1
|
Gong S, Tang J, Xiao Y, Li T, Zhang Q. The fungal effector AaAlta1 inhibits PATHOGENESIS-RELATED PROTEIN10-2-mediated callose deposition and defense responses in apple. PLANT PHYSIOLOGY 2024; 197:kiae599. [PMID: 39589911 DOI: 10.1093/plphys/kiae599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/01/2024] [Indexed: 11/28/2024]
Abstract
Apple leaf spot, caused by Alternaria alternata f. sp mali (ALT), poses a substantial threat to the global apple (Malus × domestica Borkh.) industry. Fungal effectors promote pathogen infestation and survival by interfering with plant immune responses. In our study, we investigated the secretion of effector proteins by the virulent ALT7 strain. Using mass spectrometry, we identified the effector AaAlta1, which belongs to the Alt a 1 protein family (AA1s). Further analysis confirmed that ALT7 secretes AaAlta1. AaAlta1 knockdown mutants displayed reduced pathogenicity in apple tissue culture seedlings, while overexpression strains exhibited enhanced pathogenicity compared to the wild-type ALT7 strain. Using immunoprecipitation followed by mass spectrometry, we isolated pathogenesis-related protein 10-2 (PR10-2) as an interaction partner of AaAlta1 in apple. Knockdown mutants of AaAlta1 showed increased PR10-2-mediated callose deposition in apple, a critical plant defense response. The enhanced defense responses in apple substantially reduced their susceptibility to infection by these ALT7 mutants. Our findings delineate an infection strategy whereby ALT7 secretes AaAlta1 to suppress PR10-2, thereby circumventing the apple defense system.
Collapse
Affiliation(s)
- Shun Gong
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Jinqi Tang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Yi Xiao
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Tianzhong Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Qiulei Zhang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Yu X, Liu Z, Zhang H, Wang C, Lian S, Dong X, Li B, Li P. Rapid Identification of Phytotoxins Produced by Glomerella cingulata Using High-Resolution Mass Spectrometry-Based Qualification, Targeted Structural Confirmation and Their Characteristics Investigation. J Basic Microbiol 2024:e2400195. [PMID: 39256955 DOI: 10.1002/jobm.202400195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/16/2024] [Accepted: 08/24/2024] [Indexed: 09/12/2024]
Abstract
Glomerella cingulata is a pathogenic fungus that can cause apple Glomerella leaf spot (GLS), a new and destructive apple disease in China. Phytotoxins are important factors closely related to the disease process, but there is still no report on the phytotoxins of G. cingulata. The aim of this study was to rapidly identify the phytotoxins of this pathogen using a strategy of HRMS-based preliminary qualification, followed by targeted structure confirmation and also investigation of phytotoxicity characteristics. First, the crude toxin sample was directly analyzed by the UPLC-HRMS and GC-MS, and the data were processed to screen for possible phytotoxic compounds using MS library and the phytotoxicity-related literature. The reference standards of credible phytotoxic compounds were then subjected to targeted structure validation (signal comparison between standards and compounds in crude toxin via HPLC-DAD, UPLC-MS/MS, and GC-MS), and also the phytotoxicity assay. The results confirmed six phytotoxins produced by G. cingulata, namely 5-hydroxymethyl-2-furancarboxylic acid (HMFCA), 2,5-bis(hydroxymethyl)furan (BHMF), 2-furoic acid (FA), 2,3-butanediol, trans-aconitic acid (TAA), and cis-aconitic acid (CAA). Of these, HMFCA and TAA exhibited greater phytotoxicity. Main characteristics: All of them were non-host-selective toxins, and toxins were synergistically phytotoxic to the host when mixed. BHMF, HMFCA, FA, TAA, and CAA could be commonly produced by all tested strains, and their phytotoxicity can be significantly inhibited or even eliminated at high temperatures or high pH. The elucidation of the phytotoxins of G. cingulata in this work could provide information on the pathogenesis and control of apple GLS.
Collapse
Affiliation(s)
- Xin Yu
- College of Plant Health and Medicine, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Zhiyang Liu
- College of Plant Health and Medicine, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Huidi Zhang
- College of Plant Health and Medicine, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Caixia Wang
- College of Plant Health and Medicine, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Sen Lian
- College of Plant Health and Medicine, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Xiangli Dong
- College of Plant Health and Medicine, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Baohua Li
- College of Plant Health and Medicine, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Pingliang Li
- College of Plant Health and Medicine, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Qingdao Agricultural University, Qingdao, People's Republic of China
| |
Collapse
|
3
|
Bi DW, Feng J, Pang WH, Yang PY, Xu YJ, Aurang Zeb M, Wang MR, Zhang XJ, Li XL, Zhang RH, Wang WG, Xiao WL. Three new lanostane triterpenoids and two new amides from Alternaria sp. with NLRP3 inflammasome inhibitory activity. Nat Prod Res 2024; 38:3041-3050. [PMID: 37161750 DOI: 10.1080/14786419.2023.2211215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 04/24/2023] [Accepted: 05/03/2023] [Indexed: 05/11/2023]
Abstract
Three new lanostane triterpenoids (1-3) along with two new amides fatty compounds (4-5) were isolated from the ethyl acetate extract of a culture of the endophytic fungus Alternaria sp. gx-2. Their structures were identified by 1D and 2D NMR spectral data and HRESIMS. Compounds 1-12 were evaluated for their anti-inflammatory and tyrosinase inhibition activities. The isolated compounds did not show inhibitory activities at a concentration of 100 μM against tyrosinase, while under the concentration of 10 μM, the release of lactate dehydrogenase (LDH) inhibition rate of compound 1 was 54.45%, indicating that compound 1 had moderate anti-inflammatory activity on the activation of NLRP3 inflammasome.
Collapse
Affiliation(s)
- De-Wen Bi
- Key Laboratory of Medicinal Chemistry for Natural Resource of Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology and School of Medicine, Yunnan University, Kunming, People's Republic of China
| | - Jian- Feng
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education and Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, Yunnan Minzu University, Kunming, People's Republic of China
| | - Wen-Hui Pang
- Key Laboratory of Medicinal Chemistry for Natural Resource of Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology and School of Medicine, Yunnan University, Kunming, People's Republic of China
| | - Peng-Yun Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource of Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology and School of Medicine, Yunnan University, Kunming, People's Republic of China
| | - Yao-Jun Xu
- Key Laboratory of Medicinal Chemistry for Natural Resource of Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology and School of Medicine, Yunnan University, Kunming, People's Republic of China
| | - Muhammad Aurang Zeb
- Key Laboratory of Medicinal Chemistry for Natural Resource of Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology and School of Medicine, Yunnan University, Kunming, People's Republic of China
| | - Meng-Ru Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource of Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology and School of Medicine, Yunnan University, Kunming, People's Republic of China
| | - Xing-Jie Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource of Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology and School of Medicine, Yunnan University, Kunming, People's Republic of China
| | - Xiao-Li Li
- Key Laboratory of Medicinal Chemistry for Natural Resource of Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology and School of Medicine, Yunnan University, Kunming, People's Republic of China
| | - Rui-Han Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource of Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology and School of Medicine, Yunnan University, Kunming, People's Republic of China
| | - Wei-Guang Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education and Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, Yunnan Minzu University, Kunming, People's Republic of China
| | - Wei-Lie Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource of Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology and School of Medicine, Yunnan University, Kunming, People's Republic of China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, People's Republic of China
| |
Collapse
|
4
|
Yang T, Luo Z, Wang Y, Li L, Xu Y, Lin X. Hydrogel Digital LAMP with Suppressed Nonspecific Amplification for Rapid Diagnostics of Fungal Disease in Fresh Fruits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18636-18644. [PMID: 37975529 DOI: 10.1021/acs.jafc.3c06141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Fungal disease, mainly caused by Alternaria alternata infection, can generate severe economic losses and health hazards. However, rapid nucleic acid test without nonspecific reaction still remains challenging. Here, we reported the hydrogel digital loop-mediated isothermal amplification (HdLAMP) with suppressed nonspecific amplification for rapid diagnosis of fungi in fresh fruits. The introduction of hydrogel offered a simple platform to achieve absolute quantification. By breaking the 3'end G-C anchor, the nonspecific amplification of primers could be suppressed, while the specific positive reaction in HdLAMP was not affected. This method could be applied for A. alternata detection in 9 min with excellent performances in speed, specificity, reproducibility, sensitivity, and detection limit down to a single copy. Finally, the real diseased jujubes during postharvest storage were successfully diagnosed as an A. alternata infection. HdLAMP promotes the molecular diagnosis of fungal diseases and broadens the application of hydrogels in the agricultural and food industry.
Collapse
Affiliation(s)
- Tao Yang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China
| | - Yiru Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Li Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China
| | - Yanqun Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China
| | - Xingyu Lin
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China
| |
Collapse
|
5
|
Prechsl UE, Rizzoli W, Marschall K, Jasper Wubs ER. Fungicide-free management of Alternaria leaf blotch and fruit spot on apple indicates Alternaria spp. as secondary colonizer. Sci Rep 2023; 13:8431. [PMID: 37225789 DOI: 10.1038/s41598-023-35448-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/18/2023] [Indexed: 05/26/2023] Open
Abstract
The fungal genus Alternaria is a pan-global pathogen of > 100 crops, and is associated with the globally expanding Alternaria leaf blotch in apple (Malus x domestica Borkh.) which leads to severe leaf necrosis, premature defoliation, and large economic losses. Up to date, the epidemiology of many Alternaria species is still not resolved as they can be saprophytic, parasitic or shift between both lifestyles and are also classified as primary pathogen able to infect healthy tissue. We argue that Alternaria spp. does not act as primary pathogen, but only as a necrosis-dependent opportunist. We studied the infection biology of Alternaria spp. under controlled conditions and monitored disease prevalence in real orchards and validated our ideas by applying fungicide-free treatments in 3-years field experiments. Alternaria spp. isolates were not able to induce necroses in healthy tissue, but only when prior induced damages existed. Next, leaf-applied fertilizers, without fungicidal effect, reduced Alternaria-associated symptoms (- 72.7%, SE: ± 2.5%) with the same efficacy as fungicides. Finally, low leaf magnesium, sulphur, and manganese concentrations were consistently linked with Alternaria-associated leaf blotch. Fruit spot incidence correlated positively with leaf blotch, was also reduced by fertilizer treatments, and did not expand during storage unlike other fungus-mediated diseases. Our findings suggest that Alternaria spp. may be a consequence of leaf blotch rather than its primary cause, as it appears to colonize the physiologically induced leaf blotch. Taking into account existing observations that Alternaria infection is connected to weakened hosts, the distinction may appear slight, but is of great significance, as we can now (a) explain the mechanism of how different stresses result in colonization with Alternaria spp. and (b) substitute fungicides for a basic leaf fertilizer. Therefore, our findings can result in significant decreases in environmental costs due to reduced fungicide use, especially if the same mechanism applies to other crops.
Collapse
Affiliation(s)
| | - Werner Rizzoli
- Terra Institute, Säbenertorgasse 2, 39042, Brixen, BZ, Italy
| | - Klaus Marschall
- Terra Institute, Säbenertorgasse 2, 39042, Brixen, BZ, Italy
| | - E R Jasper Wubs
- Sustainable Agroecosystems Group, Institute of Agricultural Sciences, Department of Environmental Systems Science, ETH Zürich, Universitätstrasse 2, 8092, Zurich, Switzerland
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB, Wageningen, The Netherlands
| |
Collapse
|
6
|
Mincuzzi A, Sanzani SM, Palou L, Ragni M, Ippolito A. Postharvest Rot of Pomegranate Fruit in Southern Italy: Characterization of the Main Pathogens. J Fungi (Basel) 2022; 8:jof8050475. [PMID: 35628731 PMCID: PMC9143415 DOI: 10.3390/jof8050475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/19/2022] [Accepted: 04/29/2022] [Indexed: 02/01/2023] Open
Abstract
Pomegranate (Punica granatum L.) is an emerging crop in Italy and particularly in southern regions, such as Apulia, Basilicata, and Sicily, due to favorable climatic conditions. The crop is affected by several pathogenic fungi, primarily in the field, but also during postharvest phases. The most important postharvest fungal diseases in pomegranate are gray and blue molds, black heart and black spot, anthracnose, dry rot, and various soft rots. The limited number of fungicides allowed for treatment in the field and the lack of postharvest fungicides make it difficult to control latent, quiescent, and incipient fungal infections. Symptomatic pomegranates from southern Italy were sampled and isolated fungi were morphologically and molecularly characterized. The data obtained revealed that various species of Penicillium sensu lato (including Talaromyces genus), Alternaria spp., Coniella granati, and Botrytis cinerea were the principal etiological agents of postharvest pomegranate fruit diseases; other relevant pathogens, although less represented, were ascribable to Aspergillus sect. nigri, Colletotrichum acutatum sensu stricto, and Cytospora punicae. About two thirds of the isolated pathogens were responsible for latent infections. The results obtained may be useful in planning phytosanitary control strategies from the field to storage, so as to reduce yield losses.
Collapse
Affiliation(s)
- Annamaria Mincuzzi
- Department of Soil, Plant, and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (S.M.S.); (A.I.)
- Correspondence: ; Tel.: +39-080-544-3055
| | - Simona Marianna Sanzani
- Department of Soil, Plant, and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (S.M.S.); (A.I.)
| | - Lluís Palou
- Laboratori de Patologia, Centre de Tecnologia Postcollita (CTP), Institut Valencià d’Investigacions Agràries (IVIA), Ctra. CV-315 Km 10.7, 46113 Montcada, Valencia, Spain;
| | - Marco Ragni
- Department of Agro-Environmental and Territorial Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy;
| | - Antonio Ippolito
- Department of Soil, Plant, and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (S.M.S.); (A.I.)
| |
Collapse
|