1
|
Chen D, Wang A, Lv J, Peng Y, Zheng Y, Zuo J, Kan J, Zong S, Zeng X, Liu J. Tea (Camellia sinensis L.) flower polysaccharide attenuates metabolic syndrome in high-fat diet induced mice in association with modulation of gut microbiota. Int J Biol Macromol 2024; 279:135340. [PMID: 39255891 DOI: 10.1016/j.ijbiomac.2024.135340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 08/14/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
There is a growing body of evidence suggesting that dietary polysaccharides play a crucial role in preventing metabolic syndrome (MetS) through their interaction with gut microbes. Tea (Camellia sinensis L.) flower polysacchride (TFPS) is a novel functional compound known for its diverse beneficial effects in both vivo and vitro. To further investigate the effects of TFPS on MetS and gut microbiota, and the possible association between gut microbiota and their activities, this study was carried out on mice that were fed a high-fat diet (HFD) and given oral TFPS at a dose of 400 and 800 mg/kg·body weight (BW)/d, respectively. TFPS treatment significantly mitigated HFD-induced MetS, evidenced by reductions in body weight, fat accumulation, plasma levels of total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and pro-inflammatory cytokines tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), and IL-1β, along with an increase in plasma IL-10 levels. Furthermore, TFPS induced alterations in the diversity and composition of HFD-induced gut microbiota. Specifically, TFPS influenced the relative abundance of 11 genera, including Lactobacillus and Lactococcus, which showed strong correlations with metabolic improvements and likely contributed to the amelioration of MetS. In conclusion, TFPS exhibits promising prebiotic properties in preventing MetS and regulating gut microbiota.
Collapse
Affiliation(s)
- Dan Chen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Ao Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Jialiang Lv
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Yiling Peng
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Yunqing Zheng
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Jiayu Zuo
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Juan Kan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Shuai Zong
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| |
Collapse
|
2
|
Chen W, Zhu X, Xin X, Zhang M. Effect of the immunoregulation activity of a pectin polysaccharide from Saussurea laniceps petals on macrophage polarization. Int J Biol Macromol 2024; 278:134757. [PMID: 39151871 DOI: 10.1016/j.ijbiomac.2024.134757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/19/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Saussurea laniceps is a traditional medicinal herb. In our previous study, a pectin polysaccharide, SLP-4, was isolated from the petals of S. laniceps. In this study, the immunomodulatory activity of SLP-4 was studied by analyzing its effects on macrophage (RAW 264.7 cells) polarization. The immunomodulatory activity assays indicated that SLP-4 could significantly enhance the pinocytic and phagocytic capacity and promote the expression and secretion of cytotoxic molecules (nitric oxide, increased by 6.4 times when the SLP-4 concentration was 800 μg/mL) and cytokines (tumor necrosis factor-α and interleukin-6 increased by 7.7 and 11.9 times, respectively) in original macrophage. The possible mechanism could be attributed to the activation of the mitogen-activated protein kinase and nuclear factor-κB signaling pathways through Toll-like receptors 2 and 4. Moreover, SLP-4 significantly induced M1 polarization of original macrophages and transferred macrophages from M2 to M1, but had little effect on the conversion of M1 macrophages into M2 phenotype. Overall, these results demonstrate the potential of SLP-4 as an attractive immunomodulating functional supplement.
Collapse
Affiliation(s)
- Wenbo Chen
- School of Food Science & Chemical Engineering, Zhengzhou University of Technology, Zhengzhou, He'nan 450044, China
| | - Xiaolu Zhu
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, He'nan 450001, China
| | - Xuan Xin
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Mengmeng Zhang
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China.
| |
Collapse
|
3
|
Huang Y, Chen H, Chen J, Wu Q, Zhang W, Li D, Lu Y, Chen Y. Yellow tea polysaccharides protect against non-alcoholic fatty liver disease via regulation of gut microbiota and bile acid metabolism in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155919. [PMID: 39153277 DOI: 10.1016/j.phymed.2024.155919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/02/2024] [Accepted: 07/26/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a major clinical and global public health issue, with no specific pharmacological treatment available. Currently, there is a lack of approved drugs for the clinical treatment of NAFLD. Large-leaf yellow tea polysaccharides (YTP) is a natural biomacromolecule with excellent prebiotic properties and significant therapeutic effects on multiple metabolic diseases. However, the specific mechanisms by which YTP regulates NAFLD remain unclear. PURPOSE This study aims to explore the prebiotic effects of YTP and the potential mechanisms by which it inhibits hepatic cholesterol accumulation in NAFLD mice. METHODS The effects of YTP on lipid accumulation were evaluated in NAFLD mice through obesity trait analysis and bile acids (BAs) metabolism assessment. Additionally, fecal microbiota transplantation (FMT) was performed, and high-throughput sequencing was employed to investigate the mechanisms underlying YTP's regulatory effects on gut microbiota and BA metabolism. RESULTS Our study demonstrated that YTP altered the constitution of colonic BA, particularly increasing the levels of conjugated BA and non-12OH BA, which suppressed ileum FXR receptors and hepatic BA reabsorption, facilitated BA synthesis, and fecal BA excretion. The modifications were characterized by a decrease in the levels of FXR, FGF15, FGFR4, and ASBT proteins, and an increase in the levels of Cyp7a1 and Cyp27a1 proteins. YTP might affect enterohepatic circulation and by the activated the hepatic FXR-SHP pathway. Meanwhile, YTP reshaped the intestinal microbiome structure by decreasing BSH-producing genera and increasing taurine metabolism genera. The correlation analysis implied that Muribaculaceae, Pseudomonas, acterium_coprostanoligenes_group, Clostridiales, Lachnospiraceae_NK4A136_group, Delftia, Dubosiella, and Romboutsia were strongly correlated with specific BA monomers. CONCLUSIONS YTP modulates bile salt hydrolase-related microbial genera to activate alternative bile acid synthesis pathways, thereby inhibiting NAFLD progression. These results suggest that YTP may serve as a potential probiotic formulation, offering a feasible dietary intervention for NAFLD.
Collapse
Affiliation(s)
- Yuzhe Huang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, PR China; Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, PR China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, PR China; Key Laboratory for Ecological Engineering and Biotechnology of Anhui Province, Hefei 230601, PR China
| | - Hao Chen
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, PR China; Key Laboratory for Ecological Engineering and Biotechnology of Anhui Province, Hefei 230601, PR China
| | - Jielin Chen
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, PR China; Key Laboratory for Ecological Engineering and Biotechnology of Anhui Province, Hefei 230601, PR China
| | - Qingxi Wu
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, PR China; Key Laboratory for Ecological Engineering and Biotechnology of Anhui Province, Hefei 230601, PR China
| | - Wenna Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, PR China; Key Laboratory for Ecological Engineering and Biotechnology of Anhui Province, Hefei 230601, PR China
| | - Daxiang Li
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Yongming Lu
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, PR China; Key Laboratory for Ecological Engineering and Biotechnology of Anhui Province, Hefei 230601, PR China
| | - Yan Chen
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, PR China; Key Laboratory for Ecological Engineering and Biotechnology of Anhui Province, Hefei 230601, PR China.
| |
Collapse
|
4
|
Zhang Z, Wang S, Liu Q, Cao G, Liu Y. Extraction, purification, structural characteristics, and pharmacological activities of the polysaccharides from corn silk: A review. Int J Biol Macromol 2024; 274:133433. [PMID: 38936581 DOI: 10.1016/j.ijbiomac.2024.133433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
Corn silk is widely used as a traditional Chinese medicine possessing multiple beneficial effects, whose active ingredient is corn silk polysaccharide (CSP). CSP is abundant in corn silk, and has a variety of bioactivities, such as antioxidant, hypoglycemic, hypolipidemic, hepatorenal-protective, antitumor, anti-fatigue, immunomodulating, and anti-ischemia-reperfusion injury effects. Moreover, CSP ameliorates diabetes, diabetes nephropathy, and hyperlipidemia. This review aimed to comprehensively and systematically summarize recent information on the extraction, purification, structural characterization, biological activity, potential mechanism, and toxicity of CSP. Thus, it could provide a reference for the further use of CSP and discuss the future prospects of CSP research and development.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Shuai Wang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Qian Liu
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Guiyun Cao
- Shandong Hongjitang Pharmaceutical Group Company, Ltd, Jinan 250109, China
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
5
|
Chen H, Wu Q, Xuan K, Guo W, Zhang K, Wang Y, Dai Z, Sheng R, He H, Huang Y, Chen Y. Bioguided isolation, identification and bioactivity evaluation of anti-fatigue constituents from Schizophyllum commune. Fitoterapia 2024; 175:105940. [PMID: 38565382 DOI: 10.1016/j.fitote.2024.105940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/04/2024]
Abstract
This study aims to clarify the specific anti-fatigue components of Schizophyllum commune (S.commune) and analyze its potential anti-fatigue mechanism. The main anti-fatigue active ingredient of S.commune was locked in n-butanol extract (SPE-n) by activity evaluation. Twelve compounds were identified by high performance liquid chromatography-electrospray tandem mass spectrometry (LC-ESI-MS/MS). The anti-fatigue effect of morusin is the most predominant among these 12 ingredients. The determination of biochemical indices showed that morusin could increase liver glycogen reserves, improve the activity of antioxidant enzymes in liver, and reduce reactive oxygen species (ROS) content in muscle tissue, thereby reducing myocyte damage. Further studies revealed that morusin could reduce the level of oxidative stress by activating Nrf2/HO-1 pathway, thus alleviating the fatigue of mice caused by exhaustive exercise. The current findings provide a theoretical basis for the development of natural anti-fatigue functional food.
Collapse
Affiliation(s)
- Hao Chen
- Key Laboratory of Ecological Engineering and Biotechnology of Anhui Province, School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Qianzhen Wu
- Key Laboratory of Ecological Engineering and Biotechnology of Anhui Province, School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Kaili Xuan
- Key Laboratory of Ecological Engineering and Biotechnology of Anhui Province, School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Wenqiang Guo
- Key Laboratory of Ecological Engineering and Biotechnology of Anhui Province, School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Kunfeng Zhang
- Key Laboratory of Ecological Engineering and Biotechnology of Anhui Province, School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Yuanyuan Wang
- Anhui Zhongqing Testing Co., Ltd, Hefei, Anhui, China
| | - Zhenzhen Dai
- Anhui Zhongqing Testing Co., Ltd, Hefei, Anhui, China
| | - Rong Sheng
- Anhui Zhongqing Testing Co., Ltd, Hefei, Anhui, China
| | - Huaqi He
- College of Agriculture, Anhui Science and Technology University, Chu Zhou, Anhui, China
| | - Yuzhe Huang
- Key Laboratory of Ecological Engineering and Biotechnology of Anhui Province, School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Yan Chen
- Key Laboratory of Ecological Engineering and Biotechnology of Anhui Province, School of Life Sciences, Anhui University, Hefei, Anhui, China.
| |
Collapse
|
6
|
Ma Y, Xie H, Xu N, Li M, Wang L, Ge H, Xie Z, Li D, Wang H. Large Yellow Tea Polysaccharide Alleviates HFD-Induced Intestinal Homeostasis Dysbiosis via Modulating Gut Barrier Integrity, Immune Responses, and the Gut Microbiome. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7230-7243. [PMID: 38494694 DOI: 10.1021/acs.jafc.4c00616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Long-term high-fat diet (HFD) will induce dysbiosis and a disturbance of intestinal homeostasis. Large yellow tea polysaccharide (LYP) has been shown to improve obesity-associated metabolic disease via modulation of the M2 polarization. However, the contribution of LYP to intestinal barrier impairment and improvement mechanisms in obesity caused by an HFD are still not clear. In this study, we evaluated the impacts of LYP on the mucosal barrier function and microbiota composition in HFD-feeding mice. Results exhibited that dietary LYP supplement could ameliorate the physical barrier function via maintaining intestinal mucosal integrity and elevating tight-junction protein production, strengthen the chemical barrier function via up-regulating the levels of glucagon-like peptide-1 and increasing mucin-producing goblet cell numbers, and enhance the intestinal immune barrier function though suppressing immune cell subsets and cytokines toward pro-inflammatory phenotypes. Moreover, LYP reshaped the constitution and metabolism of intestinal flora by enriching probiotics that produce short-chain fatty acids. Overall, LYP might be used as a critical regulator of intestinal homeostasis to improve host health by promoting gut barrier integrity, modulating intestinal immune response, and inhibiting bowel inflammation.
Collapse
Affiliation(s)
- Yan Ma
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
- Joint Research Center for Food Nutrition and Health of IHM, Hefei, Anhui 230036, China
| | - Hai Xie
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
- Joint Research Center for Food Nutrition and Health of IHM, Hefei, Anhui 230036, China
| | - Na Xu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
- Joint Research Center for Food Nutrition and Health of IHM, Hefei, Anhui 230036, China
| | - Minni Li
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
- Joint Research Center for Food Nutrition and Health of IHM, Hefei, Anhui 230036, China
| | - Lan Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
- Joint Research Center for Food Nutrition and Health of IHM, Hefei, Anhui 230036, China
| | - Huifang Ge
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
- Joint Research Center for Food Nutrition and Health of IHM, Hefei, Anhui 230036, China
| | - Zhongwen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
- Joint Research Center for Food Nutrition and Health of IHM, Hefei, Anhui 230036, China
| | - Daxiang Li
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
- Joint Research Center for Food Nutrition and Health of IHM, Hefei, Anhui 230036, China
| | - Hongyan Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
- Joint Research Center for Food Nutrition and Health of IHM, Hefei, Anhui 230036, China
| |
Collapse
|
7
|
Chen H, Wang Z, Gong L, Chen J, Huang Y, Guo W, Zhang Q, Li Y, Bao G, Li D, Chen Y. Attenuation effect of a polysaccharide from large leaf yellow tea by activating autophagy. Int J Biol Macromol 2024; 265:130697. [PMID: 38490395 DOI: 10.1016/j.ijbiomac.2024.130697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/20/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024]
Abstract
Chemotherapy, the most common class of anticancer drugs, is considerably limited owing to its adverse side effects. In this study, we aimed to evaluate the protective effect and mechanism of action of large-leaf yellow tea polysaccharides (ULYTP-1, 1.29 × 104 Da) against chemotherapeutic 5-fluorouracil (5-Fu). Structural characterisation revealed that ULYTP-1 was a β-galactopyranouronic acid. Furthermore, ULYTP-1 promoted autolysosome formation, activating autophagy and reducing the oxidative stress and inflammation caused by 5-Fu. Our in vivo study of 4 T1 tumour-bearing mice revealed that ULYTP-1 also attenuated 5-Fu toxicity through modulation of the gut microbiota. Moreover, ULYTP-1 effectively protected immune organs and the liver from 5-Fu toxicity, while promoting its tumour-inhibitory properties. The current findings provide a new strategy for optimising chemotherapy regimens in the clinic.
Collapse
Affiliation(s)
- Hao Chen
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Zhuang Wang
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Lei Gong
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Jielin Chen
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Yuzhe Huang
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Wenqiang Guo
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Qiang Zhang
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Yong Li
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Guanhu Bao
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.
| | - Daxiang Li
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.
| | - Yan Chen
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China.
| |
Collapse
|
8
|
Peng S, Gu P, Mao N, Yu L, Zhu T, He J, Yang Y, Liu Z, Wang D. Structural Characterization and In Vitro Anti-Inflammatory Activity of Polysaccharides Isolated from the Fruits of Rosa laevigata. Int J Mol Sci 2024; 25:2133. [PMID: 38396810 PMCID: PMC10888661 DOI: 10.3390/ijms25042133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/26/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
RLPa-2 (Mw 15.6 kDa) is a polysaccharide isolated from Rosa laevigata Michx. It consists of arabinose (Ara), galactose (Gal), rhamnose (Rha), glucose (Glc), xylose (Xyl), and galacturonic acid (Gal-UA) with a molar ratio of 1.00:0.91:0.39:0.34:0.25:0.20. Structural characterization was performed by methylation and NMR analysis, which indicated that RLPa-2 might comprise →6)-α-D-Galp-(1→, →4)-α-D-GalpA-(1→, α-L-Araf-(1→, →2,4)-α-D-Glcp-(1→, β-D-Xylp, and α-L-Rhap. In addition, the bioactivity of RLPa-2 was assessed through an in vitro macrophage polarization assay. Compared to positive controls, there was a significant decrease in the expression of M1 macrophage markers (CD80, CD86) and p-STAT3/STAT3 protein. Additionally, there was a down-regulation in the production of pro-inflammatory mediators (NO, IL-6, TNF-α), indicating that M1 macrophage polarization induced with lipopolysaccharide (LPS) and interferon-γ (IFN-γ) stimulation could be inhibited by RLPa-2. These findings demonstrate that the RLPa-2 might be considered as a potential anti-inflammatory drug to reduce inflammation.
Collapse
Affiliation(s)
- Song Peng
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (S.P.); (N.M.); (L.Y.); (T.Z.); (J.H.); (Y.Y.); (Z.L.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Pengfei Gu
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China;
| | - Ningning Mao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (S.P.); (N.M.); (L.Y.); (T.Z.); (J.H.); (Y.Y.); (Z.L.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Lin Yu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (S.P.); (N.M.); (L.Y.); (T.Z.); (J.H.); (Y.Y.); (Z.L.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Tianyu Zhu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (S.P.); (N.M.); (L.Y.); (T.Z.); (J.H.); (Y.Y.); (Z.L.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin He
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (S.P.); (N.M.); (L.Y.); (T.Z.); (J.H.); (Y.Y.); (Z.L.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Yang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (S.P.); (N.M.); (L.Y.); (T.Z.); (J.H.); (Y.Y.); (Z.L.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenguang Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (S.P.); (N.M.); (L.Y.); (T.Z.); (J.H.); (Y.Y.); (Z.L.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (S.P.); (N.M.); (L.Y.); (T.Z.); (J.H.); (Y.Y.); (Z.L.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
9
|
Liao Y, Yan Q, Cheng T, Yao H, Zhao Y, Fu D, Ji Y, Shi B. Sulforaphene Inhibits Periodontitis through Regulating Macrophage Polarization via Upregulating Dendritic Cell Immunoreceptor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15538-15552. [PMID: 37823224 DOI: 10.1021/acs.jafc.3c02619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Periodontitis is one of the most prevalent chronic inflammatory diseases that may eventually lead to the loss of teeth. Macrophage polarization plays an important role in the development of periodontitis, and several naturally occurring food compounds have recently been reported to regulate macrophage polarization. In this study, we aimed to investigate the therapeutic potential of sulforaphene (SFE) in macrophage polarization and its impact on periodontitis. Through in vitro and in vivo experiments, our study demonstrated that SFE effectively inhibits M1 polarization while promoting M2 polarization, ultimately leading to the suppression of periodontitis. Transcriptome sequencing showed that SFE significantly upregulated the expression of dendritic cell immunoreceptor (DCIR, also known as CLEC4A2). We further validated the crucial role of DCIR in macrophage polarization through knockdown and overexpression experiments and demonstrated that SFE regulates macrophage polarization by upregulating DCIR expression. In summary, the results of this study suggest that SFE can regulate macrophage polarization and inhibit periodontitis. Moreover, this research identified DCIR (dendritic cell immunoreceptor) as a potential novel target for regulating macrophage polarization. These findings provide new insights into the treatment of periodontitis and other immune-related diseases.
Collapse
Affiliation(s)
- Yilin Liao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Qi Yan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Tiange Cheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Hantao Yao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yaoyu Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Dongjie Fu
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yaoting Ji
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Bin Shi
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
10
|
Wang H, Wang L, Cheng H, Ge H, Xie Z, Li D. Large yellow tea polysaccharides ameliorate obesity-associated metabolic syndrome by promoting M2 polarization of adipose tissue macrophages. Food Funct 2023; 14:9337-9349. [PMID: 37782075 DOI: 10.1039/d3fo01691a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Obesity-induced metabolic syndrome is strongly associated with infiltrated adipose tissue macrophages (ATMs). Large yellow tea, a traditional functional beverage in China, has been shown to possess anti-obesity effects. However, the effect of large yellow tea polysaccharides (LYPs) against obesity-associated metabolic syndrome and their underlying mechanisms remain unclear and must be extensively investigated. In this study, we investigated the ameliorative effect of LYPs on metabolic syndrome using a high-fat diet (HFD)-induced obese mouse model. Our results indicated that LYPs significantly alleviated weight gain, dyslipidemia, glucose intolerance, and insulin resistance. Moreover, LYPs restored the homeostasis of energy metabolism and pancreatic β-cell function. Notably, LYPs promoted M2 polarization of ATMs by regulating the expression of genes and specific cytokines involved in the assembly and secretion of M2 polarization. The improved metabolic syndrome of LYPs might be associated with the modulation of macrophage polarization. These findings suggest that LYPs might be a novel potential therapeutic agent to prevent or treat HFD-induced metabolic disorders by regulating M2 polarization.
Collapse
Affiliation(s)
- Hongyan Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China.
| | - Lan Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China.
| | - Huijun Cheng
- College of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China
| | - Huifang Ge
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China.
| | - Zhongwen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China.
| | - Daxiang Li
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China.
| |
Collapse
|
11
|
Feng X, Yang S, Pan Y, Zhou S, Ma S, Ou C, Fan F, Gong S, Chen P, Chu Q. Yellow tea: more than turning green leaves to yellow. Crit Rev Food Sci Nutr 2023; 64:7836-7853. [PMID: 37009836 DOI: 10.1080/10408398.2023.2193271] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Yellow tea (YT), a slightly-fermented tea originated from Ming Dynasty with distinctive "Three yellows," mild-sweet smell, and mellow taste attributed to the unique yellowing process. Based on current literature and our previous work, we aim to comprehensively illustrate the key processing procedures, characteristic chemical compounds, health benefits and applications, as well as the interlocking relationships among them. Yellowing is the most vital procedure anchored on the organoleptic quality, characteristic chemical components, and bioactivities of YT, which is influenced by temperature, moisture content, duration, and ventilation conditions. Pheophorbides, carotenoids, thearubigins and theabrownins are the major pigments contributing to the "three yellows" appearance. Alcohols, such as terpinol and nerol, are attributed to the refreshing and sweet aroma of bud and small-leaf YT, while heterocyclics and aromatics forming during roasting result in the crispy rice-like large-leaf YT. Hygrothermal effects and enzymatic reactions during yellowing result in the decline of astringent substances. Meanwhile, multiple bioactive compounds such as catechins, ellagitannins, and vitexin, endow YT with antioxidant, anti-metabolic syndrome, anti-cancer, gut microbiota regulation, and organ injury protection effects. Future studies focusing on the standard yellowing process technology, quality evaluation system, and functional factors and mechanisms, possible orientations, and perspectives are guaranteed.
Collapse
Affiliation(s)
- Xinyu Feng
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P. R. China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, P. R. China
| | - Shiyan Yang
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P. R. China
| | - Yani Pan
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P. R. China
| | - Su Zhou
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P. R. China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, P. R. China
| | - Shicheng Ma
- Wuzhou Liubao Tea Research Association, Wuzhou, P. R. China
| | - Cansong Ou
- Wuzhou Tea Industry Development Service Center, Wuzhou, P. R. China
| | - Fangyuan Fan
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P. R. China
| | - Shuying Gong
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P. R. China
| | - Ping Chen
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P. R. China
| | - Qiang Chu
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P. R. China
| |
Collapse
|
12
|
Wu G, Gu W, Chen G, Cheng H, Li D, Xie Z. Interactions of tea polysaccharides with gut microbiota and their health-promoting effects to host: Advances and perspectives. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023] Open
|