1
|
Sun S, Tang N, Han K, Wang Q, Xu Q. Effects of 2-Phenylethanol on Controlling the Development of Fusarium graminearum in Wheat. Microorganisms 2023; 11:2954. [PMID: 38138097 PMCID: PMC10745961 DOI: 10.3390/microorganisms11122954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Applying plant-derived fungicides is a safe and sustainable way to control wheat scab. In this study, volatile organic compounds (VOCs) of wheat cultivars with and without the resistance gene Fhb1 were analyzed by GC-MS, and 2-phenylethanol was screened out. The biocontrol function of 2-phenylethanol on Fusarium graminearum was evaluated in vitro and in vivo. Metabolomics analysis indicated that 2-phenylethanol altered the amino acid pathways of F. graminearum, affecting its normal life activities. Under SEM and TEM observation, the mycelial morphology changed, and the integrity of the cell membrane was destroyed. Furthermore, 2-phenylethanol could inhibit the production of mycotoxins (DON, 3-ADON, 15-ADON) by F. graminearum and reduce grain contamination. This research provides new ideas for green prevention and control of wheat FHB in the field.
Collapse
Affiliation(s)
- Shufang Sun
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Taian 271018, China; (S.S.); (N.T.)
| | - Nawen Tang
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Taian 271018, China; (S.S.); (N.T.)
| | - Kun Han
- Departmen of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Taian 271018, China;
| | - Qunqing Wang
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Taian 271018, China; (S.S.); (N.T.)
- Departmen of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Taian 271018, China;
| | - Qian Xu
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Taian 271018, China; (S.S.); (N.T.)
| |
Collapse
|
2
|
Liang C, Xi-Xi X, Yun-Xiang S, Qiu-Hua X, Yang-Yong L, Yuan-Sen H, Ke B. Surfactin inhibits Fusarium graminearum by accumulating intracellular ROS and inducing apoptosis mechanisms. World J Microbiol Biotechnol 2023; 39:340. [PMID: 37821760 DOI: 10.1007/s11274-023-03790-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023]
Abstract
Fusarium graminearum, a devastating fungal pathogen, is the main pathogen of Fusarium head blight (FHB) in wheat globally; it results in significant yield loss and mycotoxin contamination that severely threatens global wheat production and food safety. However, despite ongoing efforts, controlling this pathogen still remains a major challenge. Surfactin, primarily synthesized by Bacillus sp. via non-ribosomal peptide synthetases, exhibits potent surfactant and antibacterial properties, but its antifungal mechanism has yet to be fully elucidated. We found that the EC50 of surfactin against hyphal growth of F. graminearum was 102.1 µg/mL, and control efficacy against wheat FHB under field conditions achieved 86.38% in wheat cultivar Huaimai 40 and 81.60% in wheat cultivar Zhoumai 36, indicating that surfactin has potential antifungal activity against F. graminearum. Accumulated intracellular ROS, decreased mitochondrial membrane potential (MMP), activated metacaspase activity and condensed chromatin, were induced by surfactin in F. graminearum hyphae, suggesting that growth inhibition of fungus is mainly caused by apoptosis-like cell death. Furthermore, accumulated intracellular ROS was evidenced to act as a key mediator of surfactin-induced apoptosis. Broad-spectrum caspase inhibitor Z-VAD-FMK treatment indicated that surfactin induces caspase-independent apoptosis in F. graminearum. Collectively, this study provides evidence that surfactin induces a ROS-mediated mitochondrial apoptosis in F. graminearum hyphae, and may exert its antifungal activity against F. graminearum by activating apoptosis. This study demonstrates the potential of surfactin as an antifungal agent for FHB biocontrol, provides a new perspective on the antifungal mechanism of surfactin against filamentous fungi, and contributes to the application of surfactin-producing microbes in the biocontrol of plant diseases.
Collapse
Affiliation(s)
- Chen Liang
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China.
| | - Xu Xi-Xi
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Sun Yun-Xiang
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Xin Qiu-Hua
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Lv Yang-Yong
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Hu Yuan-Sen
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Bian Ke
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| |
Collapse
|
3
|
Song W, Yin Z, Lu X, Shen D, Dou D. Plant secondary metabolite citral interferes with Phytophthora capsici virulence by manipulating the expression of effector genes. MOLECULAR PLANT PATHOLOGY 2023; 24:932-946. [PMID: 37092279 PMCID: PMC10346372 DOI: 10.1111/mpp.13340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/14/2023] [Accepted: 04/02/2023] [Indexed: 05/03/2023]
Abstract
Phytophthora capsici is a notorious pathogen that infects various economically important plants and causes serious threats to agriculture worldwide. Plants deploy a variety of plant secondary metabolites to fend off pathogen attacks, but the molecular mechanisms are largely unknown. In this study, we screened 11 plant secondary metabolites to evaluate their biofumigation effects against P. capsici, and found that citral, carvacrol, and trans-2-decenal exhibited strong antimicrobial effects. Intriguingly, a low concentration of citral was effective in restricting P. capsici infection in Nicotiana benthamiana, but it was unable to inhibit the mycelial growth. A high concentration of citral affected the mycelial growth and morphology, zoospore germination, and cell membrane permeability of P. capsici. Further investigations showed that citral did not induce expression of tested plant immunity-related genes and reactive oxygen species (ROS) production, suggesting that a low concentration of citral could not trigger plant immunity. Moreover, RNA-Seq analysis showed that citral treatment regulated the expression of some P. capsici effector genes such as RxLR genes and P. cactorum-fragaria (PCF)/small cysteine-rich (SCR)74-like genes during the infection process, which was also verified by reverse transcription-quantitative PCR assay. Five candidate effector genes suppressed by citral significantly facilitated P. capsici infection in N. benthamiana or inhibited ROS triggered by flg22, suggesting that they were virulence factors of P. capsici. Together, our results revealed that plant-derived citral exhibited excellent inhibitory efficacy against P. capsici by suppressing vegetative growth and manipulating expression of effector genes, which provides a promising application of citral for controlling Phytophthora blight.
Collapse
Affiliation(s)
- Wen Song
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Zhiyuan Yin
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Xinyu Lu
- Institute of BotanyJiangsu Province and Chinese Academy of SciencesNanjingChina
| | - Danyu Shen
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Daolong Dou
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
4
|
Liu JN, Xi JH, Wang Z, Zhao SW, Wang X, Bu YW, Zhou KX, Pan Y, Wang S. Glutathione S-Transferase Highly Expressed in Holotrichia parallela Antennae Inactivates the Odorant Unsaturated Aldehyde Volatiles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37256838 DOI: 10.1021/acs.jafc.3c00915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Odorant-degrading enzymes in insects play a vital role in maintaining olfactory sensitivity. However, the role and molecular mechanism of glutathione S-transferases (GSTs) in odorant inactivation has been rarely studied. In the present study, 31 GSTs were identified from the antennal transcriptome of Holotrichia parallela. HpGSTd1 possesses the highest transcriptome expression level. Recombinant HpGSTd1 showed degradation activity toward various unsaturated aldehyde volatiles. Furthermore, the metabolite of cinnamaldehyde was identified by high-resolution mass spectrometry (HRMS). The molecular docking analysis and site-directed mutagenesis revealed the key residues of HpGSTd1 in degrading odorants. In addition, the unsaturated aldehyde volatiles elicited the behavioral and electrophysiological responses of H. parallela. Taken together, our findings suggest that HpGSTd1 may play an essential role in inactivating odorants in H. parallela, which provides new insights for identifying molecular targets and exploring effective olfactory regulators for this underground pest.
Collapse
Affiliation(s)
- Jia-Nan Liu
- College of Plant Science, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Jing-Hui Xi
- College of Plant Science, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Zhun Wang
- Changchun Customs Technology Center, Changchun, Jilin 130062, People's Republic of China
| | - Shi-Wen Zhao
- College of Plant Science, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Xiao Wang
- College of Plant Science, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Yun-Wei Bu
- College of Plant Science, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Ke-Xin Zhou
- College of Plant Science, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Yu Pan
- College of Plant Science, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Shang Wang
- College of Plant Science, Jilin University, Changchun, Jilin 130062, People's Republic of China
| |
Collapse
|
5
|
Ma D, Yu H, Cui G, Zhu J, Zhu B, Mu W, Liu F. Exposure of zebrafish (Danio rerio) to trans-2-hexenal induces oxidative stress and protein degeneration of the gill. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158813. [PMID: 36113795 DOI: 10.1016/j.scitotenv.2022.158813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Trans-2-hexenal (T2H) has great commercial value for development as a biopesticide, but its toxicity risk to nontarget organisms is unknown. Here, the toxicity and underlying mechanism of T2H on zebrafish (Danio rerio) were investigated. The LC50 (48 h) of T2H on zebrafish is 4.316 μg/mL, and the aldehyde group is essential to its toxicity. In 14-day chronic toxicity tests, 0.432 μg/mL T2H resulted in a higher mortality of zebrafish than the control group. Furthermore, the sensitivity of zebrafish to different administration methods was gill administration>oral administration>transdermal administration>intravenous injection. T2H induced significant cell death and ROS generation in zebrafish gill cells in a concentration-dependent manner. After treatment with 4.316 μg/mL T2H, the expression of oxidative stress-related genes (nrf2, gstp1, keap1b, sod1 and sod2) and the content of malondialdehyde (MDA) were up-regulated. Incubation with T2H caused an immediate denaturation of gill protein, which was aggravated with increasing dose of T2H. We also found that T2H at 21.225 mg/mL significantly reduced the in vitro activity of succinate dehydrogenase (SDH). Among the three amino acids tested, T2H was only found to react with methionine and glycine to form adducts, which may be the basis of the protein denaturation. This study confirmed that T2H could induce oxidative stress and protein denaturation in zebrafish gills, providing important information for risk assessment of T2H exposure.
Collapse
Affiliation(s)
- Dicheng Ma
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Haiyan Yu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guangrui Cui
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Jiamei Zhu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Bingyu Zhu
- Rongcheng Agricultural and Rural Affairs Service Center, Weihai 264300, China
| | - Wei Mu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Feng Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
6
|
Hu C, Chen P, Zhou X, Li Y, Ma K, Li S, Liu H, Li L. Arms Race between the Host and Pathogen Associated with Fusarium Head Blight of Wheat. Cells 2022; 11:2275. [PMID: 35892572 PMCID: PMC9332245 DOI: 10.3390/cells11152275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/10/2022] [Accepted: 07/19/2022] [Indexed: 12/10/2022] Open
Abstract
Fusarium head blight (FHB), or scab, caused by Fusarium species, is an extremely destructive fungal disease in wheat worldwide. In recent decades, researchers have made unremitting efforts in genetic breeding and control technology related to FHB and have made great progress, especially in the exploration of germplasm resources resistant to FHB; identification and pathogenesis of pathogenic strains; discovery and identification of disease-resistant genes; biochemical control, and so on. However, FHB burst have not been effectively controlled and thereby pose increasingly severe threats to wheat productivity. This review focuses on recent advances in pathogenesis, resistance quantitative trait loci (QTLs)/genes, resistance mechanism, and signaling pathways. We identify two primary pathogenetic patterns of Fusarium species and three significant signaling pathways mediated by UGT, WRKY, and SnRK1, respectively; many publicly approved superstar QTLs and genes are fully summarized to illustrate the pathogenetic patterns of Fusarium species, signaling behavior of the major genes, and their sophisticated and dexterous crosstalk. Besides the research status of FHB resistance, breeding bottlenecks in resistant germplasm resources are also analyzed deeply. Finally, this review proposes that the maintenance of intracellular ROS (reactive oxygen species) homeostasis, regulated by several TaCERK-mediated theoretical patterns, may play an important role in plant response to FHB and puts forward some suggestions on resistant QTL/gene mining and molecular breeding in order to provide a valuable reference to contain FHB outbreaks in agricultural production and promote the sustainable development of green agriculture.
Collapse
Affiliation(s)
- Chunhong Hu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
| | - Peng Chen
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
| | - Xinhui Zhou
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
| | - Yangchen Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
| | - Keshi Ma
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
| | - Shumei Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
| | - Huaipan Liu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
| | - Lili Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466000, China
| |
Collapse
|