1
|
Li A, Kou R, Wang R, Wang J, Zhang B, Liu J, Hu Y, Wang S. 2'-Fucosyllactose attenuates aging-related metabolic disorders through modulating gut microbiome-T cell axis. Aging Cell 2025; 24:e14343. [PMID: 39301860 PMCID: PMC11709090 DOI: 10.1111/acel.14343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/09/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
Aging-related metabolic disorders seriously affect the lifespan of middle-aged and older people, potentially due to disruptions in the adaptive immune and gut microbial profiles. Dietary intervention offers a promising strategy for maintaining metabolic health. This study aimed to investigate the ameliorative effect of 2'-fucosyllactose (2'-FL) on aging-induced metabolic dysfunction and the underlying mechanisms. The results revealed that 2'-FL significantly relieved aging-related metabolic disorders, including weight gain, lipid deposition, dyslipidemia, glucose intolerance, systemic inflammation, and abnormal hepatic metabolism. Flow cytometry analysis revealed a significant reduction in T cytotoxic (Tc), T helper (Th), and regulatory T (Treg) cells and a significant increase in Th17 cells in aged mice, while 2'-FL relieved the aging-induced proportional changes in Th and Th17 subtypes. The aging intestinal microecology was characterized by higher Th17/Treg ratios, impaired gut barrier function, lower gut bacterial diversity, decreased abundance of beneficial genera including Ligilactobacillus, Colidextribacter, Mucispirillum, and Lachnoclostridium, and increased abundance of harmful bacteria including Turicibacter and Desulfovibrio, which was ameliorated by 2'-FL treatment. These findings highlight that 2'-FL is an ideal dietary prebiotic for improving aging-related metabolic disorders by modulating both the adaptive immune system and the gut microbial profile.
Collapse
Affiliation(s)
- Ang Li
- Tianjin Key Laboratory of Food Science and Health, School of MedicineNankai UniversityTianjinChina
| | - Ruixin Kou
- Tianjin Key Laboratory of Food Science and Health, School of MedicineNankai UniversityTianjinChina
| | - Ruishan Wang
- Tianjin Key Laboratory of Food Science and Health, School of MedicineNankai UniversityTianjinChina
| | - Jin Wang
- Tianjin Key Laboratory of Food Science and Health, School of MedicineNankai UniversityTianjinChina
| | - Bowei Zhang
- Tianjin Key Laboratory of Food Science and Health, School of MedicineNankai UniversityTianjinChina
| | - Jingmin Liu
- Tianjin Key Laboratory of Food Science and Health, School of MedicineNankai UniversityTianjinChina
| | - Yaozhong Hu
- Tianjin Key Laboratory of Food Science and Health, School of MedicineNankai UniversityTianjinChina
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of MedicineNankai UniversityTianjinChina
| |
Collapse
|
2
|
Liu T, Luo Z, Zhang T, Chen H, Yi X, Hu J, Shi B, An Y, Cui C, Wang X. Effects of Oregano Essential Oil and/or Yeast Cultures on the Rumen Microbiota of Crossbred Simmental Calves. Animals (Basel) 2024; 14:3710. [PMID: 39765614 PMCID: PMC11672635 DOI: 10.3390/ani14243710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/11/2025] Open
Abstract
This study hypothesized that combining oregano essential oil (OEO) and yeast cultures (YCs) would modulate rumen microbiota to promote gastrointestinal homeostasis and function. Twenty-four newborn, healthy, disease-free, crossbred Simmental male calves (birth weight ≥ 35 kg) were assigned to one of four treatments based on birth data. Treatments were as follows: (1) Control (CON), calves fed calf starter without additives; (2) OEO, calves fed calf starter containing 60 mg/kg body weight (BW) of OEO per day; (3) YCs, calves fed calf starter containing 45 mg/kg BW of YC per day; and (4) MIX, calves fed calf starter with OEO (60 mg/kg, BW) and YC (45 mg/kg, BW) combination. The experimental period lasted 70 days. Rumen fluid was collected on the final day, and 16S rRNA sequencing was performed to assess alterations in rumen microbiota. Calves fed MIX exhibited significantly greater microbial richness, species diversity, and lineage diversity (p < 0.05) compared with calves in the other groups. MIX-fed calves also showed changes (p < 0.05) in the relative abundance of certain rumen species, identified as through LEfSe analysis (LDA > 4, p < 0.05). These biomarkers included f_Rikenellaceae, g_Rikenellaceae_RC9_gut_group, g_Erysipelotrichaceae_UCG-002, c_Saccharimonadia, o_Saccharimonadales, f_Saccharimonadaceae, and g_Candidatus_Saccharimonas. Pathways enriched (p < 0.05) in MIX-fed calves involved nucleotide metabolism, lipid metabolism, glycan biosynthesis and metabolism, amino acid metabolism, terpenoids and polyketides metabolism, antimicrobial drug resistance, xenobiotic biodegradation and metabolism, antineoplastic drug resistance, and excretory system pathways. In conclusion, this study demonstrates that the OEO and YC combination enhances rumen microbial community modulation in calves more effectively than OEO or YCs fed individually or with the control diet.
Collapse
Affiliation(s)
- Ting Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.L.); (T.Z.); (H.C.); (X.Y.); (B.S.); (Y.A.); (C.C.); (X.W.)
- Linxia Beef Industry Development Research Institute, Linxia 731100, China
| | - Zhihao Luo
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.L.); (T.Z.); (H.C.); (X.Y.); (B.S.); (Y.A.); (C.C.); (X.W.)
| | - Tao Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.L.); (T.Z.); (H.C.); (X.Y.); (B.S.); (Y.A.); (C.C.); (X.W.)
| | - Huan Chen
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.L.); (T.Z.); (H.C.); (X.Y.); (B.S.); (Y.A.); (C.C.); (X.W.)
| | - Xuejiao Yi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.L.); (T.Z.); (H.C.); (X.Y.); (B.S.); (Y.A.); (C.C.); (X.W.)
| | - Jiang Hu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.L.); (T.Z.); (H.C.); (X.Y.); (B.S.); (Y.A.); (C.C.); (X.W.)
- Linxia Beef Industry Development Research Institute, Linxia 731100, China
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Lanzhou 730070, China
| | - Bingang Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.L.); (T.Z.); (H.C.); (X.Y.); (B.S.); (Y.A.); (C.C.); (X.W.)
- Linxia Beef Industry Development Research Institute, Linxia 731100, China
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Lanzhou 730070, China
| | - Yuxi An
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.L.); (T.Z.); (H.C.); (X.Y.); (B.S.); (Y.A.); (C.C.); (X.W.)
| | - Changze Cui
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.L.); (T.Z.); (H.C.); (X.Y.); (B.S.); (Y.A.); (C.C.); (X.W.)
| | - Xiangyan Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.L.); (T.Z.); (H.C.); (X.Y.); (B.S.); (Y.A.); (C.C.); (X.W.)
| |
Collapse
|
3
|
Zheng W, Ning K, Shi C, Zhou YF, Meng Y, Pan T, Chen Y, Xie Q, Xiang H. Xiaobugan decoction prevents CCl 4-induced acute liver injury by modulating gut microbiota and hepatic metabolism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156113. [PMID: 39388924 DOI: 10.1016/j.phymed.2024.156113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND The liver plays a crucial role in detoxification and metabolism. When its capacity to metabolize foreign substances is exceeded, it can lead to acute liver injury (ALI). Therefore, preventing liver disease and maintaining daily liver health are of utmost importance. Xiaobugan Decoction (XBGD), a traditional Chinese medicine (TCM) formula, is recorded in 'Fuxingjue', is used in folk practice to promote liver health and regulate respiration. However, the hepatoprotective mechanisms of XBGD remained unclear. PURPOSE We investigated the prophylactic and hepatoprotective effects of XBGD and explored its related molecular mechanisms using a mouse model of carbon tetrachloride (CCl4)-induced ALI. STUDY DESIGN AND METHODS XBGD composition was determined using analytical methods, and the main compounds were identified using ultra-high-performance liquid chromatography coupled with Q-Exactive focus mass spectrum (UHPLC-QE-MS) and high-performance liquid chromatography (HPLC). A CCl4-induced L02 cell injury model was employed to explore the protective effects of XBGD on liver cells, and a CCl4-induced ALI mouse model was used to investigate the hepatoprotective effects of XBGD. RESULTS Cellular experiments demonstrated that XBGD had a protective function against L02 cell damage by increasing cell viability, restoring alanine aminotransferase (ALT), aspartate aminotransferase (AST), and superoxide dismutase (SOD) levels, reducing malondialdehyde (MDA) content, and improving mitochondrial membrane potential (ΔΨm). In the mouse ALI model, XBGD prevented ALI by reducing ALT, AST, and alkaline phosphatase (ALP) levels and inhibiting oxidative stress. Quantitative real-time polymerase chain reaction (qPCR), immumohistochemical staining and western blotting results revealed that XBGD exerted hepatoprotective effects by reducing inflammatory responses and inhibiting cell apoptosis. Furthermore, 1H-NMR metabolomics indicated that XBGD regulates hepatic and intestinal metabolism, whereas 16S rDNA sequencing demonstrated the regulatory effects of XBGD on the gut microbiota. Correlation analysis highlighted the close relationship among gut microbiota, metabolites, and ALI indicators. CONCLUSIONS XBGD is a promising TCM for the prevention of CCl4-induced ALI via regulation of microbiota and metabolism. This study provides a new perspective on the development of hepatoprotective measures and the prevention of liver disease in daily life.
Collapse
Affiliation(s)
- Weiwei Zheng
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Jilin 130012, PR China
| | - Ke Ning
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Jilin 130012, PR China
| | - Chao Shi
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Jilin 130012, PR China
| | - Yong-Fei Zhou
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Jilin 130012, PR China
| | - Yao Meng
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Jilin 130012, PR China
| | - Tong Pan
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Jilin 130012, PR China
| | - Yue Chen
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Jilin 130012, PR China
| | - Qiuhong Xie
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Jilin 130012, PR China; National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun Jilin 130012, PR China; Institute of Changbai Mountain Resource and Health, Jilin University, Fusong Jilin 134504, PR China.
| | - Hongyu Xiang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Jilin 130012, PR China; National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun Jilin 130012, PR China; Institute of Changbai Mountain Resource and Health, Jilin University, Fusong Jilin 134504, PR China.
| |
Collapse
|
4
|
Zhang T, Liu J, Liu X, Wang Q, Zhang H. The causal impact of gut microbiota on circulating adipokine concentrations: a two-sample Mendelian randomization study. Hormones (Athens) 2024; 23:789-799. [PMID: 38564143 DOI: 10.1007/s42000-024-00553-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
PURPOSE Evidence from previous experimental and observational research demonstrates that the gut microbiota is related to circulating adipokine concentrations. Nevertheless, the debate as to whether gut microbiome composition causally influences circulating adipokine concentrations remains unresolved. This study aimed to take an essential step in elucidating this issue. METHODS We used two-sample Mendelian randomization (MR) to causally analyze genetic variation statistics for gut microbiota and four adipokines (including adiponectin, leptin, soluble leptin receptor [sOB-R], and plasminogen activator inhibitor-1 [PAI-1]) from large-scale genome-wide association studies (GWAS) datasets. A range of sensitivity analyses was also conducted to assess the stability and reliability of the results. RESULTS The composite results of the MR and sensitivity analyses revealed 22 significant causal associations. In particular, there is a suggestive causality between the family Clostridiaceae1 (IVW: β = 0.063, P = 0.034), the genus Butyrivibrio (IVW: β = 0.029, P = 0.031), and the family Alcaligenaceae (IVW: β=-0.070, P = 0.014) and adiponectin. Stronger causal effects with leptin were found for the genus Enterorhabdus (IVW: β=-0.073, P = 0.038) and the genus Lachnospiraceae (NK4A136 group) (IVW: β=-0.076, P = 0.01). Eight candidate bacterial groups were found to be associated with sOB-R, with the phylum Firmicutes (IVW: β = 0.235, P = 0.03) and the order Clostridiales (IVW: β = 0.267, P = 0.028) being of more interest. In addition, the genus Roseburia (IVW: β = 0.953, P = 0.022) and the order Lactobacillales (IVW: β=-0.806, P = 0.042) were suggestive of an association with PAI-1. CONCLUSION This study reveals a causal relationship between the gut microbiota and circulating adipokines and may help to offer novel insights into the prevention of abnormal concentrations of circulating adipokines and obesity-related diseases.
Collapse
Affiliation(s)
- Tongxin Zhang
- Department of Ultrasound, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, China
| | - Jingyu Liu
- Department of Ultrasound, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, China
| | - Xiao Liu
- Department of Ultrasound, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, China
| | - Qian Wang
- Department of Ultrasound, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, China.
| | - Huawei Zhang
- Department of Ultrasound, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
5
|
Chen X, Yang S, Guo Z, Li B, Wang Z, Jiang L. Human milk oligosaccharides and milk fat globule membrane reduce allergic reactions in mice through the modulation of gut microbiota and metabolic functions. Food Funct 2024; 15:11252-11265. [PMID: 39470601 DOI: 10.1039/d4fo03851g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Human milk oligosaccharides (HMOs) and the milk fat globule membrane (MFGM) represent novel treatments for cow's milk allergy (CMA). They exhibit the beneficial attribute of diminishing nutrient damage when compared to conventional enzymatic digestion of milk proteins. However, the effects and mechanisms underlying the synergistic interaction between HMOs and the MFGM in allergy treatment remain unclear. Consequently, this study was undertaken to assess the protective properties of HMOs and the MFGM against CMA and to elucidate their potential mechanisms in a mouse model of β-lactoglobulin (BLG)-induced allergy. The findings demonstrated that HMOs and the MFGM could significantly reduce the allergy score and splenic index, and they diminished the levels of inflammatory mediators (total immunoglobulin E (IgE), specific IgE, histamine, and mMCP-1), while concurrently bolstering tight junctions (ZO-1, claudin-1, and occludin), and reducing intestinal permeability. Notably, HMOs and the MFGM exhibited optimal synergy. In addition, HMOs and the MFGM synergistically mitigated the immune response to Th2 overactivity in allergy by the promotion of Th1 and Treg cell responses, thereby suppressing the levels of inflammatory cytokines IL-4 and IL-5. Analysis of the gut microbiota and its metabolic activities revealed that HMOs and the MFGM increased the abundance of Lactobacillus and Butyricicoccus, leading to higher production of butyrate. Furthermore, these beneficial bacteria and the resultant butyrate also contributed to the suppression of allergy-associated bacterial populations such as Desulfovibrio and Rikenellaceae. In summary, HMOs and the MFGM acted in synergy to modulate inflammatory responses and ameliorate barrier damage, contributing to the mitigation of CMA, a process potentially linked to gut microbiota dynamics and the resultant butyrate metabolism. This effect may be related to the gut microbiota and its metabolic production of butyrate.
Collapse
Affiliation(s)
- Xinzhang Chen
- College of Animal Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Shengjun Yang
- Food College, Northeast Agricultural University, Harbin 150030, China.
| | - Zhengtao Guo
- Food College, Northeast Agricultural University, Harbin 150030, China.
| | - Bailiang Li
- Food College, Northeast Agricultural University, Harbin 150030, China.
| | - Zhongjiang Wang
- Food College, Northeast Agricultural University, Harbin 150030, China.
| | - Lianzhou Jiang
- Food College, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
6
|
Li S, Peng H, Sun Y, Yang J, Wang J, Bai F, Peng C, Fang S, Cai H, Chen G. Yeast β-glucan attenuates dextran sulfate sodium-induced colitis: Involvement of gut microbiota and short-chain fatty acids. Int J Biol Macromol 2024; 280:135846. [PMID: 39307486 DOI: 10.1016/j.ijbiomac.2024.135846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
Yeast β-glucan intervention offers a promising strategy for managing colitis; however, the mechanisms remain unknown. In the present work, the protective effects of yeast β-glucan on DSS-induced colitis in mice was evaluated, focusing on its interaction with gut microbiota. The result showed yeast β-glucan significantly alleviated colitis symptoms, evidenced by reduced weight loss, lower disease activity index (DAI) scores, and minimized intestinal damage. It enhanced intestinal barrier integrity via upregulation of tight junction proteins, suppressed lipopolysaccharide (LPS) release, and decreased pro-inflammatory cytokines production. Additionally, yeast β-glucan boosted short-chain fatty acids (SCFAs) production, and activated their receptors, increased the relative abundances of beneficial microbes like Lactobacillus and Lachnospiraceae_UCG-006. Transcriptomic analyses suggest that yeast β-glucan mitigates inflammation by downregulating gene expression related to IL-17 pathway. Our findings highlight potential of yeast β-glucan as a therapeutic agent for colitis through modulation of gut microbiota and inflammatory responses.
Collapse
Affiliation(s)
- Sichen Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, PR China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, Anhui, PR China
| | - Huihui Peng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, PR China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, Anhui, PR China
| | - Yuning Sun
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, PR China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, Anhui, PR China
| | - Jiali Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, PR China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, Anhui, PR China
| | - Juan Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, PR China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, Anhui, PR China
| | - Fuqing Bai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, PR China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, Anhui, PR China
| | - Chuanyi Peng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, PR China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, Anhui, PR China
| | - Shuzhen Fang
- The First Aliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China.
| | - Huimei Cai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, PR China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, Anhui, PR China.
| | - Guijie Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, PR China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, Anhui, PR China.
| |
Collapse
|
7
|
Huang S, Yang L, Wang L, Chen Y, Ding X, Yang F, Qiao S, Huang J. The Effects of Octapeptin Supplementation on Growth Performance, Serum Biochemistry, Serum Immunity, and Gut Microbiota in Weaned Piglets. Animals (Basel) 2024; 14:2546. [PMID: 39272331 PMCID: PMC11394056 DOI: 10.3390/ani14172546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
With the prohibition of antibiotics in animal feed, the livestock industry faces significant challenges, including increased morbidity and mortality rates and reduced farming efficiency. Developing green, natural, and safe antibiotic alternatives has become a research hotspot. This study evaluated the effects of octapeptin as a feed additive on growth performance, diarrhea incidence, serum biochemistry, serum immune factors, and gut microbiota of weaned piglets. Seventy-two weaned piglets were randomly assigned to three groups based on body weight and sex, with each group receiving different dietary treatments: a negative control group (CON, basal diet), a positive control group (MC, basal diet + 5 mg/kg Microcin C7), and an octapeptin supplement group (OP, basal diet + 40 mg/kg octapeptin). After 28 days of feeding experimental diets, the results demonstrated that supplementing the diet of weaned piglets with octapeptin significantly improved the feed conversion ratio compared to the control group (p < 0.05) over the entire experimental period. Furthermore, a reduction in diarrhea incidence was observed during the late nursery period (14-28 d), resulting in an overall improvement in diarrhea compared to the other two groups (p < 0.01). Serum biochemical analysis results revealed a trend towards decreased alanine aminotransferase level in the octapeptin group, with no significant differences in other indicators, suggesting potential improvements in liver function without causing liver damage. In addition, compared to the control group, octapeptin enhanced mucosal immunity by decreasing TNF-α level (p < 0.05). Fecal microbiota analysis results showed a significant increase in beneficial bacteria such as Collinsella and Olsenella in the octapeptin group compared to the other two groups (p < 0.05), indicating a positive impact on gut health. These findings supported the potential of octapeptin as an alternative to antibiotic growth promoters in weaned piglets' diets.
Collapse
Affiliation(s)
- Sheng Huang
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Li Yang
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Li Wang
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Yu Chen
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Xiuliang Ding
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Feiyun Yang
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing 100193, China
| | - Jinxiu Huang
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| |
Collapse
|
8
|
Li P, Hon SSM, Tsang MSM, Kan LLY, Lai AYT, Chan BCL, Leung PC, Wong CK. Integrating 16S rRNA Sequencing, Microflora Metabolism, and Network Pharmacology to Investigate the Mechanism of SBL in Alleviating HDM-Induced Allergic Rhinitis. Int J Mol Sci 2024; 25:8655. [PMID: 39201342 PMCID: PMC11354307 DOI: 10.3390/ijms25168655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/09/2024] [Accepted: 07/20/2024] [Indexed: 09/02/2024] Open
Abstract
Allergic rhinitis (AR) is a series of allergic reactions to allergens in the nasal mucosa and is one of the most common allergic diseases that affect both children and adults. Shi-Bi-Lin (SBL) is the modified formula of Cang Er Zi San (CEZS), a traditional Chinese herbal formula used for treating AR. Our study aims to elucidate the anti-inflammatory effects and mechanisms of SBL in house dust mite-induced AR by regulating gut microflora metabolism. In vivo studies showed that nasal allergies and the infiltration of inflammatory cells in the nasal epithelium were significantly suppressed by SBL. Moreover, SBL restored the impaired nasal epithelial barrier function with an increased tight junction protein expression and reduced the endothelial nitric oxide synthase (eNOS). Interestingly, SBL significantly reconstituted the abundance and composition of gut microbiota in AR mice; it increased the relative abundance of potentially beneficial genera and decreased the relative abundance of harmful genera. SBL also restored immune-related metabolisms, which were significantly increased and correlated with suppressing inflammatory cytokines. Furthermore, a network analysis and molecular docking indicated IL-6 was a possible target drug candidate for the SBL treatment. SBL dramatically reduced the IL-6 level in the nasal lavage fluid (NALF), suppressing the IL-6 downstream Erk1/2 and AKT/PI3K signaling pathways. In conclusion, our study integrates 16S rRNA sequencing, microflora metabolism, and network pharmacology to explain the immune mechanism of SBL in alleviating HDM-induced allergic rhinitis.
Collapse
Affiliation(s)
- Peiting Li
- Institute of Chinese Medicine, State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China; (P.L.); (S.S.-M.H.); (M.S.-M.T.); (L.L.-Y.K.); (A.Y.-T.L.); (B.C.-L.C.); (P.-C.L.)
| | - Sharon Sze-Man Hon
- Institute of Chinese Medicine, State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China; (P.L.); (S.S.-M.H.); (M.S.-M.T.); (L.L.-Y.K.); (A.Y.-T.L.); (B.C.-L.C.); (P.-C.L.)
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Miranda Sin-Man Tsang
- Institute of Chinese Medicine, State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China; (P.L.); (S.S.-M.H.); (M.S.-M.T.); (L.L.-Y.K.); (A.Y.-T.L.); (B.C.-L.C.); (P.-C.L.)
- China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora, VIC 3083, Australia
| | - Lea Ling-Yu Kan
- Institute of Chinese Medicine, State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China; (P.L.); (S.S.-M.H.); (M.S.-M.T.); (L.L.-Y.K.); (A.Y.-T.L.); (B.C.-L.C.); (P.-C.L.)
| | - Andrea Yin-Tung Lai
- Institute of Chinese Medicine, State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China; (P.L.); (S.S.-M.H.); (M.S.-M.T.); (L.L.-Y.K.); (A.Y.-T.L.); (B.C.-L.C.); (P.-C.L.)
| | - Ben Chung-Lap Chan
- Institute of Chinese Medicine, State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China; (P.L.); (S.S.-M.H.); (M.S.-M.T.); (L.L.-Y.K.); (A.Y.-T.L.); (B.C.-L.C.); (P.-C.L.)
| | - Ping-Chung Leung
- Institute of Chinese Medicine, State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China; (P.L.); (S.S.-M.H.); (M.S.-M.T.); (L.L.-Y.K.); (A.Y.-T.L.); (B.C.-L.C.); (P.-C.L.)
| | - Chun-Kwok Wong
- Institute of Chinese Medicine, State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China; (P.L.); (S.S.-M.H.); (M.S.-M.T.); (L.L.-Y.K.); (A.Y.-T.L.); (B.C.-L.C.); (P.-C.L.)
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
9
|
Moon S, Lee KW, Park M, Moon J, Park SH, Kim S, Hwang J, Yoon JW, Jeon SM, Kim JS, Jeon YJ, Kweon DH. 3-Fucosyllactose-mediated modulation of immune response against virus infection. Int J Antimicrob Agents 2024; 64:107187. [PMID: 38697577 DOI: 10.1016/j.ijantimicag.2024.107187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/19/2024] [Accepted: 04/24/2024] [Indexed: 05/05/2024]
Abstract
Viral pathogens, particularly influenza and SARS-CoV-2, pose a significant global health challenge. Given the immunomodulatory properties of human milk oligosaccharides, in particular 2'-fucosyllactose and 3-fucosyllactose (3-FL), we investigated their dietary supplementation effects on antiviral responses in mouse models. This study revealed distinct immune modulations induced by 3-FL. RNA-sequencing data showed that 3-FL increased the expression of interferon receptors, such as Interferon Alpha and Beta Receptor (IFNAR) and Interferon Gamma Receptor (IFNGR), while simultaneously downregulating interferons and interferon-stimulated genes, an effect not observed with 2'-fucosyllactose supplementation. Such modulation enhanced antiviral responses in both cell culture and animal models while attenuating pre-emptive inflammatory responses. Nitric oxide concentrations in 3-FL-supplemented A549 cells and mouse lung tissues were elevated exclusively upon infection, reaching 5.8- and 1.9-fold increases over control groups, respectively. In addition, 3-FL promoted leukocyte infiltration into the site of infection upon viral challenge. 3-FL supplementation provided protective efficacy against lethal influenza challenge in mice. The demonstrated antiviral efficacy spanned multiple influenza strains and extended to SARS-CoV-2. In conclusion, 3-FL is a unique immunomodulator that helps protect the host from viral infection while suppressing inflammation prior to infection.
Collapse
Affiliation(s)
- Seokoh Moon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Ki Wook Lee
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Myungseo Park
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jeonghui Moon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sang Hee Park
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Soomin Kim
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jaehyeon Hwang
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jong-Won Yoon
- Advanced Protein Technologies Corp., Suwon, Republic of Korea
| | - Seon-Min Jeon
- Advanced Protein Technologies Corp., Suwon, Republic of Korea
| | - Jun-Seob Kim
- Department of Nano-Bioengineering, Incheon National University, Incheon, Republic of Korea.
| | - Young-Jun Jeon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea.
| | - Dae-Hyuk Kweon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea; Advanced Protein Technologies Corp., Suwon, Republic of Korea.
| |
Collapse
|
10
|
Min L, Tuo Y, Li D, Zang C, Amat G, Zhang Z, Guo T. Impact of 5-20% Hydroponic Wheat Sprouts Inclusion on Growth and Metabolic Parameters of Growing Ewes. Animals (Basel) 2024; 14:1630. [PMID: 38891677 PMCID: PMC11171387 DOI: 10.3390/ani14111630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
The aim of this study was to assess the impact of varying proportions (5-20%) of hydroponic wheat sprouts in the diet of growing four-month-old Hu ewes on their productive performance, metabolic profiles, rumen fermentation, and alterations in microflora. Compared with the control group (CON), the optimum final weight of ewes has been presented in the group of substitution 15% (S15) of the basal diet with hydroponic wheat sprouts. Furthermore, 1-30 d the average daily gain (ADG), 31-60 d ADG, and average feed intake were both significantly improved in S15 compared with CON (p < 0.05). Feeding hydroponic wheat sprouts can significantly increase high-density lipoprotein and interleukin-2 (p < 0.05) accompanied by the numerical increase of the content of interferon-γ, suggesting its positive effect on ewes' health and immune systems. In this process, it is noteworthy that feeding hydroponic wheat sprouts results in an increase in relative abundance of Olsenella, Limosilactobacillus, Shuttleworthia, and Prevotella_7, and a decrease in relative abundance of Succinimonas, Pseudobutyrivibrio, and Anaerovibrio in the rumen of growing ewes. It implies that the response of rumen microflora adapted to the change of dietary ingredients, as well as the relationship between rumen microflora changes and the improvement of productive performance and immune system in growing ewes. Considering the usage cost and application effect, S15 of the basal diet with hydroponic wheat sprouts could be the appropriate application solution for growing ewes.
Collapse
Affiliation(s)
- Li Min
- Key Laboratory of Xinjiang Feed Biotechnology, Feed Research Institute, Xinjiang Academy of Animal Science, Urumqi 830011, China; (L.M.)
- Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Yong Tuo
- Key Laboratory of Xinjiang Feed Biotechnology, Feed Research Institute, Xinjiang Academy of Animal Science, Urumqi 830011, China; (L.M.)
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China;
| | - Dagang Li
- Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Changjiang Zang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China;
| | - Guzalnur Amat
- Key Laboratory of Xinjiang Feed Biotechnology, Feed Research Institute, Xinjiang Academy of Animal Science, Urumqi 830011, China; (L.M.)
| | - Zhijun Zhang
- Key Laboratory of Xinjiang Feed Biotechnology, Feed Research Institute, Xinjiang Academy of Animal Science, Urumqi 830011, China; (L.M.)
| | - Tongjun Guo
- Key Laboratory of Xinjiang Feed Biotechnology, Feed Research Institute, Xinjiang Academy of Animal Science, Urumqi 830011, China; (L.M.)
| |
Collapse
|
11
|
Lordan C, Roche AK, Delsing D, Nauta A, Groeneveld A, MacSharry J, Cotter PD, van Sinderen D. Linking human milk oligosaccharide metabolism and early life gut microbiota: bifidobacteria and beyond. Microbiol Mol Biol Rev 2024; 88:e0009423. [PMID: 38206006 PMCID: PMC10966949 DOI: 10.1128/mmbr.00094-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024] Open
Abstract
SUMMARYHuman milk oligosaccharides (HMOs) are complex, multi-functional glycans present in human breast milk. They represent an intricate mix of heterogeneous structures which reach the infant intestine in an intact form as they resist gastrointestinal digestion. Therefore, they confer a multitude of benefits, directly and/or indirectly, to the developing neonate. Certain bifidobacterial species, being among the earliest gut colonizers of breast-fed infants, have an adapted functional capacity to metabolize various HMO structures. This ability is typically observed in infant-associated bifidobacteria, as opposed to bifidobacteria associated with a mature microbiota. In recent years, information has been gleaned regarding how these infant-associated bifidobacteria as well as certain other taxa are able to assimilate HMOs, including the mechanistic strategies enabling their acquisition and consumption. Additionally, complex metabolic interactions occur between microbes facilitated by HMOs, including the utilization of breakdown products released from HMO degradation. Interest in HMO-mediated changes in microbial composition and function has been the focal point of numerous studies, in recent times fueled by the availability of individual biosynthetic HMOs, some of which are now commonly included in infant formula. In this review, we outline the main HMO assimilatory and catabolic strategies employed by infant-associated bifidobacteria, discuss other taxa that exhibit breast milk glycan degradation capacity, and cover HMO-supported cross-feeding interactions and related metabolites that have been described thus far.
Collapse
Affiliation(s)
- Cathy Lordan
- Teagasc Food Research Centre, Fermoy, Co Cork, Ireland
| | - Aoife K. Roche
- APC Microbiome Ireland, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | | | - Arjen Nauta
- FrieslandCampina, Amersfoort, the Netherlands
| | | | - John MacSharry
- APC Microbiome Ireland, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Paul D. Cotter
- Teagasc Food Research Centre, Fermoy, Co Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Douwe van Sinderen
- APC Microbiome Ireland, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
12
|
Yang S, Cai J, Su Q, Li Q, Meng X. Human milk oligosaccharides combine with Bifidobacterium longum to form the "golden shield" of the infant intestine: metabolic strategies, health effects, and mechanisms of action. Gut Microbes 2024; 16:2430418. [PMID: 39572856 PMCID: PMC11587862 DOI: 10.1080/19490976.2024.2430418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/04/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024] Open
Abstract
Human milk oligosaccharides (HMOs) are the third most important nutrient in human milk and are the gold standard for infant nutrition. Due to the lack of an enzyme system capable of utilizing HMOs in the infant intestine, HMOs cannot be directly utilized. Instead, they function as natural prebiotics, participating in the establishment of the intestinal microbiota as a "bifidus factor." A crucial colonizer of the early intestine is Bifidobacterium longum (B. longum), particularly its subspecies B. longum subsp. infantis, which is the most active consumer of HMOs. However, due to the structural diversity of HMOs and the specificity of B. longum strains, studies on their synergy are limited. An in-depth investigation into the mechanisms of HMO utilization by B. longum is essential for applying both as synbiotics to promote early intestinal development in infants. This review describes the colonization advantages of B. longum in the infant intestinal tract and its metabolic strategies for HMOs. It also summarizes recent studies on the effect and mechanism of B. longum and HMOs in infant intestinal development directly or indirectly through the action of metabolites. In conclusion, further structural analysis of HMOs and a deeper understanding of the interactions between B. longum and HMOs, as well as clinical trials, are necessary to lay the foundation for future practical applications as synbiotics.
Collapse
Affiliation(s)
- Shuo Yang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Junwu Cai
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Qian Su
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Qiaohui Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Xiangchen Meng
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| |
Collapse
|
13
|
Liang Y, Zeng W, Hou T, Yang H, Wu B, Pan R, Huang L. Gut microbiome and reproductive endocrine diseases: a Mendelian randomization study. Front Endocrinol (Lausanne) 2023; 14:1164186. [PMID: 37600687 PMCID: PMC10436605 DOI: 10.3389/fendo.2023.1164186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/12/2023] [Indexed: 08/22/2023] Open
Abstract
Background Observation studies have confirmed the association between the gut microbiome and reproductive endocrine diseases (REDs), namely, polycystic ovary syndrome (PCOS), endometriosis, and female infertility. However, their association has never been confirmed by a two-sample Mendelian randomization (MR) analysis. Methods We conducted a two-sample MR analysis to evaluate the relationship between the gut microbiome and the three aforementioned REDs. In order to get more comprehensive results, two different thresholds were adopted to select instrumental variables (IVs): one was a locus-wide significance threshold (P <1.0×10-5) and the other was a genome-wide significance level (P< 5×10-8). Summary-level statistics for the gut microbiome and REDs were collected from public databases. Inverse-variance weighted (IVW) was the main method used to estimate causality, and sensitivity analyses were conducted to validate the MR results. Results At the locus-wide significance level, we identified that the genera Streptococcus (OR=1.52, 95%CI: 1.13-2.06, P=0.006) and RuminococcaceaeUCG005 (OR=1.39, 95%CI: 1.04-1.86, P=0.028) were associated with a high risk of PCOS, while Sellimonas (OR= 0.69, 95%CI: 0.58-0.83, P=0.0001) and RuminococcaceaeUCG011(OR=0.76, 95%CI: 0.60-0.95, P=0.017) were linked to a low PCOS risk. The genus Coprococcus2 (OR=1.20, 95%CI: 1.01-1.43, P=0.039) was correlated with an increased risk of female infertility, while Ruminococcus torques (OR=0.69, 95%CI: 0.54-0.88, P=0.002) were negatively associated with the risk of female infertility. The genera Olsenella (OR= 1.11, 95%CI: 1.01-1.22, P=0.036), Anaerotruncus (OR= 1.25, 95%CI: 1.03-1.53, P=0.025), and Oscillospira (OR= 1.21, 95%CI: 1.01-1.46, P=0.035) were linked to a high risk of endometriosis. However, the results showed that the gut microbiome did not possess a causal link with REDs risk based on the genome-wide significance level. Sensitivity analyses further confirmed the robustness of the MR results. Conclusion Our study provides evidence that gut microbiome is closely related with REDs. Subsequent studies should be conducted to promote microbiome-orientated therapeutic strategies for managing REDs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lishan Huang
- Department of Gynecology, Meizhou People’s Hospital, Meizhou, Guangdong, China
| |
Collapse
|
14
|
Wang W, Wang Y, Guo T, Gao C, Yang Y, Yang L, Cui Z, Mao J, Liu N, An X, Qi J. Blend of Cinnamaldehyde, Eugenol, and Capsicum Oleoresin Improved Rumen Health of Lambs Fed High-Concentrate Diet as Revealed by Fermentation Characteristics, Epithelial Gene Expression, and Bacterial Community. Animals (Basel) 2023; 13:ani13101663. [PMID: 37238093 DOI: 10.3390/ani13101663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
We investigated the effects of CEC on the fermentation characteristics, epithelial gene expression, and bacterial community in the rumen of lambs fed a high-concentrate diet. Twenty-four 3-month-old female crossbred lambs with an initial body weight of 30.37 ± 0.57 kg were randomly allocated to consume a diet supplemented with 80 mg/kg CEC (CEC) or not (CON). The experiment consisted of a 14 d adaptation period and a 60 d data collection period. Compared with the CON group, the CEC group had higher ADG, epithelial cell thickness, ruminal butyrate proportion, and lower ammonia nitrogen concentration. Increases in the mRNA expression of Occludin and Claudin-4, as well as decreases in the mRNA expression of apoptotic protease activating factor-1 (Apaf-1), cytochrome c (Cyt-C), Caspase-8, Caspase-9, Caspase-3, Caspase-7, and toll-like receptor 4 (TLR4), were observed in the CEC group. Moreover, CEC treatment also decreased the concentration of IL-1β, IL-12, and TNF-α. Supplementation with CEC altered the structure and composition of the rumen bacterial community, which was indicated by the increased relative abundances of Firmicutes, Synergistota, Rikenellaceae_RC9_gut_group, Olsenella, Schwartzia, Erysipelotrichaceae_UCG-002, Lachnospiraceae_NK3A20_group, Acetitomaculum, [Eubacterium]_ruminantium_group, Prevotellaceae_UCG-004, Christensenellaceae_R-7_group, Sphaerochaeta, Pyramidobacter, and [Eubacterium]_eligens_group, and the decreased relative abundances of Acidobacteriota, Chloroflexi, Gemmatimonadota, and MND1. Furthermore, Spearman correlation analysis revealed that the altered rumen bacteria were closely correlated with rumen health-related indices. Dietary CEC supplementation improved growth performance, reduced inflammation and apoptosis, protected barrier function, and modulated the bacterial community of lambs fed a high-concentrate diet.
Collapse
Affiliation(s)
- Wenwen Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering and Technology Research Center, Hohhot 010018, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot 010018, China
| | - Yuan Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering and Technology Research Center, Hohhot 010018, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot 010018, China
| | - Tao Guo
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering and Technology Research Center, Hohhot 010018, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot 010018, China
| | - Chang Gao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering and Technology Research Center, Hohhot 010018, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot 010018, China
| | - Yi Yang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering and Technology Research Center, Hohhot 010018, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot 010018, China
| | - Lei Yang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering and Technology Research Center, Hohhot 010018, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot 010018, China
| | - Zhiwei Cui
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering and Technology Research Center, Hohhot 010018, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot 010018, China
| | - Jinju Mao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering and Technology Research Center, Hohhot 010018, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot 010018, China
| | - Na Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering and Technology Research Center, Hohhot 010018, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot 010018, China
| | - Xiaoping An
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering and Technology Research Center, Hohhot 010018, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot 010018, China
| | - Jingwei Qi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering and Technology Research Center, Hohhot 010018, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot 010018, China
| |
Collapse
|