1
|
Wang X, Diao Z, Cang T, Zhao H, Qi P, Wang Z, Liu Z, Di S. Study on the Bioactivity, Toxicity, Stereoselective Fate, and Risk Assessment of Chiral Fungicide Isopyrazam in Five Kinds of Fruits and Vegetables. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:22073-22081. [PMID: 39321313 DOI: 10.1021/acs.jafc.4c05937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Isopyrazam (IPZ) is a new chiral fungicide. For bioactivity, there was a 3.37-1578 times difference among the four stereoisomers. For Alternaria alternata and Phoma multirostrata, cis-(1S,4R,9S)-IPZ had the greatest activity. Using cis-IPZ might improve the efficacy and reduce the dosage of the racemate by 54.7-72.2% for A. alternata and P. multirostrata. To zebrafish, trans-IPZ showed the highest acute toxicity (LC50, 0.096 mg/L). The degradation half-lives of IPZ stereoisomers in the five crops ranged from 3.50 to 15.2 days. Cis-IPZ was preferentially degraded in grape, pear, and celery. The residual concentrations of IPZ in grape and celery were still higher than the maximum residue limit, and the acute and chronic dietary intake risks of IPZ in celery were unacceptable (RQa: 146-250%, HQ: 117-200%), which were worthy of further researching. Based on the research results, it is safer and more reasonable to use IPZ in the form of a racemate with a high ratio of cis-IPZ.
Collapse
Affiliation(s)
- Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
- Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, P. R. China
| | - Ziyang Diao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
- Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, P. R. China
| | - Tao Cang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
- Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, P. R. China
| | - Huiyu Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
- Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, P. R. China
| | - Peipei Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
- Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, P. R. China
| | - Zhiwei Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
- Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, P. R. China
| | - Zhenzhen Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
- Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, P. R. China
| | - Shanshan Di
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
- Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, P. R. China
| |
Collapse
|
2
|
Di S, Diao Z, Xie Y, Cang T, Wang Z, Qi P, Liu Z, Zhao H, Wang X. Study on the enantioselective behaviors, activity, toxicity and mechanism of novel SDHI fungicide benzovindiflupyr to reduce the environmental risks. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116735. [PMID: 39024954 DOI: 10.1016/j.ecoenv.2024.116735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Benzovindiflupyr (BEN) has emerged as one of the fastest-growing SDHI fungicides in recent years, but it is considered "very highly toxic" to aquatic fish, invertebrates and crustaceans (EC50 or LC50, 0.0035-0.056 mg/L, acute toxicity). The comprehensive study on bioactivity, toxicity, and degradation behaviors of BEN at the enantiomeric level would facilitate the development of a high-efficiency and low-risk application method. The bioactivities of 1S, 4R-(-)-BEN against five target pathogens (Alternaria alternata, Phoma multirostrata, Selerotium rolfsii, Magnaporthe oryzae, and Rhizoctonia solani) (EC50, 0.00562-0.329 mg/L, high-efficiency) were 6.7-1029 times higher than 1R, 4S-(+)-BEN, demonstrating significant enantioselectivity. For Danio rerio, 1S, 4R-(-)-BEN (LC50, 0.0360 mg/L, "very highly toxic") exhibited higher toxicity than 1 R, 4S-(+)-BEN, but the toxic interaction was concentration addition (TUrac, 0.94), indicating an enhanced toxicity in the presence of 1R, 4S-(+)-BEN. Molecular docking was employed to offer insights at the molecular level and elucidate the factors influencing enantioselectivity. The stronger binding affinity of 1S, 4R-(-)-BEN with SDH was in line with the quantitative experimental findings. The degradation of two BEN enantiomers in four different fruits followed the first-order degradation kinetics equation, and displayed enantioselectivity. The preferential degradation of 1R, 4S-(+)-BEN was found in pears and grapes, while varying enantioselectivity was found at different stages in tomatoes and watermelons. The residual concentrations of BEN in grapes were higher than the EU's MRL, which in the other three fruits were below the MRLs during the sampling. In conclusion, 1S, 4R-(-)-BEN proved to be the more effective monomer. Utilizing the pure monomer could not only reduce the dosage of racemate by about 44-59 %, but also mitigate the risk of introducing inefficient monomer into the environment (especially for fish).
Collapse
Affiliation(s)
- Shanshan Di
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Ziyang Diao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Yunye Xie
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China; Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Tao Cang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Zhiwei Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Peipei Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Zhenzhen Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Huiyu Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China.
| |
Collapse
|
3
|
Li H, Liu K, Chang AK, Pei Y, Li J, Ai J, Liu W, Wang T, Xu L, Li R, Yu Q, Zhang N, Jiang Z, He T, Liang X. Some evidence supporting the use of optically pure R-(-)-diniconazole: Toxicokinetics and configuration conversion on chiral diniconazole. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173475. [PMID: 38795985 DOI: 10.1016/j.scitotenv.2024.173475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/14/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024]
Abstract
Diniconazole is a chiral pesticide that exists in two enantiomers, R-(-)-diniconazole and S-(+)-diniconazole, with the R-enantiomer being much more active than the S-enantiomer. Previous enantioselective toxicology studies of diniconazole focused mostly on simple environmental model organisms. In this study, we evaluated the toxicokinetics of the two diniconazole enantiomers in rats and mice to provide a more comprehensive risk assessment. The two enantiomers displayed clear differences in their stereoselective contents in vivo. The t1/2 of R-(-)-diniconazole was 7.06 ± 3.35 h, whereas that of S-(+)-diniconazole was 9.14 ± 4.60 h, indicating that R-(-)-diniconazole was eliminated faster in vivo. The excretion rates of R-(-)-diniconazole and S-(+)-diniconazole were 4.08 ± 0.50 % and 2.68 ± 0.58 %, respectively, indicating more excretion of R-(-)-diniconazole. S-(+)-diniconazole had a higher bioavailability than R-(-)-diniconazole (52.19 % vs. 42.44 %). S-(+)-Diniconazole was also found in relatively high abundance in tissues such as the stomach, large intestine, small intestine, cecum, liver, kidney, brain, and testes, with the abundance being 1.71-2.48-fold that of R-(-)-diniconazole. The selective degradation of both enantiomers in the tissues and their mutual conversion in vivo were not observed, and this could indicate that configuration conversion did not contribute to the differences in the content of enantiomers in the tissues. Instead, such differences were mainly caused by the differences in affinity of each enantiomer for the tissues. Furthermore, investigation of the interconversion between optically pure R-(-)-diniconazole and S-(+)-diniconazole monomers in soil revealed no interconversion. All of the above results indicated no interconversion between R-(-)-diniconazole and S-(+)-diniconazole in vivo and in the soil, and that S-(+)-diniconazole tends to have a greater potential to accumulate in vivo. Thus, if only R-(-)-diniconazole is used as a pesticide, the negative impact on mammals and the environment will be reduced, suggesting that in agriculture, the application of optically pure R-(-)-diniconazole may be a better strategy.
Collapse
Affiliation(s)
- Haoran Li
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Kai Liu
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Alan Kueichieh Chang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, Zhejiang Province, PR China
| | - Ying Pei
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Jianxin Li
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Jiao Ai
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Wenbao Liu
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Tingting Wang
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Liuping Xu
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Ruiyun Li
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Qing Yu
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Nan Zhang
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Zhen Jiang
- Department of Analytical Chemistry, College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning Province, PR China
| | - Tianyi He
- Northeast Yucai Foreign Language School, 1 Gaorong Road, Shenyang 110179, Liaoning Province, PR China
| | - Xiao Liang
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China.
| |
Collapse
|
4
|
Diao Z, Di S, Qi P, Liu Z, Wang Z, Zhao H, Wang M, Zhang C, Wang X. Stereoselective study on chiral fungicide metconazole in four kinds of fruits: Absolute configuration, SFC-MS/MS enantioseparation, degradation and risk assessment. Food Chem 2024; 438:137944. [PMID: 37984002 DOI: 10.1016/j.foodchem.2023.137944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/28/2023] [Accepted: 11/05/2023] [Indexed: 11/22/2023]
Abstract
Metconazole is a novel chiral fungicide with two chiral carbon atoms, but the research on its stereoselective behavior is limited. Therefore, the stereoselective behaviors of metconazole in four fruits, including grape, peach, pear and jujube, were summarized in this study. After determining the absolute configuration of metconazole stereoisomers, a chiral separation method through supercritical fluid chromatography/tandem triple quadrupole mass spectrometry was first developed, which combined an improved QuEChERS method obtained the recoveries of 71.6-113 % with RSD ≤ 19.8 %. The LOD and LOQ were 4.30-95.9 and 10.5-143.2 ng/kg, respectively. Different stereoselective and diastereoselective behaviors were observed in four fruits. Dietary risk assessments of rac-metconazole were performed in populations with different ages and genders. Both acute (RQa, 0.0124-0.140 %) and chronic (HQ, 0.0234-0.0794 %) intake risks were acceptable. The results of this study would contribute to more complete risk assessments of metconazole and provide data for chiral studies.
Collapse
Affiliation(s)
- Ziyang Diao
- College of Food Science & Engineering, Hainan University, No. 158 Renmin Avenue, Haikou 570228, PR China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Shanshan Di
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Peipei Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Zhenzhen Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Zhiwei Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Huiyu Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Meng Wang
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou 570228, China; College of Plant Protection, Hainan University, Haikou 570228, PR China
| | - Chenghui Zhang
- College of Food Science & Engineering, Hainan University, No. 158 Renmin Avenue, Haikou 570228, PR China; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou 570228, China.
| | - Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China.
| |
Collapse
|
5
|
Di S, Cang T, Li Y, Xu L, Qi P, Wang Z, Zhao H, Liu Z, Wang X. Stereoselective bioaccumulation and dissipation of four stereoisomers of cyproconazole in earthworm-soil microcosm. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168111. [PMID: 37884143 DOI: 10.1016/j.scitotenv.2023.168111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/11/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Cyproconazole is a representative and widely used triazole fungicide with four stereoisomers, which will bring some risks to non-target organisms. A fast analytical method on supercritical fluid chromatography-tandem mass spectrometry was established in 4 min, and the environmental hazards of chiral cyproconazole were studied in earthworm-soil microcosm, including stereoselective bioaccumulation and dissipation. In the process of bioaccumulation, the concentrations of cyproconazole stereoisomers in earthworms showed a trend of increasing first and then reaching a stable state at 6 mg/kg treatment, which was different from those at 0.6 mg/kg treatment (decease-increase-equilibrium). The concentration order was (2S,3R)- > (2S,3S)- > (2R,3R)- > (2R,3S)-cyproconazole and (2S,3S)- ≈ (2S,3R)- > (2R,3R)- > (2R,3S)-cyproconazole at 6 and 0.6 mg/kg treatments, respectively. The bioaccumulation factor (BAF) values were in the range of 0.018-0.55, showing weakly relative accumulation capacity. The dissipation of cyproconazole stereoisomers in artificial soil accorded with the first-order kinetics equation, and the half-lives were 20.1-23.6 and 7.66-8.28 days at 6 and 0.6 mg/kg treatments, respectively, without stereoselectivity and diastereoselectivity. In earthworms, the dissipation half-lives were 5.81-6.01 days with the preferential dissipation of (2R,3R)-cyproconazole. The study would help with the rational uses and risk assessments of cyproconazole.
Collapse
Affiliation(s)
- Shanshan Di
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Tao Cang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Ying Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Lu Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Peipei Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Zhiwei Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Huiyu Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Zhenzhen Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China.
| |
Collapse
|
6
|
Qian M, Zhou M, Li Y, Wang D, Yao L, Wu H, Yang G. The Dissipation Behavior and Risk Assessment of Carbendazim Under Individual and Joint Applications on Peach (Amygdalus persica L.). J Food Prot 2023; 86:100145. [PMID: 37604252 DOI: 10.1016/j.jfp.2023.100145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/13/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023]
Abstract
Dissipation, residue levels, and ingestion risks of carbendazim in peach (Amygdalus persica L.) were investigated with individual and joint applications in the present study. The dissipation kinetics of carbendazim, chlorpyrifos, prochloraz, and imidacloprid were evaluated by the first-order kinetics. When carbendazim was individually applied, the final residual concentration was 2.97 mg kg-1 and the half-life was 17.4 d. In the joint application of carbendazim with chlorpyrifos, prochloraz, and imidacloprid, the residual concentrations at 35 d after spraying were 7.16, 7.50, and 4.26 mg kg-1 and the half-lives were 30.8, 23.7, and 23.2 d, respectively, which showed an increase of 1.3-1.8 times compared with the single application of carbendazim. In addition, the effects of household processing of rinsing and peeling were investigated, and a high removal rate of 54.6% and 76.5% were found. Furthermore, the carbendazim ingestion risk assessment was conducted, which indicated that the acute health risk (aHI) and hazard quotient (HQ) of carbendazim were all within acceptable levels ranging from 21.7% to 40.9%. However, a higher ingestion risk of carbendazim was found under the joint application. This study provides some preliminary guidance for the joint application and risk assessment of carbendazim in peach, which is worth further investigation.
Collapse
Affiliation(s)
- Mingrong Qian
- key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, PR China
| | - Min Zhou
- Hangzhou Puyu Technology Development Co., Ltd., Hangzhou, PR China
| | - Yue Li
- College of Chemical Engineering, Zhejiang Shuren University, Hangzhou, PR China
| | - Dou Wang
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, PR China
| | - Liping Yao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, PR China
| | - Huizhen Wu
- College of Chemical Engineering, Zhejiang Shuren University, Hangzhou, PR China.
| | - Guiling Yang
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, PR China.
| |
Collapse
|
7
|
Wang X, Diao Z, Liu Z, Qi P, Wang Z, Cang T, Chu Y, Zhao H, Zhang C, Xu H, Di S. Development of S-penthiopyrad for bioactivity improvement and risk reduction from the systemic evaluation at the enantiomeric level. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122012. [PMID: 37307862 DOI: 10.1016/j.envpol.2023.122012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
For the purpose of screening high-efficiency and low-risk green pesticides, a systematic study on fungicide penthiopyrad was conducted at the enantiomeric level. The bioactivity of S-(+)-penthiopyrad (median effective concentration (EC50), 0.035 mg/L) against Rhizoctonia solani was 988 times higher than R-(-)-penthiopyrad (EC50, 34.6 mg/L), which would reduce 75% usage of rac-penthiopyrad under the same efficacy. Furthermore, their antagonistic interaction (toxic unit (TUrac), 2.07) indicated the existence of R-(-)-penthiopyrad would reduce the fungicidal activity of S-(+)-penthiopyrad. AlphaFold2 modeling and molecular docking illustrated that S-(+)-penthiopyrad had the higher binding ability with the target protein than R-(-)-penthiopyrad, showing higher bioactivity. For model organism Danio rerio, S-(+)-penthiopyrad (median lethal concentrations (LC50), 3.02 mg/L) and R-(-)-penthiopyrad (LC50, 4.89 mg/L) were both less toxic than rac-penthiopyrad (LC50, 2.73 mg/L), and the existence of R-(-)-penthiopyrad could synergistically enhance the toxicity of S-(+)-penthiopyrad (TUrac, 0.73), using S-(+)-penthiopyrad would reduce at least 23% toxicity to fish. The enantioselective dissipation and residues of rac-penthiopyrad were tested in three kinds of fruits, and their dissipation half-lives ranged from 1.91 to 23.7 d. S-(+)-penthiopyrad was dissipated preferentially in grapes, which was R-(-)-penthiopyrad in pears. On the 60th d, the residue concentrations of rac-penthiopyrad in grapes were still higher than its maximum residue limit (MRL), but the initial concentrations were lower than their MRL values in watermelons and pears. Thus, more tests in different cultivars of grapes and planting environments should be encouraged. Based on the acute and chronic dietary intake risk assessments, the risks in the three fruits were all acceptable. In conclusion, S-(+)-penthiopyrad is a high-efficiency and low-risk alternative to rac-penthiopyrad.
Collapse
Affiliation(s)
- Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, 310021, PR China
| | - Ziyang Diao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, 310021, PR China; College of Food Science & Engineering, Hainan University, No. 158 Renmin Avenue, Haikou, 570100, PR China
| | - Zhenzhen Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, 310021, PR China
| | - Peipei Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, 310021, PR China
| | - Zhiwei Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, 310021, PR China
| | - Tang Cang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, 310021, PR China
| | - Yanyan Chu
- School of Medicine and Pharmacy, Ocean University of China/ Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266200, China
| | - Huiyu Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, 310021, PR China
| | - Chenghui Zhang
- College of Food Science & Engineering, Hainan University, No. 158 Renmin Avenue, Haikou, 570100, PR China
| | - Hao Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, 310021, PR China
| | - Shanshan Di
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, 310021, PR China.
| |
Collapse
|
8
|
Wang F, Li X, Jiang S, Han J, Wu J, Yan M, Yao Z. Enantioselective Behaviors of Chiral Pesticides and Enantiomeric Signatures in Foods and the Environment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12372-12389. [PMID: 37565661 DOI: 10.1021/acs.jafc.3c02564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Unreasonable application of pesticides may result in residues in the environment and foods. Chiral pesticides consist of two or more enantiomers, which may exhibit different behaviors. This Review intends to provide progress on the enantioselective residues of chiral pesticides in foods. Among the main chiral analytical methods, high performance liquid chromatography (HPLC) is the most frequently utilized. Most chiral pesticides are utilized as racemates; however, due to enantioselective dissipation, bioaccumulation, biodegradation, and chiral conversion, enantiospecific residues have been found in the environment and foods. Some chiral pesticides exhibit strong enantioselectivity, highlighting the importance of evaluation on an enantiomeric level. However, the occurrence characteristics of chiral pesticides in foods and specific enzymes or transport proteins involved in enantioselectivity needs to be further investigated. This Review could help the production of some chiral pesticides to single-enantiomer formulations, thereby reducing pesticide consumption as well as increasing food production and finally reducing human health risks.
Collapse
Affiliation(s)
- Fang Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Xiaoyun Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Shanxue Jiang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Jiajun Han
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Junxue Wu
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Meilin Yan
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
9
|
Stereoselective analysis of chiral succinate dehydrogenase inhibitors (SDHIs) in foods of plant origin and animal origin by supercritical fluid chromatography-tandem mass spectrometry (SFC-MS/MS). Food Chem 2023; 411:135452. [PMID: 36682161 DOI: 10.1016/j.foodchem.2023.135452] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/22/2022] [Accepted: 01/07/2023] [Indexed: 01/11/2023]
Abstract
The stereoisomers of chiral SDHIs were prepared using Autoprep HPLC and chiral columns. The method of combining theoretical calculation with experimental determination was used to confirm the absolute configuration of stereoisomer. SFC-MS/MS and four kinds of chiral columns were used to separate the eight chiral SDHIs, and they could be separated simultaneously using OD-3 column in 6.5 min. The integrated QuEChERS strategy was used to analyse the chiral SDHIs in foods of plant and animal origin, and the average recoveries ranged from 71 % to 119 % with RSD ≤ 18 %, and the LOQ was 1 ng/g. There were 99.2 % and 63.6 % matrix effects were in the range of 0.8-1.2 in foods of plant and animal origin, respectively, showing weak matrix effects. The study provided methods for monitoring chiral SDHIs stereoisomers residues, which were crucial for stereoselective evaluations and improving risk assessments.
Collapse
|
10
|
Ren P, Wang M, Zheng H, Gao Z, Han Z, Liu Y, Cai M. Spatial distribution and risk assessment of conazole fungicides in surface seawater of the East China Sea. MARINE POLLUTION BULLETIN 2023; 189:114796. [PMID: 36898271 DOI: 10.1016/j.marpolbul.2023.114796] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Conazole fungicides (CFs), the common-used pesticide in agriculture distributed widely in the environment. This research analyzed the occurrence, potential sources, and risks of eight CFs in the East China Sea surface seawater in the early summer of 2020. The total CF concentration ranged from 0.30 to 6.20 ng/L, with an average value of 1.64 ± 1.24 ng/L. Fenbuconazole, hexaconazole, and triadimenol were the major CFs that comprised >96 % of the total concentration. The Yangtze River was identified as the significant source of CFs from the coastal regions to the off-shore inputs. Ocean current was the first-order factor controlling the content and distribution of CFs in the East China Sea. Although risk assessment revealed CFs posed a low or no substantial risk to ecology and human health, long-term monitoring was also encouraged. This study provided a theoretical foundation for assessing CFs' pollution levels and potential risks in the East China Sea.
Collapse
Affiliation(s)
- Peng Ren
- Deep-Sea Multidisciplinary Research Center, Pilot National Laboratory for Marine Science and Technology, Qingdao 266061, China
| | - Mengmeng Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Hongyuan Zheng
- Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai 200136, China
| | - Zhiwei Gao
- Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai 200136, China
| | - Zheyi Han
- Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai 200136, China
| | - Yanguang Liu
- Key Laboratory of Marine Geology and Metallogeny, First Institute of Oceanography, Ministry of Natural Resources (MNR), Qingdao 266061, China.
| | - Minghong Cai
- Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai 200136, China; School of Oceanography, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China.
| |
Collapse
|
11
|
Di S, Liu R, Liu Z, Xu H, Zhao H, Lu Y, Qi P, Wang Z, Wang X. Comprehensive evaluation of chiral penflufen metabolite (penflufen-3-hydroxy-butyl): Identification, synthesis, enantioseparation, toxicity and enantioselective metabolism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114549. [PMID: 36669279 DOI: 10.1016/j.ecoenv.2023.114549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/17/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Identification and evaluations of pesticide metabolites are necessary for risk assessment and toxicological research. In this study, the metabolites of penflufen (a widely used chiral pesticide) in rat liver microsomes were identified using liquid chromatography Q-Exactive Plus mass spectrometry. In total, 17 penflufen metabolites were identified, and most of them were hydroxylation products, which were generated by oxygenation at different candidate sites of penflufen. The relative abundance of metabolite M12 (penflufen-3-hydroxy-butyl, 32 %) was the largest, followed by M8 (15.6 %) and M2 (12.8 %). The major metabolite penflufen-3-hydroxy-butyl was first synthesized by 11 reactions with a 99.73 % purity. The absolute configuration of M12 enantiomers were confirmed after preparing enantiomers, and establishing the enantioseparation method. The M12 enantiomers toxicity to Danio rerio (LC50, >10 mg/L) and four kinds of phytopathogens (EC50, 148-34969 mg/L) were significantly lower than parents (LC50, 0.449-24.3 mg/L; EC50, 0.027-92.0 mg/L). In rat liver microsomes, approximately 40-47 % of the penflufen enantiomers were metabolized to M12 enantiomers, and R-penflufen was preferentially metabolized. The generation concentrations of S-M12 were higher than R-M12 after 10 min, and the metabolic half-lives of R-M12 (29.0-32.5 min) were shorter than S-M12 (35.2-38.1 min), and were approximately 4 times longer than parent penflufen enantiomers (4.5-9.5 min). Simultaneously, the generated contents (relative contents) of M8 (27.1-57 %) and M10 (2.22-8.36 %) from S-penflufen were lower than those from R-penflufen (M8, 24.7-92.4 %; M10, 27.4-69.5 %). The enantioselective evaluations of M12, M10 and M8 deserve further study. These findings were helpful in understanding the fate and risks of chiral penflufen.
Collapse
Affiliation(s)
- Shanshan Di
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Ruiquan Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Zhenzhen Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Hao Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Huiyu Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Yuele Lu
- Institute of Fermentation Engineering and College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Peipei Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Zhiwei Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China.
| |
Collapse
|
12
|
Tong Z, Dong X, Meng D, Yi X, Sun M, Chu Y, Duan J. Enantioselective Degradation and Bioactivity Mechanism of a New Chiral Fungicide Fluindapyr in Paddy Ecosystems. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1426-1433. [PMID: 36630283 DOI: 10.1021/acs.jafc.2c07924] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Fluindapyr is a novel chiral succinate dehydrogenase inhibitor used to control fungal diseases. The enantioselective effects of fluindapyr in paddy ecosystems are unknown. We developed a new chiral determination method of fluindapyr using ultrahigh performance liquid chromatography tandem mass spectrometry. The absolute configuration of the fluindapyr enantiomers was identified by an electron circular dichroism model. A new husk-based biochar material was used to optimize and establish a QuEchERs method for paddy soil determination. Under anaerobic conditions, the half-lives of R-fluindapyr and S-fluindapyr in paddy soil were 69.6 and 101.8 days, respectively. R-fluindapyr degraded more rapidly than S-fluindapyr. S-fluindapyr was 87.8 times more active against Rhizoctonia solani than R-fluindapyr. The enantioselective bioactivity mechanism was illustrated by molecular docking between the fluindapyr enantiomers and SDH of R. solani. The binding powers of R-fluindapyr and S-fluindapyr to proteins were -32.12 and - 42.91 kcal/mol, respectively. This study reports the stereoselectivity of fluindapyr about determination, degradation, bioactivity, and its mechanism. It provides a foundation for an in-depth study of fluindapyr at the enantiomer level.
Collapse
Affiliation(s)
- Zhou Tong
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei230031, China
- Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei230031, China
| | - Xu Dong
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei230031, China
- Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei230031, China
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Nanjing210095, China
| | - DanDan Meng
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei230031, China
- Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei230031, China
| | - XiaoTong Yi
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei230031, China
- Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei230031, China
| | - MingNa Sun
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei230031, China
- Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei230031, China
| | - Yue Chu
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei230031, China
- Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei230031, China
| | - JinSheng Duan
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei230031, China
| |
Collapse
|
13
|
Zhao LX, He XL, Xie KB, Hu JJ, Deng MY, Zou YL, Gao S, Fu Y, Ye F. A novel isophorone-based fluorescent probe for recognition of Al 3+ and its bioimaging in cells and plants. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121882. [PMID: 36179561 DOI: 10.1016/j.saa.2022.121882] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/05/2022] [Accepted: 09/10/2022] [Indexed: 06/16/2023]
Abstract
In this work, a novel isophorone-based fluorescent probe H-1 was designed and synthesized. The probe H-1 could achieve highly selective detection of Al3+ through forming a 1:1 complex, with a recognition mechanism based on intramolecular charge transfer (ICT). The detection limit of the probe H-1 for Al3+ is as low as 8.25 × 10-8 M which was determined by fluorescent titration. It is confirmed that H-1 could be used not only for fluorescence spectrometry to detect Al3+ ions in actual water samples, but also for biological imaging to detect Al3+ ions in cells and plants.
Collapse
Affiliation(s)
- Li-Xia Zhao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Xiao-Li He
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Kai-Bo Xie
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Jia-Jun Hu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Meng-Yu Deng
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Yue-Li Zou
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Shuang Gao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China.
| | - Fei Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
14
|
Cang T, Diao Z, Di S, Liu Z, Wang Z, Zhao H, Xu H, Zhang C, Qi P, Wang X. Stereoselective bioaccumulation and dissipation of pyrisoxazole in earthworm-soil microcosm. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158472. [PMID: 36075432 DOI: 10.1016/j.scitotenv.2022.158472] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/13/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Pyrisoxazole is a chiral fungicide with high sterilizing activity to the plant pathogenic bacteria. It has two chiral C atoms, which bring four stereoisomers. The present work was the first time to explore the stereoselective bioaccumulation behavior of pyrisoxazole in earthworms by chiral liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (LC-Q-TOF/MS). The absolute configurations of pyrisoxazole stereoisomers were confirmed by circular dichroism (CD) coupled with calculated electronic circular dichroism (ECD) method, and the elution order in Lux Cellulose-3 column was as follows: (-)-3S, 5R-pyrisoxazole, (+)-3R, 5S-pyrisoxazole, (+)-3S, 5S-pyrisoxazole and (-)-3R, 5R-pyrisoxazole. The recoveries of pyrisoxazole stereoisomers in earthworm and soil samples ranged from 80.8 % to 101 % with the RSD lower than 6.3 %. In bioaccumulation progress, (+)-3R, 5S-pyrisoxazole was accumulated preferentially in earthworms, and the bioaccumulation concentrations of high-activity (-)-3S, 5R-pyrisoxazole were the lowest. There were no stereoselective bioaccumulation between (+)-3S, 5S-pyrisoxazole and (-)-3R, 5R-pyrisoxazole, while there was diastereoselectivity between Z-pyrisoxazole and E-pyrisoxazole with higher E-pyrisoxazole concentrations. In the whole bioaccumulation process, the BAF values of (+)-3R, 5S-pyrisoxazole were significantly higher than (-)-3S, 5R-pyrisoxazole, and the BAF values of (-)-3S, 5R-pyrisoxazole were the lowest. The dissipation of pyrisoxazole stereoisomers in the artificial soil was very slow and had no stereoselectivity, and the existence of earthworms had little effects on the dissipation of pyrisoxazole stereoisomers, which indicated that the stereoselective behaviors of pyrisoxazole in earthworms were caused by the stereoselective enrichment and dissipation of earthworms themselves. Taken together, (-)-3S, 5R-pyrisoxazole was recommend as a commercial product. This study played a positive role in guiding the development of environmentally friendly pesticides and provided database for the environmental and biological risk assessment of pyrisoxazole.
Collapse
Affiliation(s)
- Tao Cang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Ziyang Diao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China; College of Food Science & Engineering, Hainan University, No. 158 Renmin Avenue, Haikou, 570100, PR China
| | - Shanshan Di
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Zhenzhen Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Zhiwei Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Huiyu Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Hao Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Chenghui Zhang
- College of Food Science & Engineering, Hainan University, No. 158 Renmin Avenue, Haikou, 570100, PR China
| | - Peipei Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China.
| | - Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China.
| |
Collapse
|
15
|
Meng Z, Cui J, Li R, Sun W, Bao X, Wang J, Zhou Z, Zhu W, Chen X. Systematic evaluation of chiral pesticides at the enantiomeric level: A new strategy for the development of highly effective and less harmful pesticides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157294. [PMID: 35839878 DOI: 10.1016/j.scitotenv.2022.157294] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Over the past few decades, pesticides have been used in large quantities, and they pose potential risks to organisms across various environments. Reducing the use of pesticides and their environmental risks has been an active research focus and difficult issue worldwide. As a class of pesticides with special structures, chiral pesticides generally exhibit enantioselectivity differences in biological activity, ecotoxicity, and environmental behavior. At present, replacing the racemates of chiral pesticides by identifying and developing their individual enantiomers with high efficiency and environmentally friendly characteristics is an effective strategy to reduce the use of pesticides and their environmental risks. In this study, we review the stereoselective behaviors of chiral pesticide, including their environmental behavior, stereoselective biological activity, and ecotoxicity. In addition, we emphasize that the systematic evaluation of chiral pesticides at the enantiomeric level is a promising novel strategy for developing highly effective and less harmful pesticides, which will provide important data support and an empirical basis for reducing pesticide application.
Collapse
Affiliation(s)
- Zhiyuan Meng
- School of Horticulture and Plant Protection, Yangzhou University, College of Guangling, Yangzhou, Jiangsu 225009, China
| | - Jiajia Cui
- School of Horticulture and Plant Protection, Yangzhou University, College of Guangling, Yangzhou, Jiangsu 225009, China
| | - Ruisheng Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China; Landscape Research Institute of Zhumadian, Zhumadian, Henan 463000, China
| | - Wei Sun
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xin Bao
- School of Horticulture and Plant Protection, Yangzhou University, College of Guangling, Yangzhou, Jiangsu 225009, China
| | - Jianjun Wang
- School of Horticulture and Plant Protection, Yangzhou University, College of Guangling, Yangzhou, Jiangsu 225009, China
| | - Zhiqiang Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Wentao Zhu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xiaojun Chen
- School of Horticulture and Plant Protection, Yangzhou University, College of Guangling, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
16
|
Zhang Y, Li M. Crystal structure of dichlorido-tetrakis(( E)-( RS)-1-(2,4-dichlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pent-1-en-3-ol- κ
1
N)cadmium(II), C 60H 68O 4N 12Cl 10Cd. Z KRIST-NEW CRYST ST 2022. [DOI: 10.1515/ncrs-2022-0322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C60H68O4N12Cl10Cd, triclinic, P
1
‾
$\overline{1}$
(no. 2), a = 8.9686(15) Å, b = 13.554(2) Å, c = 15.365(3) Å, α = 92.113(3)°, β = 99.047(3)°, γ = 106.492(3)°, V = 1762.1(5) Å3, Z = 1, Rgt
(F) = 0.0436, wRref
(F
2) = 0.1130, T = 296(2) K.
Collapse
Affiliation(s)
- Yanjun Zhang
- School of Chemistry and Chemical Engineering , Yulin University , Yulin , Shaanxi , 719000 , P. R. China
| | - Mei Li
- School of Chemistry and Chemical Engineering , Yulin University , Yulin , Shaanxi , 719000 , P. R. China
| |
Collapse
|
17
|
Liu L, Li X, Wang X, Wang Y, Shao Z, Liu X, Shan D, Liu Z, Dai Y. Metolachlor adsorption using walnut shell biochar modified by soil minerals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119610. [PMID: 35700880 DOI: 10.1016/j.envpol.2022.119610] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 05/31/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
The removal of pesticide residues in soil is a research hotspot. The metolachlor (MET) adsorption by walnut shell biochar (BC) modified with montmorillonite (MBC), illite (IBC), and kaolinite (KBC), as well as the original BC (OBC) was investigated. The characteristics of samples were studied by scanning electron microscopy and mapping analysis, Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetry, and chemical stability analysis. The effects of the dosage, ionic strength, and pH, and determined the adsorption kinetics and isotherms for MET with the BCs were analyzed. In addition, response surface methodology regression model analysis was conducted and the adsorption mechanisms were investigated. The results showed that the thermal stability and chemical stability of MBC, IBC, and KBC were higher than those of OBC, and MBC had the greatest stability. The MET adsorption rates of OBC, MBC, IBC, and KBC were 62.15%, 92.47%, 87.97%, and 83.31%, respectively. The kinetic fitting results and adsorption mechanisms showed that the modification of BC with minerals enhanced the physical adsorption of MET. The maximum MET adsorption capacities by OBC, MBC, IBC, and KBC were 39.68 mg g-1, 68.49 mg g-1, 65.79 mg g-1, and 65.36 mg g-1, respectively. Hydrogen bonds, π-π bonds, coordination bonds, and hydrophobic interactions were the key adsorption mechanisms. Therefore, the mineral-modified BCs were characterized by high adsorption rates and stability. This approach can make BC more efficient, with higher performance as a low cost soil amendment.
Collapse
Affiliation(s)
- Lu Liu
- Key Laboratory of Agricultural Renewable Resource Utilization Technology of Heilongjiang Province, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China; School of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China; School of Environment, Harbin Institute of Technology, No.73, Huanghe Road, Nangang District, Harbin, 150090, China
| | - Xiaohan Li
- School of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China
| | - Xiaorou Wang
- Environment Research Institute, Shandong University, No.72 Binhai Road, Jimo District, Qingdao, 266237, China
| | - Yuxin Wang
- School of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China
| | - Ziyi Shao
- School of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China
| | - Xiao Liu
- School of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China
| | - Dexin Shan
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, No.319 Honghe Road, Yongchuan District, Chongqing, 402168, China
| | - Zhihua Liu
- School of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China
| | - Yingjie Dai
- School of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China.
| |
Collapse
|
18
|
Di S, Liu Z, Zhao H, Li Y, Qi P, Wang Z, Xu H, Jin Y, Wang X. Chiral perspective evaluations: Enantioselective hydrolysis of 6PPD and 6PPD-quinone in water and enantioselective toxicity to Gobiocypris rarus and Oncorhynchus mykiss. ENVIRONMENT INTERNATIONAL 2022; 166:107374. [PMID: 35780684 DOI: 10.1016/j.envint.2022.107374] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/06/2022] [Accepted: 06/22/2022] [Indexed: 05/26/2023]
Abstract
As a ubiquitous tire antidegradant, N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) is persistently released into the environment. It is highly toxic to aquatic organisms, and its transformation product 6PPD-quinone (6PPD-Q), is "very highly toxic" to Oncorhynchus kisutch at a median lethal concentration (LC50) of < 0.1 ng/mL. Notably, 6PPD and 6PPD-Q are chiral compounds. Here, enantioselective evaluations, including hydrolysis and acute toxicity were conducted after preparing the enantiomer, confirming the enantiomer absolute configuration and establishing enantioseparation methods. In the 6PPD hydrolysis experiments, the products 6PPD-Q, phenol, 4-[(1,3-dimethylbutyl)amino]- (4-DBAP) and 4-hydroxydiphenylamine (4-HDPA) were detected. In different water solutions, the hydrolysis of 4-DBAP and 4-HDPA was very fast (0.87-107 h), while the 6PPD-Q hydrolysis half-lives (12.8-16.3 d) were significantly longer than 6PPD (4.83-64.1 h). At the enantiomeric level, no enantioselective hydrolysis and conversion occurred. R-6PPD generated R-6PPD-Q, and S-6PPD generated S-6PPD-Q, and the formation rate of S-6PPD-Q was 1.77 times faster than R-6PPD-Q. In terms of the enantioselective toxicity, the 6PPD enantiomer was highly toxic to China-specific Gobiocypris rarus (LC50, 162-201 ng/mL), and it had no enantioselective difference. 6PPD-Q was "very highly toxic" (LC50, 1.66-4.31 ng/mL) to Oncorhynchus mykiss, which is of commercial importance, and the toxicities of rac-6PPD-Q and S-6PPD-Q were 1.9 and 2.6 times higher than R-6PPD-Q. Furthermore, the formation concentrations of S-6PPD-Q and R-6PPD-Q in 6PPD water solutions were higher than the LC50 values of O. kisutch and O. mykiss, and the toxicity of 6PPD-Q was highly species-specific, which should raise concern. These results provide important information for environmental risk assessments of 6PPD and 6PPD-Q, especially from the perspective of enantiomers.
Collapse
Affiliation(s)
- Shanshan Di
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Zhenzhen Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Huiyu Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Ying Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Peipei Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Zhiwei Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Hao Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, PR China.
| | - Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China.
| |
Collapse
|
19
|
Di S, Cang T, Liu Z, Xie Y, Zhao H, Qi P, Wang Z, Xu H, Wang X. Comprehensive evaluation of chiral pydiflumetofen from the perspective of reducing environmental risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154033. [PMID: 35192824 DOI: 10.1016/j.scitotenv.2022.154033] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
The spatial structures of chiral pesticide enantiomers can affect their activity, toxicity and behavior, thereby altering exposure risk. Identifying enantiomer differences and developing high-efficiency green enantiopure pesticide is an important strategy for reducing the negative effects of pesticides. In this study, after confirming the absolute configuration of pydiflumetofen enantiomers, fungicidal activity evaluation indicated that the activity of S-(+)-pydiflumetofen was 81.3-421 times higher than R-(-)-pydiflumetofen on three kinds of phytopathogens that control Fusarium wilt (Fusarium spp.), Alternaria rot (Alternaria alternata) and Southern blight (Sclerotinia rolfsii), which might be caused by the stronger binding ability of S-(+)-pydiflumetofen with the active site of the target protein. The coexistence of R-(-)-pydiflumetofen would enhance the toxicity of S-(+)-pydiflumetofen on zebrafish through synergistic effect. Low-activity R-(-)-pydiflumetofen was preferentially dissipated in soybean, soybean plants, cabbage and celery, which was opposite in soil. The persistence of S-(+)-pydiflumetofen in crops and degradability in soil were advantageous for pesticide effects and environmental protection. Based on the maximum residue limit (MRL) and hazard quotient (HQ), the dietary risks were determined to be acceptable for all crops. Thus, developing enantiopure S-(+)-pydiflumetofen products might be a high-efficiency and low-risk strategy, and more studies should be conducted in this aspect.
Collapse
Affiliation(s)
- Shanshan Di
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Tao Cang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Zhenzhen Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Yunye Xie
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Huiyu Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Peipei Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Zhiwei Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Hao Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China.
| |
Collapse
|
20
|
Zhao LX, Peng JF, Liu FY, Zou YL, Gao S, Fu Y, Ye F. Discovery of novel phenoxypyridine as promising protoporphyrinogen IX oxidase inhibitors. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 184:105102. [PMID: 35715041 DOI: 10.1016/j.pestbp.2022.105102] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/30/2022] [Accepted: 04/15/2022] [Indexed: 06/15/2023]
Abstract
Protoporphyrinogen oxidase (PPO, EC 1.3.3.4) is a significant target for the discovery of novel bleaching herbicides. Starting from the active fragments of several known commercial herbicides, a series of PPO inhibitors with diphenyl ether scaffolds were designed and synthesized by substructure splicing and bioisosterism methods. The greenhouse herbicidal activity and the PPO inhibitory activity in vitro were measured. The results showed that the novel synthesized compounds have good PPO inhibitory activity, and the IC50 value against corn PPO ranges from 0.032 ± 0.008 mg/L to 3.245 ± 0.247 mg/L. Among all target compounds, compound P2 showed the best herbicidal activity, with a half inhibitory concentration (IC50) of 0.032 ± 0.008 mg/L. In addition, the molecular docking results showed that the benzene ring part of compound P2 can form a π-π stacking with PHE-392, and the trifluoromethyl group and ARG-98 form two hydrogen bonds. Crop safety experiments and cumulative concentration analysis experiments indicated that compound P2 can be used for weed control in rice, wheat, soybean and corn. Therefore, compound P2 can be selected to develop potential lead compounds for novel PPO inhibitors.
Collapse
Affiliation(s)
- Li-Xia Zhao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Jian-Feng Peng
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Feng-Yi Liu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Yue-Li Zou
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Shuang Gao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China.
| | - Fei Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|