellular level. Meanwhile, HFC-TYR is able to further monitor the endogenous tyrosinase activity in zebrafish models. Therefore, all the findings confirm that HFC-TYR has the application potential of liver cancer diagnosis.
Collapse
Affiliation(s)
- Qi Sun
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology, Key Laboratory of Novel biomass-based Environmental and Energy Materials in Petroleum and Chemical Industry and School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yun Guo
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology, Key Laboratory of Novel biomass-based Environmental and Energy Materials in Petroleum and Chemical Industry and School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Xiang Li
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology, Key Laboratory of Novel biomass-based Environmental and Energy Materials in Petroleum and Chemical Industry and School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Xiaogang Luo
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology, Key Laboratory of Novel biomass-based Environmental and Energy Materials in Petroleum and Chemical Industry and School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China; School of Materials Science and Engineering, Zhengzhou University, No.100 Science Avenue, Zhengzhou City 450001, Henan Province, China
| | - Yuan Qiu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology, Key Laboratory of Novel biomass-based Environmental and Energy Materials in Petroleum and Chemical Industry and School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Genyan Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology, Key Laboratory of Novel biomass-based Environmental and Energy Materials in Petroleum and Chemical Industry and School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| |
Collapse
|
9
|
Wang Q, Li Z, Hao Y, Zhang Y, Zhang C. Near-Infrared Fluorescence Probe with a New Recognition Moiety for Specific Detection and Imaging of Aldehyde Dehydrogenase Expecting the Identification and Isolation of Cancer Stem Cells. Anal Chem 2022; 94:17328-17333. [PMID: 36453832 DOI: 10.1021/acs.analchem.2c04801] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Aldehyde dehydrogenase (ALDH) is a vital enzyme that converts aldehyde to acetic acid during alcohol metabolism. ALDH is also a cellular marker of cancer stem cells (CSCs), which plays an important role in cancer diagnosis and prognosis assessment. Therefore, there is a need to explore convenient, selective, and sensitive methods for the detection and imaging of ALDH. Because of the low background fluorescence and high penetration, near-infrared (NIR) fluorescent probes are powerful tools for the detection of ALDH. Until now, only one NIR fluorescent probe has been reported for detecting ALDH. Hence, we synthesized a novel NIR fluorescent probe, Probe-ALDH, by linking the new specific recognition moiety 4-hydroxymethyl benzaldehyde with NIR fluorophore AXPI. Compared with the existing ALDH fluorescent probes, Probe-ALDH has excellent properties, such as a new specific recognition moiety without the substitution of benzaldehyde, a simple synthesis method, emission wavelength in the NIR region, reaction time of only 30 min, and a detection limit as low as 0.03 U·mL-1, which is better than those of the previously reported probes. The probe effectively eliminates the interference from reactive oxygen species (ROS), amino acids, and amines. More importantly, the flow cytometry results showed that Probe-ALDH has great potential applications in the identification and isolation of CSCs. Ultimately, it was successfully applied to the imaging analysis of endogenous ALDH in HepG2 cells by the addition of inhibitor disulfiram. The excellent performance of Probe-ALDH makes it a promising candidate for drug discovery, cancer diagnosis, and so forth.
Collapse
Affiliation(s)
- Qiuyue Wang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Zhao Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Yitong Hao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Yuan Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
10
|
Ding N, Li Z, Hao Y, Zhang C. Design of a New Hydrazine Moiety-Based Near-Infrared Fluorescence Probe for Detection and Imaging of Endogenous Formaldehyde In Vivo. Anal Chem 2022; 94:12120-12126. [PMID: 36005545 DOI: 10.1021/acs.analchem.2c02166] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Formaldehyde (FA), the smallest molecular aldehyde with strong reducing properties, could regulate body homeostasis endogenously during physiological and pathological processes. The effective near-infrared (NIR) fluorescent probe is needed as a visualizer of FA in biologic organisms. In this work, a novel NIR fluorescent Probe-NHNH2 was designed on the basis of Probe-NH2 via introducing a strong nucleophilic hydrazine group, which can be used as a quenching and recognizing moiety for the detection of FA. With the treatment of FA, the hydrazine group of Probe-NHNH2 undergoes condensation and achieves a turn-on NIR fluorescence signal at a wavelength of 706 nm. The spectroscopic performance of Probe-NHNH2 for FA was evaluated, and it exhibited high sensitivity and selectivity for the detection of FA in solution. Moreover, compared to the amine moiety-based Probe-NH2, which our group reported, we found that hydrazine moiety-based Probe-NHNH2, exhibited a better reaction time of within 10 min and a lower detection limit of 0.68 μM, reflecting that the reaction of FA with hydrazine moiety is faster and more sensitive than that of FA with the amino group. More importantly, Probe-NHNH2 was successfully applied to real-time imaging of endogenous FA by reacting with effective stimulant tetrahydrofolate and scavenger sodium bisulfite in zebrafish and mice. It is expected that we can provide a new rapid, sensitive NIR fluorescence theoretical basis for FA detection and in vivo imaging applications.
Collapse
Affiliation(s)
- Ning Ding
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Zhao Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Yitong Hao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
11
|
Ding N, Li Z, Hao Y, Yang X. A new amine moiety-based near-infrared fluorescence probe for detection of formaldehyde in real food samples and mice. Food Chem 2022; 384:132426. [PMID: 35202988 DOI: 10.1016/j.foodchem.2022.132426] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/12/2022] [Accepted: 02/08/2022] [Indexed: 11/04/2022]
Abstract
A new amine moiety-based near-infrared fluorescent probe (Probe-NH2) is developed for detection of formaldehyde in food samples and mice. Probe-NH2 is constructed and synthesized from the IR-780 via two-step reactions as a hemicyanine skeleton bearing an amino moiety. The response mechanism is based on Schiff base reaction that formaldehyde reacts with amine group to form the corresponding imines. Probe-NH2 for detection of formaldehyde exhibits excellent analytical performance, including near-infrared fluorescence emission at 708 nm, high selectivity and sensitivity, also provides a response time as low as 30 min with a detection limit of 1.87 μmolL-1. Notably, we constructed a simple, rapid and visual formaldehyde detection platform based on paper chips in the near-infrared region for the first time. The accurate detection of formaldehyde in real food samples is of great significance, Probe-NH2 was detected in dried beancurd sticks, endive sprout, frozen shrimp and squid, with good recoveries of 99.60%-112.72%, indicating the reliability of Probe-NH2 for spiked determination of formaldehyde in contaminated foods. More importantly, Probe-NH2 has been successfully applied to the detection of endogenous formaldehyde in mice.
Collapse
Affiliation(s)
- Ning Ding
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Zhao Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
| | - Yitong Hao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
12
|
Zeng L, Xiao X, Ye H, Ma D, Zhou J. Fast visual monitoring of the freshness of beef using a smart fluorescent sensor. Food Chem 2022; 394:133489. [PMID: 35717912 DOI: 10.1016/j.foodchem.2022.133489] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/25/2022] [Accepted: 06/13/2022] [Indexed: 11/24/2022]
Abstract
Spoiled meat contains many pathogenic bacteria; hence, the intake of spoiled food can lead to various illnesses. To screen the freshness of food, in this study, we devised a ratiometric fluorescence sensor dicyanovinyl coumarin (CMDC) for the determination of cadaverine, an important biomarker for the spoilage of meat. CMDC underwent aza-Michael addition with cadaverine, exhibiting high sensitivity, fast response (50 s), and distinct fluorescence color transition. Test strips fabricated using CMDC showed a noticeable color change from red to green when exposed to cadaverine vapor. The test strips were successfully used to visually monitor the spoilage of beef based on the fluorescence color change. Furthermore, the as-developed test strip coupled with a smartphone provides a simple tool for consumers and suppliers to obtain information about meat quality.
Collapse
Affiliation(s)
- Lintao Zeng
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China.
| | - Xiaoxue Xiao
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Huan Ye
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Dini Ma
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Jinghong Zhou
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
13
|
Meng Q, Wu M, Shang Z, Zhang Z, Zhang R. Responsive gadolinium(III) complex-based small molecule magnetic resonance imaging probes: Design, mechanism and application. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214398] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Ding Y, Yang L, Shen J, Wei Y, Wang C. A novel fluorescent off–on probe based on 4-methylumbelliferone for highly sensitive determination of tyrosinase. NEW J CHEM 2022. [DOI: 10.1039/d2nj00799a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel fluorescent probe for high-sensitivity determination of tyrosinase, with 4-methylumbelliferone as the fluorophore and 3-hydroxybenzyl as the recognition group.
Collapse
Affiliation(s)
- Yu Ding
- College of Chemistry and Materials Science, Northwest University, 1 Xue Fu Avenue, Chang’an District, Xi’an 710127, P. R. China
| | - Lihong Yang
- College of Chemistry and Materials Science, Northwest University, 1 Xue Fu Avenue, Chang’an District, Xi’an 710127, P. R. China
| | - Jiwei Shen
- College of Chemistry and Materials Science, Northwest University, 1 Xue Fu Avenue, Chang’an District, Xi’an 710127, P. R. China
| | - Yinmao Wei
- College of Chemistry and Materials Science, Northwest University, 1 Xue Fu Avenue, Chang’an District, Xi’an 710127, P. R. China
| | - Chaozhan Wang
- College of Chemistry and Materials Science, Northwest University, 1 Xue Fu Avenue, Chang’an District, Xi’an 710127, P. R. China
| |
Collapse
|
15
|
Cao XY, Pang CM, Xiao Y, Xiao WQ, Luo SH, He JP, Wang ZY. Preparation of Large Conjugated Polybenzimidazole Fluorescent Materials and Their Application in Metal Ion Detection. Polymers (Basel) 2021; 13:polym13183091. [PMID: 34577993 PMCID: PMC8472194 DOI: 10.3390/polym13183091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 01/19/2023] Open
Abstract
A new type of conjugated polybenzimidazole (CPBI) was synthesized through a simple polycondensation reaction without metal catalysis, and N-alkylation modification was carried out to solve the problems of solubility and fluorescence properties. A series of nano-microsphere polymers CPBIn with large conjugation, good solubility, and strong fluorescence has been successfully used as “turn-off” fluorescent probes for the first time. The results show that, under suitable N-alkylation conditions, the obtained CPBIn can be used as a highly sensitive and selective fluorescent probe for the detection of Cu2+ and Zn2+ at the same time, and their detection limits are both nM levels. In addition, CPBI2 can be designed as an ultra-sensitive IMPLICATION logic gate at the molecular level, cyclically detecting Cu2+. With the test paper containing CPBI2, easy and quick on-site detection can be achieved. This research provides a new idea for the brief synthesis of multifunctional materials.
Collapse
Affiliation(s)
- Xi-Ying Cao
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, China; (X.-Y.C.); (Y.X.); (W.-Q.X.); (J.-P.H.)
| | - Chu-Ming Pang
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, China; (X.-Y.C.); (Y.X.); (W.-Q.X.); (J.-P.H.)
- School of Health Medicine, Guangzhou Huashang College, Guangzhou 511300, China
- Correspondence: (C.-M.P.); (S.-H.L.); (Z.-Y.W)
| | - Ying Xiao
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, China; (X.-Y.C.); (Y.X.); (W.-Q.X.); (J.-P.H.)
| | - Wan-Qing Xiao
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, China; (X.-Y.C.); (Y.X.); (W.-Q.X.); (J.-P.H.)
| | - Shi-He Luo
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, China; (X.-Y.C.); (Y.X.); (W.-Q.X.); (J.-P.H.)
- Correspondence: (C.-M.P.); (S.-H.L.); (Z.-Y.W)
| | - Jin-Ping He
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, China; (X.-Y.C.); (Y.X.); (W.-Q.X.); (J.-P.H.)
| | - Zhao-Yang Wang
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, China; (X.-Y.C.); (Y.X.); (W.-Q.X.); (J.-P.H.)
- Correspondence: (C.-M.P.); (S.-H.L.); (Z.-Y.W)
| |
Collapse
|