1
|
Zhang Y, Zhu M, Dai Y, Gao L, Cheng L. Research Progress in Ulcerative Colitis: The Role of Traditional Chinese Medicine on Gut Microbiota and Signaling Pathways. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:2277-2336. [PMID: 39756829 DOI: 10.1142/s0192415x24500885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Ulcerative colitis (UC), one among other refractory diseases worldwide, has shown an increasing trend of progression to colorectal cancer in recent years. In the treatment of UC, traditional Chinese medicine has demonstrated good efficacy, with a high cure rate, fewer adverse effects, great improvement in the quality of patient survival, and reduction in the tendency of cancerous transformation. It shows promise as a complementary and alternative therapy. This review aims to evaluate and discuss the current research on UC, signaling pathways, and gut microbiota. We also summarized the mechanisms of action of various Chinese medicines (active ingredients or extracts) and herbal formulas, through signaling pathways and gut microbiota, with the expectation that they can provide references and evidence for treating UC and preventing inflammation-associated colorectal cancer by traditional Chinese medicine. We illustrate that multiple signaling pathways, such as TLR4, STAT3, PI3K/Akt, NF-[Formula: see text]B, and Keap1/Nrf2, can be inhibited by Chinese herbal treatments through the combined regulation of signaling pathways and gut microbiota, which can act individually or synergistically to inhibit intestinal inflammatory cell infiltration, attenuate gut oxidative responses, and repair the intestinal barrier.
Collapse
Affiliation(s)
- Yuyi Zhang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, P. R. China
| | - Mingfang Zhu
- Graduate School, Zunyi Medical University Zunyi, P. R. China
| | - Yueying Dai
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, P. R. China
| | - Longying Gao
- Department of Anorectal, The First Affiliated Hospital of Heilongjiang, University of Chinese Medicine Harbin, P. R. China
| | - Limin Cheng
- Department of Anorectal, The First Affiliated Hospital of Heilongjiang, University of Chinese Medicine Harbin, P. R. China
| |
Collapse
|
2
|
Li T, Hu G, Fu S, Qin D, Song Z. Phillyrin ameliorates DSS-induced colitis in mice via modulating the gut microbiota and inhibiting the NF-κB/MLCK pathway. Microbiol Spectr 2024:e0200624. [PMID: 39699220 DOI: 10.1128/spectrum.02006-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/29/2024] [Indexed: 12/20/2024] Open
Abstract
Phillyrin (PHY), also known as forsythin, is an active constituent isolated from the fruit of Forsythia suspensa (Thunb.) Vahl (Oleaceae). It exhibits anti-inflammatory, anti-viral, and antioxidant properties. However, the precise impact of PHY on colitis induced by dextran sodium sulfate (DSS) and its mechanism remain elusive. The present investigation revealed that PHY (12.5, 25.0, and 50.0 mg/kg) exhibited significant therapeutic efficacy in protecting mice against DSS-induced colitis. This effect was manifested as reduced weight loss, a shortened colon, increased secretion of inflammatory factors, increased intestinal permeability, and an enhanced disease activity index in mice with ulcerative colitis (UC). Molecular investigations have determined that PHY mitigates the nuclear translocation of nuclear factor kappa B, thereby downregulating myosin light-chain kinase-driven myosin light-chain phosphorylation. This mechanism results in the preservation of the integrity of the intestinal barrier. The outcomes of 16S rRNA sequencing suggest that PHY (50 mg/kg) augmented the relative abundance of certain probiotic strains, including Lactobacillaceae and Lachnospiraceae. Additionally, PHY supplementation elevated the short-chain fatty acid contents within the intestinal contents of mice with UC. In conclusion, pre-treatment with PHY may ameliorate the DSS-induced UC in mice by lowering the expression of inflammatory factors, protecting intestinal barrier function, and enhancing the structure of the intestinal flora.IMPORTANCEThe protective effect of phillyrin on DSS-induced colitis was explained for the first time, and the anti-inflammatory effect of phillyrin was demonstrated by fecal microbiota transplantation experiments mainly through intestinal flora.
Collapse
Affiliation(s)
- Tong Li
- College of Veterinary Medicine, Jilin University, changchun, China
| | - Guiqiu Hu
- College of Veterinary Medicine, Jilin University, changchun, China
| | - Shoupeng Fu
- College of Veterinary Medicine, Jilin University, changchun, China
| | - Di Qin
- College of Animal Science and Technology, Jilin University, changchun, China
| | - Zheyu Song
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, changchun, China
| |
Collapse
|
3
|
Li Y, Yue X, Ren X, Pang Y, Wang T, Huangfu B, Mikhailovich ZA, Vasilievich KV, Zhang M, Luan Y, Wang Q, He X. Mare milk and fermented mare milk alleviate DSS-induced ulcerative colitis in mice by reducing inflammation and modulating intestinal flora. J Dairy Sci 2024:S0022-0302(24)01370-5. [PMID: 39647629 DOI: 10.3168/jds.2024-25181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/10/2024] [Indexed: 12/10/2024]
Abstract
Mare milk (MM) and fermented mare milk (FM) are specialized animal milks with high nutritional value, containing a variety of functionally active substances that are capable of resisting inflammatory responses and oxidative stress. However, researches on the maintenance of intestinal homeostasis have been insufficient. This study aimed to investigate the effects of MM and FM on the prevention of DSS-induced ulcerative colitis in a mouse model and to preliminarily elucidate the underlying mechanisms. The results showed that MM and FM had different degrees of protective effects against the damage of DSS and alleviated ulcerative colitis by inhibiting weight loss, reducing colon length shortening, and restoring intestinal structure. Additionally, MM and FM maintained intestinal tight junction protein levels to repair barrier function, downregulated inflammatory cytokines (e.g., IL-1β, TNF-α, IL-6, and iNOS) and bolstered the body's antioxidant defense system. Moreover, MM and FM regulate the dysregulation of intestinal microenvironment by improving gut microbiota diversity and reshaping its structure, including increasing the proportion of Firmicutes and Bacteroidetes and the relative abundance of beneficial bacterial genera (e.g., Akkermansia). In summary, mare milk and fermented mare milk can serve as a dietary resource for preventing ulcerative colitis and maintaining intestinal homeostasis.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering; China Agricultural University, Beijing 100083, China
| | - Xiaoyu Yue
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xinxin Ren
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering; China Agricultural University, Beijing 100083, China
| | - Yang Pang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering; China Agricultural University, Beijing 100083, China
| | - Teng Wang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering; China Agricultural University, Beijing 100083, China
| | - Bingxin Huangfu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering; China Agricultural University, Beijing 100083, China
| | | | | | - Mu Zhang
- Shenyang Agricultural University. Shenyang, China
| | - Yue Luan
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Qin Wang
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Xiaoyun He
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering; China Agricultural University, Beijing 100083, China.
| |
Collapse
|
4
|
Wang Y, Qin X, Shuai J, Wan X, Yu D, Ling L, Lu Q, Lv M. Pristimerin Alleviates DSS-Induced Colitis in Mice by Modulating Intestinal Barrier Function, Gut Microbiota Balance and Host Metabolism. Inflammation 2024:10.1007/s10753-024-02182-4. [PMID: 39538091 DOI: 10.1007/s10753-024-02182-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/05/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Pristimerin is a pentacyclic triterpenoid mainly derived from Celastraceae plants such as Maytenus ilicifolia, which has been traditionally used for the treatment of gastrointestinal disorders. Pharmacological studies have shown that pristimerin exhibited anti-inflammatory, antioxidant, anticancer and antibacterial activities. However, the potential mechanism of pristimerin for the treatment of ulcerative colitis (UC) remains elusive. In the present study, pristimerin could effectively inhibit the NO generation induced by LPS in RAW 264.7 cells and upregulate the decreased expression of tight junction proteins such as occludin and claudin-1. In vivo, oral administration of pristimerin (0.5 mg/kg and 1 mg/kg) could significantly relieve UC symptoms such as body weight loss, disease activity index, shortened colon length and colonic pathological damage. Meanwhile, pristimerin decreased the TNF-α, MPO and MDA levels and increased the levels of IL-10, IL-22, SOD activity, occludin and claudin-1 in colon tissues. Gut microbiota analysis of cecum contents revealed that pristimerin treatment effectively alleviated gut microbiota dysbiosis. Additionally, serum metabolomics showed that 33 potential biomarkers involving lipid and tryptophan metabolism were identified, which may account for the therapeutic effects of pristimerin on UC mice. In conclusion, our findings indicate that pristimerin attenuates UC symptoms in DSS-induced mice through modulating intestinal barrier integrity, gut microbiota composition, lipid and tryptophan metabolism.
Collapse
Affiliation(s)
- Yang Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, 225001, China
| | - Xiaogang Qin
- Department of Gastroenterology, Traditional Chinese Medicine Hospital of Tongzhou District, Nantong, 226300, Jiangsu, China
| | - Jinhao Shuai
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, 225001, China
| | - Xiayun Wan
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, 225001, China
| | - Duonan Yu
- Department of Hematology, Sichuan Provincial People's Hospital, The University of Electronic Science and Technology of China, Chengdu, 610000, Sichuan, China
| | - Ling Ling
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Qianwen Lu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, 225001, China
| | - Mengying Lv
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China.
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, 225001, China.
- Guangling College, Yangzhou University, Yangzhou, 225001, China.
- Department of pharmacy, Medical College, Yangzhou University, Yangzhou, 225001, China.
| |
Collapse
|
5
|
Tian Y, He Y, Xiong H, Sun Y. Rice Protein Peptides Alleviate Alcoholic Liver Disease via the PPARγ Signaling Pathway: Through Liver Metabolomics and Gut Microbiota Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23790-23803. [PMID: 39406388 DOI: 10.1021/acs.jafc.4c02671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Alcoholic liver disease (ALD) is the predominant type of liver disease worldwide, resulting in significant mortality and a high disease burden. ALD damages multiple organs, including the liver, gut, and brain, causing inflammation, oxidative stress, and fat deposition. In this study, we investigated the effects of rice protein peptides (RPP) on ALD in mice with a primary focus on the gut microbiota and liver metabolites. The results showed that administration of RPP significantly alleviated the symptoms of ALD in mice including adiposity, oxidative stress, and inflammation. The KEGG pathway shows that RPP downregulates the liver metabolite of capric acid and the metabolism of fatty acid biosynthesis compared with the MOD group. Mechanistically, RPP downregulated the PPARγ signaling pathway and suppressed the expression of fatty acid biosynthesis genes (FASN, ACC1, ACSL1, and ACSL3). Furthermore, two active peptides (YLPTKQ and PKLPR) with potential therapeutic functions for ALD were screened by Caco-2 cell modeling and molecular docking techniques. In addition, RPP treatment alleviates gut microbiota dysbiosis by reversing the F/B ratio, increasing the relative abundance of Alloprevotella and Alistipes, and upregulating the level of short-chain fatty acids. In conclusion, RPP alleviates ALD steatosis through the PPARγ signaling pathway by YLPTKQ and PKLPR and regulates gut microbiota.
Collapse
Affiliation(s)
- Yue Tian
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yangzheng He
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Hua Xiong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yong Sun
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
- Jiangxi Medicine Academy of Nutrition and Health Management, Nanchang, Jiangxi 330052, China
| |
Collapse
|
6
|
Liu M, Guan G, Wang Y, Lu X, Duan X, Xu X. p-Hydroxy benzaldehyde, a phenolic compound from Nostoc commune, ameliorates DSS-induced colitis against oxidative stress via the Nrf2/HO-1/NQO-1/NF-κB/AP-1 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155941. [PMID: 39128305 DOI: 10.1016/j.phymed.2024.155941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Ulcerative colitis (UC), a chronic idiopathic inflammatory bowel disease (IBD), presents with limited current drug treatment options. Consequently, the search for safe and effective drug for UC prevention and treatment is imperative. Our prior studies have demonstrated that the phenolic compound p-Hydroxybenzaldehyde (HD) from Nostoc commune, effectively mitigates intestinal inflammation. However, the mechanisms underlying HD's anti-inflammatory effects remain unclear. PURPOSE This study delved into the pharmacodynamics of HD and its underlying anti-inflammation mechanisms. METHODS For in vivo experiments, dextran sodium sulfate (DSS)-induced colitis mouse model was established. In vitro inflammation model was established using lipopolysaccharide (LPS)-induced RAW264.7 and bone marrow-derived macrophages (BMDMs). The protective effect of HD against colitis was determined by monitoring clinical symptoms and histological morphology in mice. The levels of inflammatory factors and oxidative stress markers were subsequently analyzed with enzyme-linked immunosorbent assay (ELISA) and biochemical kits. Furthermore, western blotting (WB), immunofluorescence (IF), luciferase reporter gene, drug affinity reaction target stability (DARTS) assay, molecular docking, and molecular dynamics (MD) simulation were used to determine the potential target and molecular mechanism of HD. RESULTS Our findings indicate that HD significantly alleviated the clinical symptoms and histological morphology of colitis in mice, and curtailed the production of pro-inflammatory cytokines, including TNF-α, IL-6, IFN-γ, COX-2, and iNOS. Furthermore, HD stimulated the production of SOD, CAT, and GSH-px, enhanced total antioxidant capacity (T-AOC), and reduced MDA levels. Mechanically, HD augmented the expression of Nrf2, HO-1, and NQO-1, while concurrently downregulating the phosphorylation of p65, IκBα, c-Jun, and c-Fos. ML385 and siNrf2 largely attenuated the protective effect of HD in enteritis mice and RAW 264.7 cells, as well as the promotion of HO-1 expression levels. ZnPP-mediated HO-1 knockdown reversed HD-induced inhibition of colonic inflammation. Luciferase reporter assay and IF assay confirmed the transcriptional activation of Nrf2 by HD. DARTS analysis, molecular docking, and MD results showed high binding strength, interaction efficiency and remarkable stability between Nrf2 and HD. CONCLUSION These outcomes extend our previous research results that HD can combat oxidative stress through the Nrf2/HO-1/NQO-1/NF-κB/AP-1 pathways, effectively alleviating colitis, and propose new targets for HD to protect against intestinal barrier damage.
Collapse
Affiliation(s)
- Meng Liu
- School of Pharmacy, Guilin Medical University, Guilin 541199, China; School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR 999078, China
| | - Guoqiang Guan
- School of Pharmacy, Guilin Medical University, Guilin 541199, China; School of Biomedical Industry, Guilin Medical University, Guilin 541199, China
| | - Yuhui Wang
- School of Pharmacy, Guilin Medical University, Guilin 541199, China; School of Biomedical Industry, Guilin Medical University, Guilin 541199, China
| | - Xi Lu
- School of Pharmacy, Guilin Medical University, Guilin 541199, China; School of Biomedical Industry, Guilin Medical University, Guilin 541199, China
| | - Xiaoqun Duan
- School of Pharmacy, Guilin Medical University, Guilin 541199, China; School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR 999078, China; School of Biomedical Industry, Guilin Medical University, Guilin 541199, China.
| | - Xiaotian Xu
- School of Pharmacy, Guilin Medical University, Guilin 541199, China.
| |
Collapse
|
7
|
He Y, Tian Y, Xiong H, Deng Z, Zhang H, Guo F, Sun Y. Rice Protein Peptides Ameliorate DSS-Induced Cognitive Impairment and Depressive Behavior in Mice by Modulating Phenylalanine Metabolism and the BDNF/TRKB/CREB Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19812-19825. [PMID: 39208363 DOI: 10.1021/acs.jafc.4c03733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Rice protein peptide (RPP) has been reported to alleviate the symptoms of dextran sulfate sodium (DSS)-induced colitis, but its potential protective effect and fundamental neurobiological mechanisms against DSS-induced inflammatory bowel disease (IBD), coupled with depression and cognitive impairment, remain unclear. In this study, RPP treatment in DSS-induced mice inhibited decreases in body weight and colon length and improved intestinal barrier function and behavioral performance. RPP treatment enhanced phenylalanine and tyrosine metabolism in the brains of mice, and it upregulated metabolites such as l-dopa, phenylethylamine, and 3,4-dihydroxyphenylacetate. Additionally, RPP treatment enhanced the brain-derived neurotrophic factor (BDNF) by upregulating the BDNF/TrkB/CREB signaling pathway. Spearman's correlation analysis revealed that the phenylalanine and tyrosine contents in the brain were significantly negatively correlated with the BDNF/TrkB/CREB signaling pathway and behavioral performance. In conclusion, this study suggested that RPP may serve as a unique nutritional strategy for preventing IBD and its associated cognitive impairment and depression symptoms.
Collapse
Affiliation(s)
- Yangzheng He
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
- Jiangxi Medicine Academy of Nutrition and Health Management, Nanchang, Jiangxi 330052, China
| | - Yue Tian
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Hua Xiong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Hua Zhang
- Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, PR China
| | - Fanghua Guo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yong Sun
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
- Jiangxi Medicine Academy of Nutrition and Health Management, Nanchang, Jiangxi 330052, China
| |
Collapse
|
8
|
Yuan L, Wang Y, Li N, Yang X, Sun X, Tian H, Zhang Y. Mechanism of Action and Therapeutic Implications of Nrf2/HO-1 in Inflammatory Bowel Disease. Antioxidants (Basel) 2024; 13:1012. [PMID: 39199256 PMCID: PMC11351392 DOI: 10.3390/antiox13081012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/29/2024] [Accepted: 08/17/2024] [Indexed: 09/01/2024] Open
Abstract
Oxidative stress (OS) is a key factor in the generation of various pathophysiological conditions. Nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2) is a major transcriptional regulator of antioxidant reactions. Heme oxygenase-1 (HO-1), a gene regulated by Nrf2, is one of the most critical cytoprotective molecules. In recent years, Nrf2/HO-1 has received widespread attention as a major regulatory pathway for intracellular defense against oxidative stress. It is considered as a potential target for the treatment of inflammatory bowel disease (IBD). This review highlights the mechanism of action and therapeutic significance of Nrf2/HO-1 in IBD and IBD complications (intestinal fibrosis and colorectal cancer (CRC)), as well as the potential of phytochemicals targeting Nrf2/HO-1 in the treatment of IBD. The results suggest that the therapeutic effects of Nrf2/HO-1 on IBD mainly involve the following aspects: (1) Controlling of oxidative stress to reduce intestinal inflammation and injury; (2) Regulation of intestinal flora to repair the intestinal mucosal barrier; and (3) Prevention of ferroptosis in intestinal epithelial cells. However, due to the complex role of Nrf2/HO-1, a more nuanced understanding of the exact mechanisms involved in Nrf2/HO-1 is the way forward for the treatment of IBD in the future.
Collapse
Affiliation(s)
- Lingling Yuan
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; (L.Y.); (Y.W.); (X.Y.); (X.S.); (H.T.)
| | - Yingyi Wang
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; (L.Y.); (Y.W.); (X.Y.); (X.S.); (H.T.)
| | - Na Li
- Department of Infection, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China;
| | - Xuli Yang
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; (L.Y.); (Y.W.); (X.Y.); (X.S.); (H.T.)
| | - Xuhui Sun
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; (L.Y.); (Y.W.); (X.Y.); (X.S.); (H.T.)
| | - Huai’e Tian
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; (L.Y.); (Y.W.); (X.Y.); (X.S.); (H.T.)
| | - Yi Zhang
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; (L.Y.); (Y.W.); (X.Y.); (X.S.); (H.T.)
| |
Collapse
|
9
|
Dai L, Cao X, Miao X, Yang X, Zhang J, Shang X. The chemical composition, protective effect of Rheum officinale leaf juice and its mechanism against dextran sulfate sodium-induced ulcerative colitis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155653. [PMID: 38688143 DOI: 10.1016/j.phymed.2024.155653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/18/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Rhubarb is widely distributed and cultivated worldwide, and its leaves presented antioxidant activity and could be used as food additive. However, the chemical ingredients, and protective effect of Rheum officinale leaf juice (JROL) on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) are still unclear. PURPOSE This paper sought to the characterization and functional properties of JROL, and explore the underlying mechanism on UC mice. METHODS UPLC-ESI-Q-TOF/MS and other analytical instruments were employed to determine the chemical ingredients of JROL. After inducing UC model using 3% DSS, multiple biological methods were used to evaluate its protective effect and the potential mechanism. RESULTS JROL is rich in proximate compositions and minerals and has high nutritional value, and contains reducing sugars, polysaccharides and pectin. Fifteen compounds were identified using UPLC-ESI-Q-TOF/MS. Among them, rutin has the highest content (2.22 %) in UPLC analysis. JROL presented protective effect on DSS-induced UC, and alleviated morphological alterations and ultra-structural feature of tissue, and the polysaccharides and flavonoids may contribute to its protective effect. JROL inhibited NF-κB/NLRP3 signaling pathway to alleviate inflammatory response, oxidative stress and intestinal injury by decreasing the expression of p-p65, p-IκBα, NLRP3, ASC, etc.. Moreover, it up-regulated the expression of tight junction proteins, and re-balanced the disturbance of gut microbiota to regulate the inflammatory response. Finally, a correlation among the inflammatory response, NF-κB/NLRP3 pathway and gut microbiota was established. Moreover, JROL presented the safety in the acute toxicity test. CONCLUSION JROL could be used as a potential new source for treating UC.
Collapse
Affiliation(s)
- Lixia Dai
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; College of Veterinary Medicine, Gansu Agricultural Univerisity, Lanzhou 730070, PR China
| | - Xinyuan Cao
- People's Hospital of Ningxia Hui Autonomous Region, Ningxia Medical University, Yingchuan 750011, PR China
| | - Xiaolou Miao
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Xiaorong Yang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Jiyu Zhang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; College of Veterinary Medicine, Gansu Agricultural Univerisity, Lanzhou 730070, PR China.
| | - Xiaofei Shang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; College of Veterinary Medicine, Gansu Agricultural Univerisity, Lanzhou 730070, PR China.
| |
Collapse
|
10
|
Xie WY, Ji ZH, Ren WZ, Zhao PS, Wei FH, Hu J, Yuan B, Gao W. Wheat peptide alleviates DSS-induced colitis by activating the Keap1-Nrf2 signaling pathway and maintaining the integrity of the gut barrier. Food Funct 2024; 15:5466-5484. [PMID: 38690672 DOI: 10.1039/d3fo04413k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Inflammatory bowel disease (IBD) is difficult to cure, and formulating a dietary plan is an effective means to prevent and treat this disease. Wheat peptide contains a variety of bioactive peptides with anti-inflammatory and antioxidant functions. The results of this study showed that preventive supplementation with wheat peptide (WP) can significantly alleviate the symptoms of dextran sulfate sodium (DSS)-induced colitis in mice. WP can increase body weight, alleviate colon shortening, and reduce disease activity index (DAI) scores. In addition, WP improved intestinal microbial disorders in mice with colitis. Based on LC-MS, a total of 313 peptides were identified in WP, 4 of which were predicted to be bioactive peptides. The regulatory effects of WP and four bioactive peptides on the Keap1-Nrf2 signaling pathway were verified in Caco-2 cells. In conclusion, this study demonstrated that WP alleviates DSS-induced colitis by helping maintain gut barrier integrity and targeting the Keap1-Nrf2 axis; these results provided a rationale for adding WP to dietary strategies to prevent IBD.
Collapse
Affiliation(s)
- Wen-Yin Xie
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China.
| | - Zhong-Hao Ji
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China.
- Department of Basic Medicine, Changzhi Medical College, Changzhi 046000, Shanxi, China
| | - Wen-Zhi Ren
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China.
| | - Pei-Sen Zhao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China.
| | - Fan-Hao Wei
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China.
| | - JinPing Hu
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China.
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China.
| | - Wei Gao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China.
| |
Collapse
|
11
|
Xie L, Chen T, Li H, Xiao J, Wang L, Kim SK, Huang Z, Xie J. An Exopolysaccharide from Genistein-Stimulated Monascus Purpureus: Structural Characterization and Protective Effects against DSS-Induced Intestinal Barrier Injury Associated with the Gut Microbiota-Modulated Short-Chain Fatty Acid-TLR4/MAPK/NF-κB Cascade Response. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7476-7496. [PMID: 38511260 DOI: 10.1021/acs.jafc.3c09290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Inflammatory bowel disease is a major health problem that can lead to prolonged damage to the digestive system. This study investigated the effects of an exopolysaccharide from genistein-stimulated Monascus purpureus (G-EMP) in a mouse model of colitis to clarify its molecular mechanisms and identified its structures. G-EMP (Mw = 56.4 kDa) was primarily consisted of → 4)-α-D-Galp-(1 →, → 2,6)-α-D-Glcp-(1→ and →2)-β-D-Manp-(1 → , with one of the branches being α-D-Manp-(1 →. G-EMP intervention reduced the loss of body weight, degree of colonic damage and shortening, disease activity index scores, and histopathology scores, while restoring goblet cell production and oxidative homeostasis, repairing colonic functions, and regulating inflammatory cytokines. RNA sequencing and Western blot analysis indicated that G-EMP exerts anti-inflammatory properties by suppressing the TLR4/MAPK/NF-κB inflammatory signaling pathway. G-EMP modulated the gut microbiota by improving its diversities, elevating the relative abundances of beneficial bacteria, declining the Firmicutes/Bacteroidota value, and regulating the level of short-chain fatty acids (SCFAs). Correlation analysis demonstrated strong links between SCFAs, gut microbiota, and the inflammatory response, indicating the potential of G-EMP to prevent colitis.
Collapse
Affiliation(s)
- Liuming Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Republic of Korea
| | - Ting Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Hong Li
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Jindan Xiao
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Linchun Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Soo-Ki Kim
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Republic of Korea
| | - Zhibing Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| |
Collapse
|
12
|
Xu D, Xie Y, Cheng J, He D, Liu J, Fu S, Hu G. Amygdalin Alleviates DSS-Induced Colitis by Restricting Cell Death and Inflammatory Response, Maintaining the Intestinal Barrier, and Modulating Intestinal Flora. Cells 2024; 13:444. [PMID: 38474407 PMCID: PMC10931221 DOI: 10.3390/cells13050444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Inflammatory bowel disease (IBD) refers to a cluster of intractable gastrointestinal disorders with an undetermined etiology and a lack of effective therapeutic agents. Amygdalin (Amy) is a glycoside extracted from the seeds of apricot and other Rosaceae plants and it exhibits a wide range of pharmacological properties. Here, the effects and mechanisms of Amy on colitis were examined via 16S rRNA sequencing, ELISA, transmission electron microscopy, Western blot, and immunofluorescence. The results showed that Amy administration remarkably attenuated the signs of colitis (reduced body weight, increased disease activity index, and shortened colon length) and histopathological damage in dextran sodium sulfate (DSS)-challenged mice. Further studies revealed that Amy administration significantly diminished DSS-triggered gut barrier dysfunction by lowering pro-inflammatory mediator levels, inhibiting oxidative stress, and reducing intestinal epithelial apoptosis and ferroptosis. Notably, Amy administration remarkably lowered DSS-triggered TLR4 expression and the phosphorylation of proteins related to the NF-κB and MAPK pathways. Furthermore, Amy administration modulated the balance of intestinal flora, including a selective rise in the abundance of S24-7 and a decline in the abundance of Allobaculum, Oscillospira, Bacteroides, Sutterella, and Shigella. In conclusion, Amy can alleviate colitis, which provides data to support the utility of Amy in combating IBD.
Collapse
Affiliation(s)
- Dianwen Xu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun 130062, China; (D.X.); (Y.X.); (J.C.); (J.L.)
| | - Yachun Xie
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun 130062, China; (D.X.); (Y.X.); (J.C.); (J.L.)
| | - Ji Cheng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun 130062, China; (D.X.); (Y.X.); (J.C.); (J.L.)
| | - Dewei He
- College of Animal Science, Jilin University, Changchun 130062, China;
| | - Juxiong Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun 130062, China; (D.X.); (Y.X.); (J.C.); (J.L.)
| | - Shoupeng Fu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun 130062, China; (D.X.); (Y.X.); (J.C.); (J.L.)
| | - Guiqiu Hu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun 130062, China; (D.X.); (Y.X.); (J.C.); (J.L.)
| |
Collapse
|
13
|
Yang YH, Chen C, Zheng Y, Wu ZJ, Zhou MQ, Liu XY, Miyashita K, Duan DL, Du L. Fucoxanthin Alleviates Dextran Sulfate Sodium-Induced Colitis and Gut Microbiota Dysbiosis in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4142-4154. [PMID: 38355398 DOI: 10.1021/acs.jafc.3c08811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The purpose of this study was to evaluate the preventive role and underlying mechanisms of fucoxanthin (Fx) on dextran sulfate sodium (DSS)-induced colitis in mice. The present data demonstrated that oral administration of Fx (50 and 200 mg/kg body weight/day) for 36 days significantly alleviated the severity of colitis in DSS-treated mice, as evidenced by attenuating body weight loss, bloody stool, diarrhea, shortened colon length, colonic epithelium distortion, a thin mucus layer, goblet cell depletion, damaged crypts, and extensive infiltration of inflammatory cells in the colonic mucosa. Additionally, Fx notably relieved DSS-induced intestinal epithelial barrier dysfunction via maintaining the tight junction function and preventing excessive apoptosis of colonic epithelial cells. Moreover, Fx effectively diminished colonic inflammation and oxidative stress in DSS-treated mice, and its mechanisms might be due to blunting the activation of NF-κB and NLRP3 inflammasome signaling pathways. Furthermore, Fx also modulates DSS-induced gut microbiota dysbiosis via recovering the richness and diversity of gut microbiota and reshaping the structure of gut microbiota, such as increasing the Firmicutes and Bacteroidota (F/B) ratio and elevating the relative abundance of some potential beneficial bacteria, including Lactobacillaceae and Lachnospiraceae. Overall, Fx might be developed as a promising functional ingredient to prevent colitis and maintain intestinal homeostasis.
Collapse
Affiliation(s)
- Yu-Hong Yang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), No. 3501 Daxue Road, Jinan, Shandong 250353, China
- Shandong Haizhibao Ocean Science and Technology Co., Ltd., No. 259 Pinghai East Road, Rongcheng City, Shandong 264300, China
| | - Chen Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Jinan, Shandong 250012, China
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, No. 105 Jiefang Road, Jinan, Shandong 250013, China
| | - Yan Zheng
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, No. 105 Jiefang Road, Jinan, Shandong 250013, China
| | - Zi-Jian Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Jinan, Shandong 250012, China
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, No. 105 Jiefang Road, Jinan, Shandong 250013, China
| | - Meng-Qing Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Jinan, Shandong 250012, China
| | - Xiao-Yong Liu
- Shandong Haizhibao Ocean Science and Technology Co., Ltd., No. 259 Pinghai East Road, Rongcheng City, Shandong 264300, China
| | - Kazuo Miyashita
- Center for Industry-University Collaboration, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - De-Lin Duan
- Key Lab of Breeding Biotechnology & Sustainable Aquaculture, Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, No. 168 Wenhai Middle Road, Qingdao, Shandong 266237, China
| | - Lei Du
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Jinan, Shandong 250012, China
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, No. 105 Jiefang Road, Jinan, Shandong 250013, China
| |
Collapse
|
14
|
Wojcik-Grzybek D, Sliwowski Z, Kwiecien S, Ginter G, Surmiak M, Hubalewska-Mazgaj M, Chmura A, Wojcik A, Kosciolek T, Danielak A, Targosz A, Strzalka M, Szczyrk U, Ptak-Belowska A, Magierowski M, Bilski J, Brzozowski T. Alkaline Phosphatase Relieves Colitis in Obese Mice Subjected to Forced Exercise via Its Anti-Inflammatory and Intestinal Microbiota-Shaping Properties. Int J Mol Sci 2024; 25:703. [PMID: 38255781 PMCID: PMC10815191 DOI: 10.3390/ijms25020703] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Intestinal alkaline phosphatase (IAP) is an enzyme that plays a protective role in the gut. This study investigated the effect of IAP treatment on experimental colitis in mice subjected to forced exercise on a high-fat diet. C57BL/6 mice with TNBS colitis were fed a high-fat diet and subjected to forced treadmill exercise with or without IAP treatment. Disease activity, oxidative stress, inflammatory cytokines, and gut microbiota were assessed. Forced exercise exacerbated colitis in obese mice, as evidenced by increased disease activity index (DAI), oxidative stress markers, and proinflammatory adipokines and cytokines. IAP treatment significantly reduced these effects and promoted the expression of barrier proteins in the colonic mucosa. Additionally, IAP treatment altered the gut microbiota composition, favoring beneficial Verrucomicrobiota and reducing pathogenic Clostridia and Odoribacter. IAP treatment ameliorates the worsening effect of forced exercise on murine colitis by attenuating oxidative stress, downregulating proinflammatory biomarkers, and modulating the gut microbiota. IAP warrants further investigation as a potential therapeutic strategy for ulcerative colitis.
Collapse
Affiliation(s)
- Dagmara Wojcik-Grzybek
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.W.-G.); (S.K.); (G.G.)
| | - Zbigniew Sliwowski
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.W.-G.); (S.K.); (G.G.)
| | - Slawomir Kwiecien
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.W.-G.); (S.K.); (G.G.)
| | - Grzegorz Ginter
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.W.-G.); (S.K.); (G.G.)
| | - Marcin Surmiak
- Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, 31-008 Cracow, Poland
| | - Magdalena Hubalewska-Mazgaj
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.W.-G.); (S.K.); (G.G.)
| | - Anna Chmura
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.W.-G.); (S.K.); (G.G.)
| | - Adrianna Wojcik
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.W.-G.); (S.K.); (G.G.)
| | - Tomasz Kosciolek
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Cracow, Poland
| | - Aleksandra Danielak
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.W.-G.); (S.K.); (G.G.)
| | - Aneta Targosz
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.W.-G.); (S.K.); (G.G.)
| | - Malgorzata Strzalka
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.W.-G.); (S.K.); (G.G.)
| | - Urszula Szczyrk
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.W.-G.); (S.K.); (G.G.)
| | - Agata Ptak-Belowska
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.W.-G.); (S.K.); (G.G.)
| | - Marcin Magierowski
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.W.-G.); (S.K.); (G.G.)
| | - Jan Bilski
- Department of Biomechanics and Kinesiology, Chair of Biomedical Sciences, Faculty of Health Sciences, Jagiellonian University Medical College, 31-008 Cracow, Poland;
| | - Tomasz Brzozowski
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.W.-G.); (S.K.); (G.G.)
| |
Collapse
|
15
|
Ji ZH, Xie WY, Zhao PS, Wu HY, Ren WZ, Hu JP, Gao W, Yuan B. Oat Peptides Alleviate Dextran Sulfate Sodium Salt-Induced Colitis by Maintaining the Intestinal Barrier and Modulating the Keap1-Nrf2 Axis. Nutrients 2023; 15:5055. [PMID: 38140314 PMCID: PMC10746067 DOI: 10.3390/nu15245055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The prevalence of inflammatory bowel disease (IBD) is progressively rising each year, emphasizing the significance of implementing rational dietary interventions for disease prevention. Oats, being a staple agricultural product, are abundant in protein content. This study aimed to investigate the protective effects and underlying mechanisms of oat peptides (OPs) in a mouse model of acute colitis induced by dextran sulfate sodium salt (DSS) and a Caco-2 cell model. The findings demonstrated that intervention with OPs effectively mitigated the symptoms associated with DSS-induced colitis. The physicochemical characterization analysis demonstrated that the molecular weight of the OPs was predominantly below 5 kDa, with a predominant composition of 266 peptides. This study provides further evidence of the regulatory impact of OPs on the Keap1-Nrf2 signaling axis and elucidates the potential role of WGVGVRAERDA as the primary bioactive peptide responsible for the functional effects of OPs. Ultimately, the results of this investigation demonstrate that OPs effectively mitigate DSS-induced colitis by preserving the integrity of the intestinal barrier and modulating the Keap1-Nrf2 axis. Consequently, these findings establish a theoretical foundation for the utilization of OPs as dietary supplements to prevent the onset of IBD.
Collapse
Affiliation(s)
- Zhong-Hao Ji
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (Z.-H.J.); (W.-Y.X.); (P.-S.Z.); (H.-Y.W.); (W.-Z.R.); (J.-P.H.)
- Department of Basic Medicine, Changzhi Medical College, Changzhi 046000, China
| | - Wen-Yin Xie
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (Z.-H.J.); (W.-Y.X.); (P.-S.Z.); (H.-Y.W.); (W.-Z.R.); (J.-P.H.)
| | - Pei-Sen Zhao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (Z.-H.J.); (W.-Y.X.); (P.-S.Z.); (H.-Y.W.); (W.-Z.R.); (J.-P.H.)
| | - Hong-Yu Wu
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (Z.-H.J.); (W.-Y.X.); (P.-S.Z.); (H.-Y.W.); (W.-Z.R.); (J.-P.H.)
- Jilin Academy of Agricultural Sciences, Jilin 132101, China
| | - Wen-Zhi Ren
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (Z.-H.J.); (W.-Y.X.); (P.-S.Z.); (H.-Y.W.); (W.-Z.R.); (J.-P.H.)
| | - Jin-Ping Hu
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (Z.-H.J.); (W.-Y.X.); (P.-S.Z.); (H.-Y.W.); (W.-Z.R.); (J.-P.H.)
| | - Wei Gao
- Changchun National Experimental Animal Center, Jilin University, Changchun 130062, China
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (Z.-H.J.); (W.-Y.X.); (P.-S.Z.); (H.-Y.W.); (W.-Z.R.); (J.-P.H.)
| |
Collapse
|
16
|
Zhou Y, Wang D, Duan H, Zhou S, Guo J, Yan W. Silkworm pupa protein peptide improved DSS-induced colitis in C57BL/6 mice through the MAPK/NF-κB signaling pathway. J Funct Foods 2023; 110:105852. [DOI: 10.1016/j.jff.2023.105852] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
|
17
|
Zeng Y, Zhou W, Yu J, Zhao L, Wang K, Hu Z, Liu X. By-Products of Fruit and Vegetables: Antioxidant Properties of Extractable and Non-Extractable Phenolic Compounds. Antioxidants (Basel) 2023; 12:antiox12020418. [PMID: 36829977 PMCID: PMC9951942 DOI: 10.3390/antiox12020418] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Non-extractable phenolic compounds (NEPs), or bound phenolic compounds, represent a crucial component of polyphenols. They are an essential fraction that remains in the residual matrix after the extraction of extractable phenolic compounds (EPs), making them a valuable resource for numerous applications. These compounds encompass a diverse range of phenolic compounds, ranging from low molecular weight phenolic to high polymeric polyphenols attached to other macro molecules, e.g., cell walls and proteins. Their status as natural, green antioxidants have been well established, with numerous studies showcasing their anti-inflammatory, anti-aging, anti-cancer, and hypoglycemic activities. These properties make them a highly desirable alternative to synthetic antioxidants. Fruit and vegetable (F&Veg) wastes, e.g., peels, pomace, and seeds, generated during the harvest, transport, and processing of F&Vegs, are abundant in NEPs and EPs. This review delves into the various types, contents, structures, and antioxidant activities of NEPs and EPs in F&Veg wastes. The relationship between the structure of these compounds and their antioxidant activity is explored in detail, highlighting the importance of structure-activity relationships in the field of natural antioxidants. Their potential applications ranging from functional food and beverage products to nutraceutical and cosmetic products. A glimpse into their bright future as a valuable resource for a greener, healthier, and more sustainable future, and calling for researchers, industrialists, and policymakers to explore their full potential, are elaborated.
Collapse
Affiliation(s)
- Yu Zeng
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Wenyi Zhou
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiahao Yu
- School of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310058, China
| | - Lei Zhao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Kai Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhuoyan Hu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (Z.H.); or (X.L.); Tel.: +86-20-8528-0266 (Z.H. & X.L.)
| | - Xuwei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (Z.H.); or (X.L.); Tel.: +86-20-8528-0266 (Z.H. & X.L.)
| |
Collapse
|
18
|
Ge H, Li T, Yang Q, Tang Y, Liu J, Yu Y, Zhang T. Egg white peptides administration in enhancing pathological immune response and regulating intestinal bacteria abundance: A new strategy for relieving young mice colitis. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Huifang Ge
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering Jilin University Changchun People's Republic of China
| | - Ting Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering Jilin University Changchun People's Republic of China
| | - Qi Yang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering Jilin University Changchun People's Republic of China
| | - Yuanhu Tang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering Jilin University Changchun People's Republic of China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering Jilin University Changchun People's Republic of China
| | - Yiding Yu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering Jilin University Changchun People's Republic of China
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering Jilin University Changchun People's Republic of China
| |
Collapse
|
19
|
Phillygenin Attenuated Colon Inflammation and Improved Intestinal Mucosal Barrier in DSS-induced Colitis Mice via TLR4/Src Mediated MAPK and NF-κB Signaling Pathways. Int J Mol Sci 2023; 24:ijms24032238. [PMID: 36768559 PMCID: PMC9917337 DOI: 10.3390/ijms24032238] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic, relapsing, and nonspecific inflammatory bowel disease (IBD). Phillygenin (PHI), a natural bioactive ingredient, isolated from Forsythiae Fructus, exhibits anti-inflammatory, anti-oxidative, and hepatoprotective activities. However, few reports provide direct evidence on the efficacy of PHI in improving colitis mice. The present study elucidated that the symptoms of DSS-induced colitis mice were alleviated after PHI administration, including body weight loss, the disease activity index, colon length shortening, colonic pathological damage, splenomegaly, and hepatomegaly. PHI treatment improved the intestinal mucosal barrier by protecting goblet cells, promoting gene expressions of Clca1, Slc26a3, and Aqp8, increasing tight junction proteins (TJs), and reducing epithelial cell apoptosis. In addition, the levels of oxidative stress (MPO, SOD, and MDA) and inflammatory cytokines (TNF-α, IL-1β, IL-6, and IL-10) were reversed by PHI in colitis mice. According to transcriptome and network pharmacology analysis, inflammatory pathway might be an important mechanism for PHI to improve colitis. Western blotting displayed that the PHI inhibited the activation of tyrosine kinase Src mediated by TLR4, and then reduced the phosphorylation of downstream proteins p38, JNK, and NF-κB in colitis mice. In summary, our results suggested that PHI might be an appropriate and effective drug candidate to protect colitis.
Collapse
|
20
|
Liao M, Chen F, Hu X, Liao X, Miao S, Ma L, Ji J. Controlled gastrointestinal digestion of micellar casein loaded anthocyanins: The chelating and complexing effect of dextran sulfate. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
21
|
Yang W, Huang Z, Xiong H, Wang J, Zhang H, Guo F, Wang C, Sun Y. Rice Protein Peptides Alleviate Dextran Sulfate Sodium-Induced Colitis via the Keap1-Nrf2 Signaling Pathway and Regulating Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12469-12483. [PMID: 36148996 DOI: 10.1021/acs.jafc.2c04862] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Inflammatory bowel disease (IBD), with increasing incidence, causes a range of gastrointestinal symptoms and brings distress and impact on the health and lives of patients. The aim of this study was to explore the protective effects of industrially produced rice protein peptides (RPP) on dextran sulfate sodium (DSS)-induced acute colitis in mice and the potential mechanisms. The results showed that RPP treatment alleviated the symptoms of colitis in mice, including weight loss, colon shortening, and injury, decreased the level of disease activity index (DAI), regulated the balance of inflammatory factors and oxidation, activated Kelch-like ECH-associating protein 1 (Keap1)-nuclear factor E2-related factor 2 (Nrf2) signaling pathway, regulated the expression of related antioxidant proteases, and promoted the expression of intestinal tight junction proteins. In addition, RPP maintained intestinal mucosal barrier function and alleviated acute colitis caused by DSS treatment in mice by increasing the value of F/B, increasing the relative abundance of beneficial bacteria such as Akkermansia, and regulating the level of short-chain fatty acids. In conclusion, RPP alleviated colitis symptoms through the Keap1-Nrf2 signaling pathway and regulating gut microbiota, which had the potential as dietary supplements or functional foods.
Collapse
Affiliation(s)
- Wenting Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Zhenghua Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Hua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Jiaqi Wang
- Ausnutria Institute of Food and Nutrition, Ausnutria Dairy (China) Co. Ltd., Changsha 410219, Hunan, China
| | - Hua Zhang
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Fanghua Guo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Chaoping Wang
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Yong Sun
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| |
Collapse
|