1
|
Jin G, Zhao Y, Xin S, Li T, Xu Y. Solid-State Fermentation Engineering of Traditional Chinese Fermented Food. Foods 2024; 13:3003. [PMID: 39335930 PMCID: PMC11430836 DOI: 10.3390/foods13183003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/14/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Solid-state fermentation (SSF) system involves solid, liquid, and gas phases, characterized by complex mass and heat transfer mechanisms and microbial complex interactions. The SSF processes for traditional Chinese fermented foods, such as vinegar, soy sauce, and baijiu primarily rely on experience, and most of the operations are replaced by auto machine now. However, there is still a lack of engineering in-depth study of the microbial process of SSF for complete process control. To meet the demands of smart manufacturing and green production, this paper emphasizes the engineering analysis of the mechanisms behind SSF. It reviews the progress in the engineering aspects of Chinese traditional SSF, including raw material pretreatment, process parameter detection, mathematical model construction, and equipment innovation. Additionally, it summarizes the challenges faced during intelligent upgrades and the opportunities brought by scientific and technological advancements, proposing future development directions. This review provides an overview of the SSF engineering aspects, offering a reference for the intelligent transformation and sustainable development of the Chinese traditional SSF food industry.
Collapse
Affiliation(s)
- Guangyuan Jin
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yujie Zhao
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Shuhan Xin
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Tianyi Li
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Xie Q, Wu S, Lai S, Ye F. Effects of Stir-Frying and Heat-Moisture Treatment on the Physicochemical Quality of Glutinous Rice Flour for Making Taopian, a Traditional Chinese Pastry. Foods 2024; 13:2069. [PMID: 38998574 PMCID: PMC11241795 DOI: 10.3390/foods13132069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/13/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
Taopian is a traditional Chinese pastry made from cooked glutinous rice flour. The effects of heat-moisture treatment (110 °C, 4 h; moisture contents 12-36%, w/w) on the preparation of cooked glutinous rice flour and taopian made from it were compared with the traditional method of stir-frying (180 °C, 30 s). The color of heat-moisture-treated (HMT) flours was darker. HMT flours exhibited a larger mean particle size (89.5-124 μm) and a greater relative crystallinity of starch (23.08-42.92%) and mass fractal dimension (1.77-2.28). The flours exhibited water activity in the range of 0.589-0.631. Although the oil-binding capacity of HMT flours was largely comparable to that of stir-fried flours, HMT flours exhibited a lower water absorption index. Accordingly, the taopian produced with HMT flours exhibited a lower brightness, accompanied by a stronger reddening and yellowing. In addition, more firmly bound water was observed in the taopian produced with HMT flour. The taopian made with HMT flour with a moisture content of 24% exhibited moderate hardness, adhesiveness and cohesiveness and received the highest score for overall acceptability (6.80). These results may be helpful to improve the quality of taopian by applying heat-moisture treatment in the preparation of cooked glutinous rice flour.
Collapse
Affiliation(s)
- Qiuping Xie
- College of Food Science, Southwest University, Chongqing 400715, China; (Q.X.); (S.W.); (S.L.)
| | - Shanshan Wu
- College of Food Science, Southwest University, Chongqing 400715, China; (Q.X.); (S.W.); (S.L.)
| | - Shiyu Lai
- College of Food Science, Southwest University, Chongqing 400715, China; (Q.X.); (S.W.); (S.L.)
| | - Fayin Ye
- College of Food Science, Southwest University, Chongqing 400715, China; (Q.X.); (S.W.); (S.L.)
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| |
Collapse
|
3
|
Hou Y, Xia S, Ma C, Xue C, Jiang X. Effects of the soy protein to wheat gluten ratio on the physicochemical and structural properties of Alaska pollock surimi-based meat analogs by high moisture extrusion. Food Res Int 2023; 173:113469. [PMID: 37803792 DOI: 10.1016/j.foodres.2023.113469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/05/2023] [Accepted: 09/10/2023] [Indexed: 10/08/2023]
Abstract
Surimi products have attracted much attention and are widely used in the food industry. Currently, the processing and exploitation of surimi products are mostly based on their gel characteristics. However, the abundant protein in surimi can be rearranged and integrated by high-temperature melting to generate a new surimi product with fibrous structures. In this study, meat analogs (new surimi product) were produced by high moisture extrusion (HME) using Alaska pollock surimi and plant protein (8:2), where the plant protein consisted of different ratios of soy protein and wheat gluten (9:1, 7:3, 5:5, 3:7 and 1:9). The product was marked as SSG because it was composed of Alaska pollock surimi, soy protein and wheat gluten. The structure and color results showed that the hardness and ΔE of SSG decreased, while the fibrous degree and lightness increased with increasing WG content. The observation of the macrostructure and microstructure also showed that the skeleton structure of SSG was more obvious with increasing WG addition, but the viscosity reflected a decreasing trend. Furthermore, an increase in the WG content raised the free water ratio and the total content of β-sheets, whereas the appropriate plant protein ratio reduced the SSG's thermal stability. In conclusion, Alaskan pollock surimi and the appropriate proportion of plant protein can form structurally stable meat analogs by high moisture extrusion.
Collapse
Affiliation(s)
- Yukun Hou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, PR China.
| | - Songgang Xia
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, PR China.
| | - Chengxin Ma
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, PR China.
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, PR China; Laboratory of Marine Drugs and Biological products, The Laoshan Laboratory, 266235, PR China; Qingdao Ocean Food Nutrition and Health Innovation Research Institute, Qingdao 266041, PR China.
| | - Xiaoming Jiang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, PR China; Qingdao Ocean Food Nutrition and Health Innovation Research Institute, Qingdao 266041, PR China.
| |
Collapse
|
4
|
Li C, Du X, Liu ZH, Li BZ, Meng X, Zhao J, Zhao ZM, Ragauskas AJ. Steam explosion pretreatment coupling high-temperature short-time sterilization facilitating cellulose degradation and sporulation-regulatory gene expression in high-solid fermentation. Int J Biol Macromol 2023; 232:123475. [PMID: 36720325 DOI: 10.1016/j.ijbiomac.2023.123475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 01/29/2023]
Abstract
Steam explosion coupling high-temperature short-time sterilization (SE-HTST) was exploited to modify cellulosic biomass medium properties and promote high-solid fermentation (HSF). Biomass characterization analysis showed that SE-HTST enlarged microstructural pores and cavities in solid media, providing more effective space for microbial growth. Meanwhile, SE-HTST helped to release glucose from the cellulose with 35.8 ± 4.5, 20.0 ± 2.3, and 12.3 ± 5.7 mg glucose/g dry medium at 24, 48, and 72 h of fermentation, which were 3.1, 2.3, and 1.5 times higher than that in medium from conventional thermal sterilization (CTS), respectively. SE-HTST increased the viable cell and spore number of Bacillus subtilis by 1.8 and 1.6 times at 72 h of fermentation compared to CTS. Moreover, the expressions of master transcriptional gene spo0A and the early sigma factors of sigF and sigE genes gradually increased in the SE-HTST medium, showing enhanced sporulation in HSF. Therefore, SE-HTST is an effective strategy for facilitating cellulose degradation, improving glucose nutrients in biomass medium, and promoting sporulation-regulatory gene expression during high-solid fermentation, which enhances the production of microbial ecological agents using B. subtilis significantly.
Collapse
Affiliation(s)
- Chonglei Li
- School of Ecology and Environment, Inner Mongolia Key Laboratory of Environmental Pollution Control & Wastes Reuse, Inner Mongolia University, Hohhot 010021, China
| | - Xiaoyu Du
- School of Ecology and Environment, Inner Mongolia Key Laboratory of Environmental Pollution Control & Wastes Reuse, Inner Mongolia University, Hohhot 010021, China
| | - Zhi-Hua Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xianzhi Meng
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, United States
| | - Ji Zhao
- School of Ecology and Environment, Inner Mongolia Key Laboratory of Environmental Pollution Control & Wastes Reuse, Inner Mongolia University, Hohhot 010021, China
| | - Zhi-Min Zhao
- School of Ecology and Environment, Inner Mongolia Key Laboratory of Environmental Pollution Control & Wastes Reuse, Inner Mongolia University, Hohhot 010021, China; Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, United States; Joint Institute of Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States.
| | - Arthur J Ragauskas
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, United States; Joint Institute of Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States; Center for Renewable Carbon, Department of Forestry, Wildlife, and Fisheries, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, United States.
| |
Collapse
|
5
|
Isoflavone composition of germinated soybeans after freeze–thaw. Food Chem X 2022; 16:100493. [DOI: 10.1016/j.fochx.2022.100493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
|
6
|
Study on the quality change and deterioration mechanism of leisure dried tofu under different storage temperature conditions. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
7
|
Nasrollahzadeh F, Roman L, Skov K, Jakobsen LM, Trinh BM, Tsochatzis ED, Mekonnen T, Corredig M, Dutcher JR, Martinez MM. A comparative investigation of seed storage protein fractions: The synergistic impact of molecular properties and composition on anisotropic structuring. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Kong J, Tao J, Fu S, Wen Y, Zhao S, Zhang B. Corner coil heating mode improves the matrix uniformity of cooked rice in an induction heating cooker. Front Nutr 2022; 9:1038708. [DOI: 10.3389/fnut.2022.1038708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022] Open
Abstract
Nowadays, an increasing number of people worldwide use induction heating cookers to cook rice for consumption. This work reveals the influence of induction heating cooker heating modes on the quality attributes of cooked rice. Three heating modes, including bottom coil heating mode (mode 1), corner coil heating mode (mode 2), and side coil heating (mode 3), were used. Among the three modes, mode 2 allowed for an intermediate heating rate during rice cooking. For mode 2, the minimized temperature difference between the upper layer (including the central upper layer and peripheral upper layer) and the lower layer (including the central lower layer and peripheral lower layer) can reduce the effect of water absorption time difference on rice quality. Consequently, the rice cooked using mode 2 exhibited improved matrix uniformity, as indicated by the similar moisture content (59.92–61.89%), hardness (15.87–18.24 N), and water mobility (the relaxation time and peak area of the third relaxation peak) of rice samples at four different positions in the pot. The rice cooked by mode 2 showed better texture appearance and a more uniform porous microstructure. Consistently, the cooked rice samples by mode 2 at different positions did not show substantial differences in their starch digestion features.
Collapse
|
9
|
Li X, Zhang T, An Y, Yin T, Xiong S, Rong H. Physicochemical Characteristics and Flavor Properties of Texturized Dual-Proteins Extrudates: Effect of Surimi to Soybean Flour Ratio. Foods 2022; 11:foods11223640. [PMID: 36429230 PMCID: PMC9689315 DOI: 10.3390/foods11223640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
This study investigated the effects of surimi to soybean flour ratio (0:10, 1:9, 2:8, 3:7, 4:6) on the physicochemical characteristics and flavor properties of dual-proteins extrudates. The increasing ratio of surimi improved the color of extrudates and raised the apparent viscosity of the mixed raw materials, which led to the decrease of extrudates' thickness. The excess ratio of surimi and soybean flour (more than 2:8) was bad for extrudates' physicochemical characteristics with sharply decreased tensile strength, macroscopic longitudinal fracture, broken and unevenly distributed microstructure, increased water mobility and decreased free water content. However, the increasing ratio of surimi had no effect on the protein secondary structure of extrudates. Sensory evaluation, E-tongue and E-nose analysis suggested that adding surimi significantly changed the flavor properties of extrudates, with increased sweetness and umami taste, and an appropriate ratio (2:8 or 3:7) could reduce the beany flavor and without an obvious fishy off-flavor.
Collapse
Affiliation(s)
- Xiaodong Li
- College of Food Science and Technology, National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Tonghao Zhang
- College of Food Science and Technology, National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Yueqi An
- College of Food Science and Technology, National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Tao Yin
- College of Food Science and Technology, National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Shanbai Xiong
- College of Food Science and Technology, National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
- Correspondence:
| | - Hongshan Rong
- Tianmen Jifude Bean Products Co., Ltd., Tianmen 431700, China
| |
Collapse
|
10
|
Variation of moisture state and taste characteristics during vacuum drying of Maillard reaction intermediates of hydrolyzed soybean protein and characterization of browning precursors via fluorescence spectroscopy. Food Res Int 2022; 162:112086. [DOI: 10.1016/j.foodres.2022.112086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/18/2022] [Accepted: 10/23/2022] [Indexed: 11/21/2022]
|
11
|
Li C, Zhao K, Ma L, Zhao J, Zhao ZM. Effects of drying strategies on sporulation and titer of microbial ecological agents with Bacillus subtilis. Front Nutr 2022; 9:1025248. [PMID: 36238457 PMCID: PMC9551345 DOI: 10.3389/fnut.2022.1025248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/06/2022] [Indexed: 11/23/2022] Open
Abstract
Drying operation is beneficial to the preservation and transportation of microbial ecological agents. In this study, drying kinetics and water distribution variations in solid biomass medium during hot air drying (HAD) and vacuum freeze drying (VFD) were systematically investigated. Meanwhile, the effects of different drying strategies on the sporulation of Bacillus subtilis and the titer of microbial ecological agents were compared. The results showed that both HAD and VFD induced rapid water removal from the solid biomass medium. VFD retained bound water and maintained the porous structure of the solid medium. Both HAD and VFD induced sporulation. The expression level of sporulation-regulatory genes spo0A, sigF, and sigE followed the order 80°C-HAD > 60°C-HAD > VFD. The spore number in the medium after 80°C-HAD drying for 6 h was 0.72 × 1010/g dry medium, which was 9.1 and 12.5% larger than that of the medium with 60°C-HAD and VFD, respectively. Therefore, 80°C-HAD is an effective drying strategy for promoting sporulation, which improves the titer of microbial ecological agents with B. subtilis.
Collapse
Affiliation(s)
- Chonglei Li
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Wastes Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau (Ministry of Education), Inner Mongolia University, Hohhot, China
| | - Kai Zhao
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Wastes Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau (Ministry of Education), Inner Mongolia University, Hohhot, China
| | - Litong Ma
- Inner Mongolia Engineering Research Center of Comprehensive Utilization of Bio-coal Chemical Industry, School of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou, China
| | - Ji Zhao
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Wastes Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Zhi-Min Zhao
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Wastes Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau (Ministry of Education), Inner Mongolia University, Hohhot, China
- *Correspondence: Zhi-Min Zhao
| |
Collapse
|
12
|
Ji W, Li M, Yang T, Li H, Li W, Wang J, Ma M. Effect of cold plasma on physical–biochemical properties and nutritional components of soybean sprouts. Food Res Int 2022; 161:111766. [DOI: 10.1016/j.foodres.2022.111766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/23/2022] [Accepted: 08/02/2022] [Indexed: 11/28/2022]
|
13
|
Yang Y, Ai L, Mu Z, Liu H, Yan X, Ni L, Zhang H, Xia Y. Flavor compounds with high odor activity values (OAV > 1) dominate the aroma of aged Chinese rice wine (Huangjiu) by molecular association. Food Chem 2022; 383:132370. [PMID: 35183960 DOI: 10.1016/j.foodchem.2022.132370] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/22/2022] [Accepted: 02/04/2022] [Indexed: 11/04/2022]
Abstract
Aging is an essential operation to perfect the flavor quality of Hungjiu. In this study, formation mechanism of flavor compounds responsible for the characteristic flavor of aged Huangjiu was investigated. The contents of umami and bitter free amino acids (FAA) increased with the storage period prolonged, while that of sweet FAA showed downward trend. Gas chromatograph-mass spectrometry and principal component analysis indicated that the volatile flavor compounds with OAV exceed 1, especially middle-chain fatty-acid-ethyl-esters and aromatic compounds, dominated the characteristic flavor of aged Huangjiu. Low field-NMR was firstly applied to characterize the molecular association between water and dissolved flavor compounds in aged Huangjiu. The results showed that basic amino acids contributed greatly to the flavor formation of aged Huangjiu via molecular association. In addition, the molecular association significantly promoted the accumulation of flavor compounds with OAV > 1, especially ethyl esters.
Collapse
Affiliation(s)
- Yijin Yang
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Zhiyong Mu
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Haodong Liu
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Xin Yan
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Li Ni
- Institute of Food Science and Technology, Fuzhou University, Fuzhou, Fujian 200093, People's Republic of China
| | - Hui Zhang
- Shanghai Jinfeng Wine Co., Ltd, Shanghai 200120, People's Republic of China
| | - Yongjun Xia
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China.
| |
Collapse
|
14
|
Highly efficient antifogging/antimicrobial dual-functional chitosan based coating for optical devices. Carbohydr Polym 2022; 296:119928. [DOI: 10.1016/j.carbpol.2022.119928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/17/2022] [Accepted: 07/26/2022] [Indexed: 11/23/2022]
|
15
|
Wang L, Xu J, Zhang M, Zheng H, Li L. Preservation of soy protein-based meat analogues by using PLA/PBAT antimicrobial packaging film. Food Chem 2022; 380:132022. [DOI: 10.1016/j.foodchem.2021.132022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/10/2021] [Accepted: 12/30/2021] [Indexed: 11/16/2022]
|
16
|
Synergistic interactions between konjac glucomannan and welan gum mixtures. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Mansoor B, Chen W. Nanoparticle deposition pattern during colloidal droplet evaporation as in-situ investigated by Low-Field NMR: The critical role of bound water. J Colloid Interface Sci 2022; 613:709-719. [DOI: 10.1016/j.jcis.2022.01.083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 01/17/2023]
|
18
|
Xie M, Pu H, Hu Q, Su A, Mariga AM, Li X, Yang W. Effects of A
w
Storage Condition on Quality Deterioration of Dried Cabbages. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Minhao Xie
- Key Laboratory of Grains and Oils Quality Control and Processing Collaborative Innovation Center for Modern Grain Circulation and Safety and College of Food Science and Engineering, Nanjing University of Finance and Economics Nanjing 210023 China
| | - Haoliang Pu
- Key Laboratory of Grains and Oils Quality Control and Processing Collaborative Innovation Center for Modern Grain Circulation and Safety and College of Food Science and Engineering, Nanjing University of Finance and Economics Nanjing 210023 China
| | - Qiuhui Hu
- Key Laboratory of Grains and Oils Quality Control and Processing Collaborative Innovation Center for Modern Grain Circulation and Safety and College of Food Science and Engineering, Nanjing University of Finance and Economics Nanjing 210023 China
| | - Anxiang Su
- Key Laboratory of Grains and Oils Quality Control and Processing Collaborative Innovation Center for Modern Grain Circulation and Safety and College of Food Science and Engineering, Nanjing University of Finance and Economics Nanjing 210023 China
| | - Alfred Mugambi Mariga
- School of Agriculture and Food Science Meru University of Science Technology P.O. Box 972‐60400 Meru Kenya
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing China
| | - Wenjian Yang
- Key Laboratory of Grains and Oils Quality Control and Processing Collaborative Innovation Center for Modern Grain Circulation and Safety and College of Food Science and Engineering, Nanjing University of Finance and Economics Nanjing 210023 China
| |
Collapse
|
19
|
Zhuang L, Huang G, Li X, Xiao J, Guo L. Effect of different LED lights on aliphatic glucosinolates metabolism and biochemical characteristics in broccoli sprouts. Food Res Int 2022; 154:111015. [DOI: 10.1016/j.foodres.2022.111015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 12/22/2022]
|
20
|
Xia S, Xue Y, Xue C, Jiang X, Li J. Structural and rheological properties of meat analogues from Haematococcus pluvialis residue-pea protein by high moisture extrusion. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Sun L, Wang H, Wei J, Xue Y, Lan S, Li X, Yu D, Wang J. Extracting oil from grape seed using a combined wet enzymatic process and pressing. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.102941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
22
|
Wu H, Liu HN, Ma AM, Zhou JZ, Xia XD. Synergetic effects of Lactobacillus plantarum and Rhizopus oryzae on physicochemical, nutritional and antioxidant properties of whole-grain oats (Avena sativa L.) during solid-state fermentation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112687] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Water distribution and moisture-absorption in egg-white derived peptides: Effects on their physicochemical, conformational, thermostable, and self-assembled properties. Food Chem 2021; 375:131916. [PMID: 34959140 DOI: 10.1016/j.foodchem.2021.131916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/15/2021] [Accepted: 12/19/2021] [Indexed: 11/22/2022]
Abstract
Three egg-white derived peptides (DHTKE, MPDAHL, and FFGFN) were characterized with hydrophilia and water distributions. The effect of moisture exposure on their properties at 75% relative humidity for 30 h were further investigated. LF-NMR tests revealed that strong bound-water (relaxation time < 10 ms) accounted for more than 80% of total water in peptides after moisture-absorption. The absorbed water led to the pH of three peptides increase, antioxidant activities in vitro decrease, and diverse changes in their functional group vibrations, molecular hydrophobicity, and phase transformation properties. Compared to dried samples, the hydrated-DHTKE was pyrolyzed and hydrated-MPDAHL was oxidized over 160 °C, while the glass transition, melting, and crosslink temperatures of FFGFN all decreased after moisture-absorption. Moreover, the results indicated that moisture-absorption in FFGFN powder enhanced the surface-hydrophobicity of FFGFN-hydrogel and accelerated its self-organizations. This study provides a comprehensive understanding of moisture-absorption effects on peptides, with these changes potentially impacting storage recommendations and scientific interpretations.
Collapse
|
24
|
Zhang A, Cui H, Hayat K, Zhang Q, Zhang X, Ho CT. Accelerated Dissipation of Free and Immobilized Water Facilitating the Intramolecular Dehydration of N-Xylosamine and Conversion Improvement of the Amadori Rearrangement Product of Aspartic Acid-Xylose Reaction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14662-14670. [PMID: 34807609 DOI: 10.1021/acs.jafc.1c05827] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Compared to the method of aqueous Maillard reaction at atmospheric pressure tandem vacuum concentration, a coupling dehydration method combining spray drying and vacuum drying was used to increase aspartic acid-xylose conversion to the Amadori rearrangement product (ARP). The water activity and moisture states were found as effective indicators to characterize the degree of dehydration of Maillard reaction intermediates and efficient formation of ARP. During the vacuum drying process, the water activity of the product powder decreased significantly. Because the formation of ARP was accompanied by intramolecular dehydration, combining spray drying and vacuum drying increased the proportion of bound water in the vacuum-dried product. Free water was easily dissipated via dehydration, which then converted the immobilized water continuously to free water, and the decreased immobilized water further converted the bound water to immobilized water. The reduction in bound water contributed to the intramolecular dehydration of N-substituted d-xylosamine, which would further be transformed to be the ARP through an intramolecular rearrangement. The yield of ARP was increased from 1.68 to 21.53% after spray drying. The ARP yield was substantially increased up to 77.9% by subsequent vacuum drying.
Collapse
Affiliation(s)
- Ao Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Heping Cui
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Khizar Hayat
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, Ohio 45056, United States
| | - Qiang Zhang
- Anhui Province Key Laboratory of Functional Compound Seasoning, Anhui Qiangwang Flavouring Food Company, Limited, No. 1 Shengli Road, Jieshou, Anhui 236500, China
| | - Xiaoming Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
25
|
Hu S, Zhu Q, Ren A, Ge L, He J, Zhao M, He Q. Roles of water in improved production of mycelial biomass and lignocellulose-degrading enzymes by water-supply solid-state fermentation of Ganoderma lucidum. J Biosci Bioeng 2021; 133:126-132. [PMID: 34785147 DOI: 10.1016/j.jbiosc.2021.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/09/2021] [Accepted: 10/20/2021] [Indexed: 11/25/2022]
Abstract
The liquid phase was proved to be a significant influencing factor among the three phases in solid-state fermentation (SSF), which determined water control was crucial. However, obvious water loss was caused by microbial utilization and moisture evaporation. Super absorbent polymer (SAP) was utilized to supply water in SSF owing to its high water-holding capacity. Adding 0.15% SAP could significantly increase the biomass of Ganoderma lucidum by 33.59% and promote filter paper activity (FPA), endocellulase activity and laccase activity by 27.11%, 29.14% and 47.39%, respectively. Water states of fermentation substrates were detected by the low-field nuclear magnetic resonance (LF-NMR). Results revealed that water present and lost was dominated by the capillary water. At the end of fermentation, the capillary water content (Ccw) in water-supply SSF was 20.48% and 17.20% higher than that in static SSF and cold-model SSF. The relaxation time of the capillary water was reduced by 56.53% in water-supply SSF and by 53.40% in static SSF, but it just reduced by 6.82% in cold-model SSF. In addition, the Ccw in SSF had a high correlation with the biomass and lignocellulose-degrading enzyme activities of G. lucidum. These results clearly demonstrated that capillary water played a very important role in improved production of G. lucidum.
Collapse
Affiliation(s)
- Shishan Hu
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Quanyu Zhu
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Ang Ren
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Ligang Ge
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Jian He
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Mingwen Zhao
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Qin He
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China.
| |
Collapse
|
26
|
Liu G, Zhang C, Gao H, Zhang H, Wei H. Water migration, texture and oral processing properties of semi-waxy rice during retrogradation. J Food Sci 2021; 86:5100-5106. [PMID: 34755905 DOI: 10.1111/1750-3841.15959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 09/20/2021] [Accepted: 10/07/2021] [Indexed: 11/28/2022]
Abstract
Semi-waxy rice, a low-amylose content (8%-13%) rice variety, can resist retrogradation. It is becoming more and more popular and widely cultivated in East China where consumers prefer cooked rice with soft and tender texture. In this study, water migration, texture and oral processing properties of cooked rice during retrogradation were investigated in order to characterize semi-waxy rice. The results confirmed that the water mobility and migration of semi-waxy rice during retrogradation is weaker than that of waxy rice and stronger than that of nonwaxy rice. Simultaneously, the hardness of semi-waxy rice was higher than that of waxy rice and lower than that of nonwaxy rice. The oral processing properties confirmed that freshly waxy rice was too adhesive and needed more work to breakdown slow breakdown structure (Type Ⅱ structure) compared to freshly semi-waxy rice. Meanwhile, nonwaxy rice was too hard, and more work was needed to break both fast breakdown structure (Type I structure) and slow breakdown structure (Type Ⅱ structure). The oral processing properties confirmed that retrograded semi-waxy rice generated more reducing sugar than retrograded waxy rice and nonwaxy rice. Thus, semi-waxy rice can retard retrogradation, and the texture of cooked semi-waxy rice is neither too adhesive as waxy rice nor too hard as nonwaxy rice. PRACTICAL APPLICATION: Semi-waxy rice cultivars have been widely cultivated in East China and well accepted by the consumers. This study aims to characterize semi-waxy rice and provide theoretical basis for semi-waxy rice study.
Collapse
Affiliation(s)
- Guodong Liu
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China.,Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou, China
| | - Chao Zhang
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China.,Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou, China
| | - Hui Gao
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China.,Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou, China
| | - Hongcheng Zhang
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China.,Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou, China
| | - Haiyan Wei
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China.,Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou, China
| |
Collapse
|
27
|
Zhang L, Hu Y, Wang X, Abiola Fakayode O, Ma H, Zhou C, Xia A, Li Q. Improving soaking efficiency of soybeans through sweeping frequency ultrasound assisted by parameters optimization. ULTRASONICS SONOCHEMISTRY 2021; 79:105794. [PMID: 34673339 PMCID: PMC8528789 DOI: 10.1016/j.ultsonch.2021.105794] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 05/25/2023]
Abstract
Soybean soaking is important to the processing of bean products, however, restricted by the long soaking time. Herein, the soybean soaking was assisted by 60 kHz sweeping frequency ultrasound (SFU). Shortening mechanism of soaking time and physicochemical properties of soybeans were analyzed. Results showed that soaking temperature of 37 °C, ultrasonic power of 60% (144 W), and soaking time of 214 min were optimum SFU-assisted parameters. The soaking time was reduced by 45.13%, and soluble protein content increased by 14.27% after SFU. Based on analysis of acoustic signals, the maximum voltage amplitude of SFU increased with the increment of oscillation periods of cavitation bubbles, which enlarged the intercellular space and size of soybean, and cell membrane permeability was enhanced by 4.37%. Unpleasant beany flavor compounds were reduced by 16.37%-47.6%. Therefore, SFU could significantly improve the soaking efficiency of soybeans and provide a theoretical basis for the processing enterprises of soybean products.
Collapse
Affiliation(s)
- Lei Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yang Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xue Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Olugbenga Abiola Fakayode
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Department of Agricultural and Food Engineering, University of Uyo, Uyo 520001, Akwa Ibom State, Nigeria
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Aiming Xia
- Zhenjiang New Mill Bean Industry Co. LTD, Zhenjiang 212000, China
| | - Qun Li
- Zhenjiang New Mill Bean Industry Co. LTD, Zhenjiang 212000, China
| |
Collapse
|
28
|
Li S, Shang L, Wu D, Dun H, Wei X, Zhu J, Zongo AW, Li B, Geng F. Sodium caseinate reduces the swelling of konjac flour: A further examination. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Xing M, Wang S, Lin J, Xia F, Feng J, Shen G. Composition Profiling and Authenticity Assessment of Camellia Oil Using High Field and Low Field 1H NMR. Molecules 2021; 26:4738. [PMID: 34443325 PMCID: PMC8400449 DOI: 10.3390/molecules26164738] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 11/17/2022] Open
Abstract
Camellia oil (CA), mainly produced in southern China, has always been called Oriental olive oil (OL) due to its similar physicochemical properties to OL. The high nutritional value and high selling price of CA make mixing it with other low-quality oils prevalent, in order to make huge profits. In this paper, the transverse relaxation time (T2) distribution of different brands of CA and OL, and the variation in transverse relaxation parameters when adulterated with corn oil (CO), were assessed via low field nuclear magnetic resonance (LF-NMR) imagery. The nutritional compositions of CA and OL and their quality indices were obtained via high field NMR (HF-NMR) spectroscopy. The results show that the fatty acid evaluation indices values, including for squalene, oleic acid, linolenic acid and iodine, were higher in CA than in OL, indicating the nutritional value of CA. The adulterated CA with a content of CO more than 20% can be correctly identified by principal component analysis or partial least squares discriminant analysis, and the blended oils could be successfully classified by orthogonal partial least squares discriminant analysis, with an accuracy of 100% when the adulteration ratio was above 30%. These results indicate the practicability of LF-NMR in the rapid screening of food authenticity.
Collapse
Affiliation(s)
- Meijun Xing
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, Xiamen 361005, China; (M.X.); (S.W.); (F.X.); (J.F.)
| | - Shenghao Wang
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, Xiamen 361005, China; (M.X.); (S.W.); (F.X.); (J.F.)
| | - Jianzhong Lin
- Technology Center of Xiamen Customs, Xiamen 361012, China;
| | - Feng Xia
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, Xiamen 361005, China; (M.X.); (S.W.); (F.X.); (J.F.)
| | - Jianghua Feng
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, Xiamen 361005, China; (M.X.); (S.W.); (F.X.); (J.F.)
| | - Guiping Shen
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, Xiamen 361005, China; (M.X.); (S.W.); (F.X.); (J.F.)
| |
Collapse
|
30
|
Tenderness improvement of reduced-fat and reduced-salt meat gels as affected by high pressure treating time. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102687] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Zhao Y, Lin S, Yang R, Chen D, Sun N. Proton Dynamics of Water Diffusion in Shrimp Hydrolysates Flour and Effects of Moisture Absorption on Its Properties. Foods 2021; 10:foods10051137. [PMID: 34065224 PMCID: PMC8161016 DOI: 10.3390/foods10051137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 11/25/2022] Open
Abstract
Moisture absorbed into shrimp hydrolysates (SHs) flour profoundly affected its properties. The unstored hydrolysate flour was called SHs-0h and SHs stored for 30 h at 25 °C and 75% relative humidity was named SHs-30. During the process of storage, the moisture dynamics in SHs flour were investigated by dynamic vapor sorption (DVS) and low-field nuclear magnetic resonance (LF-NMR). The effects of moisture absorption on the radicals scavenging rates of SHs flour were evaluated by electron paramagnetic resonance (EPR). The effects of moisture absorption on secondary structure were studied by mid-infrared (MIR) spectroscopy and infrared microimaging spectroscopy. The changes of volatile components were monitored by purge and trap coupled with gas chromatography-mass spectrometry (PT-GC-MS). DVS results showed that the moisture absorption rate of SHs flour could reach a maximum of 88.93%. Meanwhile, the water was transformed into more stable water with shorter relaxation times. The porous structure of the SHs-30 h flour disappeared and became smoother compared to SH-0 h flour. DPPH (31.09 ± 0.54%) and OH (26.62 ± 1.14%) radicals scavenging rates of SHs-30 h significantly reduced (p < 0.05) compared to that of SHs-0 h flour. The vibrations of the MIR absorbance peaks were changed. Finally, eight volatile components disappeared and six new volatile compounds were found. This study provided a theory basis for moisture dynamics in peptide flour during the storage process.
Collapse
Affiliation(s)
- Yue Zhao
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (Y.Z.); (S.L.); (D.C.)
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (Y.Z.); (S.L.); (D.C.)
| | - Ruiwen Yang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China;
| | - Dong Chen
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (Y.Z.); (S.L.); (D.C.)
| | - Na Sun
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (Y.Z.); (S.L.); (D.C.)
- Correspondence: ; Tel.: +86-1884-082-1971; Fax: +86-4118-631-8655
| |
Collapse
|
32
|
Fu T, Niu L, Tu J, Xiao J. The effect of different tea products on flavor, texture, antioxidant and in vitro digestion properties of fresh instant rice after commercial sterilization at 121 °C. Food Chem 2021; 360:130004. [PMID: 33975072 DOI: 10.1016/j.foodchem.2021.130004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/05/2021] [Accepted: 05/02/2021] [Indexed: 11/18/2022]
Abstract
The conventional process of commercial sterilization at 121 °C resulted in undesirable flavor, injured texture and fast starch digestion of fresh instant rice (FIR) with non-dehydration. In this study, tea products, such as instant green tea (IGT), instant black tea (IBT) and matcha (Mat) were chosen as ingredients to improve the quality of FIR. The results showed thatadding tea products endowed FIR with subtle flavors and higher antioxidant capacity. And the data of XRD, FTIR and SEM indicated that the improved texture of FIR with suitable chewiness was attributed to the stability of non-crystal structure. Furthermore, compared with IBT and Mat, IGT increased the ability against digestion from 10.18% to 30.44% and delayed the retrogradation rate from 18.89% to 4.38% evidenced by T2 values after stored for 14 d. Therefore, adding tea products will be a new way to improve the quality of FIR.
Collapse
Affiliation(s)
- Tiantian Fu
- School of Food Science and Engineering, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China
| | - Liya Niu
- School of Food Science and Engineering, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China
| | - Jin Tu
- School of Food Science and Engineering, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China
| | - Jianhui Xiao
- School of Food Science and Engineering, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China; Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
33
|
Zan K, Wang J, Ren F, Yu J, Wang S, Xie F, Wang S. Structural disorganization of cereal, tuber and bean starches in aqueous ionic liquid at room temperature: Role of starch granule surface structure. Carbohydr Polym 2021; 258:117677. [PMID: 33593553 DOI: 10.1016/j.carbpol.2021.117677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/23/2020] [Accepted: 01/14/2021] [Indexed: 10/22/2022]
Abstract
The structural disorganization of different starches in a 1-ethyl-3-methylimidazolium acetate ([Emim][OAc])/water mixture (1:6 mol./mol.) at room temperature (25 °C) was studied. For normal cereal starches, which have pinholes randomly dispersed on the granule surface or only in the outermost annular region (wheat starch), the aqueous ionic liquid (IL) completely destroyed the granule structure within 1-1.5 h. Pea starch (PeS) granules with cracks were destroyed by the aqueous IL within 6 h. High-amylose maize starch (HAMS), as well as potato and purple yam starches (PoS and PYS), which have a dense and thick outer granule layer, were even more resistant to the action of the solvent. Structural disorganization was accompanied by increased viscosity and controlled the binding of water molecules with starch chains. From this study, we concluded that the surface characteristics of starch granule are an important factor affecting starch structural disorganization in an aqueous IL.
Collapse
Affiliation(s)
- Ke Zan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China; School of Food Science and Technology, Tianjin University of Science & Technology, 300457, China
| | - Jinwei Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China; School of Food Science and Technology, Tianjin University of Science & Technology, 300457, China
| | - Fei Ren
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China; School of Food Science and Technology, Tianjin University of Science & Technology, 300457, China
| | - Jinglin Yu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China; School of Food Science and Technology, Tianjin University of Science & Technology, 300457, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Fengwei Xie
- International Institute for Nanocomposites Manufacturing (IINM), WMG, University of Warwick, Coventry, CV4 7AL, United Kingdom.
| | - Shujun Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China; School of Food Science and Technology, Tianjin University of Science & Technology, 300457, China; College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China.
| |
Collapse
|
34
|
Li Q, Li S, Guan X, Huang K, Zhu F. Effects of vacuum soaking on the hydration, steaming, and physiochemical properties of japonica rice. Biosci Biotechnol Biochem 2021; 85:634-642. [PMID: 33590867 DOI: 10.1093/bbb/zbaa068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 10/25/2020] [Indexed: 11/13/2022]
Abstract
Soaking is an essential step in the processing of various rice products. In this study, the influences of vacuum soaking on hydration, steaming, and physiochemical properties of rice were investigated. Results showed that vacuum soaking accelerated water absorption as well as affected the mobility and density of water protons inside rice during soaking. Vacuum soaking could considerably shorten the optimal steaming time from 58 to 32 min and reduce the adhesiveness of steamed rice. Microstructure analysis of rice revealed that porous structure was formed on rice surface and the arrangement of starch granules became loosened after vacuum soaking. Moreover, vacuum soaking slightly reduced the relative crystallinity of rice starches without altering the crystalline type. The gelatinization temperature as well as the peak and trough viscosity was also decreased after vacuum soaking. Our study suggested that vacuum soaking was conducive to improve the soaking and steaming properties of rice.
Collapse
Affiliation(s)
- Qiuyun Li
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Sen Li
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xiao Guan
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Kai Huang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Fengbo Zhu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
35
|
Wang X, Liu Z, Li X, Song J, Chen L, Li Y, Liu X, Li P. Quality improvement of fresh extruded rice
‐
shaped kernels by microwave‐aided puffing technology. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaodong Wang
- State Key Laboratory of Food Nutrition and Safety College of Food Science and Engineering Tianjin University of Science and Technology Tianjin China
| | - Zhenyuan Liu
- State Key Laboratory of Food Nutrition and Safety College of Food Science and Engineering Tianjin University of Science and Technology Tianjin China
| | - Xihong Li
- State Key Laboratory of Food Nutrition and Safety College of Food Science and Engineering Tianjin University of Science and Technology Tianjin China
| | - Jianxin Song
- State Key Laboratory of Food Nutrition and Safety College of Food Science and Engineering Tianjin University of Science and Technology Tianjin China
| | - Lan Chen
- State Key Laboratory of Food Nutrition and Safety College of Food Science and Engineering Tianjin University of Science and Technology Tianjin China
| | - Yueming Li
- Changrong Huitong (Tianjin) Food Science and Technology Research and Development Co. Ltd Tianjin China
| | - Xiaofei Liu
- Agricultural Regionalization Office (Rural Energy) of Lingyuan Lingyuan China
| | - Pengli Li
- Lingyuan Agricultural Products Processing Park Management Committee Lingyuan China
| |
Collapse
|
36
|
Hu Z, Yang H, Chaima M, Fang C, Lu L, Hu X, Du B, Zhu Z, Huang J. A visualization and quantification method to evaluate the water-absorbing characteristics of rice. Food Chem 2020; 331:127050. [PMID: 32569961 DOI: 10.1016/j.foodchem.2020.127050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/30/2020] [Accepted: 05/11/2020] [Indexed: 11/26/2022]
Abstract
A visualization and quantification image analysis method is developed to evaluate the water-absorbing characteristics of rice. A projected image of soaked rice was obtained by a scanner in real time, the expansion ratio of the soaked rice in the projected image was calculated with computer software, and the change in the internal structure was analyzed. The results showed that water absorption had a positive correlation with expansion and the cracks occurred in the internal structure of rice could accelerate the water absorption. The maximum expansion ratio of Japonica rice gradually increased with increased milling time, but that of Japonica glutinous rice was not significantly different (P > 0.05). A high soaking temperature shortened the time to reach the maximum expansion ratio and resulted in a lower expansion ratio in the Indica and Indica glutinous rice but had no significant effect (P > 0.05) in the Japonica and Japonica glutinous rice.
Collapse
Affiliation(s)
- Zhanqiang Hu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China; Rice Product Quality Supervision and Inspection Center, Ministry of Agriculture and Rural Affairs, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Hua Yang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Mamoun Chaima
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Changyun Fang
- Rice Product Quality Supervision and Inspection Center, Ministry of Agriculture and Rural Affairs, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Lin Lu
- Rice Product Quality Supervision and Inspection Center, Ministry of Agriculture and Rural Affairs, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Xianqiao Hu
- Rice Product Quality Supervision and Inspection Center, Ministry of Agriculture and Rural Affairs, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Bai Du
- Rice Product Quality Supervision and Inspection Center, Ministry of Agriculture and Rural Affairs, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Zhiwei Zhu
- Rice Product Quality Supervision and Inspection Center, Ministry of Agriculture and Rural Affairs, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Jianying Huang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China.
| |
Collapse
|
37
|
Li P, Li Y, Wang L, Zhang H, Qi X, Qian H. Study on water absorption kinetics of black beans during soaking. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2020.110030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
38
|
Convolutional neural network based approach for classification of edible oils using low-field nuclear magnetic resonance. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103566] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
39
|
Yang Z, Lin X, Wang L, Li C, Liu S. Effects of ultrasonic treatment on the cooking and fermentation properties of Shanlan rice. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.103003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
40
|
Effects of material characteristics on the structural characteristics and flavor substances retention of meat analogs. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105752] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
41
|
Wang S, Lin R, Cheng S, Tan M. Water dynamics changes and protein denaturation in surf clam evaluated by two-dimensional LF-NMR T 1-T 2 relaxation technique during heating process. Food Chem 2020; 320:126622. [PMID: 32203840 DOI: 10.1016/j.foodchem.2020.126622] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 03/12/2020] [Accepted: 03/15/2020] [Indexed: 10/24/2022]
Abstract
Water dynamics and protein denaturation in surf clam during heating were studied by the two-dimensional low-field nuclear magnetic resonance (LF-NMR) T1-T2 relaxation technique. A significant change was found for clam around 80 °C and direct visualization of the water state change was provided by the magnetic resonance imaging. Principal components and heatmap analysis revealed that clam treated at 80-100 °C located at different region from those treated at 40-70 °C. The clams heated at 80 °C showed a maximum water holding capability, and significant microstructure change. The differential scanning calorimetry analysis indicated a denaturation of protein when the temperature was over 80 °C. The hardness and chewiness had a maximum value at 80 and 70 °C, respectively. The color parameter L* showed a significant increase when temperature was over 80 °C. This demonstrated that the T1-T2 technique has potential in evaluating water dynamics for surf clam during heating.
Collapse
Affiliation(s)
- Siqi Wang
- School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; Engineering Research Center of Seafood of Ministry of Education of China, Dalian 116034, Liaoning, China
| | - Rong Lin
- School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; Engineering Research Center of Seafood of Ministry of Education of China, Dalian 116034, Liaoning, China
| | - Shasha Cheng
- School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; Engineering Research Center of Seafood of Ministry of Education of China, Dalian 116034, Liaoning, China
| | - Mingqian Tan
- School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; Engineering Research Center of Seafood of Ministry of Education of China, Dalian 116034, Liaoning, China.
| |
Collapse
|
42
|
Xu L, Gu L, Su Y, Chang C, Wang J, Dong S, Liu Y, Yang Y, Li J. Impact of thermal treatment on the rheological, microstructural, protein structures and extrusion 3D printing characteristics of egg yolk. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105399] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
43
|
Yang R, Ju H, Yuan L, Ye H, Lin S. Exploration on self-equilibrium rule and adsorption-desorption model between pine nut (Pinus koraiensis) peptide molecules and environmental moisture molecules. Food Res Int 2020; 132:109082. [PMID: 32331682 DOI: 10.1016/j.foodres.2020.109082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/09/2020] [Accepted: 02/04/2020] [Indexed: 11/17/2022]
Abstract
The storage of pine nut (Pinus koraiensis) peptide (PNP) powder involves hygroscopic phenomena. To investigate the adsorption and self-equilibrium rules between these peptides and the environmental moisture molecules, several studies such as low-field nuclear magnetic resonance (LF-NMR), dynamic vapor sorption (DVS) and adsorption-desorption models were done. The results showed that the outward moisture migration occurred during storage as 7.80% and 16.68% moisture were respectively constrained by the original sample and 90 days after lyophilization, by chemical bonding. Additionally, 1.79% moisture was lost in PNP powder at day 90. The optimized adsorption model for PNP powder was changed from Henderson's to Oswin's model during the 90 days' storage whereas the optimized desorption model was changed from Halsey's to GAB's model. The PNP powder at day 90 presented smaller particles with an average diameter and height of 15.645 nm and 50 nm, respectively, and it contained more molecular moisture which cannot be removed. The free thiol of the PNP powder at day 0 and day 90 was 1.75 ± 0.16 μM SH/g and 1.95 ± 0.16 μM SH/g, respectively, and the total sulfhydryl was 101.46 ± 1.06 μM SH/g and 118.44 ± 1.27 μM SH/g. The registered increased sulfhydryl content contributed to the generation of off-flavor.
Collapse
Affiliation(s)
- Ruiwen Yang
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Huapeng Ju
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Liyan Yuan
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Haiqing Ye
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Songyi Lin
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China; National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China.
| |
Collapse
|
44
|
Zhang Q, Xia S, Li J, Zhang X, Yu J. Effect of moisture transfer on texture uniformity of cooked rice after heat preservation with electric rice cooker. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2019.102862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Understanding the mechanism of change in morphological structures, visualization features, and physicochemical characteristics of adlay seeds (Coix lacryma-jobi L.): The role of heat soaking. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2019.102892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
46
|
Xu L, Zhao Y, Xu M, Nie X, Wu N, Tu Y. Formation mechanism of low-density lipoprotein gel induced by NaCl. Poult Sci 2019; 98:5166-5176. [PMID: 31064005 DOI: 10.3382/ps/pez232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 04/22/2019] [Indexed: 11/20/2022] Open
Abstract
Salted eggs, which are a traditional Chinese egg product, are favored by Chinese consumers and have become very popular in other Asian countries due to their unique features such as "fresh, fine, tender, loose, gritty and oily texture." In order to illuminate the forming process of salted egg, the gelation behavior and mechanism of low-density lipoprotein (LDL) induced by NaCl were investigated using marinated model outside the eggshell. Results showed that as the salting proceeded, the moisture content exhibited a decreasing trend. The NaCl content, oil exudation, hardness, and surface hydrophobicity showed constantly increasing trends. In the early stages of salting, the size of the LDL particles, soluble protein content, and T21 increased, whereas T21 (with D2O), T22, and the free sulfhydryl content declined. In the later stages of salting, LDL formed a multiple composite aggregate gel structure with filamentous apoproteins and non-spherical lipid particles intertwined with each other. The soluble protein content and T23 (without D2O) decreased, whereas T21 (with D2O), T22 and the free sulfhydryl content increased. Fourier transform infrared spectroscopy revealed that the fresh LDL mainly consisted of α-helix and β-sheet structures. After the gel becomes hardened, the LDL secondary structure was changed remarkably, characterized by the decrease of α-helix elements and increase of β-sheet elements. The results suggested that the oil exudation of salted LDL gels was mainly due to LDL destruction and the release of components (apoproteins, phospholipids, and neutral lipids) facilitated by increased interactions between apoproteins and lipids.
Collapse
Affiliation(s)
- Lilan Xu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yan Zhao
- Engineering Research Center of Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China.,Jiangxi Shenzhu Tianyuan Food Co., Ltd., Nanchang University, Nanchang 330219, China
| | - Mingsheng Xu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xuliang Nie
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
| | - Na Wu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yonggang Tu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
47
|
Exogenous bacterial composition changes dominate flavor deterioration of dried carrots during storage. Food Chem Toxicol 2019; 134:110833. [DOI: 10.1016/j.fct.2019.110833] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 11/22/2022]
|
48
|
Chen L, Ma R, Zhang Z, McClements DJ, Qiu L, Jin Z, Tian Y. Impact of frying conditions on hierarchical structures and oil absorption of normal maize starch. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.105231] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
49
|
Enhancement of Bacillus subtilis Growth and Sporulation by Two-Stage Solid-State Fermentation Strategy. Processes (Basel) 2019. [DOI: 10.3390/pr7100644] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Two-stage solid-state fermentation strategy was exploited and systematically optimized to enhance Bacillus subtilis growth and sporulation for increasing effective cell number in B. subtilis microbial ecological agents. The first stage focused on improving cell growth followed by the second stage aiming to enhance both cell growth and sporulation. The optimal fermentation condition was that temperature changed from 37 °C to 47 °C at a fermentation time of 48 h and Mn2+ content in medium was 4.9 mg MnSO4/g dry medium. Solid medium properties were improved by the optimal two-stage fermentation. HPLC results demonstrated that glucose utilization was facilitated and low-field nuclear magnetic resonance (LF-NMR) results showed that more active sites in medium for microbial cells were generated during the optimal two-stage fermentation. Moreover, microbial growth and sporulation were enhanced simultaneously during the second stage of fermentation through delaying microbial decline phase and increasing sporulation rate. As a result, effective cell number of B. subtilis reached 1.79 × 1010/g dry medium after fermentation for 72 h, which was 29.7% and 8.48% higher than that of conventional fermentation for 72 h and 48 h, respectively. Therefore, the optimal two-stage fermentation could increase the effective cell number of B. subtilis microbial ecological agents efficiently.
Collapse
|
50
|
Wang J, Ren F, Yu J, Copeland L, Wang S, Wang S. Toward a Better Understanding of Different Dissolution Behavior of Starches in Aqueous Ionic Liquids at Room Temperature. ACS OMEGA 2019; 4:11312-11319. [PMID: 31460234 PMCID: PMC6648505 DOI: 10.1021/acsomega.9b00962] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/12/2019] [Indexed: 05/27/2023]
Abstract
The purpose of this study was to understand the dissolution behavior of maize and potato starches in 1-ethyl-3-methylimidazolium acetate ([Emim][OAc]):water mixtures at room temperature. With an increasing ratio of ionic liquid (IL):water, the long- and short-range ordered structures and granule morphology of both starches were disrupted progressively. The multiscale structure of maize starch was disrupted completely after treatment with the [Emim][OAc]:water mixture of 6:4, indicating good dissolution performance of this mixture for maize starch. This mixture seemed to provide a balance between the viscosity of the solvent and availability of ions to disrupt starch H-bonds. The different dissolution behaviors of maize and potato starches in [Emim][OAc]:water mixtures were attributed to structural differences of the granule surfaces. Our results showed that the dissolution behavior of starches was affected by both starch sources and properties of [Emim][OAc]:water mixtures, which may provide guidance for the development of green technology for processing of biopolymers with low energy consumption.
Collapse
Affiliation(s)
- Jinwei Wang
- State
Key Laboratory of Food Nutrition and Safety and School of Food Engineering and
Biotechnology, Tianjin University of Science
& Technology, Tianjin 300457, China
| | - Fei Ren
- State
Key Laboratory of Food Nutrition and Safety and School of Food Engineering and
Biotechnology, Tianjin University of Science
& Technology, Tianjin 300457, China
| | - Jinglin Yu
- State
Key Laboratory of Food Nutrition and Safety and School of Food Engineering and
Biotechnology, Tianjin University of Science
& Technology, Tianjin 300457, China
| | - Les Copeland
- Sydney
Institute of Agriculture, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Shuo Wang
- Tianjin
Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Shujun Wang
- State
Key Laboratory of Food Nutrition and Safety and School of Food Engineering and
Biotechnology, Tianjin University of Science
& Technology, Tianjin 300457, China
| |
Collapse
|