1
|
Xu M, Xiao H, Zou X, Pan L, Song Q, Hou L, Zeng Y, Han Y, Zhou Z. Mechanisms of levan in ameliorating hyperuricemia: Insight into levan on serum metabolites, gut microbiota, and function in hyperuricemia rats. Carbohydr Polym 2025; 347:122665. [PMID: 39486924 DOI: 10.1016/j.carbpol.2024.122665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 11/04/2024]
Abstract
This study aims to investigate the effects of levan on the progression of hyperuricemia (HUA) rats and elucidate its underlying mechanisms. After levan intervention, both low and high-dose groups exhibited a significant decrease in serum uric acid (UA) levels, reaching 71.0 % and 77.5 %, respectively, compared to the model group. Furthermore, levan could alleviate renal pathological damage caused by glomerular cell vacuolation, inflammatory infiltration and collagen deposition. The results of enzyme activity assay and real-time fluorescence quantitative PCR showed that levan decreased UA production by inhibiting adenosine deaminase (ADA) activity and gene expression in liver; it upregulated ATP-binding cassette subfamily G member 2 protein (ABCG2) and organic anion transporter 1 (OAT1) transporter gene expression in the kidney, promoting UA excretion. Gut microbiome analysis indicated that levan regulated gut flora dysbiosis induced by HUA, resulting in up-regulated the abundance of beneficial bacteria (Muribaculaceae, Faecalibaculum, Bifidobacterium, and Lactobacillus) and decreased conditioned pathogenic bacteria (Escherichia_Shigella and Proteus). Non-targeted metabolomics showed changes in various serum metabolites associated with glycerophospholipid metabolism, lipid metabolism, and inflammation following oral administration of levan. Therefore, levan may be a promising functional dietary supplement for regulating the gut flora and remodeling of metabolic disorders in individuals with HUA.
Collapse
Affiliation(s)
- Min Xu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Huazhi Xiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xuan Zou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Lei Pan
- School of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiaozhi Song
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Luying Hou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Yihong Zeng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Ye Han
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Zhijiang Zhou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
2
|
Xue M, Du R, Zhou Y, Liu Y, Tian Y, Xu Y, Yan J, Song P, Wan L, Xu H, Zhang H, Liang H. Fucoidan Supplementation Relieved Kidney Injury and Modulated Intestinal Homeostasis in Hyperuricemia Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27187-27202. [PMID: 39600107 DOI: 10.1021/acs.jafc.4c07209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Hyperuricemia is a metabolic disease characterized by an excessively increased level of uric acid (UA) in the blood, with an increasing prevalence and often associated with kidney damage. Gut microbiota and endotoxins of gut origin are key mediators in the gut-kidney axis that can cause renal impairment. The study was to reveal the protective effects of fucoidan on renal injury caused by hyperuricemia. The hyperuricemia model was established in C57BL/6J mice. After 10 weeks of fucoidan supplementation, we found that the levels of serum UA and creatinine were reduced, and the levels of renal tumor necrosis factor α, interleukin-18 (IL-18), IL-6, and interleukin-1β (IL-1β) were also decreased. Fucoidan inhibited the expressions of phosphorylated NF-κB p65, NLRP3, and activated caspase-1 in the kidneys. Fucoidan also regulated the expressions of Bcl-2 family proteins and decreased the activation of caspase-3, thereby exerting antiapoptotic effect. In addition, fucoidan could reduce the expressions of glucose transporter 9 (GLUT9) and urate transporter 1 (URAT1) proteins, thereby promoting the excretion of UA from the kidneys. Moreover, the protective effect of fucoidan on renal injury may be related to maintaining intestinal homeostasis. Fucoidan reduced serum lipopolysaccharide and improved the intestinal mucosal barrier function. Fucoidan decreased the abundances of Blautia, Muribaculaceae, and Dubosiella, and increased the abundances of Lactobacillus. High-dose fucoidan supplementation increased the content of butyric acid and enhanced the expression of ATP binding box transporter G2 (ABCG2) via the AMPK/AKT/CREB pathway in ileum. Conclusion: Fucoidan could protect against hyperuricemia-induced renal injury by inhibiting renal inflammation and apoptosis and modulating intestinal homeostasis in hyperuricemia mice.
Collapse
Affiliation(s)
- Meilan Xue
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao 266071, P. R. China
| | - Ronghuan Du
- Department of Human Nutrition, College of Public Health, Qingdao University, Qingdao 266071, P. R. China
| | - Yifan Zhou
- School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, P. R. China
| | - Yuhan Liu
- School of Biomedical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yingjie Tian
- Department of Human Nutrition, College of Public Health, Qingdao University, Qingdao 266071, P. R. China
| | - Yan Xu
- Department of Human Nutrition, College of Public Health, Qingdao University, Qingdao 266071, P. R. China
| | - Jiayi Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao 266071, P. R. China
| | - Pengzhao Song
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao 266071, P. R. China
| | - Lu Wan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao 266071, P. R. China
| | - Hongsen Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao 266071, P. R. China
| | - Huaqi Zhang
- Department of Human Nutrition, College of Public Health, Qingdao University, Qingdao 266071, P. R. China
| | - Hui Liang
- Department of Human Nutrition, College of Public Health, Qingdao University, Qingdao 266071, P. R. China
| |
Collapse
|
3
|
Chu X, Liu S, Qu B, Xin Y, Lu L. Salidroside may target PPARα to exert preventive and therapeutic activities on NASH. Front Pharmacol 2024; 15:1433076. [PMID: 39415834 PMCID: PMC11479876 DOI: 10.3389/fphar.2024.1433076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Background Salidroside (SDS), a phenylpropanoid glycoside, is an antioxidant component isolated from the traditional Chinese medicine Rhodiola rosea and has multifunctional bioactivities, particularly possessing potent hepatoprotective function. Non-alcoholic steatohepatitis (NASH) is one of the most prevalent chronic liver diseases worldwide, but it still lacks efficient drugs. This study aimed to assess the preventive and therapeutic effects of SDS on NASH and its underlying mechanisms in a mouse model subjected to a methionine- and choline-deficient (MCD) diet. Methods C57BL/6J mice were fed an MCD diet to induce NASH. During or after the formation of the MCD-induced NASH model, SDS (24 mg/kg/day) was supplied as a form of diet for 4 weeks. The histopathological changes were evaluated by H&E staining. Oil Red O staining and Sirius Red staining were used to quantitatively determine the lipid accumulation and collagen fibers in the liver. Serum lipid and liver enzyme levels were measured. The morphology of autophagic vesicles and autophagosomes was observed by transmission electron microscopy (TEM), and qRT-PCR and Western blotting were used to detect autophagy-related factor levels. Immunohistochemistry and TUNEL staining were used to evaluate the apoptosis of liver tissues. Flow cytometry was used to detect the composition of immune cells. ELISA was used to evaluate the expression of serum inflammatory factors. Transcript-proteome sequencing, molecular docking, qRT-PCR, and Western blotting were performed to explore the mechanism and target of SDS in NASH. Results The oral administration of SDS demonstrated comprehensive efficacy in NASH. SDS showed both promising preventive and therapeutic effects on NASH in vivo. SDS could upregulate autophagy, downregulate apoptosis, rebalance immunity, and alleviate inflammation to exert anti-NASH properties. Finally, the results of transcript-proteome sequencing, molecular docking evaluation, and experimental validation showed that SDS might exert its multiple effects through targeting PPARα. Conclusion Our findings revealed that SDS could regulate liver autophagy and apoptosis, regulating both innate immunity and adaptive immunity and alleviating inflammation in NASH prevention and therapy via the PPAR pathway, suggesting that SDS could be a potential anti-NASH drug in the future.
Collapse
Affiliation(s)
- Xueru Chu
- Department of Infectious Disease, Qingdao Municipal Hospital, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao, China
| | - Shousheng Liu
- Clinical Research Center, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Baozhen Qu
- Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Yongning Xin
- Department of Infectious Disease, Qingdao Municipal Hospital, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao, China
| | - Linlin Lu
- Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
4
|
Wang T, Gao J, Xu J, Hong Y, Du R, Zheng X, Wang P. Identification and functional characterization of a novel cystatin in amphioxus, ancient origin of vertebrate type-2 cystatin homologues. Int J Biol Macromol 2024; 277:134429. [PMID: 39097064 DOI: 10.1016/j.ijbiomac.2024.134429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/08/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Cystatins are well known as a vast superfamily of functional proteins participated in the reversible competitive inhibition of cysteine proteases. Currently, increasing evidences point to the extensive phylogenetic diversity and crucial immune roles of type-2 cystatins in the vertebrate species. However, no information is available regarding the homologue in cephalochordate amphioxus, the representative of most basal living chordates, whose immune regulation are still ambiguous. Here, we clearly identified the presence of type-2 cystatin gene in amphioxus Branchiostoma japonicum, termed Bjcystatin-2, which was structurally characterized by typical wedge-shaped cystatin feature. Evolutionary analyses revealed that Bjcystatin-2 is the putative ancestral type-2 cystatin for chordates, with gene diversity emerging through duplication events. The expression of Bjcystatin-2 showed tissue-specific profile and was inducible upon invasive pathogens. Significantly, the recombinant Bjcystatin-2 exhibited not merely cathepsin L inhibitory activity, but also the ability to bind with bacteria and their characteristic molecules. Furthermore, Bjcystatin-2 also showed the capacity to enhance the macrophage-driven bacterial phagocytosis and to attenuate the generation of pro-inflammatory cytokines within macrophages. In summary, these findings demonstrate that Bjcystatin-2 exhibits dual role acting as both a protease inhibitor and an immunoactive molecule, greatly enriching our understanding of immune defense mechanisms of type-2 cystatin within the amphioxus.
Collapse
Affiliation(s)
- Tianren Wang
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Ning Xia Road 308, Qingdao 266071, China
| | - Jingru Gao
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Ning Xia Road 308, Qingdao 266071, China
| | - Jinghan Xu
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Ning Xia Road 308, Qingdao 266071, China
| | - Yuxiang Hong
- Zhejiang Fangyuan Testing Group Co., Ltd., Hangzhou, Zhejiang 310020, China
| | - Ronghuan Du
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Ning Xia Road 308, Qingdao 266071, China
| | - Xian Zheng
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Ning Xia Road 308, Qingdao 266071, China
| | - Peng Wang
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Ning Xia Road 308, Qingdao 266071, China.
| |
Collapse
|
5
|
Zhou Y, Yang Y, Zhao D, Yi M, Ma Z, Gao Z. Ribosomal protein L17 functions as an antimicrobial protein in amphioxus. FISH & SHELLFISH IMMUNOLOGY 2024; 152:109791. [PMID: 39067494 DOI: 10.1016/j.fsi.2024.109791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/09/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Antimicrobial peptides (AMPs), characterized by their cationic nature and amphiphilic properties, play a pivotal role in inhibiting the biological activity of microbes. Currently, only a fraction of the antimicrobial potential within the ribosomal protein family has been explored, despite its extensive membership and resemblance to AMPs. Herein we demonstrated that amphioxus RPL17 (BjRPL17) exhibited not only upregulated expression upon bacterial stimulation but also possessed bactericidal capabilities against both Gram-negative and -positive bacteria through combined action mechanisms including interaction with cell surface molecules LPS, LTA, and PGN, disruption of cell membrane integrity, promotion of membrane depolarization, and induction of intracellular ROS production. Furthermore, a peptide derived from residues 127-141 of BjRPL17 (termed BjRPL17-1) showed antibacterial activity against Staphylococcus aureus and its methicillin-resistant strain via the same mechanism observed for the full-length protein. Additionally, the rpl17 gene was highly conserved in Metazoa, hinting it may play a universal role in the antibacterial defense system in different animals. Importantly, neither BjRPL17 nor peptide BjRPL17-1 exhibited toxicity towards mammalian cells thereby offering prospects for designing novel AMP agents based on these findings. Collectively, our results establish RPL17 as a novel member of AMPs with remarkable evolutionary conservation.
Collapse
Affiliation(s)
- Yucong Zhou
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Yifan Yang
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Dongchu Zhao
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Mengmeng Yi
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Zengyu Ma
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Zhan Gao
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| |
Collapse
|
6
|
Wang H, Zheng Y, Yang M, Wang L, Xu Y, You S, Mao N, Fan J, Ren S. Gut microecology: effective targets for natural products to modulate uric acid metabolism. Front Pharmacol 2024; 15:1446776. [PMID: 39263572 PMCID: PMC11387183 DOI: 10.3389/fphar.2024.1446776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024] Open
Abstract
Gut microecology,the complex community consisting of microorganisms and their microenvironments in the gastrointestinal tract, plays a vital role in maintaining overall health and regulating various physiological and pathological processes. Recent studies have highlighted the significant impact of gut microecology on the regulation of uric acid metabolism. Natural products, including monomers, extracts, and traditional Chinese medicine formulations derived from natural sources such as plants, animals, and microorganisms, have also been investigated for their potential role in modulating uric acid metabolism. According to research, The stability of gut microecology is a crucial link for natural products to maintain healthy uric acid metabolism and reduce hyperuricemia-related diseases. Herein, we review the recent advanced evidence revealing the bidirectional regulation between gut microecology and uric acid metabolism. And separately summarize the key evidence of natural extracts and herbal formulations in regulating both aspects. In addition,we elucidated the important mechanisms of natural products in regulating uric acid metabolism and secondary diseases through gut microecology, especially by modulating the composition of gut microbiota, gut mucosal barrier, inflammatory response, purine catalyzation, and associated transporters. This review may offer a novel insight into uric acid and its associated disorders management and highlight a perspective for exploring its potential therapeutic drugs from natural products.
Collapse
Affiliation(s)
- Hui Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yixuan Zheng
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mengfan Yang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yao Xu
- Chengdu Medical College, Chengdu, China
| | - Siqi You
- Chengdu Medical College, Chengdu, China
| | - Nan Mao
- Chengdu Medical College, Chengdu, China
- Department of Nephrology, First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Junming Fan
- Chengdu Medical College, Chengdu, China
- Department of Nephrology, First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Sichong Ren
- Chengdu Medical College, Chengdu, China
- Department of Nephrology, First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- TCM Preventative Treatment Research Center of Chengdu Medical College, Chengdu, China
| |
Collapse
|
7
|
Xia J, Zhang Y, Zhang S, Lu C, Huan H, Guan X. Oat Dietary Fiber Delays the Progression of Chronic Kidney Disease in Mice by Modulating the Gut Microbiota and Reducing Uremic Toxin Levels. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38836841 DOI: 10.1021/acs.jafc.4c02591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Chronic kidney disease (CKD) has emerged as a significant public health concern. In this article, we investigated the mechanism of oat dietary fiber in regulating CKD. Our findings indicated that the gut microbiota of CKD patients promoted gut microbiota dysbiosis and kidney injury in CKD mice. Intervention with oat-resistant starch prepared by ultrasonic combined enzymatic hydrolysis (ORSU) and oat β-glucan with a molecular weight of 5 × 104 Da (OBGM) elevated the levels of short-chain fatty acids (SCFAs) and regulated gut dysbiosis in the gut-humanized CKD mice. ORSU and OBGM also reduced CKD-related uremic toxins such as creatinine, indoxyl sulfate (IS), and p-cresol sulfate (PCS) levels; reinforced the intestinal barrier function of the gut-humanized CKD mice; and mitigated renal inflammation and fibrosis via the NF-κB/TGF-β pathway. Therefore, ORSU and OBGM might delay the progression of CKD by modulating the gut microbiota to reduce uremic toxins levels. Our results explain the mechanism of oat dietary fiber aimed at mitigating CKD.
Collapse
Affiliation(s)
- Ji'an Xia
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yu Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Suhua Zhang
- Suzhou Kowloon Hospital Shanghai Jiao Tong University School of Medicine, Suzhou, Jiangsu 215028, China
| | - Chunlai Lu
- The 905th Hospital of People's Liberation Army Navy, Shanghai 200050, China
| | - Hongdi Huan
- The 905th Hospital of People's Liberation Army Navy, Shanghai 200050, China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| |
Collapse
|
8
|
Zheng G, Sun S, Zhang G, Liang X. miR-144 affects the immune response and activation of inflammatory responses in Cynoglossus semilaevis by regulating the expression of CsMAPK6. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109578. [PMID: 38670413 DOI: 10.1016/j.fsi.2024.109578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/02/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
MicroRNAs are increasingly recognized for their pivotal role in the immune system, yet the specific regulatory functions of fish-derived microRNAs remain largely unexplored. In this research, we discovered a novel miRNA, Cse-miR-144, in the Chinese tongue sole (Cynoglossus semilaevis), characterized by a 73-base pair precursor and a 21-nucleotide mature sequence. Our findings revealed that the expression of Cse-miR-144 was notably inhibited by various Vibrio species. Utilizing bioinformatics and dual-luciferase assay techniques, we established that the pro-inflammatory cytokine gene CsMAPK6 is a direct target of Cse-miR-144. Subsequent in vitro and in vivo western blotting analyses confirmed that Cse-miR-144 can effectively reduce the protein levels of CsMAPK6 post-transcriptionally. Moreover, CsMAPK6 is known to be involved in the activation of the Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-kB). Additional investigations using qPCR and ELISA demonstrated that suppression of Cse-miR-144 leads to an upsurge in the liver mRNA levels of various immune genes (including MYD88, TRAF6, NF-κB, TRAF2, TRAF3, and TNF), alongside a marked increase in the production and secretion of pro-inflammatory cytokines (IL-1β, IL-6, and IL-8) in the bloodstream of C. semilaevis. These findings collectively underscore the potential of Cse-miR-144 as a key inhibitor of CsMAPK and its crucial role in modulating the immune and inflammatory responses in teleost fish. Compared to the siRNA, miRNA is a better tool in controlling the expression of target gene with a lower cost.
Collapse
Affiliation(s)
- Guiliang Zheng
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Siqi Sun
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Guosong Zhang
- College of Agriculture and Bioengineering, Heze University, Heze, 274000, China.
| | - Xia Liang
- College of Agriculture and Bioengineering, Heze University, Heze, 274000, China.
| |
Collapse
|
9
|
Zhang Y, Wei J, Feng X, Lin Q, Deng J, Yuan Y, Li M, Zhai B, Chen J. Folic acid supplementation prevents high body fat-induced bone loss through TGR5 signaling pathways. Food Funct 2024; 15:4193-4206. [PMID: 38506303 DOI: 10.1039/d4fo00404c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Osteoporosis caused by bone loss is one of the serious global public health problems. Folic acid is a B vitamin with multiple physiological functions such as lipid regulation and antioxidant capacity, and its potential to improve bone loss has attracted our attention. Through NHANES database analysis, we found that folic acid intake was significantly correlated with whole-body bone mineral density (BMD) in people aged 20-60 years, and the association may be mediated by the body fat rate. Male C57Bl/6 mice were fed either a normal diet or a high-fat diet, and folic acid was added to drinking water for supplementation. Our results indicated that mice with high body fat showed bone microstructure damage and bone loss, while folic acid supplementation improved bone quality. At the same time, we found that mice with high body fat exhibited abnormal blood lipids, dysregulation of intestinal flora, and metabolic disorders. Folic acid supplementation improved these phenomena. Through the network analysis of intestinal flora and metabolites, we found that LCA and TGR5 may play important roles. The results showed that folic acid promoted the expression of LCA and TGR5 in mice, increased the phosphorylation of AMPK, and decreased the phosphorylation of NF-κB and ERK, thereby reducing bone loss. In summary, folic acid intake is closely related to BMD, and folic acid supplementation can prevent high body fat-induced bone loss. Our study provides new ideas and an experimental basis for preventing bone loss and osteoporosis.
Collapse
Affiliation(s)
- Yaxi Zhang
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha 410008, China.
| | - Jieqiong Wei
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha 410008, China.
| | - Xiangling Feng
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha 410008, China.
| | - Qian Lin
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha 410008, China.
| | - Jing Deng
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha 410008, China.
| | - Yuehan Yuan
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha 410008, China.
| | - Min Li
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha 410008, China.
| | - Bingfang Zhai
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha 410008, China.
| | - Jihua Chen
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha 410008, China.
| |
Collapse
|
10
|
Han QQ, Ren QD, Guo X, Farag MA, Zhang YH, Zhang MQ, Chen YY, Sun ST, Sun JY, Li NY, Liu C. Punicalagin attenuates hyperuricemia via restoring hyperuricemia-induced renal and intestinal dysfunctions. J Adv Res 2024:S2090-1232(24)00129-2. [PMID: 38609050 DOI: 10.1016/j.jare.2024.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/22/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
INTRODUCTION It is estimated that 90% of hyperuricemia cases are attributed to the inability to excrete uric acid (UA). The two main organs in charge of excreting UA are the kidney (70%) and intestine (30%). Previous studies have reported that punicalagin (PU) could protect against kidney and intestinal damages, which makes it a potential candidate for alleviating hyperuricemia. However, the effects and deeper action mechanisms of PU for managing hyperuricemia are still unknown. OBJECTIVE To investigate the effect and action mechanisms of PU for ameliorating hyperuricemia. METHODS The effects and action mechanisms of PU on hyperuricemia were assessed using a hyperuricemia mice model. Phenotypic parameters, metabolomics analysis, and 16S rRNA sequencing were applied to explore the effect and fundamental action mechanisms inside the kidney and intestine of PU for improving hyperuricemia. RESULTS PU administration significantly decreased elevated serum uric acid (SUA) levels in hyperuricemia mice, and effectively alleviated the kidney and intestinal damage caused by hyperuricemia. In the kidney, PU down-regulated the expression of UA resorption protein URAT1 and GLUT9, while up-regulating the expression of UA excretion protein ABCG2 and OAT1 as mediated via the activation of MAKP/NF-κB in hyperuricemia mice. Additionally, PU attenuated renal glycometabolism disorder, which contributed to improving kidney dysfunction and inflammation. Similarly, PU increased UA excretion protein expression via inhibiting MAKP/NF-κB activation in the intestine of hyperuricemia mice. Furthermore, PU restored gut microbiota dysbiosis in hyperuricemia mice. CONCLUSION This research revealed the ameliorating impacts of PU on hyperuricemia by restoring kidney and intestine damage in hyperuricemia mice, and to be considered for the development of nutraceuticals used as UA-lowering agent.
Collapse
Affiliation(s)
- Qing-Qing Han
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150000, China
| | - Qi-Dong Ren
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| | - Xu Guo
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Mohamed A Farag
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, 11562, Cairo, Egypt
| | - Yu-Hong Zhang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150000, China
| | - Meng-Qi Zhang
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Ying-Ying Chen
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Shu-Tao Sun
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Jin-Yue Sun
- School of Public Health, Shandong Second Medical University, Weifang 261053, China.
| | - Ning-Yang Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P.R. China.
| | - Chao Liu
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| |
Collapse
|
11
|
Apalowo OE, Adegoye GA, Mbogori T, Kandiah J, Obuotor TM. Nutritional Characteristics, Health Impact, and Applications of Kefir. Foods 2024; 13:1026. [PMID: 38611332 PMCID: PMC11011999 DOI: 10.3390/foods13071026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
A global epidemiological shift has been observed in recent decades, characterized by an increase in age-related disorders, notably non-communicable chronic diseases, such as type 2 diabetes mellitus, cardiovascular and neurodegenerative diseases, and cancer. An appreciable causal link between changes in the gut microbiota and the onset of these maladies has been recognized, offering an avenue for effective management. Kefir, a probiotic-enriched fermented food, has gained significance in this setting due to its promising resource for the development of functional or value-added food formulations and its ability to reshape gut microbial composition. This has led to increasing commercial interest worldwide as it presents a natural beverage replete with health-promoting microbes and several bioactive compounds. Given the substantial role of the gut microbiota in human health and the etiology of several diseases, we conducted a comprehensive synthesis covering a total of 33 investigations involving experimental animal models, aimed to elucidate the regulatory influence of bioactive compounds present in kefir on gut microbiota and their potential in promoting optimal health. This review underscores the outstanding nutritional properties of kefir as a central repository of bioactive compounds encompassing micronutrients and amino acids and delineates their regulatory effects at deficient, adequate, and supra-nutritional intakes on the gut microbiota and their broader physiological consequences. Furthermore, an investigation of putative mechanisms that govern the regulatory effects of kefir on the gut microbiota and its connections with various human diseases was discussed, along with potential applications in the food industry.
Collapse
Affiliation(s)
- Oladayo Emmanuel Apalowo
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Starkville, MS 39762, USA; (O.E.A.); (G.A.A.)
| | - Grace Adeola Adegoye
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Starkville, MS 39762, USA; (O.E.A.); (G.A.A.)
- Department of Nutrition and Health Science, Ball State University, Muncie, IN 47306, USA;
| | - Teresia Mbogori
- Department of Nutrition and Health Science, Ball State University, Muncie, IN 47306, USA;
| | - Jayanthi Kandiah
- Department of Nutrition and Health Science, Ball State University, Muncie, IN 47306, USA;
| | | |
Collapse
|
12
|
Chen P, Luo Z, Lu C, Jian G, Qi X, Xiong H. Gut-immunity-joint axis: a new therapeutic target for gouty arthritis. Front Pharmacol 2024; 15:1353615. [PMID: 38464719 PMCID: PMC10920255 DOI: 10.3389/fphar.2024.1353615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/05/2024] [Indexed: 03/12/2024] Open
Abstract
Gouty arthritis (GA) is an inflammatory disease characterized by pain. The primary goal of current treatment strategies during GA flares remains the reduction of inflammation and pain. Research suggests that the gut microbiota and microbial metabolites contribute to the modulation of the inflammatory mechanism associated with GA, particularly through their effect on macrophage polarization. The increasing understanding of the gut-joint axis emphasizes the importance of this interaction. The primary objective of this review is to summarize existing research on the gut-immune-joint axis in GA, aiming to enhance understanding of the intricate processes and pathogenic pathways associated with pain and inflammation in GA, as documented in the published literature. The refined comprehension of the gut-joint axis may potentially contribute to the future development of analgesic drugs targeting gut microbes for GA.
Collapse
Affiliation(s)
- Pei Chen
- Hunan University of Chinese Medicine, Changsha, Hunan, China
- The Second Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
- The First Hospital of Hunan University Chinese Medicine, Changsha, Hunan, China
| | - Zhiqiang Luo
- Hunan University of Chinese Medicine, Changsha, Hunan, China
- The Second Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Chengyin Lu
- Hunan University of Chinese Medicine, Changsha, Hunan, China
- The Second Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Gonghui Jian
- Hunan University of Chinese Medicine, Changsha, Hunan, China
- College of Integrative Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xinyu Qi
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Hui Xiong
- Hunan University of Chinese Medicine, Changsha, Hunan, China
- The First Hospital of Hunan University Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
13
|
Qi Y, Xu X, Mao C, Chen H, Tang Y, Lin S. Evaluation of In Vivo Folic Acid Bioavailability in Different Mouse Strains Using Enzymatic Digestion Combined with Ultra Performance Liquid Chromatography. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2229-2239. [PMID: 38230629 DOI: 10.1021/acs.jafc.3c08632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
By analyzing the folic acid content of various mouse strains through the use of in vivo studies, this study sought to determine whether folic acid bioavailability varies between hosts. In order to examine the stability of folic acid in the gastrointestinal tract, the rate at which it enters the blood, its retention in the organs, and its entry into the brain, folic acid was gavaged for 10 days into male and female mice of the following four strains: C57BL/6, BALB/c, ICR, and Kunming. Folic acid was extracted from eight groups of mice via solid phase extraction and triple enzyme extraction; the folic acid was subsequently quantified by ultraperformance liquid chromatography. In contrast to the other groups, female C57BL/6 mice exhibited substantially greater bioavailability as well as variations in organ retention and blood entry rates, as indicated by the experimental findings. This finding indicated that using female C57BL/6 mice to evaluate the bioavailability of folic acid is more effective.
Collapse
Affiliation(s)
- Yan Qi
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Engineering Research Center of Food, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Xiaomeng Xu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Engineering Research Center of Special Dietary Food, The Education Department of Liaoning Province, Dalian 116034, P. R. China
| | - Chuwen Mao
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Engineering Research Center of Food, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Hunan Chen
- Ganzhou Quanbiao Biological Technology Co. Ltd., Ganzhou 341100, P. R. China
| | - Yue Tang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Engineering Research Center of Food, Dalian Polytechnic University, Dalian 116034, P. R. China
- Engineering Research Center of Special Dietary Food, The Education Department of Liaoning Province, Dalian 116034, P. R. China
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Engineering Research Center of Food, Dalian Polytechnic University, Dalian 116034, P. R. China
- Engineering Research Center of Special Dietary Food, The Education Department of Liaoning Province, Dalian 116034, P. R. China
- Ganzhou Quanbiao Biological Technology Co. Ltd., Ganzhou 341100, P. R. China
| |
Collapse
|
14
|
Qu B, Yuan J, Liu X, Zhang S, Ma X, Lu L. Anticancer activities of natural antimicrobial peptides from animals. Front Microbiol 2024; 14:1321386. [PMID: 38298540 PMCID: PMC10827920 DOI: 10.3389/fmicb.2023.1321386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/27/2023] [Indexed: 02/02/2024] Open
Abstract
Cancer is the most common cause of human death worldwide, posing a serious threat to human health and having a negative impact on the economy. In the past few decades, significant progress has been made in anticancer therapies, but traditional anticancer therapies, including radiation therapy, surgery, chemotherapy, molecular targeted therapy, immunotherapy and antibody-drug conjugates (ADCs), have serious side effects, low specificity, and the emergence of drug resistance. Therefore, there is an urgent need to develop new treatment methods to improve efficacy and reduce side effects. Antimicrobial peptides (AMPs) exist in the innate immune system of various organisms. As the most promising alternatives to traditional drugs for treating cancers, some AMPs also have been proven to possess anticancer activities, which are defined as anticancer peptides (ACPs). These peptides have the advantages of being able to specifically target cancer cells and have less toxicity to normal tissues. More and more studies have found that marine and terrestrial animals contain a large amount of ACPs. In this article, we introduced the animal derived AMPs with anti-cancer activity, and summarized the types of tumor cells inhibited by ACPs, the mechanisms by which they exert anti-tumor effects and clinical applications of ACPs.
Collapse
Affiliation(s)
- Baozhen Qu
- Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, China
| | - Jiangshui Yuan
- Department of Clinical Laboratory, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Xueli Liu
- Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, China
- Medical Ethics Committee Office, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, China
| | - Shicui Zhang
- College of Life and Geographic Sciences, Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, Kashi University, Kashi, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Xuezhen Ma
- Department of Oncology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, China
| | - Linlin Lu
- Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, China
| |
Collapse
|
15
|
Ren X, Wang X, Zheng G, Wang S, Wang Q, Yuan M, Xu T, Xu J, Huang P, Ge M. Targeting one-carbon metabolism for cancer immunotherapy. Clin Transl Med 2024; 14:e1521. [PMID: 38279895 PMCID: PMC10819114 DOI: 10.1002/ctm2.1521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/15/2023] [Accepted: 12/10/2023] [Indexed: 01/29/2024] Open
Abstract
BACKGROUND One-carbon (1C) metabolism is a metabolic network that plays essential roles in biological reactions. In 1C metabolism, a series of nutrients are used to fuel metabolic pathways, including nucleotide metabolism, amino acid metabolism, cellular redox defence and epigenetic maintenance. At present, 1C metabolism is considered the hallmark of cancer. The 1C units obtained from the metabolic pathways increase the proliferation rate of cancer cells. In addition, anticancer drugs, such as methotrexate, which target 1C metabolism, have long been used in the clinic. In terms of immunotherapy, 1C metabolism has been used to explore biomarkers connected with immunotherapy response and immune-related adverse events in patients. METHODS We collected numerous literatures to explain the roles of one-carbon metabolism in cancer immunotherapy. RESULTS In this review, we focus on the important pathways in 1C metabolism and the function of 1C metabolism enzymes in cancer immunotherapy. Then, we summarise the inhibitors acting on 1C metabolism and their potential application on cancer immunotherapy. Finally, we provide a viewpoint and conclusion regarding the opportunities and challenges of targeting 1C metabolism for cancer immunotherapy in clinical practicability in the future. CONCLUSION Targeting one-carbon metabolism is useful for cancer immunotherapy.
Collapse
Affiliation(s)
- Xinxin Ren
- Department of Head and Neck SurgeryOtolaryngology & Head and Neck Center, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Malignant TumorHangzhouZhejiangChina
- Department of PathologyCancer CenterZhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Xiang Wang
- Department of PharmacyAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Guowan Zheng
- Department of Head and Neck SurgeryOtolaryngology & Head and Neck Center, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Malignant TumorHangzhouZhejiangChina
| | - Shanshan Wang
- Department of PharmacyCenter for Clinical PharmacyCancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Qiyue Wang
- Department of Head and Neck SurgeryOtolaryngology & Head and Neck Center, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Malignant TumorHangzhouZhejiangChina
| | - Mengnan Yuan
- Department of PharmacyCenter for Clinical PharmacyCancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Tong Xu
- Department of PharmacyCenter for Clinical PharmacyCancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Jiajie Xu
- Department of Head and Neck SurgeryOtolaryngology & Head and Neck Center, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Malignant TumorHangzhouZhejiangChina
| | - Ping Huang
- Department of PharmacyCenter for Clinical PharmacyCancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Minghua Ge
- Department of Head and Neck SurgeryOtolaryngology & Head and Neck Center, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Malignant TumorHangzhouZhejiangChina
| |
Collapse
|
16
|
Huang J, Zhang Y, Li J, Li H, Wei Y, Sun M. Association of dietary inflammatory index with all-cause and cardiovascular disease mortality in hyperuricemia population: A cohort study from NHANES 2001 to 2010. Medicine (Baltimore) 2023; 102:e36300. [PMID: 38134106 PMCID: PMC10735113 DOI: 10.1097/md.0000000000036300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/03/2023] [Indexed: 12/24/2023] Open
Abstract
Dietary management is a crucial component of non-pharmacological treatment for hyperuricemia, yet there is a paucity of research on the impact of dietary habits on the survival outcomes of individuals with hyperuricemia. The objective of this study is to examine the association between dietary inflammatory index (DII) and the all-cause and cardiovascular disease (CVD) mortality in individuals with hyperuricemia. This study included 3093 adult participants from National Health and Nutrition Examination Survey (NHANES) 2001 to 2010. Participants were categorized into 4 groups based on quartiles of DII to demonstrate data characteristics, with sample weights considered. The relationship between DII and the risk of hyperuricemia was examined using multivariable logistic regression models. Kaplan-Meier models and Cox proportional hazards models were employed to assess the relationship between DII levels and the all-cause mortality in individuals with hyperuricemia, with the non-linear relationship tested using restricted cubic splines (RCS). Competing risk models were employed to investigate the association between DII levels and the CVD mortality in individuals diagnosed with hyperuricemia. Subgroup and sensitivity analysis were performed to confirm the robustness and reliability of the findings. Among the participants, 47.95% were aged over 60 years. A positive association observed between the highest quartile of DII level and the incidence of hyperuricemia (OR: 1.34, CI [1.13, 1.57]). Elevated DII levels were correlated with increased all-cause mortality (P value < .001) and CVD mortality (P value < .001) in participants. In comparison to the lowest quartile, the highest quartile of DII exhibited a 31% rise in all-cause mortality (HR: 1.31, CI [1.01, 1.68]) and a 50% increase in CVD mortality (HR: 1.50, CI [1.00, 2.26]). No indication of a nonlinear association between DII levels and all-cause mortality (p-non-linear = .43). These findings indicate a positive correlation between the pro-inflammatory diet and the incidence of hyperuricemia. Additionally, a pro-inflammatory diet may elevate the all-cause and CVD mortality in individuals with hyperuricemia.
Collapse
Affiliation(s)
- Jingda Huang
- Department of Nephrology, First Hospital of Jilin University, Changchun, Jilin province, China
| | - Yandong Zhang
- Department of Rheumatology and Immunology, First Hospital of Jilin University, Changchun, Jilin province, China
| | - Jiajie Li
- Department of Hepatobiliary Pancreatology, First Hospital of Jilin University, Changchun, Jilin province, China
| | - Huimin Li
- Department of Nephrology, First Hospital of Jilin University, Changchun, Jilin province, China
| | - Yihui Wei
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu province, China
| | - Mindan Sun
- Department of Nephrology, First Hospital of Jilin University, Changchun, Jilin province, China
| |
Collapse
|
17
|
Wang P, Zheng X, Du R, Xu J, Li J, Zhang H, Liang X, Liang H. Astaxanthin Protects against Alcoholic Liver Injury via Regulating Mitochondrial Redox Balance and Calcium Homeostasis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19531-19550. [PMID: 38038704 DOI: 10.1021/acs.jafc.3c05529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Increasing evidence points to the critical role of calcium overload triggered by mitochondrial dysfunction in the development of alcoholic liver disease (ALD). As an important organelle for aerobic respiration with a double-layered membrane, mitochondria are pivotal targets of alcohol metabolism-mediated lipid peroxidation, wherein mitochondria-specific phospholipid cardiolipin oxidation to 4-hydroxynonenal (4-HNE) ultimately leads to mitochondrial integrity and function impairment. Therefore, it is absolutely essential to identify effective nutritional intervention targeting mitochondrial redox function for an alternative therapy of ALD, in order to compensate for the difficulty in achieving alcohol withdrawal due to addiction. In this study, we confirmed the significant advantages of astaxanthin (AX) against alcohol toxicity among various carotenoids via cell experiments and identified the potential in mitochondrion morphogenesis and calcium signaling pathway by bioinformatics analysis. The ALD model of Sprague-Dawley (SD) rats was also generated to investigate the effectiveness of AX on alcohol-induced liver injury, and the underlying mechanisms were further explored. AX intervention attenuated alcohol-induced oxidative stress and lipid peroxidation as well as mitochondrial dysfunction characterized by degenerative morphology changes and collapsed membrane potential. Also, AX reduced the production of 4-HNE by activating the Nrf2-ARE signaling pathway, which is closely associated with the redox balance of mitochondria. In addition, relieved mitochondrial Ca2+ accumulation caused by AX was observed both in vivo and in vitro. Furthermore, we revealed the structure-activity relationship of AX and mitochondrial membrane channel proteins MCU and VDAC1, implying potential acting targets. Altogether, our data indicated a new mechanism of AX intervention which protects against alcohol-induced liver injury through restoring redox balance and Ca2+ homeostasis in mitochondria, as well as provided novel insights into the development of AX as a therapeutic option for the management of ALD.
Collapse
Affiliation(s)
- Peng Wang
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Ning Xia Road 308, Qingdao 266071, China
| | - Xian Zheng
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Ning Xia Road 308, Qingdao 266071, China
| | - Ronghuan Du
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Ning Xia Road 308, Qingdao 266071, China
| | - Jinghan Xu
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Ning Xia Road 308, Qingdao 266071, China
| | - Jing Li
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Ning Xia Road 308, Qingdao 266071, China
| | - Huaqi Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Ning Xia Road 308, Qingdao 266071, China
| | - Xi Liang
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Ning Xia Road 308, Qingdao 266071, China
| | - Hui Liang
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Ning Xia Road 308, Qingdao 266071, China
| |
Collapse
|
18
|
Zhou X, Zhang B, Zhao X, Zhang P, Guo J, Zhuang Y, Wang S. Coffee Leaf Tea Extracts Improve Hyperuricemia Nephropathy and Its Associated Negative Effect in Gut Microbiota and Amino Acid Metabolism in Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17775-17787. [PMID: 37936369 DOI: 10.1021/acs.jafc.3c02797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Hyperuricemia nephropathy (HN) is a metabolic disease characterized by tubular damage, tubulointerstitial fibrosis, and uric acid kidney stones and has been demonstrated to be associated with hyperuricemia. Coffee leaf tea is drunk as a functional beverage. However, its prevention effects on HN remain to be explored. This study showed that coffee leaf tea extracts (TE) contain 19 polyphenols, with a total content of 550.15 ± 27.58 mg GAE/g. TE decreased serum uric acid levels via inhibiting XOD activities and modulating the expression of urate transporters (GLUT9, OAT3, and ABCG2) in HN rats. TE prevented HN-induced liver and kidney damage and attenuated renal fibrosis. Moreover, it upregulated the abundance of SCFA-producing bacteria (Phascolarctobacterium, Alloprevotella, and Butyricicoccus) in the gut and reversed the amino acid-related metabolism disorder caused by HN. TE also decreased the circulating LPS and d-lactate levels and increased the fecal SCFA levels. This study supported the preliminary and indicative effect of coffee leaf tea in the prevention of hyperuricemia and HN.
Collapse
Affiliation(s)
- Xiaofei Zhou
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Bowei Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Xiuli Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Pixian Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jingting Guo
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yuan Zhuang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
19
|
Zhang H, Wang Y, Zhang X, Zhang L, Zhao X, Xu Y, Wang P, Liang X, Xue M, Liang H. Maternal Folic Acid Supplementation during Pregnancy Prevents Hepatic Steatosis in Male Offspring of Rat Dams Fed High-Fat Diet, Which Is Associated with the Regulation of Gut Microbiota. Nutrients 2023; 15:4726. [PMID: 38004120 PMCID: PMC10675082 DOI: 10.3390/nu15224726] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Maternal dietary patterns during pregnancy have been demonstrated to impact the structure of the gut microbiota in offspring, altering their susceptibility to diseases. This study is designed to elucidate whether the impact of folic acid supplementation during pregnancy on hepatic steatosis in male offspring of rat dams exposed to a high-fat diet (HFD) is related to gut-liver axis homeostasis. In this study, female rats were administered a HFD and simultaneously supplemented with 5 mg/kg folic acid throughout their pregnancy. Histopathological examination showed that folic acid supplementation effectively ameliorated hepatic lipid accumulation and inflammatory infiltrate in male offspring subjected to a maternal HFD. Maternal folic acid supplementation reduced the abundance of Desulfobacterota and the Firmicutes/Bacteroidota (F/B) ratio in male offspring. The expression of tight junction proteins in the colon was significantly upregulated, and the serum LPS level was significantly reduced. Furthermore, there was a notable reduction in the hepatic expression of the TLR4/NF-κB signaling pathway and subsequent inflammatory mediators. Spearman's correlation analysis revealed significant associations between hepatic inflammation-related indices and several gut microbiota, particularly Desulfobacterota and Lactobacillus. With a reduction in hepatic inflammation, the expression of PPAR-α was upregulated, and the expression of SREBP-1c and its downstream lipid metabolism-related genes was downregulated. In summary, folic acid supplementation during pregnancy modulates gut microbiota and enhances intestinal barrier integrity in male offspring of HFD dams. This helps reduce the LPS leakage and suppress the expression of TLR4/NF-κB pathway in the liver, thereby improving lipid metabolism disorders, and alleviating hepatic steatosis.
Collapse
Affiliation(s)
- Huaqi Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao 266071, China; (H.Z.); (Y.W.); (X.Z.); (L.Z.); (X.Z.); (Y.X.); (P.W.); (X.L.)
| | - Yutong Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao 266071, China; (H.Z.); (Y.W.); (X.Z.); (L.Z.); (X.Z.); (Y.X.); (P.W.); (X.L.)
| | - Xinyu Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao 266071, China; (H.Z.); (Y.W.); (X.Z.); (L.Z.); (X.Z.); (Y.X.); (P.W.); (X.L.)
| | - Li Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao 266071, China; (H.Z.); (Y.W.); (X.Z.); (L.Z.); (X.Z.); (Y.X.); (P.W.); (X.L.)
| | - Xuenuo Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao 266071, China; (H.Z.); (Y.W.); (X.Z.); (L.Z.); (X.Z.); (Y.X.); (P.W.); (X.L.)
| | - Yan Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao 266071, China; (H.Z.); (Y.W.); (X.Z.); (L.Z.); (X.Z.); (Y.X.); (P.W.); (X.L.)
| | - Peng Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao 266071, China; (H.Z.); (Y.W.); (X.Z.); (L.Z.); (X.Z.); (Y.X.); (P.W.); (X.L.)
| | - Xi Liang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao 266071, China; (H.Z.); (Y.W.); (X.Z.); (L.Z.); (X.Z.); (Y.X.); (P.W.); (X.L.)
| | - Meilan Xue
- Department of Biochemistry and Molecular Biology, Basic Medical College, Qingdao University, Qingdao 266071, China;
| | - Hui Liang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao 266071, China; (H.Z.); (Y.W.); (X.Z.); (L.Z.); (X.Z.); (Y.X.); (P.W.); (X.L.)
| |
Collapse
|
20
|
Zhao H, Gao H, Zhang Y, Lan T, Wang J, Zhao H, Zhang H, Xue M, Liang H. Folic Acid Protects against Ethanol-Induced Hepatic Mitophagy Imbalance by ROS Scavenging and Attenuating the Elevated Hcy Levels. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14276-14288. [PMID: 37738285 DOI: 10.1021/acs.jafc.3c01851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Ample evidence indicates that ethanol-induced oxidative stress and mitochondrial dysfunction are central to the pathogenesis of alcoholic liver disease (ALD). As an adaptive quality control mechanism, mitophagy removes dysfunctional mitochondria to avert hepatic lesions in ALD. Folic acid exhibits potential radical scavenging properties and has been proven to ameliorate mitochondrial disorder in oxidative stress-related diseases. In this study, we aimed to uncover the mitophagy regulatory effects of folic acid in a 10w alcohol C57BL/6J mice feeding model (56% v/v) and L02 cells model cultured with ethanol (2.5% v/v). The results showed that folic acid alleviates ethanol-induced liver injury, decreasing oxidative stress and restoring liver enzyme. Furthermore, folic acid improved the mitochondrial function and inhibited ethanol-activated mitophagy through decreasing PINK1-Parkin and Drp1 expression, which inhibited the release of mitochondrial cytochrome C to the cytoplasm, preventing hepatocyte apoptosis. Intriguingly, folic acid attenuates the elevated hepatic homocysteine (Hcy) level. Additionally, the pretreatment of L02 cells with folic acid also ameliorated Hcy-induced oxidative damage, mitochondrial fission, and mitophagy. In summary, these results suggest that folic acid has beneficial effects in mitophagy remodeling by ROS scavenging and facilitating Hcy metabolism and could be developed as a potential therapeutic agent against ALD.
Collapse
Affiliation(s)
- Huichao Zhao
- Qingdao Municipal Hospital, Qingdao University. Qingdao 266071, China
| | - Haiqi Gao
- Department of Biochemistry and Molecular Biology, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Yabin Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Qingdao 266071, China
| | - Tongtong Lan
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Qingdao 266071, China
| | - Jingwen Wang
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Qingdao 266071, China
| | - Haifeng Zhao
- Qingdao Institute of Food and Drug Inspection, Qingdao 266071, China
| | - Huaqi Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Qingdao 266071, China
| | - Meilan Xue
- Department of Biochemistry and Molecular Biology, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Hui Liang
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Qingdao 266071, China
| |
Collapse
|
21
|
Sun L, Liu Q, Zhang Y, Xue M, Yan H, Qiu X, Tian Y, Zhang H, Liang H. Fucoidan from Saccharina japonica Alleviates Hyperuricemia-Induced Renal Fibrosis through Inhibiting the JAK2/STAT3 Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:11454-11465. [PMID: 37481747 DOI: 10.1021/acs.jafc.3c01349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Fucoidan is a native sulfated polysaccharide mainly isolated from brown seaweed, with diverse pharmacological activities, such as anti-inflammatory and antifibrosis. Hyperuricemia (HUA) is a common metabolic disease worldwide and mainly causes hyperuricemic nephropathy, including chronic kidney disease and end-stage renal fibrosis. The present study investigated the protective function of fucoidan in renal fibrosis and its pharmacological mechanism. The renal fibrotic model was established with the administration of potassium oxonate for 10 weeks. The protein levels of related factors were assessed in HUA mice by an enzyme-linked immunosorbent assay (ELISA) and western blotting. The results showed that fucoidan significantly reduced the levels of serum uric acid, blood urea nitrogen (BUN), α-smooth muscle actin (α-SMA), and collagen I, and improved kidney pathological changes. Furthermore, renal fibrosis had been remarkably elevated through the inhibition of the epithelial-to-mesenchymal transition (EMT) progression after fucoidan intervention, suppressing the Janus kinase 2 (JAK2) signal transducer and activator of transcription protein 3 (STAT3) signaling pathway activation. Together, this study provides experimental evidence that fucoidan may protect against hyperuricemia-induced renal fibrosis via downregulation of the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Lirui Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Qing Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Yabin Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Meilan Xue
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Hongxue Yan
- State Key Laboratory of Bioactive Seaweed Substances, Qingdao Mingyue Seaweed Group Company, Limited, Qingdao, Shandong 266499, People's Republic of China
| | - Xia Qiu
- State Key Laboratory of Bioactive Seaweed Substances, Qingdao Mingyue Seaweed Group Company, Limited, Qingdao, Shandong 266499, People's Republic of China
| | - Yingjie Tian
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Huaqi Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Hui Liang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| |
Collapse
|
22
|
Liu N, Huang L, Xu H, He X, He X, Cao J, Xu W, Wang Y, Wei H, Wang S, Zheng H, Gao S, Xu Y, Lu W. Phosphatidylserine decarboxylase downregulation in uric acid‑induced hepatic mitochondrial dysfunction and apoptosis. MedComm (Beijing) 2023; 4:e336. [PMID: 37502610 PMCID: PMC10369160 DOI: 10.1002/mco2.336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
The molecular mechanisms underlying uric acid (UA)-induced mitochondrial dysfunction and apoptosis have not yet been elucidated. Herein, we investigated underlying mechanisms of UA in the development of mitochondrial dysfunction and apoptosis. We analyzed blood samples of individuals with normal UA levels and patients with hyperuricemia. Results showed that patients with hyperuricemia had significantly elevated levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, which may indicate liver or mitochondrial damage in patients with hyperuricemia. Subsequently, lipidomic analysis of mouse liver tissue mitochondria and human liver L02 cell mitochondria was performed. Compared with control group levels, high UA increased mitochondrial phosphatidylserine (PS) and decreased mitochondrial phosphatidylethanolamine (PE) levels, whereas the expression of mitochondrial phosphatidylserine decarboxylase (PISD) that mediates PS and PE conversion was downregulated. High UA levels also inhibited signal transducer and activator of transcription 3 (STAT3) phosphorylation as well as mitochondrial respiration, while inducing apoptosis both in vivo and in vitro. Treatment with allopurinol, overexpression of PISD, and lyso-PE (LPE) administration significantly attenuated the three above-described effects in vitro. In conclusion, UA may induce mitochondrial dysfunction and apoptosis through mitochondrial PISD downregulation. This study provides a new perspective on liver damage caused by hyperuricemia.
Collapse
Affiliation(s)
- Ning Liu
- Basic Medical CollegeAnhui Medical UniversityHefeiAnhuiChina
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Transformation Research of Zhejiang Province, School of Life SciencesWestlake UniversityHangzhouZhejiangChina
- College of Life SciencesZhejiang UniversityHangzhouZhejiangChina
- Institute of BiologyWestlake Institute for Advanced StudyHangzhouZhejiang ProvinceChina
| | - Lei Huang
- Basic Medical CollegeAnhui Medical UniversityHefeiAnhuiChina
| | - Hu Xu
- Basic Medical CollegeAnhui Medical UniversityHefeiAnhuiChina
| | - Xinyu He
- Basic Medical CollegeAnhui Medical UniversityHefeiAnhuiChina
| | - Xueqing He
- Basic Medical CollegeAnhui Medical UniversityHefeiAnhuiChina
| | - Jun Cao
- Basic Medical CollegeAnhui Medical UniversityHefeiAnhuiChina
| | - Wenjun Xu
- Basic Medical CollegeAnhui Medical UniversityHefeiAnhuiChina
| | - Yaoxing Wang
- Basic Medical CollegeAnhui Medical UniversityHefeiAnhuiChina
| | - Hongquan Wei
- Basic Medical CollegeAnhui Medical UniversityHefeiAnhuiChina
| | - Sheng Wang
- Center for Scientific ResearchAnhui Medical UniversityHefeiAnhuiChina
| | - Hong Zheng
- Basic Medical CollegeAnhui Medical UniversityHefeiAnhuiChina
| | - Shan Gao
- Basic Medical CollegeAnhui Medical UniversityHefeiAnhuiChina
| | - Youzhi Xu
- Basic Medical CollegeAnhui Medical UniversityHefeiAnhuiChina
| | - Wenjie Lu
- Basic Medical CollegeAnhui Medical UniversityHefeiAnhuiChina
| |
Collapse
|
23
|
Zhang H, Zhang X, Wang Y, Zhao X, Zhang L, Li J, Zhang Y, Wang P, Liang H. Dietary Folic Acid Supplementation Attenuates Maternal High-Fat Diet-Induced Fetal Intrauterine Growth Retarded via Ameliorating Placental Inflammation and Oxidative Stress in Rats. Nutrients 2023; 15:3263. [PMID: 37513681 PMCID: PMC10385450 DOI: 10.3390/nu15143263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
The placenta is particularly susceptible to inflammation and oxidative stress, leading to placental vascular dysfunction and placental insufficiency, which is associated with fetal intrauterine growth restriction (IUGR). It is unknown whether folic acid (FA) supplementation can alleviate high-fat diet-induced IUGR in rats by improving placental function. In this study, pregnant rats were randomized into one of four diet-based groups: (1) control diet (CON), (2) control diet supplemented with FA, (3) high-fat diet (HFD), and (4) high-fat diet supplemented with FA (HFD + FA). Dams were sacrificed at gestation day 18.5 (GD18.5). The results indicated that dietary FA supplementation normalized a maternal HFD-induced decrease in fetal weight. The decrease in placental efficiency, labyrinth zone (LZ) area, blood sinusoid area, vascular density, and the levels of angiogenesis factors induced by a maternal HFD were alleviated by the addition of FA, suggesting that FA supplementation can alleviate placental vascular dysplasia. Furthermore, FA supplementation increased the protein expressions of SIRT1, inhibited NF-κB transcriptional activation, attenuated the levels of NF-κB/downstream pro-inflammatory cytokines, induced Nrf2 activation, and increased downstream target protein expression. In conclusion, we found that dietary FA supplementation during pregnancy could improve maternal HFD-induced IUGR by alleviating placental inflammation and oxidative stress, which may be associated with the regulation of SIRT1 and its mediated NF-κB and Nrf2 signaling pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hui Liang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (H.Z.); (X.Z.); (Y.W.); (X.Z.); (L.Z.); (J.L.); (Y.Z.); (P.W.)
| |
Collapse
|
24
|
Jin X, Liu S, Chen S, Wang L, Cui Y, He J, Fang S, Li J, Chang Y. A systematic review on botany, ethnopharmacology, quality control, phytochemistry, pharmacology and toxicity of Arctium lappa L. fruit. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116223. [PMID: 36781057 DOI: 10.1016/j.jep.2023.116223] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/19/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Arctium lappa L., is a biennial plant that grows around the Eurasia. Many parts of Arctium lappa L. (roots, leaves and fruits, etc.) are medically used in different countries. Arctium lappa L. fruit, also called Arctii Fructus, is traditionally applied to dispel wind-heat, ventilate lung to promote eruption, remove toxicity substance and relieve sore throat. THE AIM OF THE REVIEW The review aims to integrate the botany, ethnopharmacology, quality control, phytochemistry, pharmacology, derivatives and toxicity information of Arctii Fructus, so as to facilitate future research and explore the potential of Arctii Fructus as an agent for treating diseases. MATERIALS AND METHODS Related knowledge about Arctii Fructus were acquired from Science Direct, GeenMedical, PubMed, China National Knowledge Infrastructure (CNKI), Web of Science, Pharmacopoeia of the People's Republic of China, Doctoral and Master's thesis, ancient books, etc. RESULTS: Arctii Fructus as an herb used for medicine and food was pervasively distributed and applicated around the world. It was traditionally used to treat anemopyretic cold, dyspnea and cough, sore throat, etc. To date, more than 200 compounds have been isolated and identified from Arctii Fructus. It contained lignans, phenolic acids and fatty acids, terpenoids, volatile oils and others. Lignans, especially arctigenin and arctiin, had the extensive pharmacological effects such as anti-cancer, antiviral, anti-inflammatory activities. The ester derivatives of arctigenin had the anti-cancer, anti-Alzheimer's disease and immunity enhancing effects. Although Arctii Fructus extract had no toxicity, arctigenin was toxic at a certain dose. The alleviating effects of Arctii Fructus on chronic inflammation and ageing have been demonstrated by clinical studies. CONCLUSION Arctii Fructus is regarded as a worthy herb with many chemical components and various pharmacological effects. Several traditional applications have been supported by modern pharmacological research. However, their action mechanisms need to be further studied. Although many chemical components were isolated from Arctii Fructus, the current research mainly focused on lignans, especially arctiin and arctigenin. Therefore, it is very important to deeply clarify the pharmacological activities and action mechanism of the compounds and make full medicinal use of the resources of Arctii Fructus.
Collapse
Affiliation(s)
- Xingyue Jin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Suyi Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shujing Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lirong Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yan Cui
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jun He
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shiming Fang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yanxu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|