1
|
Luo T, He Y, Jiang L, Yang L, Hou X, Shen G, Cui Q, Yu J, Ke J, Chen S, Zhang Z. Flavor perception and biological activities of bitter compounds in food. Food Chem 2025; 477:143532. [PMID: 40057996 DOI: 10.1016/j.foodchem.2025.143532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/15/2025] [Accepted: 02/19/2025] [Indexed: 03/27/2025]
Abstract
Bitter compounds in food produce a distinct bitter taste that significantly influences overall flavor and quality, while also possessing valuable biological activities. Therefore, a systematic review summarizing recent research advances on bitter compounds is necessary for a better understanding of them. This review discusses the sources of bitter substances in food, the mechanism of bitterness perception, their biological activities and key issues for future research. Bitter compounds in food mainly include polyphenols, alkaloids, terpenoids, bitter peptides and Maillard reaction products. Bitter substances bind to specific sites on bitter taste receptors (TAS2Rs), activating G protein-mediated downstream signaling pathways that lead to the perception of bitterness. Additionally, many bitter compounds possess biological activities, such as regulating food intake and exhibiting anti-cancer, anti-inflammatory and antioxidant activities. This review highlights the potential to exploit the bioactivity of bitter compounds to enhance the nutritional value and functionality of food.
Collapse
Affiliation(s)
- Tingting Luo
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Yanni He
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Lanxin Jiang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Li Yang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Xiaoyan Hou
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Guanghui Shen
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Qiang Cui
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Jie Yu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Jingxuan Ke
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan 473004, China.
| | - Shanbo Chen
- Sichuan Academy of Forestry, Chengdu, Sichuan 610081, China
| | - Zhiqing Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China.
| |
Collapse
|
2
|
Qi J, Qin Y, Wang W, Qin Z, Wang J, Tian S, Yang X. Saltiness Enhancement of Soy Peptides by Modulating Amiloride-Insensitive Salt-Responsive Cells and Interacting with Cell Membranes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:5423-5435. [PMID: 39993222 DOI: 10.1021/acs.jafc.4c12256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Saltiness-enhancing peptides hold great potential for salt reduction in the food industry. This study investigated the saltiness-enhancing mechanism of soy peptides E (EDEGEQPRPF), DG (DEGEQPRPFP), and 9AA (DEGEQPRPF), focusing on their interactions with amiloride-insensitive taste cells and cell membranes. Sensory evaluation showed that adding E and DG (0.4 mg/mL) to 50 mM NaCl increased perceived saltiness to 61.4 and 54.78 mM NaCl, while 9AA had no effect. Calcium imaging of taste organoids highlighted the role of Cl- in the amiloride-insensitive pathway. Peptide E enhanced the response of amiloride-insensitive salt-responsive cells by 35.19%, while DG and 9AA did not. Single-cell RNA sequencing revealed no functional ENaC heterotrimer and high Tmc4 expression in all types of taste cells, while Trpv1 was found in only one circumvallate papilla (CV) taste cell. E and DG form more stable bonds with TMC4 via hydrogen bonds and water bridges compared to 9AA, as evidenced by molecular dynamics simulations. Negatively charged peptide E, with an α-helical-like structure, adsorbed onto liposomes more than DG and 9AA due to its N-terminal Glu, suggesting E may indirectly modulate taste receptor function by altering membrane potential. These findings provide insights into the structure-function relationship of saltiness-enhancing peptides.
Collapse
Affiliation(s)
- Jiaming Qi
- National Engineering Research Center of Wheat and Corn Further Processing, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Zhejiang 310018, China
| | - Yumei Qin
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Zhejiang 310018, China
- Zhejiang-UK Joint Research Laboratory of Food Sensory Science, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Wenzhu Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Zhejiang 310018, China
| | - Zihan Qin
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Zhejiang 310018, China
| | - Jinmei Wang
- National Engineering Research Center of Wheat and Corn Further Processing, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Shiyi Tian
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Zhejiang 310018, China
- Zhejiang-UK Joint Research Laboratory of Food Sensory Science, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xiaoquan Yang
- National Engineering Research Center of Wheat and Corn Further Processing, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| |
Collapse
|
3
|
Xiao Y, Feng W, Chen J, Li Y, Liu Y. Research on microbial diversity and nutritional flavor formation of Xianju wheat paste. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1263-1276. [PMID: 39299931 DOI: 10.1002/jsfa.13916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/07/2024] [Accepted: 09/08/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Xianju wheat paste, a traditional condiment in Hubei Province, China, possesses nutritional value and a distinctive taste profile. Nevertheless, there remains a dearth of comprehensive comprehension regarding the intricate interplay between the microbial population and its nutritional profile in Xianju wheat paste. RESULTS It was determined that Xianju wheat paste harbors predominant microbial genera such as Bacillus, Staphylococcus and Aspergillus. The findings from high-throughput sequencing analysis revealed the presence of 11 bacterial genera in Xianju wheat paste, with relative abundances exceeding 1%. These genera included Bacillus, Staphylococcus, Brevibacterium, Lactobacillus, Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, Enterobacteriaceae, Pantoea, Brachybacterium, Klebsiella, Escherichia-Shigella and Ochrobactrum. Furthermore, six fungal genera were identified with relative abundances greater than 1%, specifically Aspergillus, Zygosaccharomyces, Cutaneotrichosporon, Candida, Millerozyma and Rhizopus. The correlation analysis indicated a significant impact of the microbial community and nutritional flavor on the second phase of fermentation in Xianju wheat paste. The predominant bacterium Bacillus in Xianju wheat paste facilitated the production of free amino acids, whereas Staphylococcus exhibited a negative correlation with free amino acid levels. The quantity of volatile compounds in Xianju wheat paste progressively increased during fermentation, with the presence of typical aroma compounds 4-vinyl-2-methoxyphenol significantly associated with Bacillus. This indicated Bacillus notably enhanced the production of aromatic substances. Furthermore, a strong correlation was observed between Staphylococcus and the 18 volatile organic compounds, highlighting their substantial contribution to these aroma compounds. CONCLUSION This research indicates that the presence of microbial communities significantly contributes to the development of the nutritional flavor profile in Xianju wheat paste. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yao Xiao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wu Feng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiaping Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yuanyuan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yating Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
4
|
Fröhlich SM, Jünger M, Mittermeier-Kleßinger VK, Dawid C, Hofmann TF, Somoza V, Dunkel A. Towards prediction of maturation-dependent kokumi taste in cheese by comprehensive high throughput quantitation of glutamyl dipeptides. Food Chem 2025; 463:141130. [PMID: 39243621 DOI: 10.1016/j.foodchem.2024.141130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/17/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
The study focuses on the comprehensive analysis of glutamyl dipeptides in cheese, particularly their formation during the cheese ripening process and the influence of various factors, such as origin, the use of various mold cultures, and cheese types. For the first time, all three subgroups of glutamyl dipeptides, namely α-Glu-X, X-Glu, and γ-Glu-X, are covered in a comprehensive analytical LC-MS/MS method offering robust quantitation of all 56 glutamyl dipeptides. The workflow includes a simplified extraction protocol and an optimized separation of the analytes on the stationary phase. Validation experiments demonstrate the method's reliability, including repeatability, detection limits, and recovery. The comprehensive analysis of all glutamyl dipeptides in 122 cheese samples with ripening times between 2 weeks and 15 years shows a strong increase in all peptide classes with prolonged ripening and particularly in the presence of mold.
Collapse
Affiliation(s)
- Sonja Maria Fröhlich
- TUM Graduate School, School of Life Sciences, Technical University of Munich, Alte Akademie 8, 85354 Freising, Germany; Leibniz Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany.
| | - Manon Jünger
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Verena Karolin Mittermeier-Kleßinger
- Professorship for Functional Phytometabolomics, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany.
| | - Corinna Dawid
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany; Professorship for Functional Phytometabolomics, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany; ZIEL - Institute for Food & Health, Technical University of Munich, Gregor-Mendel-Strasse 2, 85354 Freising, Germany.
| | - Thomas F Hofmann
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany.
| | - Veronika Somoza
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany; ZIEL - Institute for Food & Health, Technical University of Munich, Gregor-Mendel-Strasse 2, 85354 Freising, Germany; Chair of Nutritional Systems Biology, School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany.
| | - Andreas Dunkel
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany.
| |
Collapse
|
5
|
He K, Peng X, Li Y, Zhao M, Feng Y. Revealing metabolite profiles in soy sauce and exploring their correlation with umami taste using UPLC-Orbitrap-MS/MS and GC-Tof-MS derivatization. Food Chem 2025; 463:141303. [PMID: 39426240 DOI: 10.1016/j.foodchem.2024.141303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/29/2024] [Accepted: 09/13/2024] [Indexed: 10/21/2024]
Abstract
Soy sauce has a rich base of non-volatile substances, but existing studies are insufficient. This study analyzed the metabolites of 19 Chinese commercial soy sauces by UPLC-Orbitrap-MS/MS and GC-Tof-MS derivatization, and detected 674 and 230 kinds of substances, respectively, that could be grouped into 12 different classes of compounds, such as peptides, amino acid derivatives, organic acids, sugars, sugar alcohols, amino acids and so on. For the first time, 215 dipeptides and 91 amino acid derivatives in soy sauce were analyzed in detail and systematically from the perspective of composition and amino acid structure. The flavor profile of soy sauce was obtained by electronic tongue analysis, and orthogonal projections to latent structures (OPLS), random forest (RF), correlation were used to screen potential compounds associated with umami. The intersection of the three methods yielded 9 substances, including 4 reported umami-taste compounds, i.e., Glu, Fru-Glu, Inosine 5'prime-monophosphate (IMP) and Arg-Ser, as well as 5 others that may potentially contribute to umami or be associated with umami-taste producing microorganisms, including His-Asn and Homoserine lactone. This study will advance the understanding of soy sauce metabolites, and provide an in-depth reference for dipeptides and amino acid derivatives in soy sauce.
Collapse
Affiliation(s)
- Kaili He
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Xing Peng
- Metanotitia Inc., Shenzhen 518063, China
| | - Yan Li
- Metanotitia Inc., Shenzhen 518063, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Yunzi Feng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China.
| |
Collapse
|
6
|
Huang X, Gao T, Chen X, Cai X, Huang J, Wang S. Taste characteristics of salty peptides from Porphyra haitanensis and the synergistic saltiness enhancement with CaCl 2. Food Chem 2024; 461:140901. [PMID: 39178541 DOI: 10.1016/j.foodchem.2024.140901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024]
Abstract
The excessive consumption of sodium-containing seasonings has led to an increased burden on individuals' cardiovascular system and adversely affected their health. Recently, an innovative salt-reducing strategy utilizing salty peptides has emerged with promising prospects. In this study, Porphyra haitanensis salty peptides (PHSPs) was obtained through hydrolysis and ultrafiltration. The salty taste of 30 mg/mL PHSPs was comparable to that of about 40 mM NaCl. The higher proportion of umami and sweet amino acids in PHSPs was found, which contributed to the salty and umami taste. Factors affecting the flavor of PHSPs were also investigated. CaCl2 exhibited the excellent synergistic enhancement with PHSPs on the salty taste, while the bitter taste of CaCl2 was masked in the presence of PHSPs, which was attributed to the chelation between calcium and peptides. Above all, it is expected that PHSPs can be further developed and support the emerging salt-reducing strategy in food engineering.
Collapse
Affiliation(s)
- Xincheng Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Tingting Gao
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Xu Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Xixi Cai
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; Qingyuan Innovation Laboratory, Quanzhou 362801, China; Fuzhou Institute of Oceanography, Fuzhou 350108, China.
| | - Jianlian Huang
- Fujian Provincial Key Laboratory of Frozen Processed Aquatic Products, Xiamen 361022, China; Anjoy Food Group Co. Ltd., Xiamen 361022, China
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; Qingyuan Innovation Laboratory, Quanzhou 362801, China; Fuzhou Institute of Oceanography, Fuzhou 350108, China.
| |
Collapse
|
7
|
Yan Y, Zou M, Tang C, Ao H, He L, Qiu S, Li C. The insights into sour flavor and organic acids in alcoholic beverages. Food Chem 2024; 460:140676. [PMID: 39126943 DOI: 10.1016/j.foodchem.2024.140676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/13/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024]
Abstract
Alcoholic beverages have developed unique flavors over millennia, with sourness playing a vital role in their sensory perception and quality. Organic acids, as crucial flavor compounds, significantly impact flavor. This paper reviews the sensory attribute of sour flavor and key organic acids in alcoholic beverages. Regarding sour flavor, research methods include both static and dynamic sensory approaches and summarize the interaction of sour flavor with aroma, taste, and mouthfeel. In addition, this review focuses on identifying key organic acids, including sample extraction, chromatography, olfactometry/taste, and mass spectrometry. The key organic acids in alcoholic beverages, such as wine, Baijiu, beer, and Huangjiu, and their primary regulatory methods are discussed. Finally, future avenues for the exploration of sour flavor and organic acids by coupling machine learning, database, sensory interactions and electroencephalography are suggested. This systematic review aims to enhance understanding and serve as a reference for further in-depth studies on alcoholic beverages.
Collapse
Affiliation(s)
- Yan Yan
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Mingxin Zou
- Guizhou Tangzhuag Chinese Liquor Limited Company, Zunyi 564500, Guizhou Province, China
| | - Cui Tang
- Liupanshui Agricultural and Rural Bureau, Liupanshui 553002, Guizhou Province, China
| | - Hongyan Ao
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Laping He
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Shuyi Qiu
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Cen Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
8
|
Fu Y. Yeast extract as a more sustainable food ingredient: Insights into flavor and bioactivity. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 114:97-147. [PMID: 40155090 DOI: 10.1016/bs.afnr.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
Yeast extract (YE), a nutritious and sustainable food ingredient, primarily functions as a food flavor enhancer and bioactive ingredient in the food industry. Currently, there is a dearth of systematic reviews on the taste-active and bioactive activities of YE. This review provides a comprehensive review of preparation methods, taste-active and bioactive activities of YE as well as their applications in the food sector. Furthermore, the challenges and future perspectives of YE are discussed. YE can be obtained through the degradation and removal of yeast cell walls. Its extraction can be achieved through various methods, including physical, autolytic, enzymatic, and cell wall disruption techniques. YE comprises a range of components, including glucan, mannan, proteins, phospholipids, minerals, vitamins, and various functional factors. These components collectively contribute to its diverse bioactivities, such as antioxidant, ACE-inhibitory, antibacterial, immunomodulatory, diuretic and sedative effects. Furthermore, YE contains taste-active substances and aroma-active compounds, making it promising as a flavor enhancer. It is potent bioactivity also makes it applicable in the food and nutraceutical industries.
Collapse
Affiliation(s)
- Yu Fu
- College of Food Science, Southwest University, Chongqing, P.R. China.
| |
Collapse
|
9
|
Bi Y, Liang L, Qiao K, Luo J, Liu X, Sun B, Zhang Y. A comprehensive review of plant-derived salt substitutes: Classification, mechanism, and application. Food Res Int 2024; 194:114880. [PMID: 39232518 DOI: 10.1016/j.foodres.2024.114880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024]
Abstract
The diseases caused by excessive sodium intake derived from NaCl consumption have attracted widespread attention worldwide, and many researchers are committed to finding suitable ways to reduce sodium intake during the dietary process. Salt substitute is considered an effective way to reduce sodium intake by replacing all/part of NaCl in food without reducing the saltiness while minimizing the impact on the taste and acceptability of the food. Plant-derived natural ingredients are generally considered safe and reliable, and extensive research has shown that certain plant extracts or specific components are effective salt substitutes, which can also give food additional health benefits. However, these plant-derived salt substitutes (PSS) have not been systematically recognized by the public and have not been well adopted in the food industry. Therefore, a comprehensive review of PSS, including its material basis, flavor characteristics, and taste mechanism is helpful for a deeper understanding of PSS, accelerating its research and development, and promoting its application.
Collapse
Affiliation(s)
- Yongzhao Bi
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Li Liang
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Kaina Qiao
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Jin Luo
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Xialei Liu
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Yuyu Zhang
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
10
|
Hu Y, Badar IH, Liu Y, Zhu Y, Yang L, Kong B, Xu B. Advancements in production, assessment, and food applications of salty and saltiness-enhancing peptides: A review. Food Chem 2024; 453:139664. [PMID: 38761739 DOI: 10.1016/j.foodchem.2024.139664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/01/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Salt is important for food flavor, but excessive sodium intake leads to adverse health consequences. Thus, salty and saltiness-enhancing peptides are developed for sodium-reduction products. This review elucidates saltiness perception process and analyses correlation between the peptide structure and saltiness-enhancing ability. These peptides interact with taste receptors to produce saltiness perception, including ENaC, TRPV1, and TMC4. This review also outlines preparation, isolation, purification, characterization, screening, and assessment techniques of these peptides and discusses their potential applications. These peptides are from various sources and produced through enzymatic hydrolysis, microbial fermentation, or Millard reaction and then separated, purified, identified, and screened. Sensory evaluation, electronic tongue, bioelectronic tongue, and cell and animal models are the primary saltiness assessment approaches. These peptides can be used in sodium-reduction food products to produce "clean label" items, and the peptides with biological activity can also serve as functional ingredients, making them very promising for food industry.
Collapse
Affiliation(s)
- Yingying Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Yurun Meat Industry Group Co., Ltd, Nanjing, Jiangsu 210041, China
| | - Iftikhar Hussain Badar
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Department of Meat Science and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Yue Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Yuan Zhu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Yurun Meat Industry Group Co., Ltd, Nanjing, Jiangsu 210041, China
| | - Linwei Yang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Yurun Meat Industry Group Co., Ltd, Nanjing, Jiangsu 210041, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China.
| |
Collapse
|
11
|
Gao T, Huang X, Chen X, Cai X, Huang J, Vincent G, Wang S. Advances in flavor peptides with sodium-reducing ability: A review. Crit Rev Food Sci Nutr 2024; 64:9568-9584. [PMID: 37218684 DOI: 10.1080/10408398.2023.2214613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Condiments (such as sodium chloride and glutamate sodium) cause consumers to ingest too much sodium and may lead to a variety of diseases, thus decreasing their quality of life. Recently, a salt reduction strategy using flavor peptides has been established. However, the development of this strategy has not been well adopted by the food industry. There is an acute need to screen for peptides with salty and umami taste, and to understand their taste characteristic and taste mechanism. This review provides a thorough analysis of the literature on flavor peptides with sodium-reducing ability, involving their preparation, taste characteristic, taste mechanism and applications in the food industry. Flavor peptides come from a wide range of sources and can be sourced abundantly from natural foods. Flavor peptides with salty and umami tastes are mainly composed of umami amino acids. Differences in amino acid sequences, spatial structures and food matrices will cause different tastes in flavor peptides, mostly attributed to the interaction between peptides and taste receptors. In addition to being used in condiments, flavor peptides have also anti-hypertensive, anti-inflammatory and anti-oxidant abilities, offering the potential to be used as functional ingredients, thus making their future in the food industry extremely promising.
Collapse
Affiliation(s)
- Tingting Gao
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Xincheng Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Xu Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Xixi Cai
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
- Qingyuan Innovation Laboratory, Quanzhou, China
- Marine Green Processing Research Center, Fuzhou Institute of Oceanography, Fuzhou, China
| | - Jianlian Huang
- Fujian Provincial Key Laboratory of Frozen Processed Aquatic Products, Xiamen, China
- Anjoy Food Group Co. Ltd, Xiamen, China
| | | | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
- Qingyuan Innovation Laboratory, Quanzhou, China
- Marine Green Processing Research Center, Fuzhou Institute of Oceanography, Fuzhou, China
| |
Collapse
|
12
|
Feng Y, Zeng J, Lei H, Zhao M. Effect of fermentation containers on the taste characteristics and microbiota succession of soy sauce. Food Chem 2024; 448:139066. [PMID: 38569402 DOI: 10.1016/j.foodchem.2024.139066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/06/2024] [Accepted: 03/16/2024] [Indexed: 04/05/2024]
Abstract
Modernization of the traditional fermentation industry has been a major trend recently, such as the upgrading of fermentation containers. This study investigated the taste differences and their material basis of soy sauce fermented in tank and pond (SSFT and SSFP), and further explore the key influencing factors of taste. The intensities of umami, kokumi and sour taste in SSFT were weaker than SSFP, which were associated with 9 basic taste-active compounds, including acetic acid, lactic acid, propanedioic acid, citric acid, glutamic acid, alanine, tyrosine, d-galactose and erythritol. Moreover, 270 peptides and amino acid derivatives were potential compounds for taste difference, of which 78 % were more abundant in SSFP. Five bacterial genera (Kocuria, Tetragenococcus, Pediococcus, Staphylococcus, Weissella) and 4 fungal genera (Wickerhamiella, Millerozyma, Candida, Zygosaccharomyces) may be the functional core microbe for flavor differences in SSFT and SSFP. This study will provide theoretical value for quality improvement in the modern large-scale production of soy sauce.
Collapse
Affiliation(s)
- Yunzi Feng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Jing Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Hongjie Lei
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China.
| |
Collapse
|
13
|
Spaccasassi A, Utz F, Dunkel A, Aragao Börner R, Ye L, De Franceschi F, Bogicevic B, Glabasnia A, Hofmann T, Dawid C. Screening of a Microbial Culture Collection: Empowering Selection of Starters for Enhanced Sensory Attributes of Pea-Protein-Based Beverages. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15890-15905. [PMID: 38953212 PMCID: PMC11261627 DOI: 10.1021/acs.jafc.4c02316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 07/03/2024]
Abstract
Pea-protein-based ingredients are gaining attention in the food industry due to their nutritional benefits and versatility, but their bitter, astringent, green, and beany off-flavors pose challenges. This study applied fermentation using microbial cultures to enhance the sensory qualities of pea-protein-based beverages. Using UHPLC-TOF-MS analyses along with sensory profile comparisons, microbial species such as Limosilactobacillus fermentum, Lactococcus lactis, Lactobacillus johnsonii, Lacticaseibacillus rhamnosus, and Bifidobacterium longum were preselected from an entire culture collection and found to be effective in improving the overall flavor impression by reducing bitter off-notes and enhancing aroma profiles. Notably, L. johnsonii NCC533 and L. fermentum NCC660 exhibited controlled proteolytic activities after 48 h of fermentation, enriching the matrix with taste-active amino acids, nucleotides, and peptides and improving umami and salty flavors while mitigating bitterness. This study has extended traditional volatile analyses, including nonvolatile metabolomic, proteomic, and sensory analyses and offering a detailed view of fermentation-induced biotransformations in pea-protein-based food. The results highlight the importance of combining comprehensive screening approaches and sensoproteomic techniques in developing tastier and more palatable plant-based protein products.
Collapse
Affiliation(s)
- Andrea Spaccasassi
- Chair
of Food Chemistry and Molecular and Sensory Science, TUM School of
Life Sciences, Technical University of Munich, Lise-Meitner-Strasse 34, 85354 Freising, Germany
- TUM
CREATE, 1 CREATE Way,
#10-02 CREATE Tower, Singapore 138602
| | - Florian Utz
- Chair
of Food Chemistry and Molecular and Sensory Science, TUM School of
Life Sciences, Technical University of Munich, Lise-Meitner-Strasse 34, 85354 Freising, Germany
| | - Andreas Dunkel
- Leibniz-Institute
for Food Systems Biology, Technical University
of Munich, 85354 Freising, Germany
| | - Rosa Aragao Börner
- Nestlé
Research, Société des Produits
Nestlé S.A., Route
du Jorat 57, CH 1000 Lausanne 26, Switzerland
| | - Lijuan Ye
- Nestlé
Research, Société des Produits
Nestlé S.A., Route
du Jorat 57, CH 1000 Lausanne 26, Switzerland
| | - Filippo De Franceschi
- Nestlé
Research, Société des Produits
Nestlé S.A., Route
du Jorat 57, CH 1000 Lausanne 26, Switzerland
| | - Biljana Bogicevic
- Nestlé
Research, Société des Produits
Nestlé S.A., Route
du Jorat 57, CH 1000 Lausanne 26, Switzerland
| | - Arne Glabasnia
- Nestlé
Research, Société des Produits
Nestlé S.A., Route
du Jorat 57, CH 1000 Lausanne 26, Switzerland
| | - Thomas Hofmann
- Chair
of Food Chemistry and Molecular and Sensory Science, TUM School of
Life Sciences, Technical University of Munich, Lise-Meitner-Strasse 34, 85354 Freising, Germany
| | - Corinna Dawid
- Chair
of Food Chemistry and Molecular and Sensory Science, TUM School of
Life Sciences, Technical University of Munich, Lise-Meitner-Strasse 34, 85354 Freising, Germany
- TUM
CREATE, 1 CREATE Way,
#10-02 CREATE Tower, Singapore 138602
- Professorship
for Functional Phytometabolomics, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Strasse 34, 85354 Freising, Germany
| |
Collapse
|
14
|
Spaccasassi A, Ye L, Rincón C, Börner RA, Bogicevic B, Glabasnia A, Hofmann T, Dawid C. Sensoproteomic Characterization of Lactobacillus Johnsonii-Fermented Pea Protein-Based Beverage: A Promising Strategy for Enhancing Umami and Kokumi Sensations while Mitigating Bitterness. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15875-15889. [PMID: 38957928 PMCID: PMC11261612 DOI: 10.1021/acs.jafc.4c02317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
This study investigated the mechanism underlying the flavor improvement observed during fermentation of a pea protein-based beverage using Lactobacillus johnsonii NCC533. A combination of sensomics and sensoproteomics approach revealed that the fermentation process enriched or generated well-known basic taste ingredients, such as amino acids, nucleotides, organic acids, and dipeptides, besides six new taste-active peptide sequences that enhance kokumi and umami notes. The six new umami and kokumi enhancing peptides, with human recognition thresholds ranging from 0.046 to 0.555 mM, are produced through the degradation of Pisum sativum's storage protein. Our findings suggest that compounds derived from fermentation enhance umami and kokumi sensations and reduce bitterness, thus improving the overall flavor perception of pea proteins. In addition, the analysis of intraspecific variations in the proteolytic activity of L. johnsonii and the genome-peptidome correlation analysis performed in this study point at cell-wall-bound proteinases such as PrtP and PrtM as the key genes necessary to initiate the flavor improving proteolytic cascade. This study provides valuable insights into the molecular mechanisms underlying the flavor improvement of pea protein during fermentation and identifies potential future research directions. The results highlight the importance of combining fermentation and senso(proteo)mics techniques in developing tastier and more palatable plant-based protein products.
Collapse
Affiliation(s)
- Andrea Spaccasassi
- Chair
of Food Chemistry and Molecular and Sensory Science, TUM School of
Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, Freising 85354, Germany
- TUM
CREATE, 1 CREATE Way,
#10-02 CREATE Tower, Singapore 138602, Singapore
| | - Lijuan Ye
- Société
des Produits Nestlé S.A., Nestlé Research, Route du Jorat 57, Lausanne 26 CH 1000, Switzerland
| | - Cristian Rincón
- Société
des Produits Nestlé S.A., Nestlé Research, Route du Jorat 57, Lausanne 26 CH 1000, Switzerland
| | - Rosa Aragao Börner
- Société
des Produits Nestlé S.A., Nestlé Research, Route du Jorat 57, Lausanne 26 CH 1000, Switzerland
| | - Biljana Bogicevic
- Société
des Produits Nestlé S.A., Nestlé Research, Route du Jorat 57, Lausanne 26 CH 1000, Switzerland
| | - Arne Glabasnia
- Société
des Produits Nestlé S.A., Nestlé Research, Route du Jorat 57, Lausanne 26 CH 1000, Switzerland
| | - Thomas Hofmann
- Chair
of Food Chemistry and Molecular and Sensory Science, TUM School of
Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, Freising 85354, Germany
| | - Corinna Dawid
- Chair
of Food Chemistry and Molecular and Sensory Science, TUM School of
Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, Freising 85354, Germany
- TUM
CREATE, 1 CREATE Way,
#10-02 CREATE Tower, Singapore 138602, Singapore
- Professorship
for Functional Phytometabolomics, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, Freising 85354, Germany
| |
Collapse
|
15
|
Sood S, Methven L, Cheng Q. Role of taste receptors in salty taste perception of minerals and amino acids and developments in salt reduction strategies: A review. Crit Rev Food Sci Nutr 2024:1-15. [PMID: 38907620 DOI: 10.1080/10408398.2024.2365962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Salt (sodium chloride) plays a key role in maintaining the textural, microbiological, and sensorial aspects of the foods. However high dietary salt intake in the population has led to a series of health problems. Currently manufacturers are under pressure to reduce the sodium levels in foods without compromising the consumer experience. Because of the clean salty taste produced by sodium chloride, it has been challenging for the food industry to develop a suitable salt substitute. Studies have shown that different components within a food matrix can influence the perception of saltiness. This review aims to comprehend the potential synergistic effect of compounds such as minerals and amino acids on the perception of saltiness and covers the mechanism of perception where relevant to taste resulting from sodium ions and other metallic ions (such as K, Mg, Ca), as well as various amino acids and their derivatives. Finally, the review summarizes various salt reduction strategies explored by researchers, government organizations and food industry, including the potential use of plant-based extracts.
Collapse
Affiliation(s)
- Saumya Sood
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, United Kingdom
| | - Lisa Methven
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, United Kingdom
| | - Qiaofen Cheng
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, United Kingdom
| |
Collapse
|
16
|
Tanaka M, Arima K, Ide H, Koshi M, Ohno N, Imamura M, Matsui T. Application of graphite carbon black assisted-laser desorption ionization-mass spectrometry for soy sauce product discrimination. Biosci Biotechnol Biochem 2024; 88:656-664. [PMID: 38533648 DOI: 10.1093/bbb/zbae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/08/2024] [Indexed: 03/28/2024]
Abstract
In a previous study, we developed a novel analytical method to directly and simultaneously detect taste- and odor-active compounds using graphite carbon black (GCB)-assisted laser desorption ionization mass spectrometry (LDI-MS). In this study, we aimed to evaluate food quality using a variety of soy sauces using the method to discriminate each product. Graphite carbon black-laser desorption ionization-mass spectrometry allowed the provision of hundreds of MS peaks derived from soy sauces in both positive and negative modes without any tedious sample pretreatments. Principal component analysis using the obtained MS peaks clearly distinguished three soy sauce products based on the manufacturing countries (Japan, China, and India). Moreover, this method identified distinct MS peaks for discrimination, which significantly correlated with their quantitative amounts in the products. Thus, GCB-LDI-MS analysis was established as a simple and rapid technique for food analysis, illustrating the chemical patterns of food products.
Collapse
Affiliation(s)
- Mitsuru Tanaka
- Faculty of Agriculture, Graduate School of Kyushu University, Fukuoka, Japan
- Research and Development Center for Five-Sense Devices, Kyushu University, Fukuoka, Japan
| | - Keishiro Arima
- Faculty of Agriculture, Graduate School of Kyushu University, Fukuoka, Japan
| | - Haruna Ide
- Faculty of Agriculture, Graduate School of Kyushu University, Fukuoka, Japan
| | - Mariko Koshi
- Faculty of Agriculture, Graduate School of Kyushu University, Fukuoka, Japan
| | - Naoto Ohno
- Research & Development Division, Kikkoman Co., Chiba, Japan
| | - Miho Imamura
- Research & Development Division, Kikkoman Co., Chiba, Japan
| | - Toshiro Matsui
- Faculty of Agriculture, Graduate School of Kyushu University, Fukuoka, Japan
- Research and Development Center for Five-Sense Devices, Kyushu University, Fukuoka, Japan
| |
Collapse
|
17
|
Ziaikin E, Tello E, Peterson DG, Niv MY. BitterMasS: Predicting Bitterness from Mass Spectra. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10537-10547. [PMID: 38685906 PMCID: PMC11082931 DOI: 10.1021/acs.jafc.3c09767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
Bitter compounds are common in nature and among drugs. Previously, machine learning tools were developed to predict bitterness from the chemical structure. However, known structures are estimated to represent only 5-10% of the metabolome, and the rest remain unassigned or "dark". We present BitterMasS, a Random Forest classifier that was trained on 5414 experimental mass spectra of bitter and nonbitter compounds, achieving precision = 0.83 and recall = 0.90 for an internal test set. Next, the model was tested against spectra newly extracted from the literature 106 bitter and nonbitter compounds and for additional spectra measured for 26 compounds. For these external test cases, BitterMasS exhibited 67% precision and 93% recall for the first and 58% accuracy and 99% recall for the second. The spectrum-bitterness prediction strategy was more effective than the spectrum-structure-bitterness prediction strategy and covered more compounds. These encouraging results suggest that BitterMasS can be used to predict bitter compounds in the metabolome without the need for structural assignment of individual molecules. This may enable identification of bitter compounds from metabolomics analyses, for comparing potential bitterness levels obtained by different treatments of samples and for monitoring bitterness changes overtime.
Collapse
Affiliation(s)
- Evgenii Ziaikin
- Food
Science and Nutrition, The Robert H. Smith Faculty of Agriculture,
Food and Environment, The Institute of Biochemistry, Food and Nutrition, The Hebrew University of Jerusalem, 76100 Rehovot, Israel
| | - Edisson Tello
- Department
of Food Science and Technology, College of Food, Agriculture, and
Environmental Sciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Devin G. Peterson
- Department
of Food Science and Technology, College of Food, Agriculture, and
Environmental Sciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Masha Y. Niv
- Food
Science and Nutrition, The Robert H. Smith Faculty of Agriculture,
Food and Environment, The Institute of Biochemistry, Food and Nutrition, The Hebrew University of Jerusalem, 76100 Rehovot, Israel
| |
Collapse
|
18
|
Liu Y, Sun G, Li J, Cheng P, Song Q, Lv W, Wang C. Starter molds and multi-enzyme catalysis in koji fermentation of soy sauce brewing: A review. Food Res Int 2024; 184:114273. [PMID: 38609250 DOI: 10.1016/j.foodres.2024.114273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024]
Abstract
Soy sauce is a traditional fermented food produced from soybean and wheat under the action of microorganisms. The soy sauce brewing process mainly involves two steps, namely koji fermentation and moromi fermentation. In the koji fermentation process, enzymes from starter molds, such as protease, aminopeptidase, carboxypeptidase, l-glutaminase, amylase, and cellulase, hydrolyze the protein and starch in the raw ingredients to produce short-chain substances. However, the enzymatic reactions may be diminished after being subjected to moromi fermentation due to its high NaCl concentration. These enzymatically hydrolyzed products are further metabolized by lactic acid bacteria and yeasts during the moromi fermentation process into organic acids and aromatic compounds, giving soy sauce a unique flavor. Thus, the starter molds, such as Aspergillus oryzae, Aspergillus sojae, and Aspergillus niger, and their secreted enzymes play crucial roles in soy sauce brewing. This review comprehensively covers the characteristics of the starter molds mainly used in soy sauce brewing, the enzymes produced by starter molds, and the roles of enzymes in the degradation of raw material. We also enumerate current problems in the production of soy sauce, aiming to offer some directions for the improvement of soy sauce taste.
Collapse
Affiliation(s)
- Yihao Liu
- College of Food Science and Engineering, State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economy Technological Development Area, No. 29, 13th Avenue, Tianjin, 300222, People Republic of China.
| | - Guangru Sun
- College of Food Science and Engineering, State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economy Technological Development Area, No. 29, 13th Avenue, Tianjin, 300222, People Republic of China
| | - Jingyao Li
- College of Food Science and Engineering, State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economy Technological Development Area, No. 29, 13th Avenue, Tianjin, 300222, People Republic of China
| | - Peng Cheng
- Tianjin Limin Condiment Co., Ltd., Tianjin Food Group, Tianjin Airport Economic Zone, No. 226, 14th West Road, Tianjin, People Republic of China
| | - Qian Song
- Tianjin Limin Condiment Co., Ltd., Tianjin Food Group, Tianjin Airport Economic Zone, No. 226, 14th West Road, Tianjin, People Republic of China
| | - Wen Lv
- Tianjin Limin Condiment Co., Ltd., Tianjin Food Group, Tianjin Airport Economic Zone, No. 226, 14th West Road, Tianjin, People Republic of China
| | - Chunling Wang
- College of Food Science and Engineering, State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economy Technological Development Area, No. 29, 13th Avenue, Tianjin, 300222, People Republic of China.
| |
Collapse
|
19
|
Sood S, Methven L, Balagiannis DP, Cheng Q. Can samphire be the new salt? Understanding the potential of samphire harvested from the UK coastline. Food Chem 2024; 438:138065. [PMID: 38011793 DOI: 10.1016/j.foodchem.2023.138065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023]
Abstract
Salicornia species have been explored as a substitute for salt, however the intensity of salty taste elicited remains unexplained by the sodium content alone. To investigate this, a study was conducted to determine the nutrient profile of samphire extract and relate this to its sensory quality in a nachos base. Freeze dried samphire extracts contain minerals, including Na (12-14 g/100 g), K (1-1.5 g/100 g) and Mg (0.3-0.5 g/100 g) and free amino acids such as lysine (28-41 mg/100 g), glutamic acid (20-31 mg/100 g), aspartic acid (20-56 mg/100 g) and arginine (54-109 mg/100 g), which are known to influence salty taste. The sensory panel found that 2.5 % addition of samphire extract produced a significantly saltier taste than the control product (0.7 % NaCl) at an equivalent sodium level. These findings suggest that the minerals and amino acids in samphire extract may collectively contribute to its salty taste, making it a viable option for reducing sodium in food products.
Collapse
Affiliation(s)
- Saumya Sood
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading RG6 6DZ, UK.
| | - Lisa Methven
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading RG6 6DZ, UK.
| | - Dimitris P Balagiannis
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading RG6 6DZ, UK.
| | - Qiaofen Cheng
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading RG6 6DZ, UK.
| |
Collapse
|
20
|
Wen L, Lei J, Yang L, Kan Q, Wang P, Li J, Chen C, He L, Fu J, Ho CT, Huang Q, Cao Y. Metagenomics and untargeted metabolomics analyses to unravel the formation mechanism of characteristic metabolites in Cantonese soy sauce during different fermentation stages. Food Res Int 2024; 181:114116. [PMID: 38448100 DOI: 10.1016/j.foodres.2024.114116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 03/08/2024]
Abstract
Cantonese soy sauce (CSS) is an important Chinese condiment due to its distinctive flavor. Microorganisms play a significant role in the flavor formation of CSS during fermentation. However, the correlation between microbes and flavor compounds as well as the potential fermentation mechanism remained poorly uncovered. Here we revealed the dynamic changes of microbial structure and characteristics metabolites as well as their correlation of CSS during the fermentation process. Metagenomics sequencing analysis showed that Tetragenococcus halophilus, Weissella confusa, Weissella paramesenteroides, Aspergillus oryzae, Lactiplantibacillus plantarum, Weissella cibaria were top six dominant species from day 0 to day 120. Sixty compounds were either positively or tentatively identified through untargeted metabolomics profile and they were 27 peptides, amino acids and derivatives, 8 carbohydrates and conjugates, 14 organic acids and derivatives, 5 amide compounds, 3 flavonoids and 3 nucleosides. Spearman correlation coefficient indicated that Tetragenococcus halophilus, Zygosaccharomyces rouxii, Pediococcus pentosaceus and Aspergillus oryzae were significantly related with the formation of taste amino acids and derivatives, peptides and functional substances. Additionally, the metabolisms of flavor amino acids including 13 main free amino acids were also profiled. These results provided valuable information for the production practice in the soy sauce industry.
Collapse
Affiliation(s)
- Linfeng Wen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jianping Lei
- WENS Foodstuff Group Co., Ltd, Yunfu 527400, China
| | - Lixin Yang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Qixin Kan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Peipei Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jun Li
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Meiweixian Flavoring Foods Co., Ltd, Zhongshan 528437, China
| | - Cong Chen
- Guangdong Eco-engineering Polytechnic, Guangzhou 510520, China
| | - Liping He
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Instrumental Analysis & Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Jiangyan Fu
- Guangdong Meiweixian Flavoring Foods Co., Ltd, Zhongshan 528437, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Qingrong Huang
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA.
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
21
|
Gao X, Zhao X, Hu F, Fu J, Zhang Z, Liu Z, Wang B, He R, Ma H, Ho CT. The latest advances on soy sauce research in the past decade: Emphasis on the advances in China. Food Res Int 2023; 173:113407. [PMID: 37803742 DOI: 10.1016/j.foodres.2023.113407] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 10/08/2023]
Abstract
As an indispensable soybean-fermented condiment, soy sauce is extensively utilized in catering, daily cooking and food industry in East Asia and Southeast Asia and is becoming popular in the whole world. In the past decade, researchers began to pay great importance to the scientific research of soy sauce, which remarkably promoted the advances on fermentation strains, quality, safety, function and other aspects of soy sauce. Of them, the screening and reconstruction of Aspergillus oryzae with high-yield of salt and acid-tolerant proteases, mechanism of soy sauce flavor formation, improvement of soy sauce quality through the combination of novel physical processing technique and microbial/enzyme, separation and identification of soy sauce functional components are attracting more attention of researchers, and related achievements have been reported continually. Meanwhile, we pointed out the drawbacks of the above research and the future research directions based on published literature and our knowledge. We believe that this review can provide an insightful reference for international related researchers to understand the advances on soy sauce research.
Collapse
Affiliation(s)
- Xianli Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Xue Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Feng Hu
- Guangdong Meiweixian Flavoring Foods Co., Ltd., 1 Chubang Road, Zhongshan 5284012, China.
| | - Jiangyan Fu
- Guangdong Meiweixian Flavoring Foods Co., Ltd., 1 Chubang Road, Zhongshan 5284012, China.
| | - Zhankai Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Zhan Liu
- Guangdong Meiweixian Flavoring Foods Co., Ltd., 1 Chubang Road, Zhongshan 5284012, China.
| | - Bo Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Ronghai He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA.
| |
Collapse
|
22
|
Chen R, Liu XC, Xiang J, Sun W, Tomasevic I. Prospects and challenges for the application of salty and saltiness-enhancing peptides in low-sodium meat products. Meat Sci 2023; 204:109261. [PMID: 37384955 DOI: 10.1016/j.meatsci.2023.109261] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/09/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
A long-term high-sodium diet has been reported to increase the incidence of cardiovascular diseases and other diseases, including osteoporosis, gastric cancer, stomach cancer, and kidney stones. Meat products contain high NaCl content and contribute to approximately 20% of the total sodium intake, so reducing its sodium content has always been the critical focus of industries and researchers. Salty and saltiness-enhancing peptides (SSEP) are a potential salt substitute that exhibits a salt taste or saltiness-enhancing activity. The partial replacement of NaCl by SSEP in low-sodium meat products has been a technological challenge. This review discussed the salt taste transduction mechanism of SSEP. The current studies about preparing SSEP based on different protein sources were summarized. Further, the effects of SSEP combined with other chloride salts, such as KCl and CaCl2, on the sensory properties of meat products were summarized. Finally, the challenges associated with applying the peptide to low-sodium meat products were discussed, focusing on the efficient preparation method and the effect of meat product processing methods and matrices on the efficacy of SSEP.
Collapse
Affiliation(s)
- Ruixia Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xiao-Chen Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Junyi Xiang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Qingyuan Food Inspection Center, Qingyuan 511538, China
| | - Weizheng Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510641, China.
| | - Igor Tomasevic
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; DIL German Institute of Food Technologies, Prof.-v.-Klitzing-Str. 7, Quakenbrueck 49610, Germany.
| |
Collapse
|
23
|
An F, Wu J, Feng Y, Pan G, Ma Y, Jiang J, Yang X, Xue R, Wu R, Zhao M. A systematic review on the flavor of soy-based fermented foods: Core fermentation microbiome, multisensory flavor substances, key enzymes, and metabolic pathways. Compr Rev Food Sci Food Saf 2023; 22:2773-2801. [PMID: 37082778 DOI: 10.1111/1541-4337.13162] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 04/22/2023]
Abstract
The characteristic flavor of fermented foods has an important impact on the purchasing decisions of consumers, and its production mechanisms are a concern for scientists worldwide. The perception of food flavor is a complex process involving olfaction, taste, vision, and oral touch, with various senses contributing to specific properties of the flavor. Soy-based fermented products are popular because of their unique flavors, especially in Asian countries, where they occupy an important place in the dietary structure. Microorganisms, known as the souls of fermented foods, can influence the sensory properties of soy-based fermented foods through various metabolic pathways, and are closely related to the formation of multisensory properties. Therefore, this review systematically summarizes the core microbiome and its interactions that play an active role in representative soy-based fermented foods, such as fermented soymilk, soy sauce, soybean paste, sufu, and douchi. The mechanism of action of the core microbial community on multisensory flavor quality is revealed here. Revealing the fermentation core microbiome and related enzymes provides important guidance for the development of flavor-enhancement strategies and related genetically engineered bacteria.
Collapse
Affiliation(s)
- Feiyu An
- College of Food Science, Shenyang Agricultural University, Shenyang, China
- Liaoning Provincial Engineering Research Center of Food Fermentation Technology, Shenyang, China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, China
- Liaoning Provincial Engineering Research Center of Food Fermentation Technology, Shenyang, China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, China
| | - Yunzi Feng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Guoyang Pan
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Yuanyuan Ma
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Jinhui Jiang
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Xuemeng Yang
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Ruixia Xue
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, China
- Liaoning Provincial Engineering Research Center of Food Fermentation Technology, Shenyang, China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
24
|
Wang Q, Li X, Zhang C, Yue N, Li S, Chen X, Jin F, Shao H, Wang J. Discovery and Identification of the Key Contributor to the Bitter Taste in Oriental Melon after Forchlorfenuron Application. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6415-6423. [PMID: 37039537 DOI: 10.1021/acs.jafc.3c00380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Forchlorfenuron is a cytokinin-like plant growth regulator, which on application to oriental melon fruit often produces a bitter taste due to the accumulation of cucurbitacin. In the present study, the relationship between forchlorfenuron treatment and bitterness in oriental melon fruit was revealed by human sensory analysis coupled with highly sensitive quantitative analyses. Nine cucurbitacins as the major bitter compounds were identified in the oriental melon, with their concentration ranging from 0.001 to 32.263 mg/kg. And these cucurbitacins mainly accumulated in the peel and pedicle pulp of oriental melon fruits at maturation. Application of forchlorfenuron increased the concentration of cucurbitacin B and decreased arvenin I in total cucurbitacins for the oriental melons. Calculation of the impact of the bitter taste of these compounds based on a dose/activity relationship indicated that cucurbitacin B and arvenin I were the key contributor to the bitter taste in oriental melon fruit after high-dose forchlorfenuron application. These results are helpful in understanding the source of bitterness of oriental melon and provide a practical guide on the rational use of forchlorfenuron.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaohui Li
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chen Zhang
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ning Yue
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Simeng Li
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xueying Chen
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fen Jin
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hua Shao
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Wang
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
25
|
Huang Z, Feng Y, Zeng J, Zhao M. Six categories of amino acid derivatives with potential taste contributions: a review of studies on soy sauce. Crit Rev Food Sci Nutr 2023; 64:7981-7992. [PMID: 37009850 DOI: 10.1080/10408398.2023.2194422] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
During the fermentation of soy sauce, the metabolism of microorganisms and the Maillard reaction produce a wide variety of metabolites that contribute to the unique and rich flavor characteristics of soy sauce, such as amino acids, organic acids and peptides. Amino acid derivatives, a relatively new taste compounds, formed by the reaction of enzymes or non-enzymes from sugars, amino acids, and organic acids released through metabolism by microorganisms during soy sauce fermentation, have begun to gain more and more attention in recent years. This review focused on our existing knowledge of the sources, taste characteristics and synthesis methods of the 6 categories of amino acid derivatives, including Amadori compounds, γ-glutamyl peptides, pyroglutamyl amino acids, N-lactoyl amino acids, N-acetyl amino acids and N-succinyl amino acids. Sixty-four amino acid derivatives were detected in soy sauce, of which 47 were confirmed to have potential contribution to the taste of soy sauce, especially umami and kokumi, and some of them also have the effect of reducing bitterness. Furthermore, some amino acid derivatives, like γ-glutamyl peptides and N-lactoyl amino acids, were found to be synthesized enzymatically in vitro, which laid the foundation for further study on their formation pathways in the future.
Collapse
Affiliation(s)
- Zikun Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, China
| | - Yunzi Feng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, China
| | - Jing Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, China
| |
Collapse
|
26
|
Bioactive and Sensory Di- and Tripeptides Generated during Dry-Curing of Pork Meat. Int J Mol Sci 2023; 24:ijms24021574. [PMID: 36675084 PMCID: PMC9866438 DOI: 10.3390/ijms24021574] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Dry-cured pork products, such as dry-cured ham, undergo an extensive proteolysis during manufacturing process which determines the organoleptic properties of the final product. As a result of endogenous pork muscle endo- and exopeptidases, many medium- and short-chain peptides are released from muscle proteins. Many of them have been isolated, identified, and characterized, and some peptides have been reported to exert relevant bioactivity with potential benefit for human health. However, little attention has been given to di- and tripeptides, which are far less known, although they have received increasing attention in recent years due to their high potential relevance in terms of bioactivity and role in taste development. This review gathers the current knowledge about di- and tripeptides, regarding their bioactivity and sensory properties and focusing on their generation during long-term processing such as dry-cured pork meats.
Collapse
|
27
|
Zhang N, Cui Z, Li M, Fan Y, Liu J, Wang W, Zhang Y, Liu Y. Typical Umami Ligand-Induced Binding Interaction and Conformational Change of T1R1-VFT. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11652-11666. [PMID: 36098631 DOI: 10.1021/acs.jafc.2c05559] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Umami taste receptor type 1 member 1/3 (T1R1/T1R3) heterodimer has multiple ligand-binding sites, most of which are located in T1R1-Venus flytrap domain (T1R1-VFT). However, the critical binding process of T1R1-VFT/umami ligands remains largely unknown. Herein, T1R1-VFT was prepared with a sufficient amount and functional activity, and its binding characteristics with typical umami molecules (monosodium l-glutamate, disodium succinate, beefy meaty peptide, and inosine-5'-monophosphate) were explored via multispectroscopic techniques and molecular dynamics simulation. The results showed that, driven mainly by hydrogen bond, van der Waals forces, and electrostatic interactions, T1R1-VFT bound to umami compound at 1:1 (stoichiometric interaction) and formed T1R1-VFT/ligand complex (static fluorescence quenching) with a weak binding affinity (Ka values: 252 ± 19 to 1169 ± 112 M-1). The binding process was spontaneous and exothermic (ΔG, -17.72 to -14.26 kJ mol-1; ΔH, -23.86 to -12.11 kJ mol-1) and induced conformational changes of T1R1-VFT, which was mainly reflected in slight unfolding of α-helix (Δα-helix < 0) and polypeptide chain backbone structure. Meanwhile, the binding of the four ligands stabilized the active conformation of the T1R1-VFT pocket. This work provides insight into the binding interaction between T1R1-VFT/umami ligands and improves understanding of how umami receptor recognizes specific ligand molecules.
Collapse
Affiliation(s)
- Ninglong Zhang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhiyong Cui
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Mingyang Li
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yuxia Fan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jing Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong Province, P. R. China
| | - Wenli Wang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, P. R. China
| | - Yuan Liu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|