1
|
Yang J, Wang W, Huang S, Guo D, Yu L, Qiao W, Zhang X, Han Z, Song B, Xu X, Wu Z, Dordick JS, Zhang F, Xu H, Qiao M. Production, Characterization, and Application of Hydrophobin-Based IR780 Nanoparticles for Targeted Photothermal Cancer Therapy and Advanced Near-Infrared Imaging. Adv Healthc Mater 2025; 14:e2402311. [PMID: 39543440 DOI: 10.1002/adhm.202402311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/29/2024] [Indexed: 11/17/2024]
Abstract
As a promising approach for breast cancer treatment, photothermal therapy (PTT) features high spatial selectivity, noninvasiveness, and minimal drug resistance. IR780 (a near-infrared fluorescent dye) serves as an effective photosensitizer in PTT cancer therapy. However, the clinical application of IR780 in PTT has been hindered by its poor water solubility and unstable photostability. In this study, a genetically engineered dual-functional fusion protein tLyP-1-MGF6 is successfully constructed and expressed, which presents a novel use of hydrophobin MGF6 for its amphiphilicity combined with the tumor-penetrating peptide tLyP-1 to create an innovative carrier for IR780. These results show this fusion protein serving as a biodegradable and biocompatible carrier, significantly improves the water solubility of IR780 when formulated into nanoparticles. These studies demonstrate that the IR780@tLyP-1-MGF6 nanoparticles significantly enhance tumor targeting and photothermal therapeutic efficacy in comparison with control in vitro and in vivo. These advancements highlight the potential of the unique combination hydrophobin-based IR780 delivery system as a multifunctional nanoplatform for integrated imaging and targeted photothermal treatment of breast cancer.
Collapse
Affiliation(s)
- Jiyuan Yang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
- School of Life Science, Shanxi University, Shanxi, 030000, P. R. China
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Wenjun Wang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Siyuan Huang
- Key Laboratory of Functional Polymer Materials (Ministry of Education), Institute of Polymer Chemistry, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Dingyi Guo
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Long Yu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Wanjin Qiao
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
| | - Xu Zhang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Zhiqiang Han
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Bo Song
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Xiaoting Xu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Zhenzhou Wu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Jonathan S Dordick
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Fuming Zhang
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Haijin Xu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Mingqiang Qiao
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
- School of Life Science, Shanxi University, Shanxi, 030000, P. R. China
| |
Collapse
|
2
|
Osmanagaoglu FH, Ekmekcioglu A, Ozcan B, Bayram Akcapinar G, Muftuoglu M. Preparation and Characterization of Hydrophobin 4-Coated Liposomes for Doxorubicin Delivery to Cancer Cells. Pharmaceuticals (Basel) 2024; 17:1422. [PMID: 39598333 PMCID: PMC11597365 DOI: 10.3390/ph17111422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
Background: The properties of nanoparticle surfaces are crucial in influencing their interaction with biological environments, as well as their stability, biocompatibility, targeting abilities, and cellular uptake. Hydrophobin 4 (HFB4) is a class II HFB protein produced by filamentous fungi that has a natural ability to self-assemble at hydrophobic-hydrophilic interfaces. The biocompatible, non-toxic, biodegradable, and amphipathic properties of HFB4 render it valuable for improving the solubility and bioavailability of hydrophobic drugs. We have investigated the physicochemical properties, cellular uptake, and anticancer effects of empty and Doxorubicin (Dox)-loaded HFB4 liposomes (HFB4L) and compared them to those of PEGylated liposomes (PPL). Methods: The Pichia pastoris KM71H strain was used for HFB4 purification. Liposomes were prepared through the thin film hydration method and characterized. The cytotoxic effects of free Dox, Dox-HFB4, and Dox-PPL were assessed in MCF7 cells using the SRB Assay. Results: All formulations showed good size homogeneity and a spherical shape. The HFB4 coating enhanced the physicochemical stability of Dox-HFB4L over 60 days at 4 °C without significantly affecting Dox release from HFB4L. It increased Dox release at pH 5.4 compared to pH 7.4, indicating higher delivery of drugs into acidic tumor environments, similar to Dox-PPL. While both formulations showed increased cellular uptake compared to free Dox, they exhibited a lower anticancer effect due to the sustained release of Dox. Notably, Dox-HFB4L displayed greater cytotoxicity than Dox-PPL in MCF7 cells. Conclusions: HFB4L may offer superior benefits in terms of delivering drugs to an acidic tumor environment in a stable, non-toxic, and sustained manner.
Collapse
Affiliation(s)
- Fatma Hande Osmanagaoglu
- Institute of Health Sciences, Department of Medical Biotechnology, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey; (F.H.O.); (A.E.); (G.B.A.)
| | - Aysegul Ekmekcioglu
- Institute of Health Sciences, Department of Medical Biotechnology, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey; (F.H.O.); (A.E.); (G.B.A.)
| | - Busel Ozcan
- Institute of Health Sciences, Department of Medical Biotechnology, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey; (F.H.O.); (A.E.); (G.B.A.)
| | - Gunseli Bayram Akcapinar
- Institute of Health Sciences, Department of Medical Biotechnology, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey; (F.H.O.); (A.E.); (G.B.A.)
| | - Meltem Muftuoglu
- Institute of Health Sciences, Department of Medical Biotechnology, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey; (F.H.O.); (A.E.); (G.B.A.)
- Faculty of Engineering and Natural Sciences, Department of Molecular Biology and Genetics, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey
| |
Collapse
|
3
|
Shawky H, Fayed DB, Ibrahim NE. pH-tailored delivery of a multitarget anticancer benzimidazole derivative using a PEGylated β-cyclodextrin-curcumin functionalized nanocomplex. BIOMATERIALS ADVANCES 2024; 163:213964. [PMID: 39053387 DOI: 10.1016/j.bioadv.2024.213964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/29/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
In this study, we aimed to enhance the bioavailability of a benzimidazole derivative with potent anticancer potential through a nano-based approach. Benzimidazole-loaded polyethylene glycol-β-cyclodextrin-functionalized curcumin nanocomplex (BMPE-Cur) was prepared and characterized for its physicochemical properties and drug release profiles under different pH conditions. In addition, the biological activities of the nanocomplex including antioxidant potentials and pro-apoptogenic properties, against HepG2, PC3, and the chemo-resistant MCF-7-ADR cell lines relative to the normal Wi-38 cell line were in vitro assessed and compared with those of the free benzimidazole compound. In addition to FTIR, XRD, and NMR spectral studies, a polymeric nanocomplex with an average particle size of 467.7 nm and high stability was successfully developed, as indicated by the negative zeta potential (-28.24 mV). The nanocomplex also showed prolonged pH-sensitive sustained drug release under conditions that replicated the tumor's extra/intracellular pH. The formulated nanocomplex also demonstrated potent radical scavenging capacity owing to the inclusion of curcumin, a known radical quencher. In addition, compared with the free compound, BMPE-Cur induced DNA fragmentation-driven cell cycle arrest in HepG2, PC3, and MCF-7-ADR cells at the G1/S, G1 & S phases; respectively, with remarkable selectivity. In conclusion, the newly formulated BMPE-Cur nanocomplex represents an attractive multitarget anticancer candidate.
Collapse
Affiliation(s)
- Heba Shawky
- Therapeutic Chemistry Department, Pharmaceutical Industries and Drug Research Institute, National Research Centre, Dokki, 12622 Cairo, Egypt.
| | - Dalia B Fayed
- Therapeutic Chemistry Department, Pharmaceutical Industries and Drug Research Institute, National Research Centre, Dokki, 12622 Cairo, Egypt.
| | - Noha E Ibrahim
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, Dokki, 12622 Cairo, Egypt.
| |
Collapse
|
4
|
Li M, Liu Y, Liu Y, Lin J, Ding L, Wu S, Gong J. Fabrication of targeted and pH responsive lysozyme-hyaluronan nanoparticles for 5-fluorouracil and curcumin co-delivery in colorectal cancer therapy. Int J Biol Macromol 2024; 254:127836. [PMID: 37931859 DOI: 10.1016/j.ijbiomac.2023.127836] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023]
Abstract
Green nanotechnology is considered a promising method to construct functional materials with significant anticancer activity, while overcoming the shortcomings of traditional synthesis process complexity and high organic solvents consumption. Thus, in this study, we report for the first time the rational design and green synthesis of functionalized 5-fluorouracil and curcumin co-loaded lysozyme-hyaluronan composite colloidal nanoparticles (5-Fu/Cur@LHNPs) for better targeted colorectal cancer therapy with minimized side effects. The functionalized 5-Fu/Cur@LHNPs exhibit stabilized particle size (126.1 nm) with excellent homogeneity (PDI = 0.1), favorable colloidal stabilities, and excellent re-dispersibility. In vitro cell experiments illustrate that the cellular uptake of 5-Fu/Cur@LHNPs was significantly improved and further promoted a higher apoptosis ratio of HCT-116 cells. Compared with the control group, the 5-Fu/Cur@LHNPs formulation group achieved effective inhibition (60.1 %) of colorectal tumor growth. The alcohol-free self-assembly method to construct 5-Fu/Cur@LHNPs is simple and safe for a translational chemotherapy drug, also to promote more robust delivery systems for treating colorectal cancer.
Collapse
Affiliation(s)
- Maolin Li
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yin Liu
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, PR China
| | - Yanbo Liu
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China
| | - Jiawei Lin
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China
| | - Lei Ding
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, PR China.
| | - Songgu Wu
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, PR China.
| | - Junbo Gong
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, PR China
| |
Collapse
|
5
|
Song B, Wang W, Jia C, Han Z, Yang J, Yang J, Wu Z, Xu H, Qiao M. Identification and Characterization of a Predominant Hydrophobin in the Edible Mushroom Grifola frondosa. J Fungi (Basel) 2023; 10:25. [PMID: 38248935 PMCID: PMC10820438 DOI: 10.3390/jof10010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
Hydrophobins (HFBs) are a group of small, secreted amphipathic proteins of fungi with multiple physiological functions and potential commercial applications. In this study, HFB genes of the edible mushroom, Grifola frondosa, were systematically identified and characterized, and their transcriptional profiles during fungal development were determined. In total, 19 typical class I HFB genes were discovered and bioinformatically analyzed. Gene expression profile examination showed that Gf.hyd9954 was particularly highly upregulated during primordia formation, suggesting its major role as the predominant HFB in the lifecycle of G. frondosa. The wettability alteration profile and the surface modification ability of recombinant rGf.hyd9954 were greater than for the Grifola HFB HGFII-his. rGf.hyd9954 was also demonstrated to form the typical class I HFB characteristic-rodlet bundles. In addition, rGf.hyd9954 was shown to possess nanoparticle characteristics and emulsification activities. This research sheds light on the regulation of fungal development and its association with the expression of HFB genes.
Collapse
Affiliation(s)
- Bo Song
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300110, China; (B.S.)
| | - Wenjun Wang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300110, China; (B.S.)
| | - Chunhui Jia
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300110, China; (B.S.)
| | - Zhiqiang Han
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300110, China; (B.S.)
| | - Jiyuan Yang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300110, China; (B.S.)
| | - Jiuxia Yang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300110, China; (B.S.)
| | - Zhenzhou Wu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300110, China; (B.S.)
| | - Haijin Xu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300110, China; (B.S.)
| | - Mingqiang Qiao
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300110, China; (B.S.)
- School of Life Science, Shanxi University, Taiyuan 030000, China
| |
Collapse
|
6
|
Caban M, Lewandowska U. Encapsulation of Polyphenolic Compounds Based on Hemicelluloses to Enhance Treatment of Inflammatory Bowel Diseases and Colorectal Cancer. Molecules 2023; 28:molecules28104189. [PMID: 37241929 DOI: 10.3390/molecules28104189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Inflammatory bowel diseases (IBD) and colorectal cancer (CRC) are difficult to cure, and available treatment is associated with troubling side effects. In addition, current therapies have limited efficacy and are characterized by high costs, and a large segment of the IBD and CRC patients are refractive to the treatment. Moreover, presently used anti-IBD therapies in the clinics are primarily aimed on the symptomatic control. That is why new agents with therapeutic potential against IBD and CRC are required. Currently, polyphenols have received great attention in the pharmaceutical industry and in medicine due to their health-promoting properties. They may exert anti-inflammatory, anti-oxidative, and anti-cancer activity, via inhibiting production of pro-inflammatory cytokines and enzymes or factors associated with carcinogenesis (e.g., matrix metalloproteinases, vascular endothelial growth factor), suggesting they may have therapeutic potential against IBD and CRC. However, their use is limited under both processing conditions or gastrointestinal interactions, reducing their stability and hence their bioaccessibility and bioavailability. Therefore, there is a need for more effective carriers that could be used for encapsulation of polyphenolic compounds. In recent years, natural polysaccharides have been proposed for creating carriers used in the synthesis of polyphenol encapsulates. Among these, hemicelluloses are particularly noteworthy, being characterized by good biocompatibility, biodegradation, low immunogenicity, and pro-health activity. They may also demonstrate synergy with the polyphenol payload. This review discusses the utility and potential of hemicellulose-based encapsulations of polyphenols as support for treatment of IBD and CRC.
Collapse
Affiliation(s)
- Miłosz Caban
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland
| | - Urszula Lewandowska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland
| |
Collapse
|
7
|
Kim KH, Ki MR, Min KH, Pack SP. Advanced Delivery System of Polyphenols for Effective Cancer Prevention and Therapy. Antioxidants (Basel) 2023; 12:antiox12051048. [PMID: 37237914 DOI: 10.3390/antiox12051048] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Polyphenols from plants such as fruits and vegetables are phytochemicals with physiological and pharmacological activity as potential drugs to modulate oxidative stress and inflammation associated with cardiovascular disease, chronic disease, and cancer. However, due to the limited water solubility and bioavailability of many natural compounds, their pharmacological applications have been limited. Researchers have made progress in the development of nano- and micro-carriers that can address these issues and facilitate effective drug delivery. The currently developed drug delivery systems maximize the fundamental effects in various aspects such as absorption rate, stability, cellular absorption, and bioactivity of polyphenols. This review focuses on the antioxidant and anti-inflammatory effects of polyphenols enhanced by the introduction of drug delivery systems, and ultimately discusses the inhibition of cancer cell proliferation, growth, and angiogenesis.
Collapse
Affiliation(s)
- Koung Hee Kim
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| | - Mi-Ran Ki
- Institute of Industrial Technology, Korea University, Sejong 30019, Republic of Korea
| | - Ki Ha Min
- Institute of Industrial Technology, Korea University, Sejong 30019, Republic of Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| |
Collapse
|