1
|
Tahir AB, Jiang B, Ali K. Unraveling distinct potential of pea (Pisum sativum L.) fractions (legumin, vicilin and albumin) by structural and functional characterization. Food Res Int 2024; 198:115332. [PMID: 39643340 DOI: 10.1016/j.foodres.2024.115332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/25/2024] [Accepted: 11/07/2024] [Indexed: 12/09/2024]
Abstract
Limited and unclear research exists on the individual capacity of major fractions of pea protein legumin (PL), vicilin (PV) and albumin (PA), which collectively contribute to the structural and functional properties of pea protein. Findings revealed that PV (72.26 ± 2.6 %) and PA (57.42 ± 4.1 %) displayed better solubility compared to PL. PL fraction possessed a complex three-dimensional structure, higher surface hydrophobicity (So), and superior oil-holding-capacity (OHC) contributing to its 4-fold strength (8.58 ± 0.5 N) and structured gel formation. The smaller particle size of PA was also accountable for the comparatively weaker gels and unstable emulsions compared to PL, while PV had the least emulsifying capacity, by non-uniform droplet distribution in CLSM served as proof. PL was found to be responsible for gelation, emulsification, and foaming in pea protein due to structural factors (relative abundance of α-helix and β-sheet). While, the flexible structure of PV, absence of cysteine residues, and disulfide bridges played a role in characteristics like foaming stability. Some protein in PV gel was found loose and did not appear to participate in gelation, hence forming a significantly weaker gel than PL. Despite relatively less So and complex structure, albumin (PA) had a smoother but weaker gel, more consistent and a smaller droplet size distribution in emulsions (compared to PV). Nonetheless, this study aims to fill a forgotten gap by providing baseline knowledge on the individual fractions of pea protein, defining their roles and paving the path for future research focusing on structural and functional properties of pea protein.
Collapse
Affiliation(s)
- Assam Bin Tahir
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Bo Jiang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Khubaib Ali
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
2
|
Amat T, Assifaoui A, Buczkowski J, Silva JVC, Schmitt C, Saurel R. Effect of extraction method on the calcium binding capacity of faba bean globulin fractions at various pH. Food Chem 2024; 458:140176. [PMID: 38959801 DOI: 10.1016/j.foodchem.2024.140176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/19/2024] [Accepted: 06/19/2024] [Indexed: 07/05/2024]
Abstract
Faba bean ingredients are rich in proteins and good sources of calcium (Ca), although containing phytic acid (PA) molecules. PA, a polyphosphate compound, can affect the bioavailability of minerals/proteins through complex formation. This study evaluates the impact of two extraction processes, Alkaline Extraction-IsoElectric Precipitation (AE-IEP) and Sequential Extraction (SE), on the ability of faba bean globulin systems to bind added calcium ions. Increasing concentrations of CaCl2 were introduced into 2.5% (w/v) protein dispersions at pHs 4.5, 5.5, 6.5, and 7.5, and free Ca monitored. Near the isoelectric point of globulin (pH ∼ 4-5), Ca binding capacity was found to be low. At higher pHs, significant Ca chelation occurred, initially attributed to free PA binding sites, resulting in the formation of insoluble complexes and subsequent protein precipitation. The AE-IEP globulin fraction exhibited a higher Ca binding capacity than the SE globulin, attributed to its higher PA and lower initial Ca concentrations.
Collapse
Affiliation(s)
- Tiffany Amat
- Université Bourgogne Franche-Comté, Institut Agro, Université Bourgogne, INRAE, UMR PAM 1517, 21000 Dijon, France
| | - Ali Assifaoui
- Université Bourgogne Franche-Comté, Institut Agro, Université Bourgogne, INRAE, UMR PAM 1517, 21000 Dijon, France
| | - Johann Buczkowski
- Nestlé Research, Nestlé Institute of Food Sciences, Department of Nutrient Technology, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland
| | - Juliana V C Silva
- Nestlé Research, Nestlé Institute of Food Sciences, Department of Nutrient Technology, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland
| | - Christophe Schmitt
- Nestlé Research, Nestlé Institute of Food Sciences, Department of Nutrient Technology, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland
| | - Rémi Saurel
- Université Bourgogne Franche-Comté, Institut Agro, Université Bourgogne, INRAE, UMR PAM 1517, 21000 Dijon, France.
| |
Collapse
|
3
|
An N, Li X, Ji G, Liu J, Zhu X, Li N, Wang Z, Mu Z, Liu H. A comprehensive review on composition to application of pea protein and its components. Int J Biol Macromol 2024; 282:137273. [PMID: 39510482 DOI: 10.1016/j.ijbiomac.2024.137273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/21/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Pea protein, a valuable plant-based protein source, is notable for its nutritional value, essential amino acids, and low allergenicity, making it widely applicable in food, medicine, and materials. It consists mainly of globulin and albumin, which influence its functional properties and applications. However, there is a lack of comprehensive reviews on its extraction methods, functional properties, modification techniques, and applications in food. This paper aims to fill these gaps by detailing pea protein composition, extraction methods, functional properties, and modification impacts while summarizing its food applications and proposing future research directions. The goal is to enhance pea protein's functionality and expand its applications through optimized extraction and advanced technology. By improving extraction techniques and adapting pea protein for better functionality, we aim to develop high-quality market applications, ensuring the growth and sustainability of the pea protein industry globally. This approach promises a flourishing future for pea protein, meeting global competition demands and driving industry advancement.
Collapse
Affiliation(s)
- Ning An
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Xinxin Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Guozhi Ji
- Inner Mongolia Enterprise Key Laboratory of Dairy Nutrition, Health & Safety, Hohhot, Inner Mongolia 011500, China; Global R&D Innovation Center, Inner Mongolia Mengniu Dairy (Group) Co. Ltd., Hohhot, Inner Mongolia 011500, China
| | - Jie Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Xuchun Zhu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Ning Li
- Inner Mongolia Enterprise Key Laboratory of Dairy Nutrition, Health & Safety, Hohhot, Inner Mongolia 011500, China; Global R&D Innovation Center, Inner Mongolia Mengniu Dairy (Group) Co. Ltd., Hohhot, Inner Mongolia 011500, China
| | - Ziyuan Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China.
| | - Zhishen Mu
- Inner Mongolia Enterprise Key Laboratory of Dairy Nutrition, Health & Safety, Hohhot, Inner Mongolia 011500, China; Global R&D Innovation Center, Inner Mongolia Mengniu Dairy (Group) Co. Ltd., Hohhot, Inner Mongolia 011500, China.
| | - Hongzhi Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China.
| |
Collapse
|
4
|
Rout S, Dash P, Panda PK, Yang PC, Srivastav PP. Interaction of dairy and plant proteins for improving the emulsifying and gelation properties in food matrices: a review. Food Sci Biotechnol 2024; 33:3199-3212. [PMID: 39328217 PMCID: PMC11422335 DOI: 10.1007/s10068-024-01671-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 09/28/2024] Open
Abstract
A variety of variables influence food texture, two of which are gelation and emulsification. Protein interactions have an important role in influencing gelation and emulsifying properties. The utilization of plant proteins in the development of food systems is a prominent subject within the current protein transition paradigm. Plant proteins diminish gel strength compared to dairy proteins. Protein providers prefer to create their own networks rather than rely on tight ties. It may be feasible to resolve these challenges if the interactions between plant and dairy proteins are known at all sizes, from molecular to macroscopic. Therefore, the proteins and dairy proteins are the main emphasis of this review. The role of these proteins in interacting with food matrices is also discussed. Additionally, this data gives information on worldwide research trends. Finally, a glimpse into the future was discussed.
Collapse
Affiliation(s)
- Srutee Rout
- Department of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302 India
| | - Pranjyan Dash
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608 Taiwan
| | - Pradeep Kumar Panda
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, 32003 Taiwan
| | - Po-Chih Yang
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, 32003 Taiwan
| | - Prem Prakash Srivastav
- Department of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302 India
| |
Collapse
|
5
|
Lin Y, Cheng N, Jiang Y, Grace MH, Lila MA, Hoskin RT, Zheng H. Colloidal and interfacial properties of spray dried pulse protein-blueberry polyphenol particles in model dispersion systems. Food Chem 2024; 457:140073. [PMID: 38909456 DOI: 10.1016/j.foodchem.2024.140073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/11/2024] [Accepted: 06/10/2024] [Indexed: 06/25/2024]
Abstract
The phytochemical composition and physicochemical attributes of polyphenol-enriched protein particle ingredients produced with pulse proteins (e.g. chickpea protein, pea protein, and a chickpea-pea protein blend) and polyphenols recovered from wild blueberry pomace were investigated for colloidal and interfacial properties. Anthocyanins were the major polyphenol fraction (27.74-36.47 mg C3G/g) of these polyphenol-rich particles (44.95-62.08 mg GAE/g). Dispersions of pea protein-polyphenol particles showed a superior phase stability before and after heat treatment compared to the chickpea pea protein-polyphenol system. This observation was independent of the added amount of NaCl in the dispersion. In general, at quasi equilibrium state, pulse protein-polyphenol particles and parental pulse protein ingredients showed similar oil-water interfacial tension. However, pea protein-polyphenol particles demonstrated a reduced diffusion-driven oil-water interfacial adsorption rate constant compared to the parental pea protein ingredient. Overall, the obtained results suggest application potential of pea protein-polyphenol particles as a functional food/beverage ingredient.
Collapse
Affiliation(s)
- Yufeng Lin
- Food Rheology Laboratory, Department of Food, Bioprocessing and Nutrition Sciences Department, North Carolina State University, Raleigh, NC 27695, USA
| | - Nicholas Cheng
- Food Rheology Laboratory, Department of Food, Bioprocessing and Nutrition Sciences Department, North Carolina State University, Raleigh, NC 27695, USA
| | - Yueyue Jiang
- Food Rheology Laboratory, Department of Food, Bioprocessing and Nutrition Sciences Department, North Carolina State University, Raleigh, NC 27695, USA
| | - Mary H Grace
- Plants for Human Health Institute, Food Bioprocessing & Nutrition Sciences Department, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Mary Ann Lila
- Plants for Human Health Institute, Food Bioprocessing & Nutrition Sciences Department, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Roberta Targino Hoskin
- Plants for Human Health Institute, Food Bioprocessing & Nutrition Sciences Department, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Haotian Zheng
- Food Rheology Laboratory, Department of Food, Bioprocessing and Nutrition Sciences Department, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
6
|
Rout S, Srivastav PP. Modification of soy protein isolate and pea protein isolate by high voltage dielectric barrier discharge (DBD) atmospheric cold plasma: Comparative study on structural, rheological and techno-functional characteristics. Food Chem 2024; 447:138914. [PMID: 38460320 DOI: 10.1016/j.foodchem.2024.138914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/24/2024] [Accepted: 02/29/2024] [Indexed: 03/11/2024]
Abstract
The modification in structural, rheological, and techno-functional characteristics of soy and pea protein isolates (SPI and PPI) due to dielectric barrier discharge cold plasma (DBD-CP) were assessed. The increased carbonyl groups in both samples with cold plasma (CP) treatment led to a reduction in free sulfhydryl groups. Moreover, protein solubility of treated proteins exhibited significant improvements, reaching up to 59.07 % and 41.4 % for SPI and PPI, respectively, at 30 kV for 8 min. Rheological analyses indicated that storage modulus (G') was greater than loss modulus (G″) for CP-treated protein gels. Furthermore, in vitro protein digestibility of SPI exhibited a remarkable improvement (4.78 %) at 30 kV for 6 min compared to PPI (3.23 %). Spectroscopic analyses, including circular dichroism and Fourier Transform-Raman, indicated partial breakdown and loss of α-helix structure in both samples, leading to the aggregation of proteins. Thus, DBD-CP induces reactive oxygen species-mediated oxidation, modifying the secondary and tertiary structures of samples.
Collapse
Affiliation(s)
- Srutee Rout
- Department of Agricultural and Food Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India.
| | - Prem Prakash Srivastav
- Department of Agricultural and Food Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
7
|
Jindal A, Patil N, Bains A, Sridhar K, Stephen Inbaraj B, Tripathi M, Chawla P, Sharma M. Recent Trends in Cereal- and Legume-Based Protein-Mineral Complexes: Formulation Methods, Toxicity, and Food Applications. Foods 2023; 12:3898. [PMID: 37959017 PMCID: PMC10649166 DOI: 10.3390/foods12213898] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
Minerals play an important role in maintaining human health as the deficiency of these minerals can lead to serious health issues. To address these deficiencies, current research efforts are actively investigating the utilization of protein-mineral complexes as eco-friendly, non-hazardous, suitable mineral fortifiers, characterized by minimal toxicity, for incorporation into food products. Thus, we reviewed the current challenges in incorporating the cereal-legume protein-inorganic minerals complexes' structure, binding properties, and toxicity during fortification on human health. Moreover, we further reviewed the development of protein-mineral complexes, characterization, and their food applications. The use of inorganic minerals has been associated with several toxic effects, leading to tissue-level toxicity. Cereal- and legume-based protein-mineral complexes effectively reduced the toxicity, improved bone mineral density, and has antioxidant properties. The characterization techniques provided a better understanding of the binding efficiency of cereal- and legume-based protein-mineral complexes. Overall, understanding the mechanism and binding efficiency underlying protein-mineral complex formation provided a novel insight into the design of therapeutic strategies for mineral-related diseases with minimal toxicity.
Collapse
Affiliation(s)
- Aprajita Jindal
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India; (A.J.); (N.P.)
| | - Nikhil Patil
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India; (A.J.); (N.P.)
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara 144411, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to Be University), Coimbatore 641021, India
| | | | - Manikant Tripathi
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, India
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India; (A.J.); (N.P.)
| | | |
Collapse
|
8
|
Langendörfer LJ, Avdylaj B, Hensel O, Diakité M. Design of Plant-Based Food: Influences of Macronutrients and Amino Acid Composition on the Techno-Functional Properties of Legume Proteins. Foods 2023; 12:3787. [PMID: 37893680 PMCID: PMC10606351 DOI: 10.3390/foods12203787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Imitating animal-based products using vegetable proteins is a technological challenge that can be mastered based on their techno-functional properties. These properties of legume proteins can be influenced by multiple factors, among which the macronutrients and amino acid contents play an important role. Therefore, the question arises as to what extent the techno-functional properties are related to these factors. The water- and oil-holding capacities and the emulsion and foaming properties of commercially available legume protein powders were analyzed. Correlations between macronutrient, amino acid content, steric structure, and techno-functional properties were conducted. However, the protein concentration is the focus of techno-functional properties, as well as the type of protein and the interaction with the non-protein ingredients. The type of protein is not always quantified by the quantity of amino acids or by their spatial arrangement. In this study, the effects of the three-dimensional structure were observed by the used purification method, which overshadow the influencing factors of the macronutrients and amino acid content. In summary, both the macronutrient and amino acid contents of legume proteins provide a rough indication but not a comprehensive statement about their techno-functional properties and classification in an adequate product context.
Collapse
Affiliation(s)
- Lena Johanna Langendörfer
- Faculty of Food Technology, University of Applied Science Fulda, Leipziger Str. 123, 36037 Fulda, Germany; (B.A.); (M.D.)
| | - Blerarta Avdylaj
- Faculty of Food Technology, University of Applied Science Fulda, Leipziger Str. 123, 36037 Fulda, Germany; (B.A.); (M.D.)
| | - Oliver Hensel
- Faculty of Organic Agricultural Science, University of Kassel, Nordbahnhofstraße 1a, 37213 Witzenhausen, Germany;
| | - Mamadou Diakité
- Faculty of Food Technology, University of Applied Science Fulda, Leipziger Str. 123, 36037 Fulda, Germany; (B.A.); (M.D.)
| |
Collapse
|
9
|
Li X, Zhang N, Jiao X, Zhang W, Yan B, Huang J, Zhao J, Zhang H, Chen W, Fan D. Insight into Ionic Strength-Induced Solubilization of Myofibrillar Proteins from Silver Carp ( Hypophthalmichthys molitrix): Structural Changes and 4D Label-Free Proteomics Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13920-13933. [PMID: 37688549 DOI: 10.1021/acs.jafc.3c04254] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2023]
Abstract
In this study, changes in the physical, structural, and assembly characteristics of silver carp myofibrillar proteins (MPs) at different ionic strength (I) values were investigated. Moreover, the differential proteomic profile of soluble MPs was analyzed using 4D proteomics based on timsTOF Pro mass spectrometry. Solubility of MPs significantly increased at high I (>0.3), and the increase in I enhanced the apparent viscosity, fluorescence intensity, surface hydrophobicity, and α-helix content of MPs solution. Particle size and sodium dodecyl sulfate-polyacrylamide gel electrophoresis patterns also supported the solubility profiles. Transmission electron microscopy and atomic force microscopy observations revealed the morphological assembly and disassembly of MPs under different I conditions. Finally, proteomic analysis revealed the evolution law of salt-induced solubilization of MPs and the critical molecular characteristics in different I environments. The number of differentially abundant proteins (DAPs) decreased with the increase of I, and most DAPs related to the muscle filament sliding, contraction and assembly, actinin binding, and actin filament binding. The soluble abundance of myosin and some structural proteins was dependent on I, and structural proteins in the Z-disk and M-band might contribute to the solubilization of myosin. Our findings provide insightful information about the impact of common I on the solubility pattern of MPs from freshwater fish.
Collapse
Affiliation(s)
- Xingying Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Nana Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Ministry of Agriculture and Rural Affairs, Xiamen 361022, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xidong Jiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wenhai Zhang
- Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Ministry of Agriculture and Rural Affairs, Xiamen 361022, China
- Fujian Provincial Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Xiamen 361022, China
- ANJOY FOODS GROUP CO., LTD., Xiamen 361022, China
| | - Bowen Yan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Ministry of Agriculture and Rural Affairs, Xiamen 361022, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianlian Huang
- Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Ministry of Agriculture and Rural Affairs, Xiamen 361022, China
- Fujian Provincial Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Xiamen 361022, China
- ANJOY FOODS GROUP CO., LTD., Xiamen 361022, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Daming Fan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Ministry of Agriculture and Rural Affairs, Xiamen 361022, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
10
|
Estimation of genetic diversity using seed storage protein (SSP) profiling in wild and cultivated species of Cicer L. Mol Biol Rep 2023; 50:4175-4185. [PMID: 36894768 DOI: 10.1007/s11033-023-08358-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/23/2023] [Indexed: 03/11/2023]
Abstract
BACKGROUND The narrow genetic diversity of chickpea is a serious impediment to modern cultivar creation. Seed storage proteins (SSPs) are stable and have minimal or no degradation when subjected to isolation and SDS-PAGE. METHODS AND RESULTS We have characterized SSPs of 436 chickpea genotypes, belonging to nine annual Cicer species, originated from 47 countries by SDS-PAGE and determined the extent of genetic diversity in chickpea through clustering. Based on scoring, a total of 44 bands (10 to 170 kDa) were identified, which were all polymorphic. The least appeared protein bands were 11, 160 and 170 kDa where band of 11 and 160 kDa was present exclusively in wild type. Five bands were present in < 10% of genotypes. Bands appeared in 200-300 genotypes were suggested less polymorphic, on contrary bands present in 10-150 genotypes were suggested more polymorphic. Polymorphism of protein bands in context to their potential functions reported in literature were explored and suggested that the glubulins were most and glutelins were least abundant, whereas albumins with their known role in stress tolerance can be used as marker in chickpea breeding. Cluster analysis produced 14 clusters, interestingly three clusters contained only Pakistani genotypes and thus Pakistani genotypes appeared as a separate entity from the rest of the genotypes. CONCLUSION Our results indicate that SDS-PAGE of SSPs is a powerful technique in determining the genetic diversity plus it is easily adaptable, due to its cost effectiveness in comparison to other genomics tools.
Collapse
|