1
|
Wang F, Liu Y, Dong Y, Zhao M, Huang H, Jin J, Fan L, Xiang R. Haploinsufficiency of Lipin3 leads to hypertriglyceridemia and obesity by disrupting the expression and nucleocytoplasmic localization of Lipin1. Front Med 2024; 18:180-191. [PMID: 37776435 DOI: 10.1007/s11684-023-1003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/27/2023] [Indexed: 10/02/2023]
Abstract
Lipin proteins including Lipin 1-3 act as transcriptional co-activators and phosphatidic acid phosphohydrolase enzymes, which play crucial roles in lipid metabolism. However, little is known about the function of Lipin3 in triglyceride (TG) metabolism. Here, we identified a novel mutation (NM_001301860: p.1835A>T/p.D612V) of Lipin3 in a large family with hypertriglyceridemia (HTG) and obesity through whole-exome sequencing and Sanger sequencing. Functional studies revealed that the novel variant altered the half-life and stability of the Lipin3 protein. Hence, we generated Lipin3 heterozygous knockout (Lipin3-heKO) mice and cultured primary hepatocytes to explore the pathophysiological roles of Lipin3 in TG metabolism. We found that Lipin3-heKO mice exhibited obvious obesity, HTG, and non-alcoholic fatty liver disorder. Mechanistic study demonstrated that the haploinsufficiency of Lipin3 in primary hepatocytes may induce the overexpression and abnormal distribution of Lipin1 in cytosol and nucleoplasm. The increased expression of Lipin1 in cytosol may contribute to TG anabolism, and the decreased Lipin1 in nucleoplasm can reduce PGC1α, further leading to mitochondrial dysfunction and reduced TG catabolism. Our study suggested that Lipin3 was a novel disease-causing gene inducing obesity and HTG. We also established a relationship between Lipin3 and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Fang Wang
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Yuxing Liu
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
- Department of Cellular Biology, School of Life Sciences, Key Laboratory of Pediatric Rare Diseases, Ministry of Education, Central South University, Changsha, 410013, China
| | - Yi Dong
- Department of Cellular Biology, School of Life Sciences, Key Laboratory of Pediatric Rare Diseases, Ministry of Education, Central South University, Changsha, 410013, China
| | - Meifang Zhao
- Department of Cellular Biology, School of Life Sciences, Key Laboratory of Pediatric Rare Diseases, Ministry of Education, Central South University, Changsha, 410013, China
| | - Hao Huang
- Department of Cellular Biology, School of Life Sciences, Key Laboratory of Pediatric Rare Diseases, Ministry of Education, Central South University, Changsha, 410013, China
| | - Jieyuan Jin
- Department of Cellular Biology, School of Life Sciences, Key Laboratory of Pediatric Rare Diseases, Ministry of Education, Central South University, Changsha, 410013, China
| | - Liangliang Fan
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, 410013, China.
- Department of Cellular Biology, School of Life Sciences, Key Laboratory of Pediatric Rare Diseases, Ministry of Education, Central South University, Changsha, 410013, China.
| | - Rong Xiang
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, 410013, China.
- Department of Cellular Biology, School of Life Sciences, Key Laboratory of Pediatric Rare Diseases, Ministry of Education, Central South University, Changsha, 410013, China.
| |
Collapse
|
2
|
Zheng Y, Yang N, Pang Y, Gong Y, Yang H, Ding W, Yang H. Mitochondria-associated regulation in adipose tissues and potential reagents for obesity intervention. Front Endocrinol (Lausanne) 2023; 14:1132342. [PMID: 37396170 PMCID: PMC10313115 DOI: 10.3389/fendo.2023.1132342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/24/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction A systematic review analysis was used to assess the profile of mitochondrial involvement in adipose tissue regulation and potential reagents to intervene in obesity through the mitochondrial pathway. Methods Three databases, PubMed, Web of Science, and Embase, were searched online for literature associated with mitochondria, obesity, white adipose tissue, and brown adipose tissue published from the time of their creation until June 22, 2022, and each paper was screened. Results 568 papers were identified, of which 134 papers met the initial selection criteria, 76 were selected after full-text review, and 6 were identified after additional searches. A full-text review of the included 82 papers was performed. Conclusion Mitochondria play a key role in adipose tissue metabolism and energy homeostasis, including as potential therapeutic agents for obesity.
Collapse
Affiliation(s)
- Yali Zheng
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ni Yang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yueshan Pang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanju Gong
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong Yang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Medical and Life Sciences/Reproductive & Women-Children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Weijun Ding
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongya Yang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Xie L, Zhao YX, Zheng Y, Li XF. The pharmacology and mechanisms of platycodin D, an active triterpenoid saponin from Platycodon grandiflorus. Front Pharmacol 2023; 14:1148853. [PMID: 37089949 PMCID: PMC10117678 DOI: 10.3389/fphar.2023.1148853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/28/2023] [Indexed: 04/09/2023] Open
Abstract
Chinese doctors widely prescribed Platycodon grandiflorus A. DC. (PG) to treat lung carbuncles in ancient China. Modern clinical experiences have demonstrated that PG plays a crucial role in treating chronic pharyngitis, plum pneumonia, pneumoconiosis, acute and chronic laryngitis, and so forth. Additionally, PG is a food with a long history in China, Japan, and Korea. Furthermore, Platycodin D (PLD), an oleanane-type triterpenoid saponin, is one of the active substances in PG. PLD has been revealed to have anti-inflammatory, anti-viral, anti-oxidation, anti-obesity, anticoagulant, spermicidal, anti-tumor etc., activities. And the mechanism of the effects draws lots of attention, with various signaling pathways involved in these processes. Additionally, research on PLD's pharmacokinetics and extraction processes is under study. The bioavailability of PLD could be improved by being prescribed with Glycyrrhiza uralensis Fisch. or by creating a new dosage form. PLD has been recently considered to have the potential to be a solubilizer or an immunologic adjuvant. Meanwhile, PLD was discovered to have hemolytic activity correlated. PLD has broad application prospects and reveals practical pharmacological activities in pre-clinical research. The authors believe that these activities of PLD contribute to the efficacy of PG. What is apparent is that the clinical translation of PLD still has a long way to go. With the help of modern technology, the scope of clinical applications of PLD is probable to be expanded from traditional applications to new fields.
Collapse
Affiliation(s)
| | | | | | - Xiao-Fang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Chodari L, Dilsiz Aytemir M, Vahedi P, Alipour M, Vahed SZ, Khatibi SMH, Ahmadian E, Ardalan M, Eftekhari A. Targeting Mitochondrial Biogenesis with Polyphenol Compounds. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4946711. [PMID: 34336094 PMCID: PMC8289611 DOI: 10.1155/2021/4946711] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/22/2021] [Indexed: 12/11/2022]
Abstract
Appropriate mitochondrial physiology is an essential for health and survival. Cells have developed unique mechanisms to adapt to stress circumstances and changes in metabolic demands, by meditating mitochondrial function and number. In this context, sufficient mitochondrial biogenesis is necessary for efficient cell function and haemostasis, which is dependent on the regulation of ATP generation and maintenance of mitochondrial DNA (mtDNA). These procedures play a primary role in the processes of inflammation, aging, cancer, metabolic diseases, and neurodegeneration. Polyphenols have been considered as the main components of plants, fruits, and natural extracts with proven therapeutic effects during the time. These components regulate the intracellular pathways of mitochondrial biogenesis. Therefore, the current review is aimed at representing an updated review which determines the effects of different natural polyphenol compounds from various plant kingdoms on modulating signaling pathways of mitochondrial biogenesis that could be a promising alternative for the treatment of several disorders.
Collapse
Affiliation(s)
- Leila Chodari
- Physiology Department, Faculty of Medicine, Urmia University of Medical Sciences, Urmia 571478334, Iran
| | - Mutlu Dilsiz Aytemir
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 06100, Sıhhiye, Ankara, Turkey
- İzmir Katip Çelebi University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 35620, Çiğli, İzmir, Turkey
| | - Parviz Vahedi
- Department of Anatomical Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Mahdieh Alipour
- Dental and Periodontal Research Center, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Elham Ahmadian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Aziz Eftekhari
- Pharmacology and Toxicology Department, Maragheh University of Medical Sciences, Maragheh, Iran
| |
Collapse
|
5
|
Yu J, Chang X, Peng H, Wang X, Wang J, Peng D, Gui S. A strategy based on isocratic and linear-gradient high-speed counter-current chromatography for the comprehensive separation of platycosides from Platycodi radix. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:477-483. [PMID: 33459309 DOI: 10.1039/d0ay02029j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Platycosides, the generally recognized main active constituents of Platycodi radix, have been studied extensively for their wide pharmacological activities. Herein, we have successfully developed an efficient method for the enrichment and comprehensive isolation of platycosides from Platycodi radix by MCI resin column chromatography (CC) and two different modes of high-speed counter-current chromatography (HSCCC). MCI resin CC was the preferable enrichment operation for platycosides from the 70%-ethanol extract of Platycodi radix and rendered target platycosides when eluted by 60% aqueous methanol solution. As for the separation, two different modes, including isocratic HSCCC and linear-gradient HSCCC, were applied together to separate the platycosides using a mixture of ethyl acetate, n-butanol and water coupled with evaporative light scattering detection, for the first time. Isocratic HSCCC was applied to separate crude platycosides from Platycodi radix using ethyl acetate-n-butanol-water (1 : 1 : 2, v/v), yielding seven pure platycosides (compounds 1-6, 8) and two fractions of enriched mixtures of compounds 7, 9, 10, and 11. Linear-gradient HSCCC was employed to rapidly separate compounds 7, 9, 10, and 11 by constantly changing the proportions of ethyl acetate and n-butanol in the ethyl acetate-n-butanol-water solvent system. Finally, platycoside E (1), deapio-platycodin D3 (2), platycodin D3 (3), deapio-platycodin D2 (4), platycodin D2 (5), platycodin D (6), polygalacin D2 (7), polygalacin D (8), and three tautomers, namely 2''-O-acetylplatycodin D (9) and 3''-O-acetylplatycodin D (9'), 2''-O-acetylpolygalacin D2 (10) and 3''-O-acetylpolygalacin D2 (10'), and 2''-O-acetylpolygalacin D (11) and 3''-O-acetylpolygalacin D (11'), were obtained from 300 mg of crude platycosides from Platycodi radix.
Collapse
Affiliation(s)
- Jinqian Yu
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | | | | | | | | | | | | |
Collapse
|
6
|
Cho SY, Lim S, Ahn KS, Kwak HJ, Park J, Um JY. Farnesol induces mitochondrial/peroxisomal biogenesis and thermogenesis by enhancing the AMPK signaling pathway in vivo and in vitro. Pharmacol Res 2021; 163:105312. [PMID: 33246168 DOI: 10.1016/j.phrs.2020.105312] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/30/2020] [Accepted: 11/16/2020] [Indexed: 12/25/2022]
Abstract
Thermogenic activation of brown adipose tissue has been considered as an obesity treatment strategy that consumes energy. In this study, we investigated whether farnesol in vivoandin vitro models induces thermogenesis and affect the activation of the mitochondria and peroxisomes, which are key organelles in activated brown adipocytes. Farnesol induced the expression of thermogenic factors such as uncoupling protein 1 (UCP1), peroxisome proliferator-activated receptor γ coactivator 1 alpha (PGC1α), and PR domain zinc-finger protein 16 (PRDM16) together with the phosphorylation of AMP-activated protein kinase alpha (AMPKα) in brown adipose tissue and primary cultured brown adipocytes. Farnesol promoted lipolytic enzymes: hormone sensitive lipase (HSL) and adipose triglyceride lipase (ATGL). We confirmed that these inductions of lipolysis by farnesol were the underlying causes of β-oxidation activation. Farnesol also increased the expression of oxidative phosphorylation (OXPHOS) complexes and the oxygen consumption rate (OCR) and the expansion of peroxisomes. Moreover, we proved that the thermogenic activity of farnesol was dependent on AMPKα activation using Compound C inhibitor or siRNA-AMPKα knockdown. These results suggest that farnesol may be a potential agent for the treatment of obesity by inducing energy consumption through heat generation.
Collapse
Affiliation(s)
- Seon Yeon Cho
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea; Basic Research Laboratory for Comorbidity Research and Department of Comorbidity Research, KyungHee Institute of Convergence Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Seona Lim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea; Basic Research Laboratory for Comorbidity Research and Department of Comorbidity Research, KyungHee Institute of Convergence Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Kwang Seok Ahn
- Basic Research Laboratory for Comorbidity Research and Department of Comorbidity Research, KyungHee Institute of Convergence Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyun Jeong Kwak
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon, Republic of Korea
| | - Jinbong Park
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea; Basic Research Laboratory for Comorbidity Research and Department of Comorbidity Research, KyungHee Institute of Convergence Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.
| | - Jae-Young Um
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Park EJ, Lee HJ. Immunomodulatory effects of fermented Platycodon grandiflorum extract through NF-κB signaling in RAW 264.7 cells. Nutr Res Pract 2020; 14:453-462. [PMID: 33029286 PMCID: PMC7520564 DOI: 10.4162/nrp.2020.14.5.453] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/23/2020] [Accepted: 05/06/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND/OBJECTIVES Platycodon grandiflorum (PG), an oriental herbal medicine, has been known to improve liver function, and has both anti-inflammatory and antimicrobial properties. However, little is known about the immune-enhancing effects of PG and its mechanism. In this study, we aimed to investigate whether fermented PG extract (FPGE), which has increased platycodin D content, activates the immune response in a murine macrophage cell line, RAW 264.7. MATERIALS/METHODS Cell viability was determined by Cell Counting Kit-8 assay and the nitric oxide (NO) levels were measured using Griess reagent. Cytokine messenger RNA levels of were monitored by quantitative reverse transcription polymerase chain reaction. To investigate the molecular mechanisms underlying immunomodulatory actions of FPGE in RAW 264.7 cells, we have conducted luciferase reporter gene assay and western blotting. RESULTS We found that FPGE treatment induced macrophage cell proliferation in a dose-dependent manner. FPGE also modulated the expression of NO and pro-inflammatory cytokines, such as tumor necrosis factor-α, interleukin (IL)-1β, and IL-6. The activation and phosphorylation levels of nuclear factor kappa B (NF-κB) were increased by FPGE treatment. Moreover, 5-aminoimidazole-4-carboxamide ribonucleotide, an activator of AMP-activated kinase (AMPK), significantly reduced both lipopolysaccharides- and FPGE-induced NF-κB reporter gene activity. CONCLUSIONS Taken together, our findings suggest that FPGE may be a novel immune-enhancing agent acting via AMPK-NF-κB signaling pathway.
Collapse
Affiliation(s)
- Eun-Jung Park
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam 13120, Korea.,Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam 13120, Korea
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam 13120, Korea.,Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam 13120, Korea
| |
Collapse
|
8
|
Bioactive platycodins from Platycodonis Radix: Phytochemistry, pharmacological activities, toxicology and pharmacokinetics. Food Chem 2020; 327:127029. [PMID: 32450486 DOI: 10.1016/j.foodchem.2020.127029] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 12/28/2022]
Abstract
Platycodonis Radix, the root of Platycodon grandiflorum (Jacq.) A. DC., is a well-known edible herbal medicine. It is a common vegetable used for the preparation of side dish, kimchi, dessert, and tea. Besides, it has been used to treat respiratory disease including cough, excessive phlegm, and sore throat for a long history. In the past decades, the bioactive components and the pharmacological activities of Platycodonis Radix have been widely investigated. Thereinto, platycodins, the oleanane-type triterpenoid saponins were demonstrated to be the main bioactive components in Platycodonis Radix, and more than 70 platycodins have been identified up to date. This paper mainly reviewed the phytochemistry, pharmacological activities (apophlegmatic, anti-tussive, anti-inflammatory, anti-cancer, anti-obesity, anti-diabetic, immunomodulatory, cardiovascular protective, and hepatoprotective activities, etc.), toxicology and pharmacokinetics of platycodins isolated from Platycodonis Radix, aiming to promote further investigation on therapeutic potential of these platycodins.
Collapse
|
9
|
A phytoestrogen secoisolariciresinol diglucoside induces browning of white adipose tissue and activates non-shivering thermogenesis through AMPK pathway. Pharmacol Res 2020; 158:104852. [PMID: 32438038 DOI: 10.1016/j.phrs.2020.104852] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/30/2020] [Accepted: 04/20/2020] [Indexed: 01/07/2023]
Abstract
Secoisolariciresinol diglucoside (SDG) is the main phytoestrogen component of flaxseed known as an antioxidant. Current study focused on the effect of SDG in white adipose tissue (WAT) browning. Browning of WAT is considered as a promising treatment strategy for metabolic diseases. To demonstrate the effect of SDG as an inducer of browning, brown adipocyte markers were investigated in inguinal WAT (iWAT) of high fat diet-fed obese mice and genetically obese db/db mice after SDG administration. SDG increased thermogenic factors such as uncoupling protein 1, peroxisome proliferator-activated receptor gamma coactivator 1 alpha and PR domain containing 16 in iWAT and brown adipose tissue (BAT) of mice. Similar results were shown in beige-induced 3T3-L1 adipocytes and primary cultured brown adipocytes. Furthermore, SDG increased factors of mitochondrial biogenesis and activation. We also observed SDG-induced alteration of AMP-activated protein kinase α (AMPKα). As AMPKα is closely related in the regulation of adipogenesis and thermogenesis, we then evaluated the effect of SDG in AMPKα-inhibited conditions. Genetic or chemical inhibition of AMPKα demonstrated that the role of SDG on browning and thermogenesis was dependent on AMPKα signaling. In conclusion, our data suggest SDG as a potential candidate for improvement of obesity and other metabolic disorders.
Collapse
|
10
|
Black Raspberry ( Rubus coreanus Miquel) Promotes Browning of Preadipocytes and Inguinal White Adipose Tissue in Cold-Induced Mice. Nutrients 2019; 11:nu11092164. [PMID: 31509935 PMCID: PMC6769844 DOI: 10.3390/nu11092164] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/08/2019] [Accepted: 08/27/2019] [Indexed: 12/12/2022] Open
Abstract
The alteration of white adipose tissue (WAT) "browning", a change of white into beige fat, has been considered as a new therapeutic strategy to treat obesity. In this study, we investigated the browning effect of black raspberry (Rubus coreanus Miquel) using in vitro and in vivo models. Black raspberry water extract (BRWE) treatment inhibited lipid accumulation in human mesenchymal stem cells (hMSCs) and zebrafish. To evaluate the thermogenic activity, BRWE was orally administered for 2 weeks, and then, the mice were placed in a 4 °C environment. As a result, BRWE treatment increased rectal temperature and inguinal WAT (iWAT) thermogenesis by inducing the expression of beige fat specific markers such as PR domain zinc-finger protein 16 (PRDM16), uncoupling protein 1 (UCP1), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α), and t-box protein 1 (TBX1) in cold-exposed mice. Furthermore, ellagic acid (EA), a constituent of BRWE, markedly promoted beige specific markers: UCP1, PGC1α, TBX1, and nuclear respiratory factor 1 in beige differentiation media (DM)-induced 3T3-L1 adipocytes. Our findings indicate that BRWE can promote beige differentiation/activation, and EA is the active compound responsible for such effect. Thus, we suggest the nature-derived agents BRWE and EA as potential agents for obesity treatment.
Collapse
|
11
|
Park J, Kim HL, Jung Y, Ahn KS, Kwak HJ, Um JY. Bitter Orange (Citrus aurantium Linné) Improves Obesity by Regulating Adipogenesis and Thermogenesis through AMPK Activation. Nutrients 2019; 11:nu11091988. [PMID: 31443565 PMCID: PMC6770725 DOI: 10.3390/nu11091988] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/09/2019] [Accepted: 08/18/2019] [Indexed: 12/19/2022] Open
Abstract
Obesity is a global health threat. Herein, we evaluated the underlying mechanism of anti-obese features of bitter orange (Citrus aurantium Linné, CA). Eight-week-administration of CA in high fat diet-induced obese C57BL/6 mice resulted in a significant decrease of body weight, adipose tissue weight and serum cholesterol. In further in vitro studies, we observed decreased lipid droplets in CA-treated 3T3-L1 adipocytes. Suppressed peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer binding protein alpha indicated CA-inhibited adipogenesis. Moreover, CA-treated primary cultured brown adipocytes displayed increased differentiation associated with elevation of thermogenic factors including uncoupling protein 1 and PPARγ coactivator 1 alpha as well. The effects of CA in both adipocytes were abolished in AMP-activated protein kinase alpha (AMPKα)-suppressed environments, suggesting the anti-adipogenic and pro-thermogenic actions of CA were dependent on AMPKα pathway. In conclusion, our results suggest CA as a potential anti-obese agent which regulates adipogenesis and thermogenesis via AMPKα.
Collapse
Affiliation(s)
- Jinbong Park
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
- Basic Research Laboratory for Comorbidity Regulation, Comorbidity Research Institute, Kyung Hee University, Seoul 02447, Korea
| | - Hye-Lin Kim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Yunu Jung
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
- Basic Research Laboratory for Comorbidity Regulation, Comorbidity Research Institute, Kyung Hee University, Seoul 02447, Korea
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
- Basic Research Laboratory for Comorbidity Regulation, Comorbidity Research Institute, Kyung Hee University, Seoul 02447, Korea
| | - Hyun Jeong Kwak
- Life science major, Division of Bio-convergence, College of convergence and integrate science, Kyonggi University, Suwon 16227, Korea.
| | - Jae-Young Um
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
- Basic Research Laboratory for Comorbidity Regulation, Comorbidity Research Institute, Kyung Hee University, Seoul 02447, Korea.
| |
Collapse
|
12
|
Xi J, Jing J, Zhang Y, Liang C, Hao Z, Zhang L, Chen Y. SIRT3 inhibited the formation of calcium oxalate-induced kidney stones through regulating NRF2/HO-1 signaling pathway. J Cell Biochem 2019; 120:8259-8271. [PMID: 30548662 DOI: 10.1002/jcb.28109] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/29/2018] [Indexed: 01/24/2023]
Abstract
Oxidative stress is important for the calcium oxalate (CaOx)-induced kidney stone formation. Sirtuin 3 (SIRT3) plays an essential role in the amelioration of oxidative damages. This study aims to explore the effect of SIRT3 on the formation of CaOx-induced kidney stones and the underlying mechanism. SIRT3 expression in renal tissues was detected by immunohistochemistry. Apoptosis in renal tissues was examined by TUNEL staining. Crystal-cell adherence and cell apoptosis in HK-2 cells were assessed by analyzing Ca2+ concentration and by the flow cytometry analysis, respectively. Protein expression of SIRT3, nuclear factor erythroid 2-related factor (NRF2), heme oxygenase-1 (HO-1), and Bax in renal tissues or HK-2 cells was examined by Western blot analysis. Renal pathological changes and the adhesion of CaOx crystals in the kidneys were examined by hematoxylin-eosin and von Kossa staining, respectively. Human kidneys with stones showed enhanced renal apoptosis, downregulated SIRT3 expression, and upregulated NRF2/HO-1 expression, compared with the controls. Furthermore, SIRT3 overexpression inhibited the CaOx-induced promotion of crystal-cell adherence and cell apoptosis in human proximal tubular cell line HK-2 cells, which was reversed by the NRF2 knockdown. Moreover, our in vivo assay further confirmed that SIRT3 overexpression alleviated the glyoxylate administration-induced renal damage, renal apoptosis, and crystals deposition in the kidneys from the stone model mice, which was also associated with its activation of the NRF2/HO-1 pathway. Our findings support the notion that overexpression of SIRT3 may inhibit the formation of CaOx-induced kidney stones, at least in part, through regulating the NRF2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Junhua Xi
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China.,Institute of Urology, Anhui Medical University, Hefei, Anhui, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China.,Department of Urology, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Junfeng Jing
- Department of Urology, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Yanbin Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China.,Institute of Urology, Anhui Medical University, Hefei, Anhui, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China.,Department of Urology, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China.,Institute of Urology, Anhui Medical University, Hefei, Anhui, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Zongyao Hao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China.,Institute of Urology, Anhui Medical University, Hefei, Anhui, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China.,Institute of Urology, Anhui Medical University, Hefei, Anhui, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Yang Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China.,Institute of Urology, Anhui Medical University, Hefei, Anhui, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
13
|
Kim HL, Park J, Jung Y, Ahn KS, Um JY. Platycodin D, a novel activator of AMP-activated protein kinase, attenuates obesity in db/db mice via regulation of adipogenesis and thermogenesis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 52:254-263. [PMID: 30599906 DOI: 10.1016/j.phymed.2018.09.227] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/22/2018] [Accepted: 09/27/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Platycodi Radix (root of Platycodon grandiflorum) and its active compound platycodin D (PD) has been previously shown to possess anti-obesity properties, but the underlying mechanisms remain poorly understood. PURPOSE The present study was aimed to evaluate the anti-obese effect of PD and reveal its mechanism of action. STUDY DESIGN/METHODS Genetically obese db/db mice were orally treated with PD for 4 weeks, and body weight gain, adipose tissue weight, serum parameters were measured. Then, assays on adipogenic factors, thermogenic factors, and AMP-activated protein kinase (AMPK) pathway were performed in PD-treated 3T3-L1 murine adipocytes, human adipose-derived mesenchymal stem cells (hAMSCs), and primary cultured brown adipocytes. RESULTS PD treatment attenuated body weight gain, suppressed white adipose tissue weight and improved obesity-related serum parameters in db/db mice. Two major adipogenic factors, peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer binding protein α (C/EBPα) were decreased by PD treatment in WAT of db/db mice, 3T3-L1 adipocytes and hAMSCs. In BAT of db/db mice and primary cultured brown adipocytes, PD treatment elevated the expressions of uncoupled protein 1 (UCP1) and peroxisome proliferator-activated receptor γ coactivator 1 α (PCG1α), the key regulators of BAT-associated thermogenesis. In addition, PD activated AMPKα both in vivo and in vitro. However, when AMPK was inhibited by compound C, PD treatment failed to suppress adipogenic factors and increase thermogenic factors. CONCLUSIONS PD improved obesity in db/db mice by AMPK-associated decrease of adipogenic markers including PPARγ and C/EBPα. PD increased thermogenic factors such as UCP1 and PGC1α in db/db mice and primary cultured brown adipocytes. AMPK inhibition nullified the effects of PD, suggesting its anti-adipogenic and thermogenic actions were dependent on AMPK pathway activation.
Collapse
Affiliation(s)
- Hye-Lin Kim
- Department of Pharmacology, College of Korean Medicine, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, Republic of Korea; Basic Research Laboratory for Comorbidity Regulation, Comorbidity Research Institute, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, Republic of Korea
| | - Jinbong Park
- Department of Pharmacology, College of Korean Medicine, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, Republic of Korea; Basic Research Laboratory for Comorbidity Regulation, Comorbidity Research Institute, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, Republic of Korea
| | - Yunu Jung
- Department of Pharmacology, College of Korean Medicine, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, Republic of Korea; Basic Research Laboratory for Comorbidity Regulation, Comorbidity Research Institute, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, Republic of Korea
| | - Kwang Seok Ahn
- Department of Pharmacology, College of Korean Medicine, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, Republic of Korea
| | - Jae-Young Um
- Department of Pharmacology, College of Korean Medicine, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, Republic of Korea; Basic Research Laboratory for Comorbidity Regulation, Comorbidity Research Institute, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, Republic of Korea.
| |
Collapse
|
14
|
Jung Y, Park J, Kim HL, Sim JE, Youn DH, Kang J, Lim S, Jeong MY, Yang WM, Lee SG, Ahn KS, Um JY. Vanillic acid attenuates obesity via activation of the AMPK pathway and thermogenic factors in vivo and in vitro. FASEB J 2018; 32:1388-1402. [PMID: 29141998 DOI: 10.1096/fj.201700231rr] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Energy expenditure is a target gaining recent interest for obesity treatment. The antiobesity effect of vanillic acid (VA), a well-known flavoring agent, was investigated in vivo and in vitro. High-fat diet (HFD)-induced obese mice and genetically obese db/db mice showed significantly decreased body weights after VA administration. Two major adipogenic markers, peroxisome proliferator activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα), were reduced while the key factor of energy metabolism, AMPKα, was increased in the white adipose tissue and liver tissue of VA-treated mice. Furthermore, VA inhibited lipid accumulation and reduced hepatotoxic/inflammatory markers in liver tissues of mice and HepG2 hepatocytes. VA treatment also decreased differentiation of 3T3-L1 adipocytes by regulating adipogenic factors including PPARγ and C/EBPα. AMPKα small interfering RNA was used to examine whether AMPK was associated with the actions of VA. In AMPKα-nulled 3T3-L1 cells, the inhibitory action of VA on PPARγ and C/EBPα was attenuated. Furthermore, in brown adipose tissues of mice and primary cultured brown adipocytes, VA increased mitochondria- and thermogenesis-related factors such as uncoupling protein 1 and PPARγ-coactivator 1-α. Taken together, our results suggest that VA has potential as an AMPKα- and thermogenesis-activating antiobesity agent.-Jung, Y., Park, J., Kim, H.-L., Sim, J.-E., Youn, D.-H., Kang, J., Lim, S., Jeong, M.-Y., Yang, W. M., Lee, S.-G., Ahn, K. S., Um, J.-Y. Vanillic acid attenuates obesity via activation of the AMPK pathway and thermogenic factors in vivo and in vitro.
Collapse
Affiliation(s)
- Yunu Jung
- College of Korean Medicine and Basic Research Laboratory for Comorbidity Regulation, Kyung Hee University, Seoul, South Korea
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Jinbong Park
- College of Korean Medicine and Basic Research Laboratory for Comorbidity Regulation, Kyung Hee University, Seoul, South Korea
| | - Hye-Lin Kim
- College of Korean Medicine and Basic Research Laboratory for Comorbidity Regulation, Kyung Hee University, Seoul, South Korea
| | - Jung-Eun Sim
- Department of Biological Sciences in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Dong-Hyun Youn
- College of Korean Medicine and Basic Research Laboratory for Comorbidity Regulation, Kyung Hee University, Seoul, South Korea
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
| | - JongWook Kang
- College of Korean Medicine and Basic Research Laboratory for Comorbidity Regulation, Kyung Hee University, Seoul, South Korea
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Seona Lim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Mi-Young Jeong
- College of Korean Medicine and Basic Research Laboratory for Comorbidity Regulation, Kyung Hee University, Seoul, South Korea
| | - Woong Mo Yang
- College of Korean Medicine and Basic Research Laboratory for Comorbidity Regulation, Kyung Hee University, Seoul, South Korea
| | - Seok-Geun Lee
- College of Korean Medicine and Basic Research Laboratory for Comorbidity Regulation, Kyung Hee University, Seoul, South Korea
| | - Kwang Seok Ahn
- College of Korean Medicine and Basic Research Laboratory for Comorbidity Regulation, Kyung Hee University, Seoul, South Korea
| | - Jae-Young Um
- College of Korean Medicine and Basic Research Laboratory for Comorbidity Regulation, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
15
|
Secoisolariciresinol diglucoside inhibits adipogenesis through the AMPK pathway. Eur J Pharmacol 2018; 820:235-244. [DOI: 10.1016/j.ejphar.2017.12.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 12/15/2017] [Accepted: 12/15/2017] [Indexed: 11/18/2022]
|
16
|
Kim HL, Jung Y, Park J, Youn DH, Kang J, Lim S, Lee BS, Jeong MY, Choe SK, Park R, Ahn KS, Um JY. Farnesol Has an Anti-obesity Effect in High-Fat Diet-Induced Obese Mice and Induces the Development of Beige Adipocytes in Human Adipose Tissue Derived-Mesenchymal Stem Cells. Front Pharmacol 2017; 8:654. [PMID: 29033835 PMCID: PMC5627035 DOI: 10.3389/fphar.2017.00654] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/01/2017] [Indexed: 12/17/2022] Open
Abstract
Brown adipocytes dissipate energy as heat and hence have an important therapeutic capacity for obesity. Development of brown-like adipocytes (also called beige) is also another attractive target for obesity treatment. Here, we investigated the effect of farnesol, an isoprenoid, on adipogenesis in adipocytes and on the browning of white adipose tissue (WAT) as well as on the weight gain of high-fat diet (HFD)-induced obese mice. Farnesol inhibited adipogenesis and the related key regulators including peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer binding protein α through the up-regulation of AMP-activated protein kinase in 3T3-L1 murine adipocytes and human adipose tissue-derived mesenchymal stem cells (hAMSCs). Farnesol markedly increased the expression of uncoupling protein 1 and PPARγ coactivator 1 α in differentiated hAMSCs. In addition, farnesol limited the weight gain in HFD obese mice and induced the development of beige adipocytes in both inguinal and epididymal WAT. These results suggest that farnesol could be a potential therapeutic agent for obesity treatment.
Collapse
Affiliation(s)
- Hye-Lin Kim
- College of Korean Medicine, Basic Research Laboratory for Comorbidity Regulation, Graduate School, Kyung Hee UniversitySeoul, South Korea
| | - Yunu Jung
- College of Korean Medicine, Basic Research Laboratory for Comorbidity Regulation, Graduate School, Kyung Hee UniversitySeoul, South Korea.,Department of Science in Korean Medicine, Graduate School, Kyung Hee UniversitySeoul, South Korea
| | - Jinbong Park
- College of Korean Medicine, Basic Research Laboratory for Comorbidity Regulation, Graduate School, Kyung Hee UniversitySeoul, South Korea
| | - Dong-Hyun Youn
- College of Korean Medicine, Basic Research Laboratory for Comorbidity Regulation, Graduate School, Kyung Hee UniversitySeoul, South Korea.,Department of Science in Korean Medicine, Graduate School, Kyung Hee UniversitySeoul, South Korea
| | - JongWook Kang
- College of Korean Medicine, Basic Research Laboratory for Comorbidity Regulation, Graduate School, Kyung Hee UniversitySeoul, South Korea.,Department of Science in Korean Medicine, Graduate School, Kyung Hee UniversitySeoul, South Korea
| | - Seona Lim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee UniversitySeoul, South Korea
| | - Beom Su Lee
- Department of Science in Korean Medicine, Graduate School, Kyung Hee UniversitySeoul, South Korea
| | - Mi-Young Jeong
- College of Korean Medicine, Basic Research Laboratory for Comorbidity Regulation, Graduate School, Kyung Hee UniversitySeoul, South Korea
| | - Seong-Kyu Choe
- Department of Microbiology and Center for Metabolic Function Regulation, School of Medicine, Wonkwang UniversityIksan, South Korea
| | - Raekil Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and TechnologyGwangju, South Korea
| | - Kwang Seok Ahn
- College of Korean Medicine, Basic Research Laboratory for Comorbidity Regulation, Graduate School, Kyung Hee UniversitySeoul, South Korea
| | - Jae-Young Um
- College of Korean Medicine, Basic Research Laboratory for Comorbidity Regulation, Graduate School, Kyung Hee UniversitySeoul, South Korea
| |
Collapse
|
17
|
Song C, Fu B, Zhang J, Zhao J, Yuan M, Peng W, Zhang Y, Wu H. Sodium fluoride induces nephrotoxicity via oxidative stress-regulated mitochondrial SIRT3 signaling pathway. Sci Rep 2017; 7:672. [PMID: 28386112 PMCID: PMC5429606 DOI: 10.1038/s41598-017-00796-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/13/2017] [Indexed: 12/24/2022] Open
Abstract
Accumulation of mitochondrial reactive oxygen species (mROS) has been implicated in the pathogenesis of fluorosis. As the main mitochondrial deacetylase, SIRT3 is closely associated with oxidative stress. To investigate the role of SIRT3 in response to sodium fluoride (NaF)-induced nephrotoxicity. Our results showed that NaF treatment impaired mitochondrial ultrastructure, decreased cell viability and increased apoptosis in TCMK-1 cells. Oxidative stress, detected by mROS and 8-Hydroxy-2’-deoxyguanosine (8-OHdG) were higher in NaF-treated cells, accompanied by decreased level of reduced glutathione (GSH). NaF reduces manganese superoxide dismutase (SOD2) expression through SIRT3-mediated DNA-binding activity of FoxO3a and decrease SOD2 activity by inhibiting SIRT3-mediated deacetylation. These effects were ameliorated by overexpression of SIRT3. Peroxisome proliferator-activated receptor-coactivator 1a (PGC-1α) interacted with nuclear factor erythroid 2 (NF-E2)-related factor 2 (NRF2) that bound to SIRT3 promoter to regulate SIRT3 expression. The study provides new insights into a critical NRF2/PGC-1α-SIRT3 pathway in response to NaF-induced nephritic oxidative injury. In vivo treatment of SIRT3-expressing adenovirus protects against NaF-induced nephritic injury in mice. Moreover, mechanistic study revealed that ERK1/2 activation was associated with increased apoptosis induced by NaF. In conclusion, these data shedding light on new approaches for treatment of NaF-induced nephrotoxicity.
Collapse
Affiliation(s)
- Chao Song
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Beibei Fu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jingcheng Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jiamin Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mengke Yuan
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wei Peng
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Haibo Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
18
|
Bonet ML, Mercader J, Palou A. A nutritional perspective on UCP1-dependent thermogenesis. Biochimie 2017; 134:99-117. [DOI: 10.1016/j.biochi.2016.12.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 12/23/2016] [Indexed: 12/16/2022]
|
19
|
Zeng L, Kong H, Zhu M, Yan W. A facile method to evaluate the quality of Platycodon grandiflorum A. De Candolle using reference standard extract. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
20
|
Miconia sp. Increases mRNA Levels of PPAR Gamma and Inhibits Alpha Amylase and Alpha Glucosidase. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:5123519. [PMID: 27478477 PMCID: PMC4961835 DOI: 10.1155/2016/5123519] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/02/2016] [Accepted: 06/12/2016] [Indexed: 01/01/2023]
Abstract
Diabetes mellitus is a public health problem worldwide. For this reason, ethanolic extract of Miconia sp. from Oaxaca, Mexico, was selected in search of an alternative against this disease. The effect of Miconia sp. on mRNA expression of PPARγ on cell line 3T3-L1, its effect on alpha amylase and alpha glucosidase, lipid accumulation during adipogenesis, and cell viability on VERO cells were evaluated. The mRNA levels of PPARγ increased on 1.393 ± 0.008 folds, lipid accumulation was increased by 29.55% with Miconia sp. extract and 34.57% with rosiglitazone, and α-amylase and α-glycosidase were inhibited with IC50 values from 28.23 ± 2.15 μg/mL and 1.95 ± 0.15 μg/mL, respectively; the IC50 on antiproliferative activity on VERO cells was 314.54 ± 45.40 μg/mL. In case of α-amylase and α-glycosidase assays, IC50 (inhibitory concentration 50) refers to necessary extract amounts to inhibit 50% of enzymatic activity. On the other hand, on antiproliferative activity, IC50 (inhibitory concentration 50) refers to necessary extract amounts to inhibit 50% of cell proliferation. It was concluded that the compounds present in Miconia sp. ethanolic extract increase mRNA expression of PPARγ, inhibit α-amylase and α-glucosidase, and increase lipid accumulation. It constitutes an alternative as adjuvant in diabetes mellitus treatment; therefore, we recommend continuing identifying the compounds responsible for its promising in vivo antidiabetic activity.
Collapse
|
21
|
Zeng L, Zhong J, Zhu M, Yan W. A feasible scaling-up separation of platycosides from Platycodi Radix: From analytical to semi-preparative high performance liquid chromatography coupling with a post-separation flash freezing treatment to obtain highly unstable components. Sep Purif Technol 2016. [DOI: 10.1016/j.seppur.2016.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|