1
|
Franco R, Garrigós C, Capó T, Serrano-Marín J, Rivas-Santisteban R, Lillo J. Olfactory receptors in neural regeneration in the central nervous system. Neural Regen Res 2025; 20:2480-2494. [PMID: 39503417 PMCID: PMC11801295 DOI: 10.4103/nrr.nrr-d-24-00495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/05/2024] [Accepted: 08/05/2024] [Indexed: 02/08/2025] Open
Abstract
Olfactory receptors are crucial for detecting odors and play a vital role in our sense of smell, influencing behaviors from food choices to emotional memories. These receptors also contribute to our perception of flavor and have potential applications in medical diagnostics and environmental monitoring. The ability of the olfactory system to regenerate its sensory neurons provides a unique model to study neural regeneration, a phenomenon largely absent in the central nervous system. Insights gained from how olfactory neurons continuously replace themselves and reestablish functional connections can provide strategies to promote similar regenerative processes in the central nervous system, where damage often results in permanent deficits. Understanding the molecular and cellular mechanisms underpinning olfactory neuron regeneration could pave the way for developing therapeutic approaches to treat spinal cord injuries and neurodegenerative diseases like Alzheimer's disease. Olfactory receptors are found in almost any cell of every organ/tissue of the mammalian body. This ectopic expression provides insights into the chemical structures that can activate olfactory receptors. In addition to odors, olfactory receptors in ectopic expression may respond to endogenous compounds and molecules produced by mucosal colonizing microbiota. The analysis of the function of olfactory receptors in ectopic expression provides valuable information on the signaling pathway engaged upon receptor activation and the receptor's role in proliferation and cell differentiation mechanisms. This review explores the ectopic expression of olfactory receptors and the role they may play in neural regeneration within the central nervous system, with particular attention to compounds that can activate these receptors to initiate regenerative processes. Evidence suggests that olfactory receptors could serve as potential therapeutic targets for enhancing neural repair and recovery following central nervous system injuries.
Collapse
Affiliation(s)
- Rafael Franco
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- CiberNed Network Center for Biomedical Research in Neurodegenerative Diseases, Spanish National Health Institute Carlos III, Madrid, Spain
- School of Chemistry, Universitat de Barcelona, Barcelona, Spain
| | - Claudia Garrigós
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Toni Capó
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Joan Serrano-Marín
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Rafael Rivas-Santisteban
- CiberNed Network Center for Biomedical Research in Neurodegenerative Diseases, Spanish National Health Institute Carlos III, Madrid, Spain
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Autonomous University of Barcelona, Campus Bellaterra, Barcelona, Spain
| | - Jaume Lillo
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- CiberNed Network Center for Biomedical Research in Neurodegenerative Diseases, Spanish National Health Institute Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Ji H, Pu D, Su L, Zhang Q, Yan W, Kong J, Zuo M, Zhang Y. Computational approaches for decoding structure-saltiness enhancement and aroma perception mechanisms of odorants: From machine learning to molecular simulation. Food Res Int 2025; 202:115707. [PMID: 39967096 DOI: 10.1016/j.foodres.2025.115707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/14/2024] [Accepted: 01/05/2025] [Indexed: 02/20/2025]
Abstract
The unclear relationship between structure and saltiness enhancement limits the development and application of savory odorants. The structure characteristic-saltiness enhancement perception (SEP) mechanisms of savory odorants were investigated by machine learning, molecular docking, and site-directed mutagenesis simulations. The XGBoost model (R2 = 0.96) showed better prediction on the maximum saltiness-enhancement ability of odorants based on their structures. The important features of the odorants contributing to SEP were analyzed by Shapley additive explanations (SHAP). Results showed that phenyl and aldehyde groups had significant positive contributions to SEP, with SHAP values of + 2.94 and + 0.74, respectively. Molecular docking and site-directed mutagenesis simulations elucidated the interaction region, forces, and key sites between savory odorants and olfactory receptors. Results showed TM3, TM5 and TM6 were the main interaction regions of the savory odorants prioritize binding with OR1A1 and OR1D2, resulting in the characteristic aromas. Hydrogen bonding and hydrophobic interactions were the key driving forces. Phe203, Asn109, and Asn155 of OR1A1 were partially important residues involved in the interactions with savory odorants. These findings presented a quick screening approach for savory odorants and revealed their SEP mechanism, providing theoretical guidance to facilitate the application of odor-induced salt reduction in food industry.
Collapse
Affiliation(s)
- Huizhuo Ji
- National Engineering Research Center for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048, China
| | - Dandan Pu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048, China; Key Laboratory of Aroma Science of China General Chamber of Commerce, Beijing Technology and Business University, 100048, China
| | - Lijun Su
- National Engineering Research Center for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing 100048, China
| | - Qingchuan Zhang
- National Engineering Research Center for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing 100048, China
| | - Wenjing Yan
- National Engineering Research Center for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing 100048, China
| | - Jianlei Kong
- National Engineering Research Center for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing 100048, China
| | - Min Zuo
- National Engineering Research Center for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing 100048, China; School of Information, Beijing Wuzi University, Beijing 101126, China.
| | - Yuyu Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048, China; Key Laboratory of Aroma Science of China General Chamber of Commerce, Beijing Technology and Business University, 100048, China.
| |
Collapse
|
3
|
Elango K, Kekäläinen J. Putting Nose into Reproduction: Influence of Nasal and Reproductive Odourant Signaling on Male Reproduction. Mol Reprod Dev 2025; 92:e70010. [PMID: 39834068 DOI: 10.1002/mrd.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025]
Abstract
Odourant receptors (ORs) are not restricted only to the nose, but also occur in many other organs and tissues, including the reproductive system. In fact, ORs are the most heavily expressed in testis than in any other extra-nasal tissue. Accumulating evidence suggests that olfactory and reproductive systems are both structurally and functionally linked and that these interconnections can influence various aspects of reproduction. In this article, we first review our current understanding of these interconnections and then collate accumulated evidence on the presence of ORs in the male reproductive system and sperm cells. We then investigate the potential role of female reproductive tract odourants in sperm chemotaxis and selection. Finally, since the existing evidence especially for sperm odor sensing capability and its physiological function are controversial, we also review potential reasons for the controversy and propose some ways to resolve the debate. Collectively, we conclude that reproductive odourant signaling may play an important, although currently largely unclear role in many key processes directly related to male fertility. However, since we lack holistic understanding of the functional significance of ORs and odor sensing pathways of the male reproductive system, more empirical research is warranted.
Collapse
Affiliation(s)
- Kamaraj Elango
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Jukka Kekäläinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| |
Collapse
|
4
|
Ball L, Frey T, Haag F, Frank S, Hoffmann S, Laska M, Steinhaus M, Neuhaus K, Krautwurst D. Geosmin, a Food- and Water-Deteriorating Sesquiterpenoid and Ambivalent Semiochemical, Activates Evolutionary Conserved Receptor OR11A1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15865-15874. [PMID: 38955350 PMCID: PMC11261619 DOI: 10.1021/acs.jafc.4c01515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/04/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024]
Abstract
Geosmin, a ubiquitous volatile sesquiterpenoid of microbiological origin, is causative for deteriorating the quality of many foods, beverages, and drinking water, by eliciting an undesirable "earthy/musty" off-flavor. Moreover, and across species from worm to human, geosmin is a volatile, chemosensory trigger of both avoidance and attraction behaviors, suggesting its role as semiochemical. Volatiles typically are detected by chemosensory receptors of the nose, which have evolved to best detect ecologically relevant food-related odorants and semiochemicals. An insect receptor for geosmin was recently identified in flies. A human geosmin-selective receptor, however, has been elusive. Here, we report on the identification and characterization of a human odorant receptor for geosmin, with its function being conserved in orthologs across six mammalian species. Notably, the receptor from the desert-dwelling kangaroo rat showed a more than 100-fold higher sensitivity compared to its human ortholog and detected geosmin at low nmol/L concentrations in extracts from geosmin-producing actinomycetes.
Collapse
Affiliation(s)
- Lena Ball
- TUM
School of Life Sciences, Technical University
of Munich, Freising 85354, Germany
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, Freising 85354, Germany
| | - Tim Frey
- TUM
School of Life Sciences, Technical University
of Munich, Freising 85354, Germany
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, Freising 85354, Germany
- Tecan
Deutschland GmbH, Crailsheim 74564, Germany
| | - Franziska Haag
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, Freising 85354, Germany
| | - Stephanie Frank
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, Freising 85354, Germany
| | - Sandra Hoffmann
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, Freising 85354, Germany
| | - Matthias Laska
- IFM
Biology, Linköping University, Linköping 581 83, Sweden
| | - Martin Steinhaus
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, Freising 85354, Germany
| | - Klaus Neuhaus
- Core
Facility Microbiome, ZIEL − Institute for Food & Health, Technical University of Munich, Freising 85354, Germany
| | - Dietmar Krautwurst
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, Freising 85354, Germany
| |
Collapse
|
5
|
Boschiero C, Neupane M, Yang L, Schroeder SG, Tuo W, Ma L, Baldwin RL, Van Tassell CP, Liu GE. A Pilot Detection and Associate Study of Gene Presence-Absence Variation in Holstein Cattle. Animals (Basel) 2024; 14:1921. [PMID: 38998033 PMCID: PMC11240624 DOI: 10.3390/ani14131921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/18/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
Presence-absence variations (PAVs) are important structural variations, wherein a genomic segment containing one or more genes is present in some individuals but absent in others. While PAVs have been extensively studied in plants, research in cattle remains limited. This study identified PAVs in 173 Holstein bulls using whole-genome sequencing data and assessed their associations with 46 economically important traits. Out of 28,772 cattle genes (from the longest transcripts), a total of 26,979 (93.77%) core genes were identified (present in all individuals), while variable genes included 928 softcore (present in 95-99% of individuals), 494 shell (present in 5-94%), and 371 cloud genes (present in <5%). Cloud genes were enriched in functions associated with hormonal and antimicrobial activities, while shell genes were enriched in immune functions. PAV-based genome-wide association studies identified associations between gene PAVs and 16 traits including milk, fat, and protein yields, as well as traits related to health and reproduction. Associations were found on multiple chromosomes, illustrating important associations on cattle chromosomes 7 and 15, involving olfactory receptor and immune-related genes, respectively. By examining the PAVs at the population level, the results of this research provided crucial insights into the genetic structures underlying the complex traits of Holstein cattle.
Collapse
Affiliation(s)
- Clarissa Boschiero
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Mahesh Neupane
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Liu Yang
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Steven G Schroeder
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Wenbin Tuo
- Animal Parasitic Diseases Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Li Ma
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Ransom L Baldwin
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Curtis P Van Tassell
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - George E Liu
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| |
Collapse
|
6
|
Lalis M, Hladiš M, Khalil SA, Briand L, Fiorucci S, Topin J. M2OR: a database of olfactory receptor-odorant pairs for understanding the molecular mechanisms of olfaction. Nucleic Acids Res 2024; 52:D1370-D1379. [PMID: 37870437 PMCID: PMC10767820 DOI: 10.1093/nar/gkad886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/13/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023] Open
Abstract
Mammalian sense of smell is triggered by interaction between odorant molecules and a class of proteins, called olfactory receptors (ORs). These receptors, expressed at the surface of olfactory sensory neurons, encode myriad of distinct odors via a sophisticated activation pattern. However, determining the molecular recognition spectrum of ORs remains a major challenge. The Molecule to Olfactory Receptor database (M2OR, https://m2or.chemsensim.fr/) provides curated data that allows an easy exploration of the current state of the research on OR-molecule interaction. We have gathered a database of 75,050 bioassay experiments for 51 395 distinct OR-molecule pairs. Drawn from published literature and public databases, M2OR contains information about OR responses to molecules and their mixtures, receptor sequences and experimental details. Users can obtain information on the activity of a chosen molecule or a group of molecules, or search for agonists for a specific OR or a group of ORs. Advanced search allows for fine-grained queries using various metadata such as species or experimental assay system, and the database can be queried by multiple inputs via a batch search. Finally, for a given search query, users can access and download a curated aggregation of the experimental data into a binarized combinatorial code of olfaction.
Collapse
Affiliation(s)
- Maxence Lalis
- Institut de Chimie de Nice, Université Côte d’Azur, UMR 7272 CNRS, 06108 Nice, France
| | - Matej Hladiš
- Institut de Chimie de Nice, Université Côte d’Azur, UMR 7272 CNRS, 06108 Nice, France
| | - Samar Abi Khalil
- Institut de Chimie de Nice, Université Côte d’Azur, UMR 7272 CNRS, 06108 Nice, France
| | - Loïc Briand
- Centre des Sciences du Goût et de l’Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, F-21000 Dijon, France
| | - Sébastien Fiorucci
- Institut de Chimie de Nice, Université Côte d’Azur, UMR 7272 CNRS, 06108 Nice, France
| | - Jérémie Topin
- Institut de Chimie de Nice, Université Côte d’Azur, UMR 7272 CNRS, 06108 Nice, France
| |
Collapse
|
7
|
Lalis M, Hladiš M, Abi Khalil S, Deroo C, Marin C, Bensafi M, Baldovini N, Briand L, Fiorucci S, Topin J. A status report on human odorant receptors and their allocated agonists. Chem Senses 2024; 49:bjae037. [PMID: 39400708 DOI: 10.1093/chemse/bjae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Indexed: 10/15/2024] Open
Abstract
Olfactory perception begins when odorous substances interact with specialized receptors located on the surface of dedicated sensory neurons. The recognition of smells depends on a complex mechanism involving a combination of interactions between an odorant and a set of odorant receptors (ORs), where molecules are recognized according to a combinatorial activation code of ORs. Although these interactions have been studied for decades, the rules governing this ligand recognition remain poorly understood, and the complete combinatorial code is only known for a handful of odorants. We have carefully analyzed experimental results regarding the interactions between ORs and molecules to provide a status report on the deorphanization of ORs, i.e. the identification of the first agonist for a given sequence. This meticulous analysis highlights the influence of experimental methodology (cell line or readout) on molecule-receptor association results and shows that 83% of the results are conserved regardless of experimental conditions. The distribution of another key parameter, EC50, indicates that most OR ligand activities are in the micromolar range and that impurities could lead to erroneous conclusions. Focusing on the human ORs, our study shows that 88% of the documented sequences still need to be deorphanized. Finally, we also estimate the size of the ORs' recognition range, or broadness, as the number of odorants activating a given OR. By analogously estimating molecular broadness and combining the two estimates we propose a basic framework that can serve as a comparison point for future machine learning algorithms predicting OR-molecule activity.
Collapse
Affiliation(s)
- Maxence Lalis
- Institut de Chimie de Nice, UMR 7272, Université Côte d'Azur, Nice, France
| | - Matej Hladiš
- Institut de Chimie de Nice, UMR 7272, Université Côte d'Azur, Nice, France
| | - Samar Abi Khalil
- Institut de Chimie de Nice, UMR 7272, Université Côte d'Azur, Nice, France
| | - Christophe Deroo
- Expressions Parfumées, 136 chemin de St Marc, 06130, Grasse, France
| | - Christophe Marin
- Expressions Parfumées, 136 chemin de St Marc, 06130, Grasse, France
| | - Moustafa Bensafi
- Lyon Neuroscience Research Center, CNRS UMR 5292, INSERM U1028, University Claude Bernard Lyon, Bron, France
| | - Nicolas Baldovini
- Institut de Chimie de Nice, UMR 7272, Université Côte d'Azur, Nice, France
| | - Loïc Briand
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, F-21000, Dijon, France
| | - Sébastien Fiorucci
- Institut de Chimie de Nice, UMR 7272, Université Côte d'Azur, Nice, France
| | - Jérémie Topin
- Institut de Chimie de Nice, UMR 7272, Université Côte d'Azur, Nice, France
| |
Collapse
|
8
|
Zeng S, Zhang L, Li P, Pu D, Fu Y, Zheng R, Xi H, Qiao K, Wang D, Sun B, Sun S, Zhang Y. Molecular mechanisms of caramel-like odorant-olfactory receptor interactions based on a computational chemistry approach. Food Res Int 2023; 171:113063. [PMID: 37330856 DOI: 10.1016/j.foodres.2023.113063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/19/2023]
Abstract
Molecular mechanisms of caramel-like odorant-olfactory receptor interactions were investigated based on molecular docking and molecular dynamics simulations. The transmembrane regions TM-3, TM-5 and TM-6 of receptors were main contributors of amino acid residues in the docking. Molecular docking results showed that hydrogen bonding and pi-pi stacking were the key forces for the stabilization of caramel-like odorants. The binding energies were positively correlated with the molecular weight of caramel-like odorants. Residues Asn155 (84%, OR2W1), Asn206 (86%, OR8D1), Ser155 (77%, OR8D1), Asp179 (87%, OR5M3), Val182 (84%, OR2J2) and Tyr260 (94%, OR2J2) with high frequencies played an important role in the complexes formation. Odorants 4-hydroxy-5-methylfuran-3(2H)-one (16#) and methylglyoxal (128#) were screened by molecular field-based similarity analysis, which tended to bind to the receptors OR1G1 and OR52H1 respectively, resulting a caramel-like aroma perception. The obtained results are useful for better understanding the perception of caramel-like odorants and their high-throughput screening.
Collapse
Affiliation(s)
- Shitong Zeng
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Lili Zhang
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
| | - Peng Li
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Dandan Pu
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
| | - Yingjie Fu
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Ruiyi Zheng
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
| | - Hui Xi
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Kaina Qiao
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
| | - Dingzhong Wang
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Baoguo Sun
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
| | - Shihao Sun
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China.
| | - Yuyu Zhang
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
9
|
Ball L, Bauer J, Krautwurst D. Heterodimerization of Chemoreceptors TAS1R3 and mGlu 2 in Human Blood Leukocytes. Int J Mol Sci 2023; 24:12942. [PMID: 37629122 PMCID: PMC10454557 DOI: 10.3390/ijms241612942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/08/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
The expression of canonical chemosensory receptors of the tongue, such as the heteromeric sweet taste (TAS1R2/TAS1R3) and umami taste (TAS1R1/TAS1R3) receptors, has been demonstrated in many extra-oral cells and tissues. Gene expression studies have revealed transcripts for all TAS1 and metabotropic glutamate (mGlu) receptors in different types of immune cells, where they are involved, for example, in the chemotaxis of human neutrophils and the protection of T cells from activation-induced cell death. Like other class-C G protein-coupling receptors (GPCRs), TAS1Rs and mGlu receptors form heteromers within their families. Since mGlu receptors and TAS1R1/TAS1R3 share the same ligand, monosodium glutamate (MSG), we hypothesized their hitherto unknown heteromerization across receptor families in leukocytes. Here we show, by means of immunocytochemistry and co-IP/Western analysis, that across class-C GPCR families, mGlu2 and TAS1R3 co-localize and heterodimerize in blood leukocytes. Expressing the recombinant receptors in HEK-293 cells, we validated their heterodimerization by bioluminescence resonance energy transfer. We demonstrate MSG-induced, mGlu2/TAS1R3 heteromer-dependent gain-of-function and pertussis toxin-sensitive signaling in luminescence assays. Notably, we show that mGlu2/TAS1R3 is necessary and sufficient for MSG-induced facilitation of N-formyl-methionyl-leucyl-phenylalanine-stimulated IL-8 secretion in neutrophils, using receptor-specific antagonists. In summary, our results demonstrate mGlu2/TAS1R3 heterodimerization in leukocytes, suggesting cellular function-tailored chemoreceptor combinations to modulate cellular immune responses.
Collapse
Affiliation(s)
- Lena Ball
- TUM School of Life Sciences, Technical University of Munich, Alte Akademie 8a, 85354 Freising, Germany;
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany;
| | - Julia Bauer
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany;
| | - Dietmar Krautwurst
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany;
| |
Collapse
|
10
|
Ben Khemis I, Aouaini F, Smati H, Zouidi F, Ben Lamine A. Advanced investigation of the olfactory perception of semiochemical TMT on OR5K1 and Olfr175 by statistical physics approach. Int J Biol Macromol 2023; 235:123824. [PMID: 36842748 DOI: 10.1016/j.ijbiomac.2023.123824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/26/2023]
Abstract
The adsorption of the trimethylthiazoline (TMT) on the human olfactory receptor OR5K1 and the mouse olfactory receptor Olfr175 was the object of the present paper. The main contribution of this work was to characterize stereographically and energetically OR5K1 and Olfr175 activated by trimethylthiazoline molecules docked on the human and the mouse olfactory binding pockets using the grand canonical ensemble in statistical physics. The experimental data and the advanced statistical physics models revealed that the adsorption of the trimethylthiazoline on the human olfactory receptor OR5K1 can be interpreted using the monolayer model with single energy, while the monolayer model with two energies described the interaction between the trimethylthiazoline molecules and the mouse olfactory receptor Olfr175. In fact, the investigated odorant was shown to be docked by a multi-docking process and non parallel orientation on OR5K1 and Olfr175 since the values of the number of TMT molecules per binding site n were superior to 1. The proposed models were applied to calculate the human and the mouse olfactory receptor binding site size distributions relative to TMT, which were spread out from 0.30 to 20 nm with a maximum at about 1.75 nm for OR5K1 and from 1 to 25 nm with a peak at about 4.25 nm for Olfr175. Furthermore, it was found from the calculated molar adsorption energies, which were lower than 11 kJ/mol, that physical adsorption process was occurred in the two olfactory systems. The adsorption energy distributions relative to TMT can be also calculated in order to understand of olfaction process in general through the determination of olfactory bands (i. e., adsorption energy distribution bands), which were situated between 0 and 10.50 kJ/mol and between 3 and 12.50 kJ/mol for OR5K1 and Olfr175, respectively. Referring to the investigation of thermodynamic functions governing the adsorption process such as the adsorption entropy, the Gibbs free enthalpy and the internal energy, it may be noted that the disorder peak of the two olfactory systems was reached when the equilibrium concentration was equal to the concentration at half saturation. In addition, the Gibbs free enthalpy and the internal energy were calculated and their negative values indicated that the adsorption process involved in the olfactory mechanism was exothermic and spontaneous nature.
Collapse
Affiliation(s)
- Ismahene Ben Khemis
- Laboratory of Quantum and Statistical Physics LR 18 ES 18, Faculty of Sciences of Monastir, Environnement Street, 5019 Monastir, Tunisia.
| | - Fatma Aouaini
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Houda Smati
- Laboratory of Quantum and Statistical Physics LR 18 ES 18, Faculty of Sciences of Monastir, Environnement Street, 5019 Monastir, Tunisia
| | - Ferjeni Zouidi
- Biology Department, Faculty of Arts and Sciences of Muhayil Aseer, King Khalid University, Saudi Arabia
| | - Abdelmottaleb Ben Lamine
- Laboratory of Quantum and Statistical Physics LR 18 ES 18, Faculty of Sciences of Monastir, Environnement Street, 5019 Monastir, Tunisia
| |
Collapse
|
11
|
Nicoli A, Haag F, Marcinek P, He R, Kreißl J, Stein J, Marchetto A, Dunkel A, Hofmann T, Krautwurst D, Di Pizio A. Modeling the Orthosteric Binding Site of the G Protein-Coupled Odorant Receptor OR5K1. J Chem Inf Model 2023; 63:2014-2029. [PMID: 36696962 PMCID: PMC10091413 DOI: 10.1021/acs.jcim.2c00752] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
With approximately 400 encoding genes in humans, odorant receptors (ORs) are the largest subfamily of class A G protein-coupled receptors (GPCRs). Despite its high relevance and representation, the odorant-GPCRome is structurally poorly characterized: no experimental structures are available, and the low sequence identity of ORs to experimentally solved GPCRs is a significant challenge for their modeling. Moreover, the receptive range of most ORs is unknown. The odorant receptor OR5K1 was recently and comprehensively characterized in terms of cognate agonists. Here, we report two additional agonists and functional data of the most potent compound on two mutants, L1043.32 and L2556.51. Experimental data was used to guide the investigation of the binding modes of OR5K1 ligands into the orthosteric binding site using structural information from AI-driven modeling, as recently released in the AlphaFold Protein Structure Database, and from homology modeling. Induced-fit docking simulations were used to sample the binding site conformational space for ensemble docking. Mutagenesis data guided side chain residue sampling and model selection. We obtained models that could better rationalize the different activity of active (agonist) versus inactive molecules with respect to starting models and also capture differences in activity related to minor structural differences. Therefore, we provide a model refinement protocol that can be applied to model the orthosteric binding site of ORs as well as that of GPCRs with low sequence identity to available templates.
Collapse
Affiliation(s)
- Alessandro Nicoli
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
| | - Franziska Haag
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
| | - Patrick Marcinek
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
| | - Ruiming He
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany.,Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Johanna Kreißl
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
| | - Jörg Stein
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
| | - Alessandro Marchetto
- Computational Biomedicine, Institute for Advanced Simulations (IAS)-5/Institute for Neuroscience and Medicine (INM)-9, Forschungszentrum Jülich, 52428 Jülich, Germany.,Department of Biology, Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen University, 52074 Aachen, Germany
| | - Andreas Dunkel
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
| | - Thomas Hofmann
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, 85354 Freising, Germany
| | - Dietmar Krautwurst
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
| | - Antonella Di Pizio
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
12
|
Frey T, Kwadha CA, Haag F, Pelletier J, Wallin EA, Holgersson E, Hedenström E, Bohman B, Bengtsson M, Becher PG, Krautwurst D, Witzgall P. The human odorant receptor OR10A6 is tuned to the pheromone of the commensal fruit fly Drosophila melanogaster. iScience 2022; 25:105269. [PMID: 36300000 PMCID: PMC9589189 DOI: 10.1016/j.isci.2022.105269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/10/2022] [Accepted: 09/29/2022] [Indexed: 12/03/2022] Open
Abstract
All living things speak chemistry. The challenge is to reveal the vocabulary, the odorants that enable communication across phylogenies and to translate them to physiological, behavioral, and ecological function. Olfactory receptors (ORs) interface animals with airborne odorants. Expression in heterologous cells makes it possible to interrogate single ORs and to identify cognate ligands. The cosmopolitan, anthropophilic strain of the vinegar fly Drosophila melanogaster depends on human resources and housing for survival. Curiously, humans sense the pheromone (Z)-4-undecenal (Z4-11Al) released by single fly females. A screening of all human ORs shows that the most highly expressed OR10A6 is tuned to Z4-11Al. Females of an ancestral African fly strain release a blend of Z4-11Al and Z4-9Al that produces a different aroma, which is how we distinguish these fly strains by nose. That flies and humans sense Z4-11Al via dedicated ORs shows how convergent evolution shapes communication channels between vertebrate and invertebrate animals. Humans sense the sex pheromone Z411-Al released by single Drosophila melanogaster females The most highly expressed human olfactory receptor OR10A6 is tuned to Z411-Al An African fly strain emits two aldehydes, which we distinguish from Z411-Al by nose Convergent evolution shapes chemical communication between phylogenies
Collapse
Affiliation(s)
- Tim Frey
- Leibniz-Institut für Lebensmittel-Systembiologie an der Technischen Universität München, Lise-Meitner Strasse 34, 85354 Freising, Germany
| | - Charles A. Kwadha
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 190, 234 22 Lomma, Sweden
| | - Franziska Haag
- Leibniz-Institut für Lebensmittel-Systembiologie an der Technischen Universität München, Lise-Meitner Strasse 34, 85354 Freising, Germany
| | - Julien Pelletier
- Leibniz-Institut für Lebensmittel-Systembiologie an der Technischen Universität München, Lise-Meitner Strasse 34, 85354 Freising, Germany
| | - Erika A. Wallin
- Department of Chemical Engineering, Mid Sweden University, Holmgatan 10, 85170 Sundsvall, Sweden
| | | | - Erik Hedenström
- Department of Chemical Engineering, Mid Sweden University, Holmgatan 10, 85170 Sundsvall, Sweden
| | - Björn Bohman
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 190, 234 22 Lomma, Sweden
| | - Marie Bengtsson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 190, 234 22 Lomma, Sweden
| | - Paul G. Becher
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 190, 234 22 Lomma, Sweden
| | - Dietmar Krautwurst
- Leibniz-Institut für Lebensmittel-Systembiologie an der Technischen Universität München, Lise-Meitner Strasse 34, 85354 Freising, Germany
| | - Peter Witzgall
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 190, 234 22 Lomma, Sweden,Corresponding author
| |
Collapse
|
13
|
Geng R, Wang Y, Fang J, Zhao Y, Li M, Kang SG, Huang K, Tong T. Ectopic odorant receptors responding to flavor compounds in skin health and disease: Current insights and future perspectives. Crit Rev Food Sci Nutr 2022; 63:9392-9408. [PMID: 35445618 DOI: 10.1080/10408398.2022.2064812] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Skin, the largest organ of human body, acts as a barrier to protect body from the external environment and is exposed to a myriad of flavor compounds, especially food- and plant essential oil-derived odorant compounds. Skin cells are known to express various chemosensory receptors, such as transient potential receptors, adenosine triphosphate receptors, taste receptors, and odorant receptors (ORs). We aim to provide a review of this rapidly developing field and discuss latest discoveries related to the skin ORs activated by flavor compounds, their impacts on skin health and disease, odorant ligands interacting with ORs exerting specific biological effects, and the mechanisms involved. ORs are recently found to be expressed in skin tissue and cells, such as keratinocytes, melanocytes, and fibroblasts. To date, several ectopic skin ORs responding to flavor compounds, are involved in different skin biological processes, such as wound healing, hair growth, melanin regulation, pressure stress, skin barrier function, atopic dermatitis, and psoriasis. The recognition of physiological role of skin ORs, combined with the fact that ORs belong to a highly druggable protein family (G protein-coupled receptors), underscores the potential of skin ORs responding to flavor compounds as a novel regulating strategy for skin health and disease.
Collapse
Affiliation(s)
- Ruixuan Geng
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yanan Wang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jingjing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yuhan Zhao
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Mengjie Li
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Seong-Gook Kang
- Department of Food Engineering, Mokpo National University, Chungkyemyon, Muangun, Jeonnam, Korea
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Ministry of Agriculture, Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Beijing, China
- Beijing Laboratory for Food Quality and Safety, Beijing, China
| | - Tao Tong
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Ministry of Agriculture, Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Beijing, China
- Beijing Laboratory for Food Quality and Safety, Beijing, China
| |
Collapse
|
14
|
Haag F, Di Pizio A, Krautwurst D. The key food odorant receptive range of broadly tuned receptor OR2W1. Food Chem 2021; 375:131680. [PMID: 34857413 DOI: 10.1016/j.foodchem.2021.131680] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 11/28/2022]
Abstract
Mammals perceive a multitude of odorants by their chemical sense of olfaction, a high-dimensional stimulus-detection system, with hundreds of narrowly or broadly tuned receptors, enabling pattern recognition by the brain. Cognate receptor-agonist information, however, is sparse, and the role of broadly tuned odorant receptors for encoding odor quality remains elusive. Here, we screened IL-6-HaloTag®-OR2W1 and haplotypes against 187 out of 230 defined key food odorants using the GloSensor™ system in HEK-293 cells, yielding 48 new agonists. Altogether, key food odorants represent about two-thirds of now 153 reported agonists of OR2W1, the highest number of agonists known for a mammalian odorant receptor. In summary, we characterized OR2W1 as a human odorant receptor, with a chemically diverse but exclusive receptive range, complementary to chemical subgroups covered by evolutionary younger, highly selective receptors. Our data suggest OR2W1 to be suited for participating in the detection of many foodborne odorants.
Collapse
Affiliation(s)
- Franziska Haag
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Antonella Di Pizio
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Dietmar Krautwurst
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany.
| |
Collapse
|
15
|
Haag F, Hoffmann S, Krautwurst D. Key Food Furanones Furaneol and Sotolone Specifically Activate Distinct Odorant Receptors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10999-11005. [PMID: 34496214 DOI: 10.1021/acs.jafc.1c03314] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Furanones formed during the Maillard reaction often are natural aroma-determining compounds found in numerous foods. Prominent economically relevant representatives are the structural homologues Furaneol and sotolone, which are important natural flavoring compounds because of their distinct caramel- and seasoning-like odor qualities. These, however, cannot be predicted by the odorants' molecular shape, rather their receptors' activation parameters help to decipher the encoding of odor quality. Here, the distinct odor qualities of Furaneol and sotolone suggested an activation of at least two out of our ca. 400 different odorant receptor types, which are the molecular biosensors of our chemical sense of olfaction. While an odorant receptor has been identified for sotolone, a receptor specific for Furaneol has been elusive. Using a bidirectional screening approach employing 616 receptor variants and 187 key food odorants in a HEK-293 cell-based luminescence assay, we newly identified OR5M3 as a receptor specifically activated by Furaneol and homofuraneol.
Collapse
Affiliation(s)
- Franziska Haag
- Leibniz-Institute for Food Systems Biology, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Sandra Hoffmann
- Leibniz-Institute for Food Systems Biology, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Dietmar Krautwurst
- Leibniz-Institute for Food Systems Biology, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| |
Collapse
|
16
|
Ectopic Odorant Receptor Responding to Flavor Compounds: Versatile Roles in Health and Disease. Pharmaceutics 2021; 13:pharmaceutics13081314. [PMID: 34452275 PMCID: PMC8402194 DOI: 10.3390/pharmaceutics13081314] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 12/23/2022] Open
Abstract
Prompted by the ground-breaking discovery of the rodent odorant receptor (OR) gene family within the olfactory epithelium nearly 30 years ago, followed by that of OR genes in cells of the mammalian germ line, and potentiated by the identification of ORs throughout the body, our appreciation for ORs as general chemoreceptors responding to odorant compounds in the regulation of physiological or pathophysiological processes continues to expand. Ectopic ORs are now activated by a diversity of flavor compounds and are involved in diverse physiological phenomena varying from adipogenesis to myogenesis to hepatic lipid accumulation to serotonin secretion. In this review, we outline the key biological functions of the ectopic ORs responding to flavor compounds and the underlying molecular mechanisms. We also discuss research opportunities for utilizing ectopic ORs as therapeutic strategies in the treatment of human disease as well as challenges to be overcome in the future. The recognition of the potent function, signaling pathway, and pharmacology of ectopic ORs in diverse tissues and cell types, coupled with the fact that they belong to G protein-coupled receptors, a highly druggable protein family, unequivocally highlight the potential of ectopic ORs responding to flavor compounds, especially food-derived odorant compounds, as a promising therapeutic strategy for various diseases.
Collapse
|
17
|
Marcinek P, Haag F, Geithe C, Krautwurst D. An evolutionary conserved olfactory receptor for foodborne and semiochemical alkylpyrazines. FASEB J 2021; 35:e21638. [PMID: 34047404 DOI: 10.1096/fj.202100224r] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/09/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022]
Abstract
Molecular recognition is a fundamental principle in biological systems. The olfactory detection of both food and predators via ecological relevant odorant cues are abilities of eminent evolutionary significance for many species. Pyrazines are such volatile cues, some of which act as both human-centered key food odorants (KFOs) and semiochemicals. A pyrazine-selective odorant receptor has been elusive. Here we screened 2,3,5-trimethylpyrazine, a KFO and semiochemical, and 2,5-dihydro-2,4,5-trimethylthiazoline, an innate fear-associated non-KFO, against 616 human odorant receptor variants, in a cell-based luminescence assay. OR5K1 emerged as sole responding receptor. Tested against a comprehensive collection of 178 KFOs, we newly identified 18 pyrazines and (2R/2S)-4-methoxy-2,5-dimethylfuran-3(2H)-one as agonists. Notably, OR5K1 orthologs in mouse and domesticated species displayed a human-like, potency-ranked activation pattern of pyrazines, suggesting a domestication-led co-evolution of OR5K1 and its orthologs. In summary, OR5K1 is a specialized olfactory receptor across mammals for the detection of pyrazine-based key food odors and semiochemicals.
Collapse
Affiliation(s)
- Patrick Marcinek
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany.,Hamilton Germany GmbH, Gräfelfing, Germany
| | - Franziska Haag
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Christiane Geithe
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany.,Brandenburg University of Technology Cottbus - Senftenberg, Senftenberg, Germany
| | - Dietmar Krautwurst
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| |
Collapse
|
18
|
Raka RN, Wu H, Xiao J, Hossen I, Cao Y, Huang M, Jin J. Human ectopic olfactory receptors and their food originated ligands: a review. Crit Rev Food Sci Nutr 2021; 62:5424-5443. [PMID: 33605814 DOI: 10.1080/10408398.2021.1885007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Ectopic olfactory receptors (EORs) are expressed in non-nasal tissues of human body. They belong to the G-protein coupled receptor (GPCR) superfamily. EORs may not be capable of differentiating odorants as nasal olfactory receptors (ORs), but still can be triggered by odorants and are involved in different biological processes such as anti-inflammation, energy metabolism, apoptosis etc. Consumption of strong flavored foods like celery, oranges, onions, and spices, is a good aid to attenuate inflammation and boost our immune system. During the digestion of these foods in human digestive system and the metabolization by gut microbiota, the odorants closely interacting with EORs, may play important roles in various bio-functions like serotonin release, appetite regulation etc., and ultimately impact health and diseases. Thus, EORs could be a potential target linking the ligands from food and their bioactivities. There have been related studies in different research fields of medicine and physiology, but still no systematic food oriented review. Our review portrays that EORs could be a potential target for functional food development. In this review, we summarized the EORs found in human tissues, their impacts on health and disease, ligands interacting with EORs exerting specific biological effects, and the mechanisms involved.
Collapse
Affiliation(s)
- Rifat Nowshin Raka
- Beijing Technology and Business University, Beijing, China.,Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing, China.,Beijing Laboratory for Food Quality and Safety, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China
| | - Hua Wu
- Beijing Technology and Business University, Beijing, China.,Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing, China.,Beijing Key Lab of Plant Resource Research and Development, Beijing, China
| | - Junsong Xiao
- Beijing Technology and Business University, Beijing, China.,Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing, China.,Beijing Laboratory for Food Quality and Safety, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China
| | - Imam Hossen
- Beijing Technology and Business University, Beijing, China.,Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing, China.,Beijing Laboratory for Food Quality and Safety, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China
| | - Yanping Cao
- Beijing Technology and Business University, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing, China
| | - Mingquan Huang
- Beijing Technology and Business University, Beijing, China.,Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing, China
| | - Jianming Jin
- Beijing Technology and Business University, Beijing, China.,Beijing Key Lab of Plant Resource Research and Development, Beijing, China
| |
Collapse
|
19
|
Jimenez RC, Casajuana-Martin N, García-Recio A, Alcántara L, Pardo L, Campillo M, Gonzalez A. The mutational landscape of human olfactory G protein-coupled receptors. BMC Biol 2021; 19:21. [PMID: 33546694 PMCID: PMC7866472 DOI: 10.1186/s12915-021-00962-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 01/15/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Olfactory receptors (ORs) constitute a large family of sensory proteins that enable us to recognize a wide range of chemical volatiles in the environment. By contrast to the extensive information about human olfactory thresholds for thousands of odorants, studies of the genetic influence on olfaction are limited to a few examples. To annotate on a broad scale the impact of mutations at the structural level, here we analyzed a compendium of 119,069 natural variants in human ORs collected from the public domain. RESULTS OR mutations were categorized depending on their genomic and protein contexts, as well as their frequency of occurrence in several human populations. Functional interpretation of the natural changes was estimated from the increasing knowledge of the structure and function of the G protein-coupled receptor (GPCR) family, to which ORs belong. Our analysis reveals an extraordinary diversity of natural variations in the olfactory gene repertoire between individuals and populations, with a significant number of changes occurring at the structurally conserved regions. A particular attention is paid to mutations in positions linked to the conserved GPCR activation mechanism that could imply phenotypic variation in the olfactory perception. An interactive web application (hORMdb, Human Olfactory Receptor Mutation Database) was developed for the management and visualization of this mutational dataset. CONCLUSION We performed topological annotations and population analysis of natural variants of human olfactory receptors and provide an interactive application to explore human OR mutation data. We envisage that the utility of this information will increase as the amount of available pharmacological data for these receptors grow. This effort, together with ongoing research in the study of genetic changes in other sensory receptors could shape an emerging sensegenomics field of knowledge, which should be considered by food and cosmetic consumer product manufacturers for the benefit of the general population.
Collapse
Affiliation(s)
- Ramón Cierco Jimenez
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Spain
- Present Address: International Agency for Research on Cancer, Evidence Synthesis and Classification Section, WHO Classification of Tumours Group, 150 Cours Albert Thomas, 69008, Lyon, France
| | - Nil Casajuana-Martin
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Spain
| | - Adrián García-Recio
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Spain
| | - Lidia Alcántara
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Spain
| | - Leonardo Pardo
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Spain
| | - Mercedes Campillo
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Spain
| | - Angel Gonzalez
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Spain.
| |
Collapse
|
20
|
Haag F, Ahmed L, Reiss K, Block E, Batista VS, Krautwurst D. Copper-mediated thiol potentiation and mutagenesis-guided modeling suggest a highly conserved copper-binding motif in human OR2M3. Cell Mol Life Sci 2020; 77:2157-2179. [PMID: 31435697 PMCID: PMC7256108 DOI: 10.1007/s00018-019-03279-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 08/07/2019] [Accepted: 08/12/2019] [Indexed: 12/20/2022]
Abstract
Sulfur-containing compounds within a physiological relevant, natural odor space, such as the key food odorants, typically constitute the group of volatiles with the lowest odor thresholds. The observation that certain metals, such as copper, potentiate the smell of sulfur-containing, metal-coordinating odorants led to the hypothesis that their cognate receptors are metalloproteins. However, experimental evidence is sparse-so far, only one human odorant receptor, OR2T11, and a few mouse receptors, have been reported to be activated by sulfur-containing odorants in a copper-dependent way, while the activation of other receptors by sulfur-containing odorants did not depend on the presence of metals. Here we identified an evolutionary conserved putative copper interaction motif CC/CSSH, comprising two copper-binding sites in TMH5 and TMH6, together with the binding pocket for 3-mercapto-2-methylpentan-1-ol in the narrowly tuned human receptor OR2M3. To characterize the copper-binding motif, we combined homology modeling, docking studies, site-directed mutagenesis, and functional expression of recombinant ORs in a cell-based, real-time luminescence assay. Ligand activation of OR2M3 was potentiated in the presence of copper. This effect of copper was mimicked by ionic and colloidal silver. In two broadly tuned receptors, OR1A1 and OR2W1, which did not reveal a putative copper interaction motif, activation by their most potent, sulfur-containing key food odorants did not depend on the presence of copper. Our results suggest a highly conserved putative copper-binding motif to be necessary for a copper-modulated and thiol-specific function of members from three subfamilies of family 2 ORs.
Collapse
Affiliation(s)
- Franziska Haag
- Leibniz-Institute for Food Systems Biology, Technical University of Munich, Lise-Meitner-Str. 34, 85354, Freising, Germany
| | - Lucky Ahmed
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| | - Krystle Reiss
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| | - Eric Block
- Department of Chemistry, University at Albany, State University of New York, Albany, NY, 12222, USA
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| | - Dietmar Krautwurst
- Leibniz-Institute for Food Systems Biology, Technical University of Munich, Lise-Meitner-Str. 34, 85354, Freising, Germany.
| |
Collapse
|
21
|
de March CA, Fukutani Y, Vihani A, Kida H, Matsunami H. Real-time In Vitro Monitoring of Odorant Receptor Activation by an Odorant in the Vapor Phase. J Vis Exp 2019. [PMID: 31081824 DOI: 10.3791/59446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Olfactory perception begins with the interaction of odorants with odorant receptors (OR) expressed by olfactory sensory neurons (OSN). Odor recognition follows a combinatorial coding scheme, where one OR can be activated by a set of odorants and one odorant can activate a combination of ORs. Through such combinatorial coding, organisms can detect and discriminate between a myriad of volatile odor molecules. Thus, an odor at a given concentration can be described by an activation pattern of ORs, which is specific to each odor. In that sense, cracking the mechanisms that the brain uses to perceive odor requires the understanding odorant-OR interactions. This is why the olfaction community is committed to "de-orphanize" these receptors. Conventional in vitro systems used to identify odorant-OR interactions have utilized incubating cell media with odorant, which is distinct from the natural detection of odors via vapor odorants dissolution into nasal mucosa before interacting with ORs. Here, we describe a new method that allows for real-time monitoring of OR activation via vapor-phase odorants. Our method relies on measuring cAMP release by luminescence using the Glosensor assay. It bridges current gaps between in vivo and in vitro approaches and provides a basis for a biomimetic volatile chemical sensor.
Collapse
Affiliation(s)
- Claire A de March
- Department of Molecular Genetics and Microbiology, Duke University Medical Center;
| | - Yosuke Fukutani
- Department of Molecular Genetics and Microbiology, Duke University Medical Center; Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology
| | - Aashutosh Vihani
- Department of Molecular Genetics and Microbiology, Duke University Medical Center; Department of Neurobiology, Duke University Medical Center
| | - Hitoshi Kida
- Department of Molecular Genetics and Microbiology, Duke University Medical Center; Department of Mechanical Systems, Engineering, Tokyo University of Agriculture and Technology
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University Medical Center; Department of Neurobiology, Duke University Medical Center; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology; Duke Institute for Brain Sciences, Duke University;
| |
Collapse
|
22
|
Abstract
Unraveling the sense of smell relies on understanding how odorant receptors recognize odorant molecules. Given the vastness of the odorant chemical space and the complexity of the odorant receptor space, computational methods are in line to propose rules connecting them. We hereby propose an in silico and an in vitro approach, which, when combined are extremely useful for assessing chemogenomic links. In this chapter we mostly focus on the mining of already existing data through machine learning methods. This approach allows establishing predictions that map the chemical space and the receptor space. Then, we describe the method for assessing the activation of odorant receptors and their mutants through luciferase reporter gene functional assays.
Collapse
|
23
|
Di Pizio A, Behrens M, Krautwurst D. Beyond the Flavour: The Potential Druggability of Chemosensory G Protein-Coupled Receptors. Int J Mol Sci 2019; 20:E1402. [PMID: 30897734 PMCID: PMC6471708 DOI: 10.3390/ijms20061402] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 12/21/2022] Open
Abstract
G protein-coupled receptors (GPCRs) belong to the largest class of drug targets. Approximately half of the members of the human GPCR superfamily are chemosensory receptors, including odorant receptors (ORs), trace amine-associated receptors (TAARs), bitter taste receptors (TAS2Rs), sweet and umami taste receptors (TAS1Rs). Interestingly, these chemosensory GPCRs (csGPCRs) are expressed in several tissues of the body where they are supposed to play a role in biological functions other than chemosensation. Despite their abundance and physiological/pathological relevance, the druggability of csGPCRs has been suggested but not fully characterized. Here, we aim to explore the potential of targeting csGPCRs to treat diseases by reviewing the current knowledge of csGPCRs expressed throughout the body and by analysing the chemical space and the drug-likeness of flavour molecules.
Collapse
Affiliation(s)
- Antonella Di Pizio
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, 85354, Germany.
| | - Maik Behrens
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, 85354, Germany.
| | - Dietmar Krautwurst
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, 85354, Germany.
| |
Collapse
|
24
|
Wu C, Thach TT, Kim YJ, Lee SJ. Olfactory receptor 43 reduces hepatic lipid accumulation and adiposity in mice. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:489-499. [PMID: 30639733 DOI: 10.1016/j.bbalip.2019.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 12/30/2018] [Accepted: 01/05/2019] [Indexed: 12/14/2022]
Abstract
Olfactory receptors are primarily expressed in nasal olfactory epithelium, but these receptors are also ectopically expressed in diverse tissues. In this study, we investigated the biological functions of Olfr43, a mouse homolog of human OR1A1, in cultured hepatocytes and mice to assess its functionality in lipid metabolism. Olfr43 was expressed in mouse hepatocytes, and Olfr43 activation by a known ligand, (-)-carvone, stimulated cAMP response element-binding protein (CREB) activity. In ligand-receptor binding studies using site-directed mutagenesis, (-)-carvone binding required two residues, M257 and Y258, in Olfr43. In the mouse study, oral administration of (-)-carvone for 5 weeks in high-fat diet-fed mice improved energy metabolism, including reductions in hepatic steatosis and adiposity, and improved glucose and insulin tolerance. In mouse livers and cultured mouse hepatocytes, Olfr43 activation simulated the CREB-hairy and enhancer of split 1 (HES1)-peroxisome proliferator-activated receptor (PPAR)-γ signaling axis, leading to a reduction in hepatic triglyceride accumulation in the mouse liver. Thus, long-term administration of (-)-carvone reduces hepatic steatosis. The knockdown of Olfr43 gene expression in cultured hepatocytes negated these effects of (-)-carvone. In conclusion, an ectopic olfactory receptor, hepatic Olfr43, regulates energy metabolism via the CREB-HES1-PPARγ signaling axis.
Collapse
Affiliation(s)
- Chunyan Wu
- Department of Biotechnology, School of Life Sciences and Biotechnology for BK21 PLUS, Korea University, Seoul 02841, Republic of Korea
| | - Trung Thanh Thach
- Department of Biotechnology, School of Life Sciences and Biotechnology for BK21 PLUS, Korea University, Seoul 02841, Republic of Korea
| | - Yeon-Ji Kim
- Department of Biotechnology, School of Life Sciences and Biotechnology for BK21 PLUS, Korea University, Seoul 02841, Republic of Korea
| | - Sung-Joon Lee
- Department of Biotechnology, School of Life Sciences and Biotechnology for BK21 PLUS, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
25
|
Block E. Molecular Basis of Mammalian Odor Discrimination: A Status Report. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:13346-13366. [PMID: 30453735 DOI: 10.1021/acs.jafc.8b04471] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Humans have 396 unique, intact olfactory receptors (ORs), G-protein coupled receptors (GPCRs) containing receptor-specific binding sites; other mammals have more. Activation of these transmembrane proteins by an odorant initiates a signaling cascade, evoking an action potential leading to perception of a smell. Because the number of distinguishable odorants vastly exceeds the number of ORs, research has focused on mechanisms of recognition and signaling processes for classes of odorants. In this review, selected recent examples will be presented of "deorphaned" mammalian receptors, where the OR ligands (odorants) as well as key aspects of receptor-odorant interactions were identified using odorant-mediated receptor activation data together with site-directed mutagenesis and molecular modeling. Based on cumulative evidence from OR deorphaning and olfactory receptor neuron activation studies, a receptor-ligand docking model rather than an alternative bond vibration model is suggested to best explain the molecular basis of the exquisitely sensitive odor discrimination in mammals.
Collapse
Affiliation(s)
- Eric Block
- Department of Chemistry , University at Albany, SUNY , Albany , New York 12222 , United States
| |
Collapse
|
26
|
Maßberg D, Hatt H. Human Olfactory Receptors: Novel Cellular Functions Outside of the Nose. Physiol Rev 2018; 98:1739-1763. [PMID: 29897292 DOI: 10.1152/physrev.00013.2017] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Olfactory receptors (ORs) are not exclusively expressed in the olfactory sensory neurons; they are also observed outside of the olfactory system in all other human tissues tested to date, including the testis, lung, intestine, skin, heart, and blood. Within these tissues, certain ORs have been determined to be exclusively expressed in only one tissue, whereas other ORs are more widely distributed in many different tissues throughout the human body. For most of the ectopically expressed ORs, limited data are available for their functional roles. They have been shown to be involved in the modulation of cell-cell recognition, migration, proliferation, the apoptotic cycle, exocytosis, and pathfinding processes. Additionally, there is a growing body of evidence that they have the potential to serve as diagnostic and therapeutic tools, as ORs are highly expressed in different cancer tissues. Interestingly, in addition to the canonical signaling pathways activated by ORs in olfactory sensory neurons, alternative pathways have been demonstrated in nonolfactory tissues. In this review, the existing data concerning the expression, as well as the physiological and pathophysiological functions, of ORs outside of the nose are highlighted to provide insights into future lines of research.
Collapse
Affiliation(s)
- Désirée Maßberg
- Ruhr-University Bochum, Department of Cell Physiology , Bochum , Germany
| | - Hanns Hatt
- Ruhr-University Bochum, Department of Cell Physiology , Bochum , Germany
| |
Collapse
|
27
|
Rochelle MM, Prévost GJ, Acree TE. Computing Odor Images. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2219-2225. [PMID: 28285523 DOI: 10.1021/acs.jafc.6b05573] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This perspective examines psychophysical methods that may reveal the algorithms that encode odor images by integrating current data from sensory measurement into a computational model of odor perception. There is evidence that algorithms used by the nervous system to process odor sensations require input from only a few odorants, between three and eight. Furthermore, the number of recognizable odors in foods that contribute anything to the aroma of all foods is approximately 250. This may imply that it is the ratio of a small number of key odorants (KOs) that create a multitude of food odors. Studies with large mixtures of odorants (formulated to be of equal potency) show that a subject's ability to detect individual odorants in these mixtures was vanishingly small. These large mixtures had weak and nondescript but similar odor character. If only a few stimulants are used to represent complex images, it is direct evidence of the simplicity and therefore the tractability of the computational process.
Collapse
Affiliation(s)
- Madeleine M Rochelle
- Food Science Department , Cornell University , 411 Tower Road , Ithaca , New York 14853 , United States
| | - Géraldine Julie Prévost
- Food Science Department , Cornell University , 411 Tower Road , Ithaca , New York 14853 , United States
| | - Terry E Acree
- Food Science Department, 347 , Cornell University , 411 Tower Road Ithaca , New York 14853 , United States
| |
Collapse
|
28
|
Hofmann T, Krautwurst D, Schieberle P. Current Status and Future Perspectives in Flavor Research: Highlights of the 11th Wartburg Symposium on Flavor Chemistry & Biology. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2197-2203. [PMID: 29298062 DOI: 10.1021/acs.jafc.7b06144] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The 11th Wartburg Symposium on Flavor Chemistry & Biology, held at the hotel "Auf der Wartburg" in Eisenach, Germany, from June 21 to 24 in 2016, offered a venue for global exchange on cutting-edge research in chemistry and biology of odor and taste. The focus areas were (1) functional flavor genomics and biotechnology, (2) flavor generation and precursors, (3) new approaches and precursors, (4) new approaches and technologies, (5) new molecules and structure/activity relationships, (6) food-borne bioactives and chemosensory health prevention, and (7) chemosensory reception, processing, and perception. Selected from more than 250 applicants, 160 distinguished scientists and rising stars from academia and industry from 24 countries participated in this multidisciplinary event. This special issue comprises a selection of 33 papers from oral presentations and poster contributions and is prefaced by this symposium introduction to carve out essential achievements in odor and taste chemistry and to share future research perspectives.
Collapse
|
29
|
Noe F, Geithe C, Fiedler J, Krautwurst D. A bi-functional IL-6-HaloTag ® as a tool to measure the cell-surface expression of recombinant odorant receptors and to facilitate their activity quantification. J Biol Methods 2017; 4:e82. [PMID: 31453236 PMCID: PMC6706140 DOI: 10.14440/jbm.2017.207] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/28/2017] [Accepted: 08/25/2017] [Indexed: 11/23/2022] Open
Abstract
The functional cell surface expression of recombinant odorant receptors typically has been investigated by expressing N-terminally extended, "tagged" receptors in test cell systems, using antibody-based immunocytochemistry or flow cytometry, and by measuring odorant/receptor-induced cAMP signaling, mostly by an odorant/receptor-induced and cAMP signaling-dependent transcriptional activation of a luciferase-based luminescence assay. In the present protocol, we explain a method to measure the cell-surface expression and signaling of recombinant odorant receptors carrying a bi-functional, N-terminal 'IL-6-HaloTag®'. IL-6, being a secreted cytokine, facilitates functional cell surface expression of recombinant HaloTag®-odorant receptors, and the HaloTag® protein serves as a highly specific acceptor for cell-impermeant or cell-permeant, fluorophore-coupled ligands, which enable the quantification of odorant receptor expression by antibody-independent, chemical live-cell staining and flow cytometry. Here, we describe how to measure the cell surface expression of recombinant IL-6-HaloTag®-odorant receptors in HEK-293 cells or NxG 108CC15 cells, by live-cell staining and flow cytometry, and how to measure an odorant-induced activation of these receptors by the fast, real-time, luminescence-based GloSensor® cAMP assay.
Collapse
Affiliation(s)
| | | | | | - Dietmar Krautwurst
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, D-85354 Freising, Germany
| |
Collapse
|
30
|
Noe F, Frey T, Fiedler J, Geithe C, Nowak B, Krautwurst D. IL-6-HaloTag ® enables live-cell plasma membrane staining, flow cytometry, functional expression, and de-orphaning of recombinant odorant receptors. J Biol Methods 2017; 4:e81. [PMID: 31453235 PMCID: PMC6706138 DOI: 10.14440/jbm.2017.206] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/19/2017] [Accepted: 07/28/2017] [Indexed: 12/22/2022] Open
Abstract
The assignment of cognate odorant/agonist pairs is a prerequisite for an understanding of odorant coding at the receptor level. However, the identification of new ligands for odorant receptors (ORs) in cell-based assays has been challenging, due to their individual and rather sub-optimal plasma membrane expression, as compared with other G protein-coupled receptors. Accessory proteins, such as the chaperone RTP1S, or Ric8b, have improved the surface expression of at least a portion of ORs. Typically, recombinant ORs carry N-terminal tags, which proved helpful for their functional membrane expression. The most common tag is the 'Rho-tag', representing an N-terminal part of rhodopsin, but also 'Lucy-' or 'Flag-tag' extensions have been described. Here, we used a bi-functional N-terminal tag, called 'interleukin 6 (IL-6)-HaloTag®', with IL-6 facilitating functional cell surface expression of recombinant ORs, and the HaloTag® protein, serving as a highly specific acceptor for cell-impermeant or cell-permeant, fluorophore-coupled ligands, which enable the quantification of odorant receptor expression by live-cell flow cytometry. Our experiments revealed on average an about four-fold increased surface expression, a four-fold higher signaling amplitude, and a significantly higher potency of odorant-induced cAMP signaling of six different human IL-6-HaloTag®-ORs across five different receptor families in NxG 108CC15 cells, as compared to their Rho-tag-HaloTag® constructs. We observed similar results in HEK-293 cells. Moreover, screening an IL-6-HaloTag®-odorant receptor library with allyl phenyl acetate, revealed both known receptors as best responders for this compound. In summary, the IL-6-HaloTag® represents a promising tool for the de-orphaning of ORs.
Collapse
Affiliation(s)
| | | | | | | | | | - Dietmar Krautwurst
- Deutsche Forschungsanstalt für Lebensmittelchemie – Leibniz Institut, D-85354 Freising, Germany
| |
Collapse
|
31
|
Zhang Y, Pan Y, Matsunami H, Zhuang H. Live-cell Measurement of Odorant Receptor Activation Using a Real-time cAMP Assay. J Vis Exp 2017. [PMID: 28994818 DOI: 10.3791/55831] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The enormous sizes of the mammalian odorant receptor (OR) families present difficulties to find their cognate ligands among numerous volatile chemicals. To efficiently and accurately deorphanize ORs, we combine the use of a heterologous cell line to express mammalian ORs and a genetically modified biosensor plasmid to measure cAMP production downstream of OR activation in real time. This assay can be used to screen odorants against ORs and vice versa. Positive odorant-receptor interactions from the screens can be subsequently confirmed by testing against various odor concentrations, generating concentration-response curves. Here we used this method to perform a high-throughput screening of an odorous compound against a human OR library expressed in Hana3A cells and confirmed that the positively-responding receptor is the cognate receptor for the compound of interest. We found this high-throughput detection method to be efficient and reliable in assessing OR activation and our data provide an example of its potential use in OR functional studies.
Collapse
Affiliation(s)
- Yuetian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine
| | - Yi Pan
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine;
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University Medical Center; Department of Neurobiology, Duke Institute for Brain Sciences, Duke University Medical Center
| | - Hanyi Zhuang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine; Institute of Health Science, Chinese Academy of Science/Shanghai Jiao Tong University School of Medicine;
| |
Collapse
|
32
|
Noe F, Polster J, Geithe C, Kotthoff M, Schieberle P, Krautwurst D. OR2M3: A Highly Specific and Narrowly Tuned Human Odorant Receptor for the Sensitive Detection of Onion Key Food Odorant 3-Mercapto-2-methylpentan-1-ol. Chem Senses 2016; 42:195-210. [DOI: 10.1093/chemse/bjw118] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
33
|
Geithe C, Noe F, Kreissl J, Krautwurst D. The Broadly Tuned Odorant Receptor OR1A1 is Highly Selective for 3-Methyl-2,4-nonanedione, a Key Food Odorant in Aged Wines, Tea, and Other Foods. Chem Senses 2016; 42:181-193. [DOI: 10.1093/chemse/bjw117] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
34
|
Bressanello D, Liberto E, Cordero C, Rubiolo P, Pellegrino G, Ruosi MR, Bicchi C. Coffee aroma: Chemometric comparison of the chemical information provided by three different samplings combined with GC-MS to describe the sensory properties in cup. Food Chem 2016; 214:218-226. [PMID: 27507469 DOI: 10.1016/j.foodchem.2016.07.088] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 07/11/2016] [Accepted: 07/11/2016] [Indexed: 11/24/2022]
Abstract
This study is part of a wider project aiming to correlate the chemical composition of the coffee volatile fraction to its sensory properties with the end-goal of developing an instrumental analysis approach complementary to human sensory profiling. The proposed investigation strategy compares the chemical information concerning coffee aroma and flavor obtained with HS-SPME of the ground coffee and in-solution SBSE/SPME sampling combined with GC-MS to evaluate their compatibility with the cupping evaluation for quality control purposes. Roasted coffee samples with specific sensory properties were analyzed. The chemical results obtained by the three samplings were compared through multivariate analysis, and related to the samples' sensory attributes. Despite the differences between the three sampling approaches, data processing showed that the three methods provide the same kind of chemical information useful for sample discrimination, and that they could be used interchangeably to sample the coffee aroma and flavor.
Collapse
Affiliation(s)
- Davide Bressanello
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Via P. Giuria 9, I-9 10125 Torino, Italy
| | - Erica Liberto
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Via P. Giuria 9, I-9 10125 Torino, Italy.
| | - Chiara Cordero
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Via P. Giuria 9, I-9 10125 Torino, Italy
| | - Patrizia Rubiolo
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Via P. Giuria 9, I-9 10125 Torino, Italy
| | | | | | - Carlo Bicchi
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Via P. Giuria 9, I-9 10125 Torino, Italy
| |
Collapse
|
35
|
Marcinek P, Geithe C, Krautwurst D. Chemosensory G Protein-Coupled Receptors (GPCR) in Blood Leukocytes. TOPICS IN MEDICINAL CHEMISTRY 2016. [DOI: 10.1007/7355_2016_101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
36
|
Rimando AM, Mahattanatawee K. The First Joint ACS AGFD and ACS ICSCT Symposium. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:9379-9380. [PMID: 26458975 DOI: 10.1021/jf504201z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Affiliation(s)
- Agnes M Rimando
- Agricultural Research Service, U.S. Department of Agriculture, Thad Cochran Research Center , 106 University Avenue, University, Mississippi 38677 United States
| | - Kanjana Mahattanatawee
- Faculty of Science, Siam University , 38 Petchkasem Road, Phasicharoen, Bangkok 10160, Thailand
| |
Collapse
|