1
|
Wang H, Wang Y, Liu Y, Xie J, Zhang Y, Jin H, Wei F, Ma S. Study on the Structural Features of Eight Dendrobium Polysaccharides and Their Protective Effects on Gastric Mucosa. Foods 2024; 13:3011. [PMID: 39335939 PMCID: PMC11431481 DOI: 10.3390/foods13183011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024] Open
Abstract
This study aimed to analyze the structure of polysaccharides from eight different Dendrobium species and their protective effects on gastric mucosa. Ultraviolet (UV) analysis showed that the contents of eight polysaccharides ranged from 51.89 ± 6.91% to 80.57 ± 11.63%; the degree of acetylation ranged from 0.17 ± 0.03 to 0.48 ± 0.03. High-performance liquid chromatography (HPLC) results showed that these polysaccharides were mainly composed of mannose (Man) and glucose (Glc) with a small amount of galactose (Gal) and arabinose (Ara), and the monosaccharide ratios of different Dendrobium species were different. High-performance size exclusion chromatography-multi angle light scattering-refractive index detector (HPSEC-MALS-RID) showed that the molecular weight (Mw) of all Dendrobium polysaccharides was >1 × 105 Da; D. huoshanense had the lowest molecular weight. Subsequently, an ethanol injured GES-1 cell model was constructed to evaluate the gastric mucosal protective potential of polysaccharides from eight different Dendrobium species. The results showed that the protective effect of the low concentration 50 μg/mL DHP treatment group was similar to that of the control group (p > 0.05), and the cell viability could reach 97.32% of that of the control group. Based on the polysaccharide composition, different kinds of Dendrobium have different degrees of migration and repair effects on GES-1 damaged cells, and the effect of DHP is slightly better than that of other varieties (83.13 ± 1.05%). Additionally, Dendrobium polysaccharides alleviated ethanol-induced oxidative stress and inflammatory response in gastric mucosal cells by enhancing the activity of antioxidant enzymes (superoxide dismutase, glutathione peroxidase, catalase) and reducing the levels of malondialdehyde and reactive oxygen species. Overall, DHP can most effectively protect gastric mucosa. These findings enhance our understanding of the relationship between the structure and biological activity of Dendrobium polysaccharides, providing a foundation for the quality control of Dendrobium. Furthermore, these findings offer theoretical support for the development of Dendrobium polysaccharides as nutraceuticals to treat digestive system diseases.
Collapse
Affiliation(s)
- Haonan Wang
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing 102629, China; (H.W.); (Y.W.); (Y.L.); (J.X.); (H.J.)
- National Institutes for Food and Drug Control, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ying Wang
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing 102629, China; (H.W.); (Y.W.); (Y.L.); (J.X.); (H.J.)
| | - Yuanxi Liu
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing 102629, China; (H.W.); (Y.W.); (Y.L.); (J.X.); (H.J.)
| | - Jinxin Xie
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing 102629, China; (H.W.); (Y.W.); (Y.L.); (J.X.); (H.J.)
| | - Yazhong Zhang
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Anhui Institutes for Food and Drug Control, Hefei 230051, China;
| | - Hongyu Jin
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing 102629, China; (H.W.); (Y.W.); (Y.L.); (J.X.); (H.J.)
| | - Feng Wei
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing 102629, China; (H.W.); (Y.W.); (Y.L.); (J.X.); (H.J.)
| | - Shuangcheng Ma
- National Institutes for Food and Drug Control, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Chinese Pharmacopoeia Commission, Beijing 100061, China
| |
Collapse
|
2
|
Ge X, Zhu S, Yang H, Wang X, Li J, Liu S, Xing R, Li P, Li K. Impact of O-acetylation on chitin oligosaccharides modulating inflammatory responses in LPS-induced RAW264.7 cells and mice. Carbohydr Res 2024; 542:109177. [PMID: 38880715 DOI: 10.1016/j.carres.2024.109177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
Chitin oligosaccharides have garnered significant attention due to their biological activities, particularly their immunomodulatory properties. However, O-acetylation in chemically preparing chitin oligosaccharides seems inevitable and leads to some uncertainty on the bioactivity of chitin oligosaccharides. In this study, an O-acetyl-free chitin oligosaccharides and three different O-acetylated chitin oligosaccharides with degree of polymerization ranging from 2 to 6 were prepared using ammonia hydrolysis, and their structures and detailed components were further characterized with FTIR, NMR and MS. Subsequently, the effects of O-acetylation on the immunomodulatory activity of chitin oligosaccharides were investigated in vitro and in vivo. The results suggested that the chitin oligosaccharides with O-acetylation exhibited better inflammatory inhibition than pure chitin oligosaccharides, significantly reducing the expression of inflammatory factors, such as IL-6 and iNOS, in the LPS-induced RAW264.7 macrophage. The chitin oligosaccharides with a degree of O-acetylation of 93 % was found to effectively alleviate LPS-induced endotoxemia in mice, including serum inflammation indices reduction and damage repairment of the intestinal liver, and kidney tissues.
Collapse
Affiliation(s)
- Xiangyun Ge
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China; Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Siqi Zhu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Haoyue Yang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Xin Wang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China; Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jingwen Li
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Song Liu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Ronge Xing
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Pengcheng Li
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Kecheng Li
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| |
Collapse
|
3
|
Jiang W, Tan J, Zhang J, Deng X, He X, Zhang J, Liu T, Sun R, Sun M, Chen K, Xu T, Yan Y, Moazzami A, Wu EJ, Zhan J, Hu B. Polysaccharides from Dendrobium officinale improve obesity-induced insulin resistance through the gut microbiota and the SOCS3-mediated insulin receptor substrate-1 signaling pathway. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3437-3447. [PMID: 38111200 DOI: 10.1002/jsfa.13229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/24/2023] [Accepted: 12/19/2023] [Indexed: 12/20/2023]
Abstract
BACKGROUND Obesity induces insulin resistance and chronic inflammation, impacting human health. The relationship between obesity, gut microbiota, and regulatory mechanisms has been studied extensively. Dendrobium officinale polysaccharide (DOP), a traditional Chinese herbal medicine, potentially reduces insulin resistance. However, the mechanism through which DOP affects gut microbiota and alleviates obesity-induced insulin resistance in rats requires further investigation. RESULTS The current study aimed to assess the impact of DOP on gut microbiota and insulin resistance in rats on a high-fat diet. The results revealed that DOP effectively reduced blood lipids, glucose disorders, oxidative stress, and inflammatory infiltration in the liver of obese Sprague Dawley rats. This was achieved by downregulating SOCS3 expression and upregulating insulin receptor substrate-1 (IRS-1) by regulating the JAK/STAT/SOCS3 signaling pathway. Notably, DOP intervention enhanced the abundance of beneficial gut microbiota and reduced harmful microbiota. Correlation analysis demonstrated significant associations among intestinal microbiota, SOCS3-mediated IRS-1 expression, and inflammatory factors. CONCLUSION Dendrobium officinale polysaccharide regulated the gut microbiota, enhanced IRS-1 expression, and mitigated liver injury and insulin resistance due to a high-fat diet. These findings depict the potential anti-insulin resistance properties of DOP and offer further evidence for addressing obesity and its complications. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wei Jiang
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
- Sichuan Provincial key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu, China
| | - Jin Tan
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Jiacheng Zhang
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Deng
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Xinyue He
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Jin Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, USA
| | - Tong Liu
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Rong Sun
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Mengxun Sun
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Kuo Chen
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tingjia Xu
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Yuling Yan
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Ali Moazzami
- Department of Molecular Sciences, Uppsala Biocenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - E-Jiao Wu
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
| | - Jiasui Zhan
- Department of Forest Mycology and Plant pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Binhong Hu
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
- Sichuan Provincial key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu, China
- Department of Forest Mycology and Plant pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
4
|
Zeng B, Yan Y, Zhang Y, Wang C, Huang W, Zhong X, Chen Z, Xie M, Yang Z. Dendrobium officinale Polysaccharide (DOP) inhibits cell hyperproliferation, inflammation and oxidative stress to improve keratinocyte psoriasis-like state. Adv Med Sci 2024; 69:167-175. [PMID: 38521458 DOI: 10.1016/j.advms.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
PURPOSE Psoriasis is a skin disease characterized by excessive proliferation, inflammation and oxidative stress in keratinocytes. The present study aimed to investigate the therapeutic effects of Dendrobium officinale polysaccharide (DOP) on keratinocyte psoriasis-like models. METHODS The HaCaT keratinocyte inflammation models were induced by interleukin (IL)-22 or lipopolysaccharide (LPS), respectively, and oxidative stress damage within cells was elicited by H2O2 and treated using DOP. CCK-8 and EdU were carried out to detect cell proliferation. ELISA, qRT-PCR, and Western blot were conducted to measure the expression of pro-inflammatory cytokines IL17A, IL-23, IL1β, tumor necrosis factor alpha (TNF-α), and IL-6. Reactive oxygen species (ROS) level in keratinocytes was detected by flow cytometry. Cell proliferation-associated proteins (PCNA, Ki67, Cyclin D1) and pathway proteins (p-AKT and AKT), and oxidative stress marker proteins (Nrf-2, CAT, SOD1) were detected by Western blot. RESULT DOP did not affect the proliferation of normal keratinocytes, but DOP was able to inhibit the proliferative activity of IL-22-induced overproliferating keratinocytes and suppress the expression of proliferation-related factors PCNA, Ki67, and Cyclin D1 as well as the proliferation pathway p-AKT. In addition, DOP treatment was able to inhibit IL-22 and LPS-induced inflammation and H2O2-induced oxidative stress, including the expression of IL17A, IL-23, IL1β, TNF-α, IL-6, and IL1β, as well as the expression levels of intracellular ROS levels and cellular oxidative stress-related indicators SOD, MDA, CAT, Nrf-2 and SOD1. CONCLUSION DOP inhibits keratinocyte hyperproliferation, inflammation and oxidative stress to improve the keratinocyte psoriasis-like state.
Collapse
Affiliation(s)
- Bijun Zeng
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China; Hunan Engineering Technology Research Center for Medicinal and Functional Food, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China; Department of Dermatology, The Second Affiliated Hospital, The Domestic First-Class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine, Changsha, 410005, Hunan, China
| | - Yining Yan
- Department of Dermatology, The Second Affiliated Hospital, The Domestic First-Class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine, Changsha, 410005, Hunan, China
| | - Yujin Zhang
- Department of Dermatology, The Second Affiliated Hospital, The Domestic First-Class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine, Changsha, 410005, Hunan, China
| | - Chang Wang
- Department of Dermatology, The Second Affiliated Hospital, The Domestic First-Class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine, Changsha, 410005, Hunan, China
| | - Wenting Huang
- Department of Dermatology, The Second Affiliated Hospital, The Domestic First-Class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine, Changsha, 410005, Hunan, China
| | - Xinyi Zhong
- Department of Dermatology, The Second Affiliated Hospital, The Domestic First-Class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine, Changsha, 410005, Hunan, China
| | - Zi Chen
- Department of Dermatology, The Second Affiliated Hospital, The Domestic First-Class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine, Changsha, 410005, Hunan, China
| | - Mengzhou Xie
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China; Hunan Engineering Technology Research Center for Medicinal and Functional Food, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| | - Zhibo Yang
- Department of Dermatology, The Second Affiliated Hospital, The Domestic First-Class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine, Changsha, 410005, Hunan, China.
| |
Collapse
|
5
|
Wu W, Zhao Z, Zhao Z, Zhang D, Zhang Q, Zhang J, Fang Z, Bai Y, Guo X. Structure, Health Benefits, Mechanisms, and Gut Microbiota of Dendrobium officinale Polysaccharides: A Review. Nutrients 2023; 15:4901. [PMID: 38068759 PMCID: PMC10708504 DOI: 10.3390/nu15234901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Dendrobium officinale polysaccharides (DOPs) are important active polysaccharides found in Dendrobium officinale, which is commonly used as a conventional food or herbal medicine and is well known in China. DOPs can influence the composition of the gut microbiota and the degradation capacity of these symbiotic bacteria, which in turn may determine the efficacy of dietary interventions. However, the necessary analysis of the relationship between DOPs and the gut microbiota is lacking. In this review, we summarize the extraction, structure, health benefits, and related mechanisms of DOPs, construct the DOPs-host axis, and propose that DOPs are potential prebiotics, mainly composed of 1,4-β-D-mannose, 1,4-β-D-glucose, and O-acetate groups, which induce an increase in the abundance of gut microbiota such as Lactobacillus, Bifidobacterium, Akkermansia, Bacteroides, and Prevotella. In addition, we found that when exposed to DOPs with different structural properties, the gut microbiota may exhibit different diversity and composition and provide health benefits, such as metabolism regulations, inflammation modulation, immunity moderation, and cancer intervention. This may contribute to facilitating the development of functional foods and health products to improve human health.
Collapse
Affiliation(s)
- Weijie Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.W.); (Z.Z.); (Z.Z.); (D.Z.); (Q.Z.); (Y.B.)
| | - Ziqi Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.W.); (Z.Z.); (Z.Z.); (D.Z.); (Q.Z.); (Y.B.)
| | - Zhaoer Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.W.); (Z.Z.); (Z.Z.); (D.Z.); (Q.Z.); (Y.B.)
| | - Dandan Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.W.); (Z.Z.); (Z.Z.); (D.Z.); (Q.Z.); (Y.B.)
| | - Qianyi Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.W.); (Z.Z.); (Z.Z.); (D.Z.); (Q.Z.); (Y.B.)
| | - Jiayu Zhang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
| | - Zhengyi Fang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
| | - Yiling Bai
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.W.); (Z.Z.); (Z.Z.); (D.Z.); (Q.Z.); (Y.B.)
| | - Xiaohui Guo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.W.); (Z.Z.); (Z.Z.); (D.Z.); (Q.Z.); (Y.B.)
| |
Collapse
|
6
|
Wang X, Li X, Zhang L, An L, Guo L, Huang L, Gao W. Recent progress in plant-derived polysaccharides with prebiotic potential for intestinal health by targeting gut microbiota: a review. Crit Rev Food Sci Nutr 2023:1-30. [PMID: 37651130 DOI: 10.1080/10408398.2023.2248631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Natural products of plant origin are of high interest and widely used, especially in the food industry, due to their low toxicity and wide range of bioactive properties. Compared to other plant components, the safety of polysaccharides has been generally recognized. As dietary fibers, plant-derived polysaccharides are mostly degraded in the intestine by polysaccharide-degrading enzymes secreted by gut microbiota, and have potential prebiotic activity in both non-disease and disease states, which should not be overlooked, especially in terms of their involvement in the treatment of intestinal diseases and the promotion of intestinal health. This review elucidates the regulatory effects of plant-derived polysaccharides on gut microbiota and summarizes the mechanisms involved in targeting gut microbiota for the treatment of intestinal diseases. Further, the structure-activity relationships between different structural types of plant-derived polysaccharides and the occurrence of their prebiotic activity are further explored. Finally, the practical applications of plant-derived polysaccharides in food production and food packaging are summarized and discussed, providing important references for expanding the application of plant-derived polysaccharides in the food industry or developing functional dietary supplements.
Collapse
Affiliation(s)
- Xiaozhen Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Xia Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Luyao Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Lingzhuo An
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
7
|
Li H, Wang Y, Zhao P, Guo L, Huang L, Li X, Gao W. Naturally and chemically acetylated polysaccharides: Structural characteristics, synthesis, activities, and applications in the delivery system: A review. Carbohydr Polym 2023; 313:120746. [PMID: 37182931 DOI: 10.1016/j.carbpol.2023.120746] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023]
Abstract
Acetylated polysaccharides refer to polysaccharides containing acetyl groups on sugar units. In the past, the acetylation modification of wall polysaccharides has been a hot research topic for scientists. However, in recent years, many studies have reported that acetylation-modified plant, animal, and microbial polysaccharide show great potential in delivery systems. From the latest perspective, this review systematically presents the different sources of naturally acetylated polysaccharides, the regularity of their modification, the chemical preparation of acetylation modifications, the biological activities and functions of acetylated polysaccharides, and the application in the delivery system. In nature, acetylated polysaccharides are extensively distributed in plants, microorganism, and animals. The level of acetylation modification, the distribution of chains, and the locations of acetylation modification sites differ between species. An increasing number of acetylated polysaccharides were prepared in the aqueous medium, which is safe, environment friendly, and low-cost. In addition to being necessary for plant growth and development, acetylated polysaccharides have immunomodulatory, antioxidant, and anticancer properties. The above-mentioned multiple sources, multifunctional and multi-active acetylated polysaccharides, make them an increasingly important part of delivery systems. We conclude by discussing the future directions for research and development and the potential uses for acetylated polysaccharides.
Collapse
|
8
|
Wang X, Wang Z, Shen M, Yi C, Yu Q, Chen X, Xie J, Xie M. Acetylated polysaccharides: Synthesis, physicochemical properties, bioactivities, and food applications. Crit Rev Food Sci Nutr 2022; 64:4849-4864. [PMID: 36382653 DOI: 10.1080/10408398.2022.2146046] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Polysaccharides are biomacromolecular widely applied in the food industry, as gelling agents, thickeners and health supplements. As hydrophobic groups, acetyls provide amphiphilicity to polysaccharides with numerous hydroxyl groups, which greatly expand the presence of polysaccharides in organic organisms and various chemical environments. Acetylation could result in diverseness and promotion of the structure of polysaccharides, which improve the physicochemical properties and biological activities. High efficient and environmentally friendly access to acetylated derivatives of different polysaccharides is being explored. This review discusses and summarizes acetylated polysaccharides in terms of synthetic methods, physicochemical properties and biological activities and emphasizes the structure-effect relationships introduced by acetyl groups to reveal the potential mechanism of acetylated polysaccharides. Acetyls with different contents and substitution sites could change the molecular weight, monosaccharide composition and spatial architecture of polysaccharides, resulting in differences among properties such as water solubility, emulsification and crystallinity. Coupled with acetyls, polysaccharides have increased antioxidant, immunomodulatory, antitumor, and pro-prebiotic capacities. In addition, their possible applications have also been discussed in green food materials, bioactive ingredient carriers and functional food products, indicating that acetylated polysaccharides hold a clear vision in food health and industrial development.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Zhijun Wang
- Food Quality and Design Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Mingyue Shen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Chen Yi
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Xianxiang Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
9
|
Zeng S, Cao J, Chen Y, Li C, Wu G, Zhu K, Chen X, Xu F, Liu Q, Tan L. Polysaccharides from Artocarpus heterophyllus Lam. (jackfruit) pulp improves intestinal barrier functions of high fat diet-induced obese rats. Front Nutr 2022; 9:1035619. [PMID: 36407513 PMCID: PMC9669604 DOI: 10.3389/fnut.2022.1035619] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/07/2022] [Indexed: 09/19/2023] Open
Abstract
Polysaccharides show protective effects on intestinal barrier function due to their effectiveness in mitigating oxidative damage, inflammation and probiotic effects. Little has been known about the effects of polysaccharides from Artocarpus heterophyllus Lam. pulp (jackfruit, JFP-Ps) on intestinal barrier function. This study aimed to investigate the effects of JFP-Ps on intestinal barrier function in high fat diet-induced obese rats. H&E staining and biochemical analysis were performed to measure the pathological and inflammatory state of the intestine as well as oxidative damage. Expression of the genes and proteins associated with intestinal health and inflammation were analyzed by RT-qPCR and western blots. Results showed that JFP-Ps promoted bowel movements and modified intestinal physiochemical environment by lowering fecal pH and increasing fecal water content. JFP-Ps also alleviated oxidative damage of the colon, relieved intestinal colonic inflammation, and regulated blood glucose transport in the small intestine. In addition, JFP-Ps modified intestinal physiological status through repairing intestinal mucosal damage and increasing the thickness of the mucus layer. Furthermore, JFP-Ps downregulated the inflammatory genes (TNF-α, IL-6) and up-regulated the free fatty acid receptors (GPR41 and GPR43) and tight junction protein (occludin). These results revealed that JFP-Ps showed a protective effect on intestinal function through enhancing the biological, mucosal, immune and mechanical barrier functions of the intestine, and activating SCFAs-GPR41/GPR43 related signaling pathways. JFP-Ps may be used as a promising phytochemical to improve human intestinal health.
Collapse
Affiliation(s)
- Shunjiang Zeng
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, China
- College of Food Science and Engineering, Hainan University, Haikou, China
| | - Jun Cao
- College of Food Science and Engineering, Hainan University, Haikou, China
| | - Yuzi Chen
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chuan Li
- College of Food Science and Engineering, Hainan University, Haikou, China
| | - Gang Wu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, China
| | - Kexue Zhu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, China
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning, China
| | - Xiaoai Chen
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, China
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning, China
| | - Fei Xu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, China
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning, China
| | - Qibing Liu
- Department of Pharmacology, School of Basic Medicine and Life Science, Hainan Medical University, Haikou, China
| | - Lehe Tan
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, China
| |
Collapse
|
10
|
Guo X, Yang M, Wang C, Nie S, Cui SW, Guo Q. Acetyl-glucomannan from Dendrobium officinale: Structural modification and immunomodulatory activities. Front Nutr 2022; 9:1016961. [PMID: 36245489 PMCID: PMC9558108 DOI: 10.3389/fnut.2022.1016961] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
To understand the mechanisms of immunomodulatory effect, Dendrobium Officinale polysaccharides (DOP) were treated by ultrasound and mild base separately to generate fractions of various weight-average molecular weight (Mw) and degrees of acetylation (DA). The structural features, conformational properties, functional properties and immunomodulatory activities of original and modified DOPs were investigated. Ultrasonic treatment decreased the Mw and apparent viscosity and improved the water solubility of DOP. Mild base treatment remarkably reduced the DA and the water solubility, while the overall apparent viscosity was increased. Conformational analysis by triple-detector high performance size-exclusion chromatography showed that the molecular chain of DOP turned more compact coil conformation with decreased DA. Results from the macrophages RAW 264.7 analysis showed that samples sonicated for 200 min (Mw 34.2 kDa) showed the highest immune-regulation effects. However, the immunomodulatory effects of the samples after de-acetylation were all compromised compared to the original DOP. This study inspires further research to establish the structural-immunomodulatory relationships, which promote the application of DOP in both the food and medicine fields.
Collapse
Affiliation(s)
- Xiaoyu Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science and Technology, Tianjin, China
| | - Mingguan Yang
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Changlu Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science and Technology, Tianjin, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
- Shaoping Nie,
| | - Steve W. Cui
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science and Technology, Tianjin, China
- *Correspondence: Qingbin Guo,
| |
Collapse
|
11
|
Li X, Deng N, Zheng T, Qiao B, Peng M, Xiao N, Tan Z. Importance of Dendrobium officinale in improving the adverse effects of high-fat diet on mice associated with intestinal contents microbiota. Front Nutr 2022; 9:957334. [PMID: 35967811 PMCID: PMC9365999 DOI: 10.3389/fnut.2022.957334] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/01/2022] [Indexed: 01/30/2023] Open
Abstract
A growing body of evidence suggests that the disturbance of intestinal microbiota induced by high-fat diet is the main factor causing many diseases. Dendrobium officinale (DO), a medicinal and edible homologous Chinese herbal medicine, plays essential role in regulating intestinal microbiota. However, the extent of DO on the intestinal contents microbiota in mice fed with a high-fat diet still remains unclear. Therefore, this study explored the role of intestinal contents microbiota in the regulation of adverse effects caused by high-fat diet by DO from the perspective of intestinal microecology. Twenty-four mice were randomly distributed into the normal saline-treated basal diet (bcn), normal saline-treated high-fat diet (bmn), 2.37 g kg−1 days−1 DO traditional decoction-treated high-fat diet (bdn) and 1.19 g kg−1 days−1 lipid-lowering decoction-treated high-fat diet (bjn) groups for 40 days. Subsequently, we assessed the changes in body weight, serum total cholesterol (TC), total triacylglycerol (TG), low density lipoprotein-cholesterol (LDL-C), high density lipoprotein-cholesterol (HDL-C) levels, and the characteristics of intestinal contents microbiota. Results demonstrated that DO exerted the modulating effect on the changes in body weight, TG, TC, LDL-C, and HDL-C levels. Besides, DO decreased the richness and diversity of intestinal contents microbiota, and altered the structure as a whole. Dominant bacteria, Ruminococcus and Oscillospira, varied significantly and statistically. Moreover, DO influenced the carbohydrate, amino acid, and energy metabolic functions. Furthermore, Ruminococcus and Oscillospira presented varying degrees of inhibition/promotion of TG, TC, LDL-C, and HDL-C. Consequently, we hypothesized that Ruminococcus and Oscillospira, as dominant bacteria, played key roles in the treatment of diseases associated with a high-fat diet DO.
Collapse
Affiliation(s)
- Xiaoya Li
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Na Deng
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Tao Zheng
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Bo Qiao
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Maijiao Peng
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Nenqun Xiao
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Zhoujin Tan
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
12
|
Fabrication of quercetin-loaded nanoparticles based on Hohenbuehelia serotina polysaccharides and their modulatory effects on intestinal function and gut microbiota in vivo. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.102993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Li X, Wang X, Wang Y, Liu X, Ren X, Dong Y, Ma J, Song R, Wei J, Yu A, Fan Q, Yao J, Shan D, Zhang Y, Wei S, She G. A Systematic Review on Polysaccharides from Dendrobium Genus: Recent Advances in the Preparation, Structural Characterization, Bioactive Molecular Mechanisms, and Applications. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:471-509. [PMID: 35168475 DOI: 10.1142/s0192415x22500185] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Dendrobium polysaccharides (DPSs) have aroused people's increasing attention in recent years as a result of their outstanding edible and medicinal values and non-toxic property. This review systematically summarized recent progress in the different preparation techniques, structural characteristics, modification, various pharmacological activities and molecular mechanisms, structure-activity relationships, and current industrial applications in the medicinal, food, and cosmetics fields of DPSs. Additionally, some recommendations for future investigations were provided. A variety of methods were applied for the extraction and purification of DPSs. They possessed primary structures (e.g., glucomannan, rhamnogalacturonan I type pectin, heteroxylan, and galactoglucan) and conformational structures (e.g., random coil, rod, globular, and a slight triple-helical). And different molecular weights, monosaccharide compositions, linkage types, and modifications could largely affect DPSs' bioactivities (e.g., immunomodulatory, anti-diabetic, hepatoprotective, gastrointestinal protective, antitumor, anti-inflammatory, and anti-oxidant activities). It was worth mentioning that DPSs were significant pharmaceutical remedies and therapeutic supplements especially due to their strong immunity enhancement abilities. We hope that this review will lay a solid foundation for further development and applications of Dendrobium polysaccharides.
Collapse
Affiliation(s)
- Xiao Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 102488, P. R. China
| | - Xiuhuan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 102488, P. R. China
| | - Yu Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 102488, P. R. China
| | - Xiaoyun Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 102488, P. R. China
| | - Xueyang Ren
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 102488, P. R. China
| | - Ying Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 102488, P. R. China
| | - Jiamu Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 102488, P. R. China
| | - Ruolan Song
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 102488, P. R. China
| | - Jing Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 102488, P. R. China
| | - Axiang Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 102488, P. R. China
| | - Qiqi Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 102488, P. R. China
| | - Jianling Yao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 102488, P. R. China
| | - Dongjie Shan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 102488, P. R. China
| | - Yanfei Zhang
- Shuangjiang Xingyun Biological Technology Co., Ltd, Shenzhen, Guangdong 518000, P. R. China
| | - Shengli Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Gaimei She
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 102488, P. R. China
| |
Collapse
|
14
|
Feng X, Wang D, Hu L, Lu H, ling B, Huang Y, Jiang Q. Dendrobium officinale polysaccharide ameliorates polycystic ovary syndrome via regulating butyrate dependent gut-brain-ovary axis mechanism. Front Endocrinol (Lausanne) 2022; 13:962775. [PMID: 35992123 PMCID: PMC9389327 DOI: 10.3389/fendo.2022.962775] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Research has shown that dendrobium officinale polysaccharide (DOP) can promote follicular development and inhibit the apoptosis of ovarian granular cells in PCOS rats. However, DOP cannot be absorbed directly by the stomach and small intestine but is degraded into short-chain fatty acids by gut microbiota in the large intestine and regulates the composition of gut microbiota. How DOP improved ovarian function in PCOS rats through the blood-brain barrier is unclear. In this study, we generated letrozole-induced PCOS rat models and studied the therapeutic effect and mechanism of DOP. 16S rRNA amplicon sequencing analysis, GC-MS short-chain fatty acid detection, and Gene Expression Omnibus database searching were conducted to screen the significantly changed pathways, and a series of experiments, such as enzyme-linked immunosorbent assay, RT-qPCR, Western blot, and immunohistochemistry, were performed. We found that DOP treatment could improve ovarian morphology and endocrine disorders, restore the normal estrus cycle, increase gut microbiota α diversity, and alter β diversity and enrichment of butyrate-producing bacterium in PCOS rats. In addition, compared with PCOS rats, those treated with DOP exhibited higher butyrate and polypeptide YY levels, possibly due to the regulation of G protein-coupled receptor 41 expression. These results indicated that DOP relieved the symptoms of PCOS rats which may be related to the mechanism of butyrate dependent gut-brain-ovary axis protection.
Collapse
Affiliation(s)
- Xueping Feng
- College of Animal Science & Technology, Guangxi University, Nanning, China
- College of Basic Medicine, Youjiang Medical University for Nationalities, Baise, China
| | - Decai Wang
- Department of Library, Youjiang Medical University for Nationalities, Baise, China
| | - Linlin Hu
- Reproductive Medicine Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Haishan Lu
- Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Bo ling
- College of Pharmacy, Youjiang Medical University for Nationalities, Baise, China
| | - Yanna Huang
- College of Animal Science & Technology, Guangxi University, Nanning, China
- *Correspondence: Qinyang Jiang, ; Yanna Huang,
| | - Qinyang Jiang
- College of Animal Science & Technology, Guangxi University, Nanning, China
- *Correspondence: Qinyang Jiang, ; Yanna Huang,
| |
Collapse
|
15
|
Chen WH, Wu JJ, Li XF, Lu JM, Wu W, Sun YQ, Zhu B, Qin LP. Isolation, structural properties, bioactivities of polysaccharides from Dendrobium officinale Kimura et. Migo: A review. Int J Biol Macromol 2021; 184:1000-1013. [PMID: 34197847 DOI: 10.1016/j.ijbiomac.2021.06.156] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 12/20/2022]
Abstract
Dendrobium officinale Kimura et Migo (D. officinale) is used as herbal medicine and new food resource in China, which is nontoxic and harmless, and can be used as common food. Polysaccharide as one of the main bioactive components in D. officinale, mainly composed of glucose and mannose (Manp: Glcp = 2.01:1.00-8.82:1.00), along with galactose, xylose, arabinose, and rhamnose in different molar ratios and types of glycosidic bonds. Polysaccharides of D. officinale exhibit a variety of biological effects, including immunomodulatory, anti-tumor, gastro-protective, hypoglycemic, anti-inflammatory, hepatoprotective, and vasodilating effects. This paper presents the extraction, purification, structural characteristics, bioactivities, structure-activity relationships and analyzes gaps in the current research on D. officinale polysaccharides. In addition, based on in vitro and in vivo experiments, the possible mechanisms of bioactivities of D. officinale polysaccharides were summarized. We hope that this work may provide helpful references and promising directions for further study and development of D. officinale polysaccharides.
Collapse
Affiliation(s)
- Wen-Hua Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Jian-Jun Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Xue-Fei Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Jie-Miao Lu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Wei Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Yi-Qi Sun
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Bo Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China.
| | - Lu-Ping Qin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China.
| |
Collapse
|
16
|
Fan S, Zhang Z, Zhong Y, Li C, Huang X, Geng F, Nie S. Microbiota-related effects of prebiotic fibres in lipopolysaccharide-induced endotoxemic mice: short chain fatty acid production and gut commensal translocation. Food Funct 2021; 12:7343-7357. [PMID: 34180493 DOI: 10.1039/d1fo00410g] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Fructans such as fructo-oligosaccharides (FOS) and inulin have been reported to directly regulate ileal inflammatory responses in lipopolysaccharide (LPS)-induced endotoxemic mice, without alterations in the colonic microbiota. Firstly, we replicated this model and found that a single gavage of 10 mg g-1 of fructans directly promoted caecal acetate and propionate production. Thus, the previous understanding of microbiota-independent effects of prebiotic fructans in endotoxemic mice has been challenged. In parallel, we performed a daily gavage of 160 mg kg-1 of inulin, xylan, or Dendrobium officinale polysaccharides (DOP) for two weeks prior to LPS injection. The long-term intake of prebiotic fibres reduced the bacterial load in the spleen and mesenteric lymph nodes (MLNs), and in comparison, a single gavage of fructans increased that. However, the long-term intake was unable to improve the short-chain fatty acid (SCFA) synthesis and epithelial barrier function that were impaired by LPS. Notably, the three fibre types consistently reduced the expression of mucin 2 (MUC2) and variously modulated critical mediators (IL-18, IL-22, and HIF-1α) to regulate the host-commensal microbiota interactions in the ileum. In addition, the three fibre types consistently inhibited the inflammatory T helper (Th) cell response in the ileum, while they diversely modulated the peripheral and systemic Th cell responses. Overall, the prebiotic fibres displayed microbiota-related changes in endotoxemic mice, and the potential associations with the in vivo anti-inflammatory effects of prebiotic fibres need further investigation.
Collapse
Affiliation(s)
- Songtao Fan
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China.
| | | | | | | | | | | | | |
Collapse
|
17
|
Li B, He X, Jin HY, Wang HY, Zhou FC, Zhang NY, Jie DY, Li LZ, Su J, Zheng X, Luo R, Lv GY, Jiang NH, Yu QX, Chen SH. Beneficial effects of Dendrobium officinale on metabolic hypertensive rats by triggering the enteric-origin SCFA-GPCR43/41 pathway. Food Funct 2021; 12:5524-5538. [PMID: 34002173 DOI: 10.1039/d0fo02890h] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Given the increasing global trend toward unhealthy lifestyles and dietary decisions, such as "over-consumption of alcohol, and high sugar and fat diets" (ACHSFDs), it is not surprising that metabolic hypertension (MH) is now the most common type of hypertension. There is an urgent, global need for effective measures for the prevention and treatment of MH. Improper diet leads to decreased short-chain fatty acid (SCFA) production in the gut, leading to decreased gastrointestinal function, metabolism, and blood pressure as a result of signaling through G-protein-coupled receptors (GPCRs), ultimately causing MH. Previous studies have suggested that Dendrobium officinale (DO) may improve gastrointestinal function, lower blood pressure, and regulate metabolic abnormalities, but it is not clear whether it acts on MH by increasing SCFA and, if so, how. In this research, it was observed that Dendrobium officinale ultrafine powder (DOFP) could lower blood pressure and improve lipid abnormalities in ACHSFD-induced MH model rats. Moreover, DOFP was found to improve the intestinal flora and increased the SCFA level in feces and serum, as well as increased the expressions of GPCR43/41 and eNOS and the nitric oxide (NO) level. An experiment on isolated aorta rings revealed that DOFP improved the vascular endothelial relaxation function in MH rats, and this effect could be blocked by the eNOS inhibitor l-NAME. These experimental results suggest that DOFP improved the intestinal flora and increased the production, transportation, and utilization of SCFA, activated the intestinal-vascular axis SCFA-GPCR43/41 pathway, improved vascular endothelial function, and finally lowered blood pressure in MH model rats. This research provides a new focus for the mechanism of the effect of DOFP against MH by triggering the enteric-origin SCFA-GPCR43/41 pathway.
Collapse
Affiliation(s)
- Bo Li
- Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Chen H, Nie Q, Hu J, Huang X, Yin J, Nie S. Multiomics Approach to Explore the Amelioration Mechanisms of Glucomannans on the Metabolic Disorder of Type 2 Diabetic Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2632-2645. [PMID: 33606525 DOI: 10.1021/acs.jafc.0c07871] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Type 2 diabetes (T2D) is a worldwide epidemic associated with metabolic disorders and intestinal microbiota alterations. Polysaccharides have been considered to be beneficial to the prevention and alleviation of T2D. In the present study, ultra-performance liquid chromatography-triple-time-of-flight-based metabolomics and proteomics and 16S rRNA sequencing methods were employed to evaluate the effects of glucomannans from Dendrobium officinale stem, konjac, and Aloe vera leaves on host metabolism and intestinal microbiota regulation in type 2 diabetic rats and potential mechanisms. The metabolism of amino acids was significantly disturbed in the type 2 diabetic rats, especially the upregulated branched-chain amino acid (BCAA) metabolism. Host-derived BCAA metabolism was significantly decreased in type 2 diabetic rats. However, the levels of BCAAs in host circulation and gene abundance of BCAA biosynthesis in gut microbiota were significantly increased in diabetic rats, which suggested that the disturbed intestinal microbiota might be responsible for the increased circulation of BCAAs in T2D. Glucomannan treatment decreased the abundance of microbial BCAA biosynthesis-related genes and ameliorated the host BCAA metabolism. Also, glucomannan with a higher molecular weight and a lower ratio of mannose/glucose possessed better antidiabetic effects. In summary, the antidiabetic effects of glucomannans might be associated with the amelioration of BCAA metabolism by modulating intestinal microbiota.
Collapse
Affiliation(s)
- Haihong Chen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Qixing Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Jielun Hu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Xiaojun Huang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Junyi Yin
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| |
Collapse
|
19
|
Cui H, Zhu X, Wang Z, Fang J, Yuan T. A Purified Glucomannan Oligosaccharide from Amorphophallus konjac Improves Colonic Mucosal Barrier Function via Enhancing Butyrate Production and Histone Protein H3 and H4 Acetylation. JOURNAL OF NATURAL PRODUCTS 2021; 84:427-435. [PMID: 33587639 DOI: 10.1021/acs.jnatprod.0c01125] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A structurally defined konjac glucomannan oligosaccharide (KGMOS) with a relatively high molecular weight and narrow molecular weight distribution (molecular weight ranging from 3000 to 4000 Da, degree of polymerization (dp) 8-11) was prepared from native konjac glucomannan (KGM), and the beneficial effects and molecular mechanisms of KGMOS on colonic functions were investigated in C57BL/6 mice. The results are the first to reveal that KGMOS regulated intestinal microflora composition to facilitate the production of colonic butyrate. Elevated butyrate production further increased the acetylation of histone proteins H3 and H4 and thus enhanced the transcription of the major colonic mucin gene Muc2 and the secretion of mucin elements, which represents a new molecular mechanism of KGM oligosaccharide consumption. The findings indicate that KGM oligosaccharides with specific molecular sizes have highly desirable functional properties and potentially could improve gut health by promoting the barrier function of the colonic mucosa.
Collapse
Affiliation(s)
- Hao Cui
- Jiangxi Provincial Key Lab of Protection and Utilization of Subtropical Plant Resources, College of Life Science, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Xinying Zhu
- Jiangxi Provincial Key Lab of Protection and Utilization of Subtropical Plant Resources, College of Life Science, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Zhaoguang Wang
- Jiangxi Provincial Key Lab of Protection and Utilization of Subtropical Plant Resources, College of Life Science, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Jianping Fang
- GlycoNovo Technologies Co., Ltd., Shanghai 201318, People's Republic of China
| | - Tao Yuan
- Jiangxi Provincial Key Lab of Protection and Utilization of Subtropical Plant Resources, College of Life Science, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| |
Collapse
|
20
|
Jia FJ, Han Z, Ma JH, Jiang SQ, Zhao XM, Ruan H, Xie WD, Li X. Involvement of Reactive Oxygen Species in the Hepatorenal Toxicity of Actinomycin V In Vitro and In Vivo. Mar Drugs 2020; 18:md18080428. [PMID: 32824227 PMCID: PMC7460479 DOI: 10.3390/md18080428] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/08/2020] [Accepted: 08/12/2020] [Indexed: 12/27/2022] Open
Abstract
The high toxicity of actinomycin D (Act D) severely limits its use as a first-line chemotherapeutic agent in the clinic. Actinomycin V (Act V), an analog of Act D, exhibited strong anticancer activity in our previous studies. Here, we provide evidence that Act V has less hepatorenal toxicity than Act D in vitro and in vivo, associated with the reactive oxygen species (ROS) pathway. Compared to Act D, Act V exhibited considerably stronger sensitivity for cancer cells and less toxicity to human normal liver LO-2 and human embryonic kidney 293T cells using the MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide) assay. Notably, Act V caused less damage to both the liver and kidney than Act D in vivo, indicated by organ to body weight ratios, as well as alanine aminotransferase (ALT), aspartate aminotransferase (AST), and serum creatinine (Scr) levels. Further experiments showed that the ROS pathway is involved in Act V-induced hepatorenal toxicity. Act V generates ROS and accumulates malondialdehyde (MDA), reducing levels of superoxide dismutase (SOD) and glutathione (GSH) in LO-2 and 293T cells. These findings indicate that Act V induces less hepatorenal toxicity than Act D in vitro and in vivo and merits further development as a potential therapeutic agent for the treatment of cancer.
Collapse
Affiliation(s)
- Fu-juan Jia
- Marine College, Shandong University, Weihai 264209, China; (F.-j.J.); (Z.H.); (J.-h.M.); (S.-q.J.); (X.-m.Z.); (H.R.); (W.-d.X.)
| | - Zhuo Han
- Marine College, Shandong University, Weihai 264209, China; (F.-j.J.); (Z.H.); (J.-h.M.); (S.-q.J.); (X.-m.Z.); (H.R.); (W.-d.X.)
| | - Jia-hui Ma
- Marine College, Shandong University, Weihai 264209, China; (F.-j.J.); (Z.H.); (J.-h.M.); (S.-q.J.); (X.-m.Z.); (H.R.); (W.-d.X.)
| | - Shi-qing Jiang
- Marine College, Shandong University, Weihai 264209, China; (F.-j.J.); (Z.H.); (J.-h.M.); (S.-q.J.); (X.-m.Z.); (H.R.); (W.-d.X.)
| | - Xing-ming Zhao
- Marine College, Shandong University, Weihai 264209, China; (F.-j.J.); (Z.H.); (J.-h.M.); (S.-q.J.); (X.-m.Z.); (H.R.); (W.-d.X.)
| | - Hang Ruan
- Marine College, Shandong University, Weihai 264209, China; (F.-j.J.); (Z.H.); (J.-h.M.); (S.-q.J.); (X.-m.Z.); (H.R.); (W.-d.X.)
| | - Wei-dong Xie
- Marine College, Shandong University, Weihai 264209, China; (F.-j.J.); (Z.H.); (J.-h.M.); (S.-q.J.); (X.-m.Z.); (H.R.); (W.-d.X.)
| | - Xia Li
- Marine College, Shandong University, Weihai 264209, China; (F.-j.J.); (Z.H.); (J.-h.M.); (S.-q.J.); (X.-m.Z.); (H.R.); (W.-d.X.)
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
- Correspondence: ; Tel.: +86-631-5688303
| |
Collapse
|
21
|
Zuo SM, Yu HD, Zhang W, Zhong Q, Chen W, Chen W, Yun YH, Chen H. Comparative Metabolomic Analysis of Dendrobium officinale under Different Cultivation Substrates. Metabolites 2020; 10:metabo10080325. [PMID: 32785071 PMCID: PMC7465462 DOI: 10.3390/metabo10080325] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/29/2020] [Accepted: 08/06/2020] [Indexed: 11/16/2022] Open
Abstract
Dendrobium officinale, a precious herbal medicine, has been used for a long time in Chinese history. The metabolites of D. officinale, regarded as its effective components to fight diseases, are significantly affected by cultivation substrates. In this study, ultra-performance liquid chromatography mass spectrometry (UPLC-MS/MS) was conducted to analyze D. officinale stems cultured in three different substrates: pine bark (PB), coconut coir (CC), and a pine bark: coconut coir 1:1 mix (PC). A total of 529 metabolites were identified. Multivariate statistical analysis methods were employed to analyze the difference in the content of metabolites extracted from different groups. By the criteria of variable importance in projection (VIP) value ≥1 and absolute log2 (fold change) ≥1, there were a total of 68, 51, and 57 metabolites, with significant differences in content across groups being filtrated out between PB and PC, PB and CC, and PC and CC, respectively. The comparisons among the three groups revealed that flavonoids were the metabolites that fluctuated most. The results suggested the D. officinale stems from the PB group possessed a higher flavonoid content. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis indicated that the significantly regulated metabolites were mainly connected with flavonoid biosynthesis. A comprehensive profile of the metabolic differentiation of D. officinale planted in different substrates was provided, which supports the selection of an optimum cultivation substrate for a higher biomass yield of D. officinale.
Collapse
Affiliation(s)
- Si-Min Zuo
- College of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, China; (S.-M.Z.); (H.-D.Y.); (W.Z.); (Q.Z.); (W.C.); (W.C.)
| | - Hai-Dong Yu
- College of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, China; (S.-M.Z.); (H.-D.Y.); (W.Z.); (Q.Z.); (W.C.); (W.C.)
| | - Weimin Zhang
- College of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, China; (S.-M.Z.); (H.-D.Y.); (W.Z.); (Q.Z.); (W.C.); (W.C.)
| | - Qiuping Zhong
- College of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, China; (S.-M.Z.); (H.-D.Y.); (W.Z.); (Q.Z.); (W.C.); (W.C.)
| | - Wenxue Chen
- College of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, China; (S.-M.Z.); (H.-D.Y.); (W.Z.); (Q.Z.); (W.C.); (W.C.)
| | - Weijun Chen
- College of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, China; (S.-M.Z.); (H.-D.Y.); (W.Z.); (Q.Z.); (W.C.); (W.C.)
| | - Yong-Huan Yun
- College of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, China; (S.-M.Z.); (H.-D.Y.); (W.Z.); (Q.Z.); (W.C.); (W.C.)
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Haikou 571101, China
- Correspondence: (Y.-H.Y.); (H.C.)
| | - Haiming Chen
- College of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, China; (S.-M.Z.); (H.-D.Y.); (W.Z.); (Q.Z.); (W.C.); (W.C.)
- Correspondence: (Y.-H.Y.); (H.C.)
| |
Collapse
|
22
|
Yue H, Zeng H, Ding K. A review of isolation methods, structure features and bioactivities of polysaccharides from Dendrobium species. Chin J Nat Med 2020; 18:1-27. [PMID: 31955820 DOI: 10.1016/s1875-5364(20)30001-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Indexed: 02/08/2023]
Abstract
Dendrobium, orchid, is a traditional Chinese herb medicine applied extensively as tonic and precious food for thou-sands of years recorded in ancient Chinese medical book "Shen Nong's Materia Medica". It's well known that bioactivities are usually related to the ingredients' basis. Based on the previous research, Dendrobium species contain amino acid, sesquiterpenoids, alkaloids and polysaccharides. As the bioactive substances, carbohydrate shows extensive activities in antitumor, antiglycation, immune-enhancing, antivirus, antioxidant, antitumor and etc. Therefore, as the main biologically active substance, the exact structures and latent activities of polysaccharides from Dendrobium species are widely focused on. In this review, we focus on the advancements of extraction methods and diversity of structures and bioactivities of polysaccharides obtained from Dendrobium species.
Collapse
Affiliation(s)
- Han Yue
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Zeng
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kan Ding
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
23
|
Jiang L, Pan L, Gao H, Zheng H. Rapid identification and quantification of adulteration in Dendrobium officinale using nuclear magnetic resonance spectroscopy combined with least-squares support vector machine. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00392-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
24
|
Chen H, Nie Q, Hu J, Huang X, Huang W, Nie S. Metabolism amelioration of Dendrobium officinale polysaccharide on type II diabetic rats. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105582] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
25
|
Fu Y, Zhang J, Chen K, Xiao C, Fan L, Zhang B, Ren J, Fang B. An in vitro fermentation study on the effects of Dendrobium officinale polysaccharides on human intestinal microbiota from fecal microbiota transplantation donors. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.12.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
26
|
Xie SZ, Liu B, Ye HY, Li QM, Pan LH, Zha XQ, Liu J, Duan J, Luo JP. Dendrobium huoshanense polysaccharide regionally regulates intestinal mucosal barrier function and intestinal microbiota in mice. Carbohydr Polym 2019; 206:149-162. [DOI: 10.1016/j.carbpol.2018.11.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/15/2018] [Accepted: 11/01/2018] [Indexed: 02/07/2023]
|
27
|
Immune enhancement activity of a novel polysaccharide produced by Dendrobium officinale endophytic fungus Fusarium solani DO7. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.12.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
28
|
Lassfolk R, Rahkila J, Johansson MP, Ekholm FS, Wärnå J, Leino R. Acetyl Group Migration across the Saccharide Units in Oligomannoside Model Compound. J Am Chem Soc 2019; 141:1646-1654. [PMID: 30586298 DOI: 10.1021/jacs.8b11563] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Acetylated oligosaccharides are common in nature. While they are involved in several biochemical and biological processes, the role of the acetyl groups and the complexity of their migration has largely gone unnoticed. In this work, by combination of organic synthesis, NMR spectroscopy and quantum chemical modeling, we show that acetyl group migration is a much more complex phenomenon than previously known. By use of synthetic oligomannoside model compounds, we demonstrate, for the first time, that the migration of acetyl groups in oligosaccharides and polysaccharides may not be limited to transfer within a single monosaccharide moiety, but may also involve migration over a glycosidic bond between two different saccharide units. The observed phenomenon is not only interesting from the chemical point of view, but it also raises new questions about the potential biological role of acylated carbohydrates in nature.
Collapse
Affiliation(s)
- Robert Lassfolk
- Johan Gadolin Process Chemistry Centre, Laboratory of Organic Chemistry, Åbo Akademi University , FI-20500 Åbo , Finland
| | - Jani Rahkila
- Johan Gadolin Process Chemistry Centre, Laboratory of Organic Chemistry, Åbo Akademi University , FI-20500 Åbo , Finland
| | - Mikael P Johansson
- Department of Chemistry , University of Helsinki , FI-00014 Helsinki , Finland.,Helsinki Institute of Sustainability Science, HELSUS , FI-00014 Helsinki , Finland
| | - Filip S Ekholm
- Department of Chemistry , University of Helsinki , FI-00014 Helsinki , Finland
| | - Johan Wärnå
- Johan Gadolin Process Chemistry Centre, Laboratory of Industrial Chemistry and Reaction Engineering, Åbo Akademi University , FI-20500 Åbo , Finland
| | - Reko Leino
- Johan Gadolin Process Chemistry Centre, Laboratory of Organic Chemistry, Åbo Akademi University , FI-20500 Åbo , Finland
| |
Collapse
|
29
|
Hu JL, Nie SP, Xie MY. Antidiabetic Mechanism of Dietary Polysaccharides Based on Their Gastrointestinal Functions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4781-4786. [PMID: 29671596 DOI: 10.1021/acs.jafc.7b05410] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Diabetes mellitus is a worldwide concern and obviously influences the quality of life of humans. Dietary polysaccharides were mainly from natural sources, namely, plants, fungi, algae, etc. They were resistant to human digestion and absorption, with complete or partial fermentation in the large bowel, and have shown antidiabetic ability. In this perspective, a literature search was conducted to provide information on the antidiabetic mechanism of dietary polysaccharides based on the whole gastrointestinal process, which was a new angle of view for understanding their antidiabetic mechanism. Further studies could take efforts on the mechanisms of the polysaccharide action through host-microbiota interactions targeting diabetes.
Collapse
Affiliation(s)
- Jie-Lun Hu
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang , Jiangxi 330047 , People's Republic of China
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang , Jiangxi 330047 , People's Republic of China
| | - Ming-Yong Xie
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang , Jiangxi 330047 , People's Republic of China
| |
Collapse
|
30
|
Digestive behavior of Dendrobium huoshanense polysaccharides in the gastrointestinal tracts of mice. Int J Biol Macromol 2018; 107:825-832. [DOI: 10.1016/j.ijbiomac.2017.09.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/05/2017] [Accepted: 09/15/2017] [Indexed: 01/10/2023]
|
31
|
An NMR-Based Metabolomic Approach to Unravel the Preventive Effect of Water-Soluble Extract from Dendrobium officinale Kimura & Migo on Streptozotocin-Induced Diabetes in Mice. Molecules 2017; 22:molecules22091543. [PMID: 28914810 PMCID: PMC6151757 DOI: 10.3390/molecules22091543] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 09/11/2017] [Indexed: 11/30/2022] Open
Abstract
Dendrobium officinale Kimura & Migo (D. officinale) is a precious herbal medicine. In this study, we investigated metabolic mechanism underlying the effect of D. officinale water extract (DOWE) on diabetes prevention in mice after streptozotocin (STZ) exposure using NMR-based metabolomics. Interestingly, we found a decrease in blood glucose and an increase in liver glycogen in mice pretreated with DOWE after STZ exposure. The DOWE pretreatment significantly increased citrate and glutamine in the serum as well as creatine, alanine, leucine, isoleucine, valine, glutamine, glutathione and taurine in the liver of STZ-treated mice. Furthermore, serum glucose was significantly negatively correlated with citrate, pyruvate, alanine, isoleucine, histidine and glutamine in the serum as well as alanine and taurine in the liver. These findings suggest that the effect of DOWE on diabetes prevention may be linked to increases in liver glycogen and taurine as well as the up-regulation of energy and amino acid metabolism.
Collapse
|
32
|
Xie M, Chen HH, Nie SP, Yin JY, Xie MY. Gamma-Aminobutyric Acid Increases the Production of Short-Chain Fatty Acids and Decreases pH Values in Mouse Colon. Molecules 2017; 22:molecules22040653. [PMID: 28425937 PMCID: PMC6154700 DOI: 10.3390/molecules22040653] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/12/2017] [Accepted: 04/14/2017] [Indexed: 02/06/2023] Open
Abstract
Gamma-Aminobutyric acid (GABA) could regulate physiological functions in the gastrointestinal tract. The present study aimed to investigate the effect of GABA on colon health in mice. The female Kunming mice were given GABA at doses of 5, 10, 20 and 40 mg/kg/d for 14 days. Afterwards, the short-chain fatty acids (SCFAs) concentrations, pH values, colon index, colon length and weight of colonic and cecal contents were determined to evaluate the effects of GABA on colon health. The results showed that intake of GABA could increase the concentrations of acetate, propionate, butyrate and total SCFAs in colonic and cecal contents, as well as the weight of colonic and cecal contents. The colon index and length of the 40 mg/kg/d GABA-treated group were significantly higher than those of the control group (p < 0.05). In addition, decrease of pH values in colonic and cecal contents was also observed. These results suggest that GABA may improve colon health.
Collapse
Affiliation(s)
- Min Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Hai-Hong Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Jun-Yi Yin
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Ming-Yong Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
33
|
Dendrobium officinale Kimura et Migo: A Review on Its Ethnopharmacology, Phytochemistry, Pharmacology, and Industrialization. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:7436259. [PMID: 28386292 PMCID: PMC5366227 DOI: 10.1155/2017/7436259] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 10/23/2016] [Indexed: 12/04/2022]
Abstract
Ethnopharmacological Relevance. Dendrobii Officinalis Caulis, the stems of Dendrobium officinale Kimura et Migo, as a tonic herb in Chinese materia medica and health food in folk, has been utilized for the treatment of yin-deficiency diseases for decades. Methods. Information for analysis of Dendrobium officinale Kimura et Migo was obtained from libraries and Internet scientific databases such as PubMed, Web of Science, Google Scholar, ScienceDirect, Wiley InterScience, Ingenta, Embase, CNKI, and PubChem. Results. Over the past decades, about 190 compounds have been isolated from Dendrobium officinale Kimura et Migo. Its wide modern pharmacological actions in hepatoprotective effect, anticancer effect, hypoglycemic effect, antifatigue effect, gastric ulcer protective effect, and so on were reported. This may mainly attribute to the major and bioactive components: polysaccharides. However, other small molecule components require further study. Conclusions. Due to the lack of systematic data of Dendrobium officinale, it is important to explore its ingredient-function relationships with modern pharmacology. Recently, studies on the chemical constituents of Dendrobium officinale concentrated in crude polysaccharides and its structure-activity relationships remain scant. Further research is required to determine the Dendrobium officinale toxicological action and pharmacological mechanisms of other pure ingredients and crude extracts. In addition, investigation is needed for better quality control and novel drug or product development.
Collapse
|
34
|
The medicinal and pharmaceutical importance of Dendrobium species. Appl Microbiol Biotechnol 2017; 101:2227-2239. [PMID: 28197691 DOI: 10.1007/s00253-017-8169-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 01/30/2017] [Accepted: 02/02/2017] [Indexed: 10/20/2022]
Abstract
Plants of the Dendrobium genus, one of the largest in the Orchidaceae, manifest a diversity of medicinal effects encompassing antiangiogenic, immunomodulating, antidiabetic, cataractogenesis-inhibiting, neuroprotective, hepatoprotective, anti-inflammatory, antiplatelet aggregation, antifungal, antibacterial, antiherpetic, antimalarial, aquaporin-5 stimulating, and hemagglutininating activities and also exert beneficial actions on colonic health and alleviate symptoms of hyperthyroidism. The active principles include a wide range of proteinaceous and non-proteinaceous molecules. This mini-review discusses the latest advances in what is known about the medicinal and pharmaceutical properties of members of the Dendrobium genus and explores how biotechnology can serve as a conduit to mass propagate valuable germplasm for sustainable exploration for the pharmaceutical industry.
Collapse
|
35
|
Luo D, Qu C, Zhang Z, Xie J, Xu L, Yang H, Li C, Lin G, Wang H, Su Z. Granularity and Laxative Effect of Ultrafine Powder of Dendrobium officinale. J Med Food 2017; 20:180-188. [DOI: 10.1089/jmf.2016.3827] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- DanDan Luo
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chao Qu
- Guangdong Province Forestry Science and Technology Extension Station, Guangzhou, China
| | - ZhenBiao Zhang
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - JianHui Xie
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - LieQiang Xu
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - HongMei Yang
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - CaiLan Li
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - GuoSheng Lin
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - HongFeng Wang
- Guangdong Provincial Key Laboratory of Bio-Control for the Forest Disease and Pest, Guangzhou, China
- Biotechnology Division, Guangdong Academy of Forestry, Guangzhou, China
| | - ZiRen Su
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
- Dongguan Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Dongguan, China
| |
Collapse
|
36
|
Ding Q, Nie S, Hu J, Zong X, Li Q, Xie M. In vitro and in vivo gastrointestinal digestion and fermentation of the polysaccharide from Ganoderma atrum. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2016.10.018] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
37
|
Purification, Characterization and Biological Activity of Polysaccharides from Dendrobium officinale. Molecules 2016; 21:molecules21060701. [PMID: 27248989 PMCID: PMC6272863 DOI: 10.3390/molecules21060701] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 11/16/2022] Open
Abstract
Polysaccharide (DOPA) from the stem of D. officinale, as well as two fractions (DOPA-1 and DOPA-2) of it, were isolated and purified by DEAE cellulose-52 and Sephacryl S-300 chromatography, and their structural characteristics and bioactivities were investigated. The average molecular weights of DOPA-1 and DOPA-2 were 394 kDa and 362 kDa, respectively. They were mainly composed of d-mannose, d-glucose, and had a backbone consisting of 1,4-linked β-d-Manp and 1,4-linked β-d-Glcp with O-acetyl groups. Bioactivity studies indicated that both DOPA and its purified fractions (DOPA-1 and DOPA-2) could activate splenocytes and macrophages. The D. officinale polysaccharides had stimulatory effects on splenocytes, T-lymphocytes and B-lymphocytes, promoting the cell viability and NO production of RAW 264.7 macrophages. Furthermore, DOPA, DOPA-1 and DOPA-2 were found to protect RAW 264.7 macrophages against hydrogen peroxide (H₂O₂)-induced oxidative injury by promoting cell viability, suppressing apoptosis and ameliorating oxidative lesions. These results suggested that D. officinale polysaccharides possessed antioxidant activity and mild immunostimulatory activity.
Collapse
|