1
|
Li S, Liu M, Han Y, Liu C, Cao S, Cui Y, Zhu X, Wang Z, Liu B, Shi Y. Gut microbiota-derived gamma-aminobutyric acid improves host appetite by inhibiting satiety hormone secretion. mSystems 2024; 9:e0101524. [PMID: 39315776 PMCID: PMC11495008 DOI: 10.1128/msystems.01015-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
Globally, appetite disorders have become an increasingly prominent public health issue. While short-term appetite loss may seem relatively harmless, prolonged instances can lead to serious physical and mental damage. In recent years, numerous studies have highlighted the significant role of the "microbiota-gut-brain" axis in the regulation of feeding behavior in organisms, suggesting that targeting the gut microbiota may be a novel therapeutic strategy for appetite disorders. However, the molecular mechanisms through which the gut microbiota mediates the increase in host appetite and the causal relationship between the two remain unclear. Based on this, we conducted 16S rRNA sequencing to analyze the gut microbiota of rabbits with high and low feed intake, followed by fecal microbiota transplantation (FMT) and metabolite gavage experiments to elucidate the underlying mechanisms. Our research indicates that the high feed intake group exhibited significant enrichment of the g__Bacteroides and gamma-aminobutyric acid (GABA), and intragastric administration of GABA effectively promoted the host's feeding behavior. The underlying mechanism involves GABA derived from the gut microbiota inhibiting the secretion of satiety hormones to enhance the host's feeding behavior. Furthermore, the results of FMT suggest that differences in gut microbiota composition may be a contributing factor to varying levels of feed intake in the host. In conclusion, these findings emphasize the role of the gut microbiota-derived GABA, in increasing host feed intake, offering a new target for the treatment of appetite disorders from the perspective of gut microbiota.IMPORTANCEThe incidence of anorexia is rapidly increasing and has become a global burden. Gut microbiota can participate in the regulation of host feeding behavior, yet the molecular mechanisms through which the gut microbiota mediates the increase in host appetite and the causal relationship between them remain unclear. In this study, we utilized 16S rRNA sequencing to investigate the composition of the gut microbiota in rabbits with varying levels of feed intake and employed fecal microbiota transplantation and gastric infusion experiments with gamma-aminobutyric acid (GABA) to elucidate the potential mechanisms involved. GABA derived from the gut microbiota can effectively enhance the host's feeding behavior by inhibiting the secretion of satiety hormones. This discovery underscores the pivotal role of the gut microbiota in modulating host appetite, offering novel research avenues and therapeutic targets for appetite disorders.
Collapse
Affiliation(s)
- Shouren Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Mengqi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Yao Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Cong Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Shixi Cao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Yalei Cui
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, Henan, China
| | - Xiaoyan Zhu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, Henan, China
| | - Zhichang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, Henan, China
| | - Boshuai Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, Henan, China
| | - Yinghua Shi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Gao X, Zhu Z, Bao Y, Li Y, Zhu W, He X, Ge X, Huang W, Wang H, Wei W, Du J, Chen L, Li H, Sheng L. Chrysanthemum morifolium Ramat extract and probiotics combination ameliorates metabolic disorders through regulating gut microbiota and PPARα subcellular localization. Chin Med 2024; 19:76. [PMID: 38831430 PMCID: PMC11149226 DOI: 10.1186/s13020-024-00950-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Chrysanthemum morifolium Ramat, a traditional Chinese medicine, has the effects on liver clearing, vision improving, and anti-inflammation. C. morifolium and probiotics have been individually studied for their beneficial effects on metabolic diseases. However, the underlying molecular mechanisms were not completely elucidated. This study aims to elucidate the potential molecular mechanisms of C. morifolium and probiotics combination (CP) on alleviating nonalcoholic fatty liver disease (NAFLD) and the dysregulation of glucose metabolism in high-fat diet (HFD)-fed mice. METHODS The therapeutic effect of CP on metabolism was evaluated by liver histology and serum biochemical analysis, as well as glucose tolerance test. The impact of CP on gut microbiota was analyzed by 16S rRNA sequencing and fecal microbiota transplantation. Hepatic transcriptomic analysis was performed with the key genes and proteins validated by RT-qPCR and western blotting. In addition, whole body Pparα knockout (Pparα-/-) mice were used to confirm the CP-mediated pathway. RESULTS CP supplementation ameliorated metabolic disorders by reducing body weight and hepatic steatosis, and improving glucose intolerance and insulin resistance in HFD fed mice. CP intervention mitigated the HFD-induced gut microbiota dysbiosis, which contributed at least in part, to the beneficial effect of improving glucose metabolism. In addition, hepatic transcriptomic analysis showed that CP modulated the expression of genes associated with lipid metabolism. CP downregulated the mRNA level of lipid droplet-binding proteins, such as Cidea and Cidec in the liver, leading to more substrates for fatty acid oxidation (FAO). Meanwhile, the expression of CPT1α, the rate-limiting enzyme of FAO, was significantly increased upon CP treatment. Mechanistically, though CP didn't affect the total PPARα level, it promoted the nuclear localization of PPARα, which contributed to the reduced expression of Cidea and Cidec, and increased expression of CPT1α, leading to activated FAO. Moreover, whole body PPARα deficiency abolished the anti-NAFLD effect of CP, suggesting the importance of PPARα in CP-mediated beneficial effect. CONCLUSION This study revealed the hypoglycemic and hepatoprotective effect of CP by regulating gut microbiota composition and PPARα subcellular localization, highlighting its potential for therapeutic candidate for metabolic disorders.
Collapse
Affiliation(s)
- Xinxin Gao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhigang Zhu
- Nutrilite Health Institute, Amway (Shanghai) Innovation & Science Co, Ltd, Shanghai, 201203, China
| | - Yiyang Bao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yifan Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Weize Zhu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaofang He
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xinyu Ge
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wenjin Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hao Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wenjing Wei
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jun Du
- Nutrilite Health Institute, Amway (Shanghai) Innovation & Science Co, Ltd, Shanghai, 201203, China
| | - Liang Chen
- Nutrilite Health Institute, Amway (Shanghai) Innovation & Science Co, Ltd, Shanghai, 201203, China.
| | - Houkai Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Lili Sheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
3
|
Zhang R, Feng Y, Nie P, Wang W, Wu H, Wan X, Xu H, Fu F. Polystyrene microplastics disturb maternal glucose homeostasis and induce adverse pregnancy outcomes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116492. [PMID: 38795415 DOI: 10.1016/j.ecoenv.2024.116492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
Pregnant women are a special group that is sensitive to adverse external stimuli, causing metabolic abnormalities and adverse pregnancy outcomes. Microplastics (MPs), an environmental pollutant widely used in various fields, can induce a variety of toxic responses in mammals. Recent studies verified an association between MPs and metabolic disorders. Our research built a gestational mouse model in which polystyrene microplastics (PS-MPs) of 1 μm size were consumed at concentrations of 0.1, 1, and 10 mg/L during pregnancy. Results indicated that PS-MPs induced placental malfunction and fetal growth retardation. Significant glucose disorders, decreased liver function, hepatic inflammation, and oxidative stress were also observed after PS-MPs exposure. The hepatic SIRT1/IRS1/PI3K pathway was inhibited in the 10 mg/L PS-MPs exposure group. Our study found that PS-MPs activated inflammatory response and oxidative stress by increasing hepatic lipopolysaccharide (LPS) that inhibited the hepatic SIRT1/IRS1/PI3K pathway, ultimately leading to insulin resistance, glucose metabolism disorders, and adverse pregnancy outcomes. This study provides a basis for preventing environment-related gestational diabetes and concomitant adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Ruiying Zhang
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Yueying Feng
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Penghui Nie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Wanzhen Wang
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China
| | - Hua Wu
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Xianxian Wan
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| | - Fen Fu
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China.
| |
Collapse
|
4
|
Hu L, Feng X, Lan Y, Zhang J, Nie P, Xu H. Co-exposure with cadmium elevates the toxicity of microplastics: Trojan horse effect from the perspective of intestinal barrier. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133587. [PMID: 38280329 DOI: 10.1016/j.jhazmat.2024.133587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/04/2024] [Accepted: 01/19/2024] [Indexed: 01/29/2024]
Abstract
Microplastics (MPs) have been shown to adsorb heavy metals and serve as vehicles for their environmental transport. To date, insufficient studies have focused on enterohepatic injury in mice co-exposed to both MPs and cadmium (Cd). Here, we report that Cd adsorption increased the surface roughness and decreased the monodispersity of PS-MPs. Furthermore, exposure to both PS-MPs and Cd resulted in a more severe toxic effect compared to single exposure, with decreased body weight gain, shortened colon length, and increased colonic and hepatic inflammatory response observed. This can be attributed to an elevated accumulation of Cd resulting from increased gut permeability, coupled with the superimposed effects of oxidative stress. In addition, using 16 S sequencing and fecal microbiota transplantation, it was demonstrated that gut microbiota dysbiosis plays an essential role in the synergistic toxicity induced by PS-MPs and Cd in mice. This study showed that combined exposure to MPs and Cd induced more severe intestinal and liver damage in mice compared to individual exposure, and provided a new perspective for a more systematic risk assessment process related to MPs exposure.
Collapse
Affiliation(s)
- Liehai Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China
| | - Xiaoyan Feng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China
| | - Yuzhi Lan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China
| | - Jingfeng Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China
| | - Penghui Nie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang 330200, PR China.
| |
Collapse
|
5
|
Chen X, Gu Q, Chu B, Zhang Y, Chen Z, Ma M, Li D, Lu J, Wu D. Inhibition mechanism of fusarium graminearum growth by g-C 3N 4 homojunction and its application in barley malting. Int J Food Microbiol 2024; 413:110578. [PMID: 38246024 DOI: 10.1016/j.ijfoodmicro.2024.110578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
The increase of deoxynivalenol (DON) caused by Fusarium graminearum (F. graminearum) during the malting process is a serious safety problem. In our work, the inhibition mechanism of F. graminearum growth by g-C3N4 homojunction and its application in barley malting were studied. The reason why the growth activity of F. graminearum decreased after photocatalysis by g-C3N4 homojunction was that under visible light irradiation, a large amount of •O2- elicited by g-C3N4 homojunction destroyed the cell structure of F. graminearum, leading to the deficiency of cell membrane selective permeability and serious disorder of intracellular metabolism. The application of photocatalysis technology in malting can effectively inhibit the growth of F. graminearum and the accumulation of ergosterol was reduced by 30.55 %, thus reducing the DON content in finished malt by 31.82 %. Meanwhile, the physicochemical indexes of barley malt after photocatalytic treatment still met the requirements of second class barley malt in Chinese light industry standard QB/T 1686-2008. Our work provides a new idea for the control of fungal contamination in barley malt.
Collapse
Affiliation(s)
- Xingguang Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, PR China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, PR China
| | - Qianhui Gu
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, PR China
| | - Beibei Chu
- Fengchu (Tianjin) Investment Co., Ltd, Tianjin 300000, PR China
| | - Yongxin Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, PR China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, PR China
| | - Ziqiang Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, PR China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, PR China
| | - Mingtao Ma
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, PR China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, PR China
| | - Dingding Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, PR China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, PR China
| | - Jian Lu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, PR China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, PR China
| | - Dianhui Wu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, PR China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
6
|
Staltner R, Burger K, Baumann A, Bergheim I. Fructose: a modulator of intestinal barrier function and hepatic health? Eur J Nutr 2023; 62:3113-3124. [PMID: 37596353 PMCID: PMC10611622 DOI: 10.1007/s00394-023-03232-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/04/2023] [Indexed: 08/20/2023]
Abstract
PURPOSE Consumption of fructose has repeatedly been discussed to be a key factor in the development of health disturbances such as hypertension, diabetes type 2, and non-alcoholic fatty liver disease. Despite intense research efforts, the question if and how high dietary fructose intake interferes with human health has not yet been fully answered. RESULTS Studies suggest that besides its insulin-independent metabolism dietary fructose may also impact intestinal homeostasis and barrier function. Indeed, it has been suggested by the results of human and animal as well as in vitro studies that fructose enriched diets may alter intestinal microbiota composition. Furthermore, studies have also shown that both acute and chronic intake of fructose may lead to an increased formation of nitric oxide and a loss of tight junction proteins in small intestinal tissue. These alterations have been related to an increased translocation of pathogen-associated molecular patterns (PAMPs) like bacterial endotoxin and an induction of dependent signaling cascades in the liver but also other tissues. CONCLUSION In the present narrative review, results of studies assessing the effects of fructose on intestinal barrier function and their impact on the development of health disturbances with a particular focus on the liver are summarized and discussed.
Collapse
Affiliation(s)
- Raphaela Staltner
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Josef-Holaubek-Platz 2, A-1090, Vienna, Austria
| | - Katharina Burger
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Josef-Holaubek-Platz 2, A-1090, Vienna, Austria
| | - Anja Baumann
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Josef-Holaubek-Platz 2, A-1090, Vienna, Austria
| | - Ina Bergheim
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Josef-Holaubek-Platz 2, A-1090, Vienna, Austria.
| |
Collapse
|
7
|
He P, Qu Q, Zhong Z, Zeng P. Animal models for probiotics intervention on metabolic syndrome. Chin Med J (Engl) 2023; 136:2771-2772. [PMID: 37644827 PMCID: PMC10684198 DOI: 10.1097/cm9.0000000000002749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Indexed: 08/31/2023] Open
Affiliation(s)
| | | | | | - Peibin Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
8
|
Chen Q, Ren R, Sun Y, Xu J, Yang H, Li X, Xiao Y, Li J, Lyu W. The combination of metagenome and metabolome to compare the differential effects and mechanisms of fructose and sucrose on the metabolic disorders and gut microbiota in vitro and in vivo. Food Funct 2023. [PMID: 37470119 DOI: 10.1039/d3fo02246c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Sucrose and fructose are the most commonly used sweeteners in the modern food industry, but there are few comparative studies on the mechanisms by which fructose and sucrose affect host health. The aim of the present study was to explain the different effects of fructose and sucrose on host metabolism from the perspective of gut microbiota. Mice were fed for 16 weeks with normal drinking water (CON), 30% fructose drinking water (CF) and 30% sucrose drinking water (SUC). Compared with fructose treatment, sucrose caused significantly higher weight gain, epididymal fat deposition, hepatic steatosis, and jejunum histological injury. Sucrose increased the abundance of LPS-producing bacteria which was positively correlated with obesity traits, while fructose increased the abundance of Lactobacillus. An in vitro fermentation experiment also showed that fructose increased the abundance of Lactobacillus, while sucrose increased the abundance of Klebsiella and Escherichia. In addition, combined with microbial functional analysis and metabolomics data, fructose led to the enhancement of carbohydrate metabolism and TCA cycle capacity, and increased the production of glutamate. The cross-cooperation network greatly influenced the microbiota (Klebsiella, Lactobacillus), metabolites (glutamate, fructose 1,6-biosphosphate, citric acid), and genes encoding enzymes (pyruvate kinase, 6-phosphofructokinase 1, fructokinase, lactate dehydrogenase, aconitate hydratase, isocitrate dehydrogenase 3), suggesting that they may be the key differential factors in the process of fructose and sucrose catabolism. Therefore, the changes in gut microbiome mediated by fructose and sucrose are important reasons for their differential effects on host health and metabolism.
Collapse
Affiliation(s)
- Qu Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Ruochen Ren
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Yue Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Jing Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Xiaoqiong Li
- Institute of Food Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Jinjun Li
- Institute of Food Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Wentao Lyu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| |
Collapse
|
9
|
Cheng Y, Huang X, Li L, Liu L, Zhang C, Fan X, Xie Y, Zou Y, Geng Z, Huang C. Effects of Solid Fermentation on Polygonatum cyrtonema Polysaccharides: Isolation, Characterization and Bioactivities. Molecules 2023; 28:5498. [PMID: 37513370 PMCID: PMC10384955 DOI: 10.3390/molecules28145498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/09/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Polygonati Rhizoma is a widely used traditional Chinese medicine (TCM) with complex pre-processing steps. Fermentation is a common method for processing TCM to reduce herb toxicity and enhance their properties and/or produce new effects. Here, in this study, using Bacillus subtilis and Saccharomyces cerevisiae, we aimed to evaluate the potential application of solid fermentation in isolating different functional polysaccharides from Polygonatum cyrtonema Hua. With hot water extraction, ethanol precipitation, DEAE anion exchange chromatography and gel filtration, multiple neutral and acidic polysaccharides were obtained, showing different yields, content, compositions and functional groups after fermentation. Combining in vitro experiments and in vivo aging and immunosuppressed mouse models, we further compared the antioxidant and immunomodulating bioactivities of these polysaccharides and found a prominent role of a natural polysaccharide (BNP) from fermented P. cyrtonema via Bacillus subtilis in regulating intestinal antioxidant defense and immune function, which may be a consequence of the ability of BNP to modulate the homeostasis of gut microbiota. Thus, this work provides evidence for the further development and utilization of P. cyrtonema with fermentation, and reveals the potential values of BNP in the treatment of intestinal disorders.
Collapse
Affiliation(s)
- Yi Cheng
- Department of Physical Education, Chengdu University of Information Technology, Chengdu 611130, China
| | - Xueyuan Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Lixia Li
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Lu Liu
- Department of Physical Education, Chengdu University of Information Technology, Chengdu 611130, China
| | - Chunsheng Zhang
- Department of Physical Education, Chengdu University of Information Technology, Chengdu 611130, China
| | - Xiang Fan
- Department of Physical Education, Chengdu University of Information Technology, Chengdu 611130, China
| | - Yu Xie
- Department of Physical Education, Chengdu University of Information Technology, Chengdu 611130, China
| | - Yuanfeng Zou
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhe Geng
- Department of Physical Education, Chengdu University of Information Technology, Chengdu 611130, China
| | - Chao Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
10
|
Zhao Y, Liu S, Xu H. Effects of microplastic and engineered nanomaterials on inflammatory bowel disease: A review. CHEMOSPHERE 2023; 326:138486. [PMID: 36963581 DOI: 10.1016/j.chemosphere.2023.138486] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 06/18/2023]
Abstract
Many microplastics and engineered nanomaterials (ENMs) exist in the daily environment. The intestinal impact of these exogenous fine particles on inflammatory bowel disease (IBD) people may be unpredictable. In this paper, we reviewed the recent progress in the effect of microplastics and ENMs on IBD individuals. We also compared and summarized the various roles of microplastics and ENMs in healthy and IBD bodies, including factors such as particle size, particle properties, intestinal microenvironment, interaction with the intestinal barrier, and molecular mechanism. Our literature review showed that microplastics could be accomplices in the development of IBD and could cause severe intestinal inflammation. Moreover, ENMs could elicit diverse exposure outcomes in healthy and IBD bodies. Silicon dioxide nanoparticles (SiO2 NPs), titanium dioxide nanoparticles (TiO2 NPs), and graphene oxide (GO) displayed slight to adverse effects that turned into apparent adverse effects, while zinc oxide nanoparticles (ZnO NPs) and silver nanoparticles (Ag NPs) showed a toxic effect that became therapeutic. A deeper understanding of the impact of microplastics and ENMs on the high-risk group was needed, and we proposed several insights into the research priorities and directions.
Collapse
Affiliation(s)
- Yu Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Shanji Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
11
|
Guo G, Xu SH, Du YT, Jiang TM, Song JL, Yang ZQ, Gao YJ. Potassium cobalt hexacyanoferrate as a peroxidase mimic for electrochemical immunosensing of Lactobacillus rhamnosus GG. Talanta 2023; 264:124746. [PMID: 37285699 DOI: 10.1016/j.talanta.2023.124746] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/09/2023]
Abstract
In this paper, the potassium cobalt hexacyanoferrate (II), K2CoFe(CN)6, with peroxidase-like activity was used for the fabrication of a novel label-free Lactobacillus rhamnosus GG (LGG) electrochemical immunosensor. The K2CoFe(CN)6 nanocubes were made by a simple hydrothermal method and followed by low-temperature calcination. In addition to structural characterization, the peroxidase-mimicking catalytic property of the material was confirmed by a chromogenic reaction. It is known that H2O2 can oxidize electroactive thionine molecules under the catalysis of horseradish peroxidase (HRP). In this nanozyme-based electrochemical immunoassay, due to the steric hindrance, the formation of immune-complex of LGG and LGG antibody on the modified GCE inhibits the catalytic activity of the peroxidase mimics of K2CoFe(CN)6 and thus reduced the current signal. Therefore, the developed electrochemical immunosensor achieved quantitative detection of LGG. Under optimal conditions, the linear range of the sensor was obtained from 101 to 106 CFU mL-1 with a minimum detection limit (LOD) of 12 CFU mL-1. Furthermore, the immunosensor was successfully applied in the quantitative detection of LGG in dairy product samples with recoveries ranging from 93.2% to 106.8%. This protocol presents a novel immunoassay method, which provides an alternative implementation pathway for the quantitative detection of microorganisms.
Collapse
Affiliation(s)
- Ge Guo
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Su-Hui Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Yi-Tian Du
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Tie-Min Jiang
- South Asia Branch of National Engineering Research Center of Dairy Health for Maternal and Child Health, Guilin University of Technology, Guilin 541004, China
| | - Jia-Le Song
- Department of Nutrition and Food Hygiene, Guilin Medical University, Guilin, Guangxi, 541004, China; Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, Guangxi, 541004, China
| | - Zhen-Quan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China.
| | - Ya-Jun Gao
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China.
| |
Collapse
|
12
|
Hu L, Zhao Y, Liu S, Zhang J, Yuan H, Xu H. High-fat diet in mice led to increased severity of spermatogenesis impairment by lead exposure: perspective from gut microbiota and the efficacy of probiotics. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2653-2663. [PMID: 36326575 DOI: 10.1002/jsfa.12309] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/29/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The mechanism of multifactorial spermatogenesis impairment is unclear. This study aimed to investigate the reproductive toxicity of lead (Pb) in mice fed a high-fat diet (HFD) and to delineate the important role of gut microbiota. RESULTS Results showed that, compared with mice fed a normal diet (ND), Pb exposure caused more severe spermatogenesis impairment in HFD-fed mice, including decreased sperm count and motility, seminiferous tubule injury, serum and intratesticular testosterone decline, and downregulated expression level of spermatogenesis-related genes. Besides, 16S sequencing indicated that HFD-fed mice had increased severity of gut microbiota dysbiosis by Pb exposure compared to ND-fed mice. With fecal microbiota transplantation, the same trend of spermatogenesis impairment occurred in recipient mice, which confirmed the important role of gut microbiota. Moreover, probiotics supplementation restored the gut microbial ecosystem, and thus improved spermatogenic function. CONCLUSION Our work suggested that a population with HFD might face more reproductive health risks upon Pb exposure, and revealed an intimate linkage between microbiota dysbiosis and spermatogenesis impairment, accompanied by the potential usefulness of probiotics as prophylactic and therapeutic. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Liehai Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yu Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Shanji Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Jinfeng Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Hongbin Yuan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
13
|
Hu L, Zhao Y, Liu S, Zhang J, You T, Gan B, Xu H. Lead exposure exacerbates adverse effects of HFD on metabolic function via disruption of gut microbiome, leading to compromised barrier function and inflammation. Eur J Nutr 2023; 62:783-795. [PMID: 36264385 DOI: 10.1007/s00394-022-03028-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/05/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE The toxicity of lead (Pb) has been intensively studied, while the adverse effects in the population on a high-fat diet (HFD) remain unclear. This study compared the different biologic effects of Pb in CHOW and HFD-fed mice and investigated the important role that gut microbiota may play. METHODS C57BL/6 mice were fed a CHOW diet and HFD with or without 1 g/L Pb exposure through drinking water for 8 weeks. Using oral glucose tolerance test, histopathological observation, real-time fluorescence quantitative PCR, enzyme-linked immunosorbent assay, and 16S high-throughput sequencing to compare the Pb toxicity, fecal microbiota transplantation was conducted to investigate the key role of gut microbiota. RESULTS The metabolic disorders induced by HFD were aggravated by chronic Pb intake, and HFD exacerbated the Pb accumulation in the colon by 96%, 32% in blood, 27% in the liver, and 142% in tibiae. Concomitantly, Pb induced more serious colonic injury, further disturbing the composition of gut microbiota in the HFD-fed mice. Moreover, altered fecal microbiota by HFD and Pb directly mediated metabolic disorders and colonic damage in recipient mice, which emphasized the importance of gut microbiota. CONCLUSION These findings indicated that the population with HFD has lower resistance and would face more security risks under Pb pollution, and pointed out the importance of assessing the health impacts of food contaminants in people with different dietary patterns.
Collapse
Affiliation(s)
- Liehai Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, People's Republic of China
| | - Yu Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, People's Republic of China
| | - Shanji Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, People's Republic of China
| | - Jinfeng Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, People's Republic of China
| | - Tao You
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, People's Republic of China
| | - Bei Gan
- Institute for Testing of Industrial Products of Jiangxi General Institute of Testing and Certification, Nanchang, 330047, People's Republic of China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, People's Republic of China.
| |
Collapse
|
14
|
Chang H, Li L, Deng Y, Song G, Wang Y. Protective effects of lycopene on TiO 2 nanoparticle-induced damage in the liver of mice. J Appl Toxicol 2023; 43:913-928. [PMID: 36632672 DOI: 10.1002/jat.4433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/26/2022] [Accepted: 12/30/2022] [Indexed: 01/13/2023]
Abstract
Titanium dioxide nanoparticles (nano-TiO2 ) is one of the most widely used and produced nanomaterials. Studies have demonstrated that nano-TiO2 could induce hepatotoxicity through oxidative stress, and lycopene has strong antioxidant capacity. The present study aimed to explore if lycopene protects the liver of mice from nano-TiO2 damage. Ninety-six ICR mice were randomly divided into eight groups. They were control group, nano-TiO2 -treated group (50 mg/kg BW), lycopene-treated groups (5, 20, and 40 mg/kg BW), and 50 mg/kg BW nano-TiO2 - and lycopene-co-treated groups (nano-TiO2 + 5 mg/kg BW of lycopene, nano-TiO2 + 20 mg/kg BW of lycopene, nano-TiO2 + 40 mg/kg BW of lycopene). After treated by gavage for 30 days, the histopathology of the liver was observed. Liver function was evaluated using changes in serum biochemical indicators of the liver (AST, ALT, ALP); and the level of ROS was indirectly reflected by the level of SOD, GSH-Px, MDA, GSH, and T-AOC. TUNEL assay was performed to examine the apoptosis of hepatocytes. Proteins of p53, cleaved-caspase 9, cleaved-caspase 3, Bcl-2, and Bax as well as p38 were detected. Results showed that lycopene alleviated the liver pathological damage and reduced the injury to liver function induced by nano-TiO2 , as well as decreased nano-TiO2 -induced ROS. Meanwhile, lycopene mitigated apoptosis resulting from nano-TiO2 , accompanied by the reversed expression of apoptosis-related proteins. Furthermore, lycopene significantly reversed the upregulation of p-p38 induced by nano-TiO2 . In conclusion, this study demonstrated that nano-TiO2 resulted in hepatocyte apoptosis through ROS/ROS-p38 MAPK pathway and led to liver function injury. Lycopene protected mice liver against the hepatotoxicity of nano-TiO2 through antioxidant property.
Collapse
Affiliation(s)
- Hongmei Chang
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Li Li
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Yaxin Deng
- Shiyan centers for disease control and prevention, Shiyan, 442000, Hubei, China
| | - Guanling Song
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Yan Wang
- School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China
| |
Collapse
|
15
|
Xu Y, Zhao Y, Liu S, Lv S, Chen L, Wang W, Feng Y, Fu F, Xu H. Zinc Oxide Particles Can Cause Ovarian Toxicity by Oxidative Stress in Female Mice Model. Int J Nanomedicine 2022; 17:4947-4960. [PMID: 36275479 PMCID: PMC9579868 DOI: 10.2147/ijn.s373147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/04/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Zinc oxide nanoparticles (ZnO NPs) participate in all aspects of our lives, but with their wide application, more and more disadvantages are exposed. The goal of this study was to investigate the toxicity of ZnO NPs in female mice ovaries and explore its potential mechanism. Methods In this study, adult female mice were orally exposed to 0, 100, 200, and 400 mg/kg ZnO NPs for 7 days. We explored the underlying mechanisms via the intraperitoneal injection of N-acetyl-cysteine (NAC), an inhibitor of oxidative stress, and salubrinal (Sal), an inhibitor of endoplasmic reticulum (ER) stress. Results The results indicated that serum estradiol and progesterone levels declined greatly with increasing ZnO NPs dosage. Hematoxylin and eosin (HE) staining revealed increased atretic follicles and exfoliated follicular granulosa cells. Moreover, at the transcriptional level, antioxidant-related genes such as Keap1 and Nrf2, and ER stress-related genes PERK, eIF2α, and ATF4 were markedly upregulated. In addition, the expression of Caspase12, Caspase9, and Caspase3, which are genes related to apoptosis, was also upregulated in all ZnO NPs treatment groups. Serum malondialdehyde (MDA) content was remarkably up-regulated, whereas superoxide dismutase (SOD) activity was down-regulated. The 400 mg/kg ZnO NPs treatment group suffered the most substantial harm. However, ovarian damage was repaired when NAC and Sal were added to this group. Conclusion ZnO NPs had toxic effects on the ovary of female mice, which were due to oxidative stress, ER stress, and the eventual activation of apoptosis.
Collapse
Affiliation(s)
- Yuanyuan Xu
- The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, People’s Republic of China,State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, People’s Republic of China
| | - Yu Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, People’s Republic of China
| | - Shanji Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, People’s Republic of China
| | - Sidi Lv
- Second Clinical Medical College, Nanchang University, Nanchang, 330006, People’s Republic of China
| | - Ling Chen
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341001, People’s Republic of China
| | - Wanzhen Wang
- The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, People’s Republic of China
| | - Yueying Feng
- The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, People’s Republic of China
| | - Fen Fu
- The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, People’s Republic of China,Correspondence: Fen Fu, The Second Affiliated Hospital of Nanchang University, No. 1 Mingde Rode, Nanchang, 330000, People’s Republic of China, Tel +86-791-8631-1753, Email
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, People’s Republic of China,Hengyi Xu, State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, People’s Republic of China, Tel +86-791-8830-4447-ext-9520, Fax +86-791-8830-4400, Email
| |
Collapse
|
16
|
Hu L, Zhao Y, Xu H. Trojan horse in the intestine: A review on the biotoxicity of microplastics combined environmental contaminants. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129652. [PMID: 35901632 DOI: 10.1016/j.jhazmat.2022.129652] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 05/14/2023]
Abstract
With the reported ability of microplastics (MPs) to act as "Trojan horses" carrying other environmental contaminants, the focus of researches has shifted from their ubiquitous occurrence to interactive toxicity. In this review, we provided the latest knowledge on the processes and mechanisms of interaction between MPs and co-contaminants (heavy metals, persistent organic pollutants, pathogens, nanomaterials and other contaminants) and discussed the influencing factors (environmental conditions and characteristics of polymer and contaminants) that affect the adsorption/desorption process. In addition, the bio-toxicological outcomes of mixtures are elaborated based on the damaging effects on the intestinal barrier. Our review showed that the interaction processes and toxicological outcomes of mixture are complex and variable, and the intestinal barrier should receive more attention as the first line of defensing against MPs and environmental contaminants invasion. Moreover, we pointed out several knowledge gaps in this new research area and suggested directions for future studies in order to understand the multiple factors involved, such as epidemiological assessment, nanoplastics, mechanisms for toxic alteration and the fate of mixtures after desorption.
Collapse
Affiliation(s)
- Liehai Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yu Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
17
|
Wen S, Zhao Y, Liu S, Chen Y, Yuan H, Xu H. Polystyrene microplastics exacerbated liver injury from cyclophosphamide in mice: Insight into gut microbiota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156668. [PMID: 35710014 DOI: 10.1016/j.scitotenv.2022.156668] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/24/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) have infiltrated human food system globally, and the latent health risks have been well-described. However, the impact of pre-consumed MPs on liver resistance to foreign robust stimuli remains unclear. In this study, we developed a mouse model drinking roughly 18 and 180 μg/kg/day polystyrene MPs for 90 days, then intraperitoneally injected mice with 80 mg/kg cyclophosphamide (CTX) to investigate whether chronic pre-exposure to MPs aggravates hepatoxicity induced by CTX. Slight liver injury was found in single CTX-treated mice, while more significant liver histopathological damage, inflammation and oxidative stress elicited by CTX were observed in pre-drinking MPs mice. Moreover, chronic exposure of MPs induced remarkable colonic impairments (e.g., leaky gut, mild inflammation and repressed antioxidant activity) as well as gut microbiota perturbation, which manifested positive association with aggravated hepatotoxicity via spearman correlation analysis. Fecal microbiota transplantation (FMT) trail was conducted to ulteriorly demonstrate the critical role of MPs-altered gut bacteria in exaggerated liver susceptibility to CTX stimulation. In conclusion, our study provided an insight that the adverse impact of MPs could be best revealed when animals suffering attack from hazardous substance. It also contributes to comprehensive assessment of health risk from environmentally pervasive MPs.
Collapse
Affiliation(s)
- Siyue Wen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yu Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Shanji Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yanbiao Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Hongbin Yuan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
18
|
Han Y, Itenberg SA, Wu X, Xiao H. Guidelines for inflammation models in mice for food components. EFOOD 2022. [DOI: 10.1002/efd2.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Yanhui Han
- Department of Food Science University of Massachusetts Amherst Amherst Massachusetts USA
| | - Sasha A. Itenberg
- Department of Kinesiology, Nutrition, and Health Miami University Oxford Ohio USA
| | - Xian Wu
- Department of Kinesiology, Nutrition, and Health Miami University Oxford Ohio USA
| | - Hang Xiao
- Department of Food Science University of Massachusetts Amherst Amherst Massachusetts USA
| |
Collapse
|
19
|
Barta DG, Cornea-Cipcigan M, Margaoan R, Vodnar DC. Biotechnological Processes Simulating the Natural Fermentation Process of Bee Bread and Therapeutic Properties-An Overview. Front Nutr 2022; 9:871896. [PMID: 35571893 PMCID: PMC9097220 DOI: 10.3389/fnut.2022.871896] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
Recent signs of progress in functional foods and nutraceuticals highlighted the favorable impact of bioactive molecules on human health and longevity. As an outcome of the fermentation process, an increasing interest is developed in bee products. Bee bread (BB) is a different product intended for humans and bees, resulting from bee pollen's lactic fermentation in the honeycombs, abundant in polyphenols, nutrients (vitamins and proteins), fatty acids, and minerals. BB conservation is correlated to bacteria metabolites, mainly created by Pseudomonas spp., Lactobacillus spp., and Saccharomyces spp., which give lactic acid bacteria the ability to outperform other microbial groups. Because of enzymatic transformations, the fermentation process increases the content of new compounds. After the fermentation process is finalized, the meaningful content of lactic acid and several metabolites prevent the damage caused by various pathogens that could influence the quality of BB. Over the last few years, there has been an increase in bee pollen fermentation processes to unconventional dietary and functional supplements. The use of the chosen starters improves the bioavailability and digestibility of bioactive substances naturally found in bee pollen. As a consequence of enzymatic changes, the fermentation process enhances BB components and preserves them against loss of characteristics. In this aspect, the present review describes the current biotechnological advancements in the development of BB rich in beneficial components derived from bee pollen fermentation and its use as a food supplement and probiotic product with increased shelf life and multiple health benefits.
Collapse
Affiliation(s)
- Daniel Gabriel Barta
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania.,Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Mihaiela Cornea-Cipcigan
- Advanced Horticultural Research Institute of Transylvania, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Rodica Margaoan
- Advanced Horticultural Research Institute of Transylvania, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Dan Cristian Vodnar
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania.,Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
20
|
Interactions between Nanoparticles and Intestine. Int J Mol Sci 2022; 23:ijms23084339. [PMID: 35457155 PMCID: PMC9024817 DOI: 10.3390/ijms23084339] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
The use of nanoparticles (NPs) has surely grown in recent years due to their versatility, with a spectrum of applications that range from nanomedicine to the food industry. Recent research focuses on the development of NPs for the oral administration route rather than the intravenous one, placing the interactions between NPs and the intestine at the centre of the attention. This allows the NPs functionalization to exploit the different characteristics of the digestive tract, such as the different pH, the intestinal mucus layer, or the intestinal absorption capacity. On the other hand, these same characteristics can represent a problem for their complexity, also considering the potential interactions with the food matrix or the microbiota. This review intends to give a comprehensive look into three main branches of NPs delivery through the oral route: the functionalization of NPs drug carriers for systemic targets, with the case of insulin carriers as an example; NPs for the delivery of drugs locally active in the intestine, for the treatment of inflammatory bowel diseases and colon cancer; finally, the potential concerns and side effects of the accidental and uncontrolled exposure to NPs employed as food additives, with focus on E171 (titanium dioxide) and E174 (silver NPs).
Collapse
|
21
|
Safdar M, Ozaslan M. Enhanced Catalytic, Antibacterial and Anti-cancer Activities of Erythromycin Capped Gold Nanoparticles. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02239-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
22
|
Ma F, Song Y, Sun M, Wang A, Jiang S, Mu G, Tuo Y. Exopolysaccharide Produced by Lactiplantibacillus plantarum-12 Alleviates Intestinal Inflammation and Colon Cancer Symptoms by Modulating the Gut Microbiome and Metabolites of C57BL/6 Mice Treated by Azoxymethane/Dextran Sulfate Sodium Salt. Foods 2021; 10:3060. [PMID: 34945611 PMCID: PMC8701795 DOI: 10.3390/foods10123060] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 12/24/2022] Open
Abstract
Exopolysaccharide produced by Lactiplantibacillus plantarum-12 (LPEPS) exhibited the anti-proliferating effect on human colon cancer cell line HT-29 in vitro. The purpose of the study was to determine the alleviating effects of LPEPS on colon cancer development of the C57BL/6 mice treated by azoxymethane/dextran sulfate sodium salt (AOM/DSS). The C57BL/6 mice treated by AOM/DSS were orally administered LPEPS daily for 85 days. The results showed that LPEPS oral administration enhanced colon tight-junction protein expression and ameliorated colon shortening and tumor burden of the AOM/DSS treated mice. Furthermore, LPEPS oral administration significantly reduced pro-inflammatory factors TNF-α, IL-8, and IL-1β levels and increased anti-inflammatory factor IL-10 level in the serum of the AOM/DSS-treated mice. LPEPS oral administration reversed the alterations of gut flora in AOM/DSS-treated mice, as evidenced by the increasing of the abundance of Bacteroidetes, Bacteroidetes/Firmicutes ratio, Muribaculaceae, Burkholderiaceae, and norank_o__Rhodospirillales and the decreasing of the abundance of Firmicutes, Desulfovibrionaceae, Erysipelotrichaceae, and Helicobacteraceae. The fecal metabolites of the AOM/DSS-treated mice were altered by LPEPS oral administration, involving lipid metabolism and amino acid metabolism. Together, these results suggested that LPEPS oral administration alleviated AOM/DSS-induced colon cancer symptoms of the C57BL/6 mice by modulating gut microbiota and metabolites, enhancing intestine barrier, inhibiting NF-κB pathway, and activating caspase cascade.
Collapse
Affiliation(s)
- Fenglian Ma
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (F.M.); (Y.S.); (M.S.); (A.W.); (S.J.)
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, China
| | - Yinglong Song
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (F.M.); (Y.S.); (M.S.); (A.W.); (S.J.)
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, China
| | - Mengying Sun
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (F.M.); (Y.S.); (M.S.); (A.W.); (S.J.)
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, China
| | - Arong Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (F.M.); (Y.S.); (M.S.); (A.W.); (S.J.)
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, China
| | - Shujuan Jiang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (F.M.); (Y.S.); (M.S.); (A.W.); (S.J.)
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, China
| | - Guangqing Mu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (F.M.); (Y.S.); (M.S.); (A.W.); (S.J.)
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, China
| | - Yanfeng Tuo
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (F.M.); (Y.S.); (M.S.); (A.W.); (S.J.)
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
23
|
Liu S, Zhao Y, Liu Y, Tang Y, Xu X, Wang M, Tao X, Xu H. Pre-exposure to TiO2-NPs aggravates alcohol-related liver injury by inducing intestinal barrier damage in mice. Toxicol Sci 2021; 185:28-37. [PMID: 34718815 DOI: 10.1093/toxsci/kfab127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The wide application of TiO2 nanoparticles (NPs) and the increase in opportunities for its release into the environment undoubtedly compound the potential of these materials to harm people. Research on the effects of pre-exposure to TiO2-NPs on disease development is scarce. The purpose of this work was to assess whether pre-exposure to TiO2-NPs (20 mg/kg and 200 mg/kg) for 28 days aggravates the development of alcohol-related liver injury in mice. Results showed that oral administration of 200 mg/kg TiO2-NPs induced only modest changes in liver function parameters, but could induce intestinal inflammation and destroy the integrity of intestinal barrier. After the subsequent alcohol intervention, pre-exposure to TiO2-NPs (200 mg/kg) was found to aggravate alcohol-related liver injury, including significantly increases in serum Aspartate aminotransferase (AST), Alanine aminotransferase (ALT), Total glycerol (TG), and Total cholesterol (TC), as well as steatosis and inflammation in the liver. Further investigation revealed that alcohol could increase intestinal permeability and reduce the expression of tight junction proteins in mice pre-exposed high dosage of TiO2-NPs, thereby inducing the transfer of more lipopolysaccharides (LPS) into the liver, ultimately triggering more severe liver inflammation. This study emphasizes that pre-exposed of TiO2-NPs (high doses of up to 200 mg/kg) can potentially promote the development of alcoholic liver diseases. Furthermore, this study provides new insights into evaluating the safety of NPs.
Collapse
Affiliation(s)
- Shanji Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Yu Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Yingxia Liu
- Center of Analysis and Testing, Nanchang University, Nanchang, 330047, P. R. China
| | - Yizhou Tang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Xiaowei Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Mengqi Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Xueying Tao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| |
Collapse
|