1
|
Mishra J, Chakraborty S, Nandi P, Manna S, Baral T, Niharika, Roy A, Mishra P, Patra SK. Epigenetic regulation of androgen dependent and independent prostate cancer. Adv Cancer Res 2024; 161:223-320. [PMID: 39032951 DOI: 10.1016/bs.acr.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Prostate cancer is one of the most common malignancies among men worldwide. Besides genetic alterations, epigenetic modulations including DNA methylation, histone modifications and miRNA mediated alteration of gene expression are the key driving forces for the prostate tumor development and cancer progression. Aberrant expression and/or the activity of the epigenetic modifiers/enzymes, results in aberrant expression of genes involved in DNA repair, cell cycle regulation, cell adhesion, apoptosis, autophagy, tumor suppression and hormone response and thereby disease progression. Altered epigenome is associated with prostate cancer recurrence, progression, aggressiveness and transition from androgen-dependent to androgen-independent phenotype. These epigenetic modifications are reversible and various compounds/drugs targeting the epigenetic enzymes have been developed that are effective in cancer treatment. This chapter focuses on the epigenetic alterations in prostate cancer initiation and progression, listing different epigenetic biomarkers for diagnosis and prognosis of the disease and their potential as therapeutic targets. This chapter also summarizes different epigenetic drugs approved for prostate cancer therapy and the drugs available for clinical trials.
Collapse
Affiliation(s)
- Jagdish Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Subhajit Chakraborty
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Piyasa Nandi
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Soumen Manna
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Tirthankar Baral
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Niharika
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Prahallad Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India.
| |
Collapse
|
2
|
Alatawi YF, Alhablani MA, Al-Rashidi FA, Khubrani WS, Alqaisi SA, Hassan HM, Al-Gayyar MM. Garcinol-Attenuated Gastric Ulcer (GU) Experimentally Induced in Rats Via Affecting Inflammation, Cell Proliferation, and DNA Polymerization. Cureus 2023; 15:e43317. [PMID: 37577271 PMCID: PMC10415854 DOI: 10.7759/cureus.43317] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2023] [Indexed: 08/15/2023] Open
Abstract
BACKGROUND Gastric ulcer (GU) is one of the most critical gastrointestinal tract disorders. Garcinol is a polyisoprenylated benzophenone in Garcinia fruit with antioxidant and anti-inflammatory priorities. OBJECTIVES We aimed to assess the protective effects of garcinol against GU induced in rats. We investigated garcinol's effects on DNA polymerization via mammalian targets of rapamycin (mTOR) and cyclin D1, cell proliferation via proliferating cell nuclear antigen (PCNA), inflammatory pathway via cyclooxygenase-2 (COX2), TNF-α, and IL-1β, and anti-inflammatory pathway via IL-4 and IL10. METHODS In our study, we administered a single oral dose of 80 mg/kg of indomethacin to rats to induce GU. Some of the rats were given a treatment of 50 mg/kg of garcinol. We examined the expressions of mTOR, cyclin D1, PCNA, COX2, TNF-α, and IL-1β/4/10 in the gastric tissues. Furthermore, we stained sections of the gastric tissues with Masson trichrome. RESULTS The areas of gastric tissues in the GU group showed severe hemorrhage and extensive fibrosis. Treating GU rats with garcinol prevented bleeding and ameliorated the fibrosis caused in gastric cells by GU. Moreover, treatment with garcinol significantly decreased the expression of mTOR, cyclin D1, PCNA, COX2, TNF-α, and IL-1β associated with elevation of IL-4 and IL-10. CONCLUSION Garcinol has been found to provide therapeutic benefits in rats with induced GU. These benefits may be due to its ability to decrease the expression of DNA polymerization markers, cell proliferation markers, and inflammatory markers at the gene and protein levels.
Collapse
Affiliation(s)
| | | | | | | | | | - Hanan M Hassan
- Pharmacology and Biochemistry, Delta University for Science and Technology, Gamasa, EGY
| | - Mohammed M Al-Gayyar
- Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, SAU
- Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, EGY
| |
Collapse
|
3
|
Tomasiak P, Janisiak J, Rogińska D, Perużyńska M, Machaliński B, Tarnowski M. Garcinol and Anacardic Acid, Natural Inhibitors of Histone Acetyltransferases, Inhibit Rhabdomyosarcoma Growth and Proliferation. Molecules 2023; 28:5292. [PMID: 37513165 PMCID: PMC10383693 DOI: 10.3390/molecules28145292] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/15/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is a malignant tumour of the soft tissues. There are two main histopathological types: alveolar and embryonal. RMS occurs mainly in childhood and is a result of the deregulation of growth and differentiation of muscle cell precursors. There is an increasing amount of data indicating that numerous epigenetic alterations within chromatin and histone proteins are involved in the pathogenesis of this malignancy. Histone acetylation is one of the most important epigenetic modifications that is catalysed by enzymes from the group of histone acetyltransferases (HAT). In this study, the impact of the natural histone acetyltransferase inhibitors (HATi)-garcinol (GAR) and anacardic acid (AA)-on the biology of RMS cells was evaluated through a series of in vitro tests measuring proliferation, viability, clonogenicity, cell cycle and apoptosis. Moreover, using oligonucleotide microarrays and real-time PCR, we identified several genes whose expression changed after GAR and AA treatment. The examined HATi significantly reduce the invasive phenotype of RMS cells by inhibiting the growth rate, viability and clonogenic abilities. What is more, these substances cause cell cycle arrest in the G2/M phase, induce apoptosis and affect the genetic expression of the endoplasmic reticulum stress sensors. GAR and AA may serve as promising potential anti-cancer drugs since they sensitize the RMS cells to chemotherapeutic treatment.
Collapse
Affiliation(s)
- Patrycja Tomasiak
- Institute of Physical Culture Sciences, University of Szczecin, 70-453 Szczecin, Poland
| | - Joanna Janisiak
- Department of Physiology in Health Sciences, Pomeranian Medical University in Szczecin, 71-210 Szczecin, Poland
| | - Dorota Rogińska
- Department of General Pathology, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland
| | - Magdalena Perużyńska
- Department of Experimental & Clinical Pharmacology, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland
| | - Maciej Tarnowski
- Department of Physiology in Health Sciences, Pomeranian Medical University in Szczecin, 71-210 Szczecin, Poland
| |
Collapse
|
4
|
Michalkova R, Mirossay L, Kello M, Mojzisova G, Baloghova J, Podracka A, Mojzis J. Anticancer Potential of Natural Chalcones: In Vitro and In Vivo Evidence. Int J Mol Sci 2023; 24:10354. [PMID: 37373500 DOI: 10.3390/ijms241210354] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/12/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
There is no doubt that significant progress has been made in tumor therapy in the past decades. However, the discovery of new molecules with potential antitumor properties still remains one of the most significant challenges in the field of anticancer therapy. Nature, especially plants, is a rich source of phytochemicals with pleiotropic biological activities. Among a plethora of phytochemicals, chalcones, the bioprecursors of flavonoid and isoflavonoids synthesis in higher plants, have attracted attention due to the broad spectrum of biological activities with potential clinical applications. Regarding the antiproliferative and anticancer effects of chalcones, multiple mechanisms of action including cell cycle arrest, induction of different forms of cell death and modulation of various signaling pathways have been documented. This review summarizes current knowledge related to mechanisms of antiproliferative and anticancer effects of natural chalcones in different types of malignancies including breast cancers, cancers of the gastrointestinal tract, lung cancers, renal and bladder cancers, and melanoma.
Collapse
Affiliation(s)
- Radka Michalkova
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Ladislav Mirossay
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Gabriela Mojzisova
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Janette Baloghova
- Department of Dermatovenerology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Anna Podracka
- Department of Dermatovenerology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Jan Mojzis
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| |
Collapse
|
5
|
Tauchen J, Frankova A, Manourova A, Valterova I, Lojka B, Leuner O. Garcinia kola: a critical review on chemistry and pharmacology of an important West African medicinal plant. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2023:1-47. [PMID: 37359709 PMCID: PMC10205037 DOI: 10.1007/s11101-023-09869-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/03/2023] [Indexed: 06/28/2023]
Abstract
Garcinia kola Heckel (Clusiaceae) is a tree indigenous to West and Central Africa. All plant parts, but especially the seeds, are of value in local folklore medicine. Garcinia kola is used in treatment of numerous diseases, including gastric disorders, bronchial diseases, fever, malaria and is used to induce a stimulating and aphrodisiac effect. The plant is now attracting considerable interest as a possible source of pharmaceutically important drugs. Several different classes of compounds such as biflavonoids, benzophenones, benzofurans, benzopyran, vitamin E derivatives, xanthones, and phytosterols, have been isolated from G. kola, of which many appears to be found only in this species, such as garcinianin (found in seeds and roots), kolanone (fruit pulp, seeds, roots), gakolanone (stem bark), garcinoic acid, garcinal (both in seeds), garcifuran A and B, and garcipyran (all in roots). They showed a wide range of pharmacological activities (e.g. analgesic, anticancer, antidiabetic, anti-inflammatory, antimalarial, antimicrobial, hepatoprotective and neuroprotective effects), though this has only been confirmed in animal models. Kolaviron is the most studied compound and is perceived by many studies as the active principle of G. kola. However, its research is associated with significant flaws (e.g. too high doses tested, inappropriate positive control). Garcinol has been tested under better conditions and is perhaps showing more promising results and should attract deeper research interest (especially in the area of anticancer, antimicrobial, and neuroprotective activity). Human clinical trials and mechanism-of-action studies must be carried out to verify whether any of the compounds present in G. kola may be used as a lead in the drug development.
Collapse
Affiliation(s)
- Jan Tauchen
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic
| | - Adela Frankova
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic
| | - Anna Manourova
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Irena Valterova
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Bohdan Lojka
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Olga Leuner
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic
| |
Collapse
|
6
|
Xu ZH, Grossman RB, Qiu YF, Luo Y, Lan T, Yang XW. Polycyclic Polyprenylated Acylphloroglucinols Bearing a Lavandulyl-Derived Substituent from Garcinia xanthochymus Fruits. JOURNAL OF NATURAL PRODUCTS 2022; 85:2845-2855. [PMID: 36461923 DOI: 10.1021/acs.jnatprod.2c00888] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Many type B polycyclic polyprenylated acylphloroglucinols (PPAPs) bear a lavandulyl-derived substituent, and the configurational assignment of this side chain can be difficult and sometimes leads to erroneous conclusions. In this study, 21 PPAPs, including the new xanthochymusones A-I (1-9), have been isolated from the fruits of Garcinia xanthochymus and structurally characterized. The relative configuration of the C-30 stereocenter was assigned by a combination of chemical transformations, 1H-1H coupling constants, conformational analysis, and NOE experiments. The configurational assignment of compound 7 indicates that the relative configuration at C-30 of PPAPs is not always the same. The absolute configurations of the new compounds were assigned by ECD and X-ray diffraction data, as well as by biosynthetic considerations. Analysis of NMR data enabled the configurational revision of garcicowins C and D. All the isolated PPAPs were tested for antiproliferative activity against three human hepatocellular carcinoma cell lines, including Huh-7, Hep 3B, and HepG2. Compounds 5 and 6, 7-epi-isogarcinol (16), and coccinone C (17) exhibited moderate antiproliferative activity. Compounds 6 and 16 induced apoptosis and inhibited cell migration in Huh-7 cells, probably through downregulating the STAT3 signaling pathway. This study provides effective methods for configurational assignments of type B PPAPs.
Collapse
Affiliation(s)
- Zhi-Hong Xu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, People's Republic of China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Robert B Grossman
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, United States
| | - Yu-Feng Qiu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, People's Republic of China
| | - Yang Luo
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, People's Republic of China
| | - Tian Lan
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Xing-Wei Yang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, People's Republic of China
| |
Collapse
|
7
|
Szulak F, Etcheverry Boneo L, Becu-Villalobos D, Fernandez MO, Sorianello E. Benzophenones alter autophagy and ER stress gene expression in pancreatic beta cells in vitro. In Vitro Cell Dev Biol Anim 2022; 58:936-956. [PMID: 36484879 DOI: 10.1007/s11626-022-00739-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022]
Abstract
Benzophenones (BPs) are endocrine disruptors frequently used in sunscreens and food packaging as UV blockers. Our goal was to assess the effect of benzophenone 2 (BP2) and 3 (BP3) on gene expression related to autophagy process and ER stress response in pancreatic beta cells. To that end, the mouse pancreatic beta cell line MIN6B1 was treated with 10 µM BP2 or BP3 in the presence or absence of the autophagy-inhibitor chloroquine (CQ, 10 µM) or the autophagy-inducer rapamycin (RAPA, 50 nM) during 24 h. BP3 inhibited the expression of the autophagic gene Ulk1, and additional effects were uncovered when autophagy was modified by CQ and RAPA. BP3 counteracted CQ-induced Lamp2 expression but did not compensate CQ-induced Sqstm1/p62 gene transcription, neither BP2. Nevertheless, the BPs did not alter the autophagic flux. In relation to ER stress, BP3 inhibited unspliced and spliced Xbp1 mRNA levels in the presence or absence of CQ, totally counteracted CQ-induced Chop gene expression, and partially reverted CQ-induced Grp78/Bip mRNA levels, while BP2 also partially inhibited Grp78/Bip mRNA induction by CQ. In conclusion, BPs, principally BP3, affect cellular adaptive responses related to autophagy, lysosomal biogenesis, and ER stress in pancreatic beta cells, indicating that BP exposure could lead to beta cell dysfunction.
Collapse
Affiliation(s)
- Florencia Szulak
- Laboratorio de Regulación Hipofisaria, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina
| | - Luz Etcheverry Boneo
- Laboratorio de Regulación Hipofisaria, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina
| | - Damasia Becu-Villalobos
- Laboratorio de Regulación Hipofisaria, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina
| | - Marina Olga Fernandez
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina
| | - Eleonora Sorianello
- Laboratorio de Regulación Hipofisaria, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina.
| |
Collapse
|
8
|
Naeem A, Hu P, Yang M, Zhang J, Liu Y, Zhu W, Zheng Q. Natural Products as Anticancer Agents: Current Status and Future Perspectives. Molecules 2022; 27:molecules27238367. [PMID: 36500466 PMCID: PMC9737905 DOI: 10.3390/molecules27238367] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Natural products have been an invaluable and useful source of anticancer agents over the years. Several compounds have been synthesized from natural products by modifying their structures or by using naturally occurring compounds as building blocks in the synthesis of these compounds for various purposes in different fields, such as biology, medicine, and engineering. Multiple modern and costly treatments have been applied to combat cancer and limit its lethality, but the results are not significantly refreshing. Natural products, which are a significant source of new therapeutic drugs, are currently being investigated as potential cytotoxic agents and have shown a positive trend in preclinical research and have prompted numerous innovative strategies in order to combat cancer and expedite the clinical research. Natural products are becoming increasingly important for drug discovery due to their high molecular diversity and novel biofunctionality. Furthermore, natural products can provide superior efficacy and safety due to their unique molecular properties. The objective of the current review is to provide an overview of the emergence of natural products for the treatment and prevention of cancer, such as chemosensitizers, immunotherapeutics, combinatorial therapies with other anticancer drugs, novel formulations of natural products, and the molecular mechanisms underlying their anticancer properties.
Collapse
Affiliation(s)
- Abid Naeem
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Pengyi Hu
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Ming Yang
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Jing Zhang
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yali Liu
- Key Laboratory of Pharmacodynamics and Safety Evaluation, Health Commission of Jiangxi Province, Nanchang Medical College, Nanchang 330006, China
- Key Laboratory of Pharmacodynamics and Quality Evaluation on Anti-Inflammatory Chinese Herbs, Jiangxi Administration of Traditional Chinese Medicine, Nanchang Medical College, Nanchang 330006, China
| | - Weifeng Zhu
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Qin Zheng
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- Correspondence:
| |
Collapse
|
9
|
Prabhakar P, Pavankumar GS, Raghu SV, Rao S, Prasad K, George T, Baliga MS. Utility of Indian fruits in cancer prevention and treatment: Time to undertake translational and bedside studies. Curr Pharm Des 2022; 28:1543-1560. [PMID: 35652402 DOI: 10.2174/1381612828666220601151931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/31/2022] [Indexed: 11/22/2022]
Abstract
The World Health Organization predicts a 70% increase in cancer incidents in developing nations over the next decade, and it will be the second leading cause of death worldwide. Traditional plant-based medicine systems play an important role against various diseases and provide health care to a large section of the population in developing countries. Indigenous fruits and their bioactive compounds with beneficial effects like antioxidant, antiproliferative, and immunomodulatory are shown to be useful in preventing the incidence of cancer. India is one of the biodiversity regions and is native to numerous flora and fauna in the world. Of the many fruiting trees indigenous to India, Mango (Mangifera indica), Black plum (Eugenia jambolana or Syzygium jambolana), Indian gooseberry (Emblica officinalis or Phyllanthus emblica), kokum (Garcinia indica or Brindonia indica), stone apple or bael (Aegle marmelos), Jackfruit (Artocarpus heterophyllus), Karaunda (Carissa carandas) and Phalsa (Grewia asiatica), Monkey Jackfruit (Artocarpus lakoocha) and Elephant apple (Dillenia indica) have been shown to be beneficial in preventing cancer and in the treatment of cancer in validated preclinical models of study. In this review, efforts are also made to collate the fruits' anticancer effects and the important phytochemicals. Efforts are also made at emphasizing the underlying mechanism/s responsible for the beneficial effects in cancer prevention and treatment. These fruits have been a part of the diet, are non-toxic, and easily acceptable for human application. The plants and some of their phytochemicals possess diverse medicinal properties. The authors propose that future studies should be directed at detailed studies with various preclinical models of study with both composite fruit extract/juice and the individual phytochemicals. Additionally, translational studies should be planned with the highly beneficial, well-investigated and pharmacologically multifactorial amla to understand its usefulness as a cancer preventive in the high-risk population and as a supportive agent in cancer survivors. The outcome of both preclinical and clinical studies will be useful for patients, the healthcare fraternity, pharmaceutical, and agro-based sectors.
Collapse
Affiliation(s)
- Pankaj Prabhakar
- Department of Pharmacology, Indira Gandhi Institute of Medical Sciences (IGIMS), Sheikhpura, Patna, Bihar, 800014, India
| | - Giriyapura Srikantachar Pavankumar
- Department of Biotechnology, Kuvempu University, India.,Sri Lakshmi Group of Institution, Magadi Main Road, Sunkadakatte, Bengaluru, Karnataka, India
| | - Shamprasad Varija Raghu
- Department of Applied Zoology, Mangalore University, Mangalagangotri, Konaje, Karnataka India
| | - Suresh Rao
- Radiation Oncology, c Pumpwell, Mangalore, Karnataka, India
| | - Krishna Prasad
- Medical Oncology, Mangalore Institute of Oncology, Pumpwell, Mangalore, Karnataka, India
| | - Thomas George
- Research Unit, Mangalore Institute of Oncology, Pumpwell, Mangalore, Karnataka, India
| | | |
Collapse
|
10
|
Ullah MF, Ahmad A, Bhat SH, Abuduhier FM, Mustafa SK, Usmani S. Diet-derived small molecules (nutraceuticals) inhibit cellular proliferation by interfering with key oncogenic pathways: an overview of experimental evidence in cancer chemoprevention. Biol Futur 2022; 73:55-69. [PMID: 35040098 DOI: 10.1007/s42977-022-00110-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 01/07/2022] [Indexed: 10/19/2022]
Abstract
Discouraging statistics of cancer disease has projected an increase in the global cancer burden from 19.3 to 28.4 million incidences annually within the next two decades. Currently, there has been a revival of interest in nutraceuticals with evidence of pharmacological properties against human diseases including cancer. Diet is an integral part of lifestyle, and it has been proposed that an estimated one-third of human cancers can be prevented through appropriate lifestyle modification including dietary habits; hence, it is considered significant to explore the pharmacological benefits of these agents, which are easily accessible and have higher safety index. Accordingly, an impressive embodiment of evidence supports the concept that the dietary factors are critical modulators to prevent, retard, block, or reverse carcinogenesis. Such an action reflects the ability of these molecules to interfere with multitude of pathways to subdue and neutralize several oncogenic factors and thereby keep a restraint on neoplastic transformations. This review provides a series of experimental evidence based on the current literature to highlight the translational potential of nutraceuticals for the prevention of the disease through consumption of enriched diets and its efficacious management by means of novel interventions. Specifically, this review provides the current understanding of the chemopreventive pharmacology of nutraceuticals such as cucurbitacins, morin, fisetin, curcumin, luteolin and garcinol toward their potential as anticancer agents.
Collapse
Affiliation(s)
- Mohammad Fahad Ullah
- Prince Fahd Research Chair, Department of Medical Laboratory Technology, Faculty of Applied Medical Science, University of Tabuk, Tabuk, Saudi Arabia.
| | - Aamir Ahmad
- University of Alabama at Birmingham, Birmingham, AL, USA
- Interim Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Showket H Bhat
- Prince Fahd Research Chair, Department of Medical Laboratory Technology, Faculty of Applied Medical Science, University of Tabuk, Tabuk, Saudi Arabia
- Department of Medical Laboratory Technology and Molecular Diagnostics, Center for Vocational Studies, Islamic University of Science and Technology, Awantipora, Jammu & Kashmir, India
| | - Faisel M Abuduhier
- Prince Fahd Research Chair, Department of Medical Laboratory Technology, Faculty of Applied Medical Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Syed Khalid Mustafa
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Shazia Usmani
- Faculty of Pharmacy, Integral University, Lucknow, India
| |
Collapse
|
11
|
Jaiswal B, Agarwal A, Gupta A. Lysine Acetyltransferases and Their Role in AR Signaling and Prostate Cancer. Front Endocrinol (Lausanne) 2022; 13:886594. [PMID: 36060957 PMCID: PMC9428678 DOI: 10.3389/fendo.2022.886594] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/17/2022] [Indexed: 11/18/2022] Open
Abstract
The development and growth of a normal prostate gland, as well as its physiological functions, are regulated by the actions of androgens through androgen receptor (AR) signaling which drives multiple cellular processes including transcription, cellular proliferation, and apoptosis in prostate cells. Post-translational regulation of AR plays a vital role in directing its cellular activities via modulating its stability, nuclear localization, and transcriptional activity. Among various post-translational modifications (PTMs), acetylation is an essential PTM recognized in AR and is governed by the regulated actions of acetyltransferases and deacetyltransferases. Acetylation of AR has been identified as a critical step for its activation and depending on the site of acetylation, the intracellular dynamics and activity of the AR can be modulated. Various acetyltransferases such as CBP, p300, PCAF, TIP60, and ARD1 that are known to acetylate AR, may directly coactivate the AR transcriptional function or help to recruit additional coactivators to functionally regulate the transcriptional activity of the AR. Aberrant expression of acetyltransferases and their deregulated activities have been found to interfere with AR signaling and play a key role in development and progression of prostatic diseases, including prostate cancer (PCa). In this review, we summarized recent research advances aimed at understanding the role of various lysine acetyltransferases (KATs) in the regulation of AR activity at the level of post-translational modifications in normal prostate physiology, as well as in development and progression of PCa. Considering the critical importance of KATs in modulating AR activity in physiological and patho-physiological context, we further discussed the potential of targeting these enzymes as a therapeutic option to treat AR-related pathology in combination with hormonal therapy.
Collapse
Affiliation(s)
- Bharti Jaiswal
- Integrative Chemical Biology (ICB), Institute for Stem Cell Science and Regenerative Medicine (inStem), Bengaluru, India
- *Correspondence: Ashish Gupta, ; Bharti Jaiswal,
| | - Akanksha Agarwal
- Epigenetics and Human Disease Laboratory, Centre of Excellence in Epigenetics (CoEE) Department of Life Sciences, Shiv Nadar University, Delhi, UP, India
| | - Ashish Gupta
- Epigenetics and Human Disease Laboratory, Centre of Excellence in Epigenetics (CoEE) Department of Life Sciences, Shiv Nadar University, Delhi, UP, India
- *Correspondence: Ashish Gupta, ; Bharti Jaiswal,
| |
Collapse
|
12
|
Bailly C, Vergoten G. Anticancer Properties and Mechanism of Action of Oblongifolin C, Guttiferone K and Related Polyprenylated Acylphloroglucinols. NATURAL PRODUCTS AND BIOPROSPECTING 2021; 11:629-641. [PMID: 34586597 PMCID: PMC8479269 DOI: 10.1007/s13659-021-00320-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/21/2021] [Indexed: 05/06/2023]
Abstract
Polyprenylated acylphloroglucinols represent an important class of natural products found in many plants. Among them, the two related products oblongifolin C (Ob-C) and guttiferone K (Gt-K) isolated from Garcinia species (notably from edible fruits), have attracted attention due to their marked anticancer properties. The two compounds only differ by the nature of the C-6 side chain, prenyl (Gt-K) or geranyl (Ob-C) on the phloroglucinol core. Their origin, method of extraction and biological properties are presented here, with a focus on the targets and pathways implicated in their anticancer activities. Both compounds markedly reduce cancer cell proliferation in vitro, as well as tumor growth and metastasis in vivo. They are both potent inducer of tumor cell apoptosis, and regulation of autophagy flux is a hallmark of their mode of action. The distinct mechanism leading to autophagosome accumulation in cells and the implicated molecular targets are discussed. The specific role of the chaperone protein HSPA8, known to interact with Ob-C, is addressed. Molecular models of Gt-K and Ob-C bound to HSPA8 provide a structural basis to their common HSPA8-binding recognition capacity. The review shed light on the mechanism of action of these compounds, to encourage their studies and potential development.
Collapse
Affiliation(s)
- Christian Bailly
- Scientific Consulting Office, OncoWitan, 59290, Lille, Wasquehal, France.
| | - Gérard Vergoten
- Inserm, INFINITE - U1286, Faculté de Pharmacie, University of Lille, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), 3 rue du Professeur Laguesse, BP-83, 59006, Lille, France
| |
Collapse
|
13
|
Zhang X, Song Z, Li Y, Wang H, Zhang S, Reid AM, Lall N, Zhang J, Wang C, Lee D, Ohizumi Y, Xu J, Guo Y. Cytotoxic and Antiangiogenetic Xanthones Inhibiting Tumor Proliferation and Metastasis from Garcinia xipshuanbannaensis. JOURNAL OF NATURAL PRODUCTS 2021; 84:1515-1523. [PMID: 33905250 DOI: 10.1021/acs.jnatprod.0c01354] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Eight prenylated xanthones including four new analogues were extracted and purified from the leaves of Garcinia xipshuanbannaensis. Multiple techniques including UV, 1D and 2D NMR, and HRESIMS were used to determine the structures of the isolated xanthones. These xanthones were evaluated for their cytotoxicity toward human cancer cells, and compound 4 exhibited activity against HeLa cells. A cytotoxic mechanism examination revealed the active compound induced cell apoptosis by arresting the cell cycle, increasing the levels of ROS, and inhibiting the expression of p-STAT3 in HeLa cells. In in vivo zebrafish experiments, compound 4 was found to block tumor proliferation and migration and have antiangiogenetic activity, and thus seems worthy of further laboratory evaluation.
Collapse
Affiliation(s)
- Xuke Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Ziteng Song
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Ying Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Huimei Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Shaojie Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Anna-Mari Reid
- Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Namrita Lall
- Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Jie Zhang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, People's Republic of China
| | - Chunyan Wang
- Tianjin Second People's Hospital, Tianjin 300192, People's Republic of China
| | - Dongho Lee
- College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Yasushi Ohizumi
- Kansei Fukushi Research Institute, Tohoku Fukushi University, 6-149-1 Kunimigaoka, Aoba-ku, Sendai 989-3201, Japan
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| |
Collapse
|
14
|
Ullah MF, Usmani S, Shah A, Abuduhier FM. Dietary molecules and experimental evidence of epigenetic influence in cancer chemoprevention: An insight. Semin Cancer Biol 2020; 83:319-334. [PMID: 33152485 DOI: 10.1016/j.semcancer.2020.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022]
Abstract
The world-wide rate of incidence of cancer disease has been only modestly contested by the past and current preventive and interventional strategies. Hence, the global effort towards novel ideas to contain the disease still continues. Constituents of human diets have in recent years emerged as key regulators of carcinogenesis, with studies reporting their inhibitory potential against all the three stages vis-a-vis initiation, promotion and progression. Unlike drugs which usually act on single targets, these dietary factors have an advantage of multi-targeted effects and pleiotropic action mechanisms, which are effective against cancer that manifest as a micro-evolutionary and multi-factorial disease. Since most of the cellular targets have been identified and their consumption considered relatively safe, these diet-derived agents often appear as molecules of interest in repurposing strategies. Currently, many of these molecules are being investigated for their ability to influence the aberrant alterations in cell's epigenome for epigenetic therapy against cancer. Targeting the epigenetic regulators is a new paradigm in cancer chemoprevention which acts to reverse the warped-up epigenetic alterations in a cancer cell, thereby directing it towards a normal phenotype. In this review, we discuss the significance of dietary factors and natural products as chemopreventive agents. Further, we corroborate the experimental evidence from existing literature, reflecting the ability of a series of such molecules to act as epigenetic modifiers in cancer cells, by interfering with molecular events that map the epigenetic imprints such as DNA methylation, histone acetylation and non-coding RNA mediated gene regulation.
Collapse
Affiliation(s)
- Mohammad Fahad Ullah
- Prince Fahad Research Chair, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, 71491, Saudi Arabia.
| | - Shazia Usmani
- Faculty of Pharmacy, Integral University, Lucknow, India
| | - Aaliya Shah
- Department of Biochemistry, SKIMS Medical College, Srinagar, India
| | - Faisel M Abuduhier
- Prince Fahad Research Chair, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, 71491, Saudi Arabia
| |
Collapse
|
15
|
Bicyclic polyprenylated acylphloroglucinols and their derivatives: structural modification, structure-activity relationship, biological activity and mechanism of action. Eur J Med Chem 2020; 205:112646. [PMID: 32791400 DOI: 10.1016/j.ejmech.2020.112646] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 12/22/2022]
Abstract
Bicyclic polyprenylated acylphloroglucinols (BPAPs), the principal bioactive benzophenone products isolated from plants of genera Garcinia and Hypericum, have attracted noticeable attention from the synthetic and biological communities due to their fascinating chemical structures and promising biological activities. However, the potential drug interaction, undesired physiochemical properties and toxicity have limited their potential use and development. In the last decade, pharmaceutical research on the structural modifications, structure-activity relationships (SARs) and mechanisms of action of BPAPs has been greatly developed to overcome the challenges. A comprehensive review of these scientific literature is extremely needed to give an overview of the rapidly emerging area and facilitate research related to BPAPs. This review, containing over 226 references, covers the progress made in the chemical synthesis-based structure modifications, SARs and the mechanism of action of BPAPs in vivo and vitro. The most relevant articles will focus on the discovery of lead compounds via synthetic modifications and the important BPAPs for which the direct targets have been deciphered. From this review, several key points of the SARs and mode of actions of this novel class of compounds have been summarized. The perspective and future direction of the research on BPAPs are concluded. This review would be helpful to get a better grasp of medicinal research of BPAPs and become a compelling guide for chemists dedicated to the synthesis of these compounds.
Collapse
|
16
|
Zhang J, Fang H, Zhang J, Guan W, Xu G. Garcinol Alone and in Combination With Cisplatin Affect Cellular Behavior and PI3K/AKT Protein Phosphorylation in Human Ovarian Cancer Cells. Dose Response 2020; 18:1559325820926732. [PMID: 32489337 PMCID: PMC7238453 DOI: 10.1177/1559325820926732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 11/15/2022] Open
Abstract
Garcinol is a plant-derived compound that has some physiological benefits to human cells. However, the effect of garcinol on ovarian cancer (OC) cell proliferation and apoptosis is unknown. The current study aimed to examine the effects of garcinol alone and in combination with cisplatin (DDP) on cellular behavior and to explore the expression pattern of PI3K/AKT and nuclear factor-κB (NF-κB) in human OC cells. We found that OVCAR-3 cell viability was decreased after garcinol treatment. Garcinol alone and in combination with DDP significantly inhibited cell proliferation and had a synergistic effect evaluated by CompuSyn software. The cell cycle analysis showed the S phase arrest by garcinol. Furthermore, garcinol alone and in combination with DDP promoted cell apoptosis. The garcinol-induced apoptosis was further confirmed by the detection of cleavage forms of PARP and caspase 3. An increase in proapoptotic factor Bax expression was also found in garcinol-treated cells. Moreover, garcinol significantly decreased the phosphorylation of PI3K and AKT proteins and downregulated the expression of NF-κB. Thus, our data demonstrated that garcinol has the potential to be used as an anticancer agent and may synergize the effect of DDP. These actions are most likely through the regulation of the PI3K/AKT and NF-κB pathways.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Clinical Nutrition, Jinshan Hospital, Fudan University, Shanghai, China
| | - Huan Fang
- Department of Clinical Pharmacy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Jinguo Zhang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China
| | - Wencai Guan
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Zheng Y, Guo C, Zhang X, Wang X, Ma A. Garcinol acts as an antineoplastic agent in human gastric cancer by inhibiting the PI3K/AKT signaling pathway. Oncol Lett 2020; 20:667-676. [PMID: 32565991 PMCID: PMC7285879 DOI: 10.3892/ol.2020.11585] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 04/15/2020] [Indexed: 12/13/2022] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies worldwide; however, treatment options other than surgery remain limited. Neoadjuvant chemotherapy has the potential to suppress of gastric tumorigenesis. Garcinol has been reported to exert inhibitory effects on the progression of numerous carcinomas. However, its effects in GC remain unclear. Therefore, the aim of the present study was to investigate the effects of garcinol on the proliferation, invasion and apoptosis of gastric carcinoma cells and then to explore the underlying mechanisms. Garcinol significantly decreased the proliferation and invasion of GC cells and increased apoptosis in a dose-dependent manner. Additionally, the expression of AKTp-Thr308, cyclin D1, Bcl-2, BAX, matrix metalloprotease (MMP-2) and MMP-9 in HGC-27 cells following treatment with garcinol. The results obtained in the present study suggested that garcinol may inhibit gastric tumorigenesis by suppressing the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Yuanyuan Zheng
- Department of Gastroenterology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang 312000, P.R. China
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University of Medicine, Shanghai 200072, P.R. China
| | - Xiaoping Zhang
- Department of Gastroenterology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang 312000, P.R. China
| | - Xiaoli Wang
- Department of Gastroenterology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang 312000, P.R. China
| | - A'Huo Ma
- Department of Gastroenterology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang 312000, P.R. China
| |
Collapse
|
18
|
Aggarwal V, Tuli HS, Kaur J, Aggarwal D, Parashar G, Chaturvedi Parashar N, Kulkarni S, Kaur G, Sak K, Kumar M, Ahn KS. Garcinol Exhibits Anti-Neoplastic Effects by Targeting Diverse Oncogenic Factors in Tumor Cells. Biomedicines 2020; 8:103. [PMID: 32365899 PMCID: PMC7277375 DOI: 10.3390/biomedicines8050103] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
Garcinol, a polyisoprenylated benzophenone, is the medicinal component obtained from fruits and leaves of Garcinia indica (G. indica) and has traditionally been extensively used for its antioxidant and anti-inflammatory properties. In addition, it has been also been experimentally illustrated to elicit anti-cancer properties. Several in vitro and in vivo studies have illustrated the potential therapeutic efficiency of garcinol in management of different malignancies. It mainly acts as an inhibitor of cellular processes via regulation of transcription factors NF-κB and JAK/STAT3 in tumor cells and have been demonstrated to effectively inhibit growth of malignant cell population. Numerous studies have highlighted the anti-neoplastic potential of garcinol in different oncological transformations including colon cancer, breast cancer, prostate cancer, head and neck cancer, hepatocellular carcinoma, etc. However, use of garcinol is still in its pre-clinical stage and this is mainly attributed to the limitations of conclusive evaluation of pharmacological parameters. This necessitates evaluation of garcinol pharmacokinetics to precisely identify an appropriate dose and route of administration, tolerability, and potency under physiological conditions along with characterization of a therapeutic index. Hence, the research is presently ongoing in the dimension of exploring the precise metabolic mechanism of garcinol. Despite various lacunae, garcinol has presented with promising anti-cancer effects. Hence, this review is motivated by the constantly emerging and promising positive anti-cancerous effects of garcinol. This review is the first effort to summarize the mechanism of action of garcinol in modulation of anti-cancer effect via regulation of different cellular processes.
Collapse
Affiliation(s)
- Vaishali Aggarwal
- Department of Histopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, Punjab 160012, India;
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India; (D.A.); or (G.P.); (N.C.P.)
| | - Jagjit Kaur
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney 2052, Australia;
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India; (D.A.); or (G.P.); (N.C.P.)
| | - Gaurav Parashar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India; (D.A.); or (G.P.); (N.C.P.)
| | - Nidarshana Chaturvedi Parashar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India; (D.A.); or (G.P.); (N.C.P.)
| | - Samruddhi Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’S NMIMS, Vileparle-West, Mumbai 400056, India; (S.K.); (G.K.)
| | - Ginpreet Kaur
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’S NMIMS, Vileparle-West, Mumbai 400056, India; (S.K.); (G.K.)
| | | | - Manoj Kumar
- Department of Chemistry, Maharishi Markandeshwar University, Sadopur 133001, India;
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| |
Collapse
|
19
|
Ahmad R, Khan MA, Srivastava A, Gupta A, Srivastava A, Jafri TR, Siddiqui Z, Chaubey S, Khan T, Srivastava AK. Anticancer Potential of Dietary Natural Products: A Comprehensive Review. Anticancer Agents Med Chem 2020; 20:122-236. [DOI: 10.2174/1871520619666191015103712] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 06/21/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023]
Abstract
Nature is a rich source of natural drug-like compounds with minimal side effects. Phytochemicals
better known as “Natural Products” are found abundantly in a number of plants. Since time immemorial, spices
have been widely used in Indian cuisine as flavoring and coloring agents. Most of these spices and condiments
are derived from various biodiversity hotspots in India (which contribute 75% of global spice production) and
form the crux of India’s multidiverse and multicultural cuisine. Apart from their aroma, flavor and taste, these
spices and condiments are known to possess several medicinal properties also. Most of these spices are mentioned
in the Ayurveda, the indigenous system of medicine. The antimicrobial, antioxidant, antiproliferative,
antihypertensive and antidiabetic properties of several of these natural products are well documented in
Ayurveda. These phytoconstituemts are known to act as functional immunoboosters, immunomodulators as well
as anti-inflammatory agents. As anticancer agents, their mechanistic action involves cancer cell death via induction
of apoptosis, necrosis and autophagy. The present review provides a comprehensive and collective update
on the potential of 66 commonly used spices as well as their bioactive constituents as anticancer agents. The
review also provides an in-depth update of all major in vitro, in vivo, clinical and pharmacological studies done
on these spices with special emphasis on the potential of these spices and their bioactive constituents as potential
functional foods for prevention, treatment and management of cancer.
Collapse
Affiliation(s)
- Rumana Ahmad
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Mohsin A. Khan
- Chancellor, Era University, Sarfarazganj, Hardoi Road, Lucknow-226003, UP, India
| | - A.N. Srivastava
- Department of Pathology, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Anamika Gupta
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Aditi Srivastava
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Tanvir R. Jafri
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Zainab Siddiqui
- Department of Pathology, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Sunaina Chaubey
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Tahmeena Khan
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow 226026, UP, India
| | - Arvind K. Srivastava
- Department of Food and Nutrition, Era University, Sarfarazganj, Lucknow-226003, UP, India
| |
Collapse
|
20
|
Jia Y, Pang C, Zhao K, Jiang J, Zhang T, Peng J, Sun P, Qian Y. Garcinol Suppresses IL-1β-Induced Chondrocyte Inflammation and Osteoarthritis via Inhibition of the NF-κB Signaling Pathway. Inflammation 2020; 42:1754-1766. [PMID: 31201586 DOI: 10.1007/s10753-019-01037-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Osteoarthritis (OA), which is characterized as a common degenerative joint disease, is presently the most prevalent chronic degenerative joint disease. Accumulating evidence has shown a biological function for Garcinol in a variety of diseases; however, whether it could be used to treat OA remains unclear. In this study, we explored the protective effects of garcinol on the progression of OA and explored the underlying mechanism. In vitro, garcinol reduced the expression of pro-inflammatory cytokines, such as IL-6 and tumor necrosis factor alpha (TNF-α). It also decreased the expression of inducible nitric oxide synthase (iNOS), as well as cyclooxygenase-2 (COX-2). Furthermore, garcinol inhibited the expression of thrombospondin motifs 5(ADAMTS5) and metalloproteinase (MMPs), both of which regulate extracellular matrix degradation. These changes could be attributed to garcinol-related suppression of the IL-1β-induced NF-κB signaling pathway. Moreover, we investigated the protective effects of garcinol on the surgical destabilization of the medial meniscus (DMM) of the mouse, an in vivo model of OA. Taken together, our data suggest garcinol as a potential future agent for the treatment of OA.
Collapse
Affiliation(s)
- Yewei Jia
- Department of Orthopaedics, Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, 312000, Zhejiang, China.,Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cong Pang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Kangxian Zhao
- Department of Orthopaedics, Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, 312000, Zhejiang, China.,The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Jiawei Jiang
- Department of Orthopaedics, Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, 312000, Zhejiang, China.,Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tan Zhang
- Department of Orthopaedics, Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, 312000, Zhejiang, China.,The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Jiaxuan Peng
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi, 530021, China
| | - Peng Sun
- Department of Orthopaedics, Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, 312000, Zhejiang, China.,The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yu Qian
- Department of Orthopaedics, Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, 312000, Zhejiang, China.
| |
Collapse
|
21
|
Warriar P, Barve K, Prabhakar B. Anti-Arthritic Effect of Garcinol Enriched Fraction Against Adjuvant Induced Arthritis. ACTA ACUST UNITED AC 2020; 13:49-56. [PMID: 30457056 PMCID: PMC6778983 DOI: 10.2174/1872213x12666181120091528] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 11/13/2018] [Accepted: 11/13/2018] [Indexed: 01/30/2023]
Abstract
Background: Garcinia indica also known as kokum is used in traditional system of medicine for relieving inflammation and rheumatic pain. Garcinol, a benzophenone obtained from its fruit rind is reported to have anti-inflammatory effect via modulating arachidonic acid metabolism, suppressing iNOS expression, NF-κB activation and COX-2 expression. It has also been studied for antioxidant and anti-cancer activity. Apart from these, few patents claim that garcinol also has anti-obesity and hepatoprotec-tive effect and has a potential to be used for the treatment of renal disorders, endometriosis and cardiac dysfunction. Objective: Garcinol Enriched Fraction (GEF) from the fruit rind of Garcinia indica should be effective in the treatment of arthritis, one of the chronic inflammatory disorder owing to its anti-inflammatory property as indicated by earlier experiments. Methods: GEF was prepared from the fruit rind of Garcinia indica and quantified using LC-MS/MS. It was found to contain 89.4% w/w of garcinol. GEF was evaluated at the dose of 10mg/kg for its efficacy against Complete Freund’s Adjuvant (CFA) induced arthritis in Wistar albino rats. Paw volumes of both sides were measured by Plethysmometer and body weight was recorded on 0, 1, 5, 12 and 21st day. The hyperalgesic response was also measured by motility test and stair climbing test. Results: GEF showed a significant reduction in paw swelling (p < 0.0001) and arthritis index (p < 0.0001) exhibiting anti-inflammatory potential. It also improves the motility and stair climbing ability of experimental animals (p < 0.05), thus reducing hyperalgesia. Conclusion: Garcinol enriched fraction shows anti-arthritic activity in experimental animals.
Collapse
Affiliation(s)
- Purnima Warriar
- SPP- School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, Maharashtra, India
| | - Kalyani Barve
- SPP- School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, Maharashtra, India
| | - Bala Prabhakar
- SPP- School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, Maharashtra, India
| |
Collapse
|
22
|
Schobert R, Biersack B. Chemical and Biological Aspects of Garcinol and Isogarcinol: Recent Developments. Chem Biodivers 2019; 16:e1900366. [PMID: 31386266 DOI: 10.1002/cbdv.201900366] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/06/2019] [Indexed: 11/08/2022]
Abstract
The natural polyisoprenylated benzophenone derivatives garcinol and isogarcinol are secondary plant metabolites isolated from various Garcinia species including Garcinia indica. This review takes stock of the recent chemical and biological research into these interesting natural compounds over the last five years. New biological sources and chemical syntheses are discussed followed by new insights into the activity of garcinol and isogarcinol against cancer, pathogenic bacteria, parasite infections and various inflammatory diseases.
Collapse
Affiliation(s)
- Rainer Schobert
- Organic Chemistry Laboratory, University of Bayreuth, 95447, Bayreuth, Germany
| | - Bernhard Biersack
- Organic Chemistry Laboratory, University of Bayreuth, 95447, Bayreuth, Germany
| |
Collapse
|
23
|
Salehi B, Fokou PVT, Yamthe LRT, Tali BT, Adetunji CO, Rahavian A, Mudau FN, Martorell M, Setzer WN, Rodrigues CF, Martins N, Cho WC, Sharifi-Rad J. Phytochemicals in Prostate Cancer: From Bioactive Molecules to Upcoming Therapeutic Agents. Nutrients 2019; 11:E1483. [PMID: 31261861 PMCID: PMC6683070 DOI: 10.3390/nu11071483] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/22/2019] [Accepted: 06/27/2019] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer is a heterogeneous disease, the second deadliest malignancy in men and the most commonly diagnosed cancer among men. Traditional plants have been applied to handle various diseases and to develop new drugs. Medicinal plants are potential sources of natural bioactive compounds that include alkaloids, phenolic compounds, terpenes, and steroids. Many of these naturally-occurring bioactive constituents possess promising chemopreventive properties. In this sense, the aim of the present review is to provide a detailed overview of the role of plant-derived phytochemicals in prostate cancers, including the contribution of plant extracts and its corresponding isolated compounds.
Collapse
Affiliation(s)
- Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran
| | - Patrick Valere Tsouh Fokou
- Antimicrobial and Biocontrol Agents Unit, Department of Biochemistry, Faculty of Science, University of Yaounde I, Ngoa Ekelle, Annex Fac. Sci, Yaounde 812, Cameroon
| | | | - Brice Tchatat Tali
- Antimicrobial Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of Science, University of Yaoundé I, Messa-Yaoundé 812, Cameroon
| | - Charles Oluwaseun Adetunji
- Applied Microbiology, Biotechnology and Nanotechnology Laboratory, Department of Microbiology, Edo University, Iyamho, Edo State 300271, Nigeria
| | - Amirhossein Rahavian
- Department of Urology, Shohada-e-Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran 1989934148, Iran
| | - Fhatuwani Nixwell Mudau
- Department of Agriculture and Animal Health, University of South Africa, Private Bag X6, Florida 1710, South Africa
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion 4070386, Chile.
| | - William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| | - Célia F Rodrigues
- LEPABE-Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal.
| | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China.
| | - Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol 61615-585, Iran.
| |
Collapse
|
24
|
Zhang G, Fu J, Su Y, Zhang X. Opposite Effects of Garcinol on Tumor Energy Metabolism in Oral Squamous Cell Carcinoma Cells. Nutr Cancer 2019; 71:1403-1411. [PMID: 31074649 DOI: 10.1080/01635581.2019.1607409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Garcinol is a natural polyisoprenylated benzophenone extracted from the dried fruit rind of Garcinia indica. The aim of this study was to investigate the roles of garcinol in oral squamous cell carcinoma (OSCC) cells and its action on cancer cell energy metabolisms. Cell cycle, apoptosis, migration and invasion assays were detected, and oxygen consumption and extracellular acidification rates were also measured with Extracellular Flux Analyzer. Our studies showed that garcinol represses OSCC cells proliferation, cell cycle, migration and invasion, and colony formation. Of note, garcinol directly targeted cancer cell energy producing pathway mitochondrial respiration by significantly inhibiting ATP production, maximal respiration, spare respiration capacity and basal respiration in a dose-dependent manner. But garcinol treatment reflexively boosted glycolysis presented by increased glycolysis and glycolytic capacity. The promotion of garcinol on glycolytic pathway is also confirmed presented by elevated lactic acid content and the activity of pyruvate kinase. Furthermore, the expression of glucose transporter1 and 4, and several important genes related to the glycolysis pathway, including HIF-1α, AKT, and PTEN, was also upregulated after garcinol treatment. Taken together, our results revealed that garcinol has opposite effects on tumor energy metabolism through inhibiting mitochondrial oxidative phosphorylation significantly, and reflexively enhancing glycolysis in OSCC cells. Abbreviations OSCC oral squamous cell carcinoma DMBA dimethylbenzanthracene OCR oxygen consumption rate OXPHOS oxidative phosphorylation ECAR extracellular acidification rate.
Collapse
Affiliation(s)
- Guilian Zhang
- Beijing Institute of Dental Research, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University , Beijing , China
| | - Jie Fu
- Beijing Institute of Dental Research, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University , Beijing , China
| | - Ying Su
- Beijing Institute of Dental Research, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University , Beijing , China
| | - Xinyan Zhang
- Beijing Institute of Dental Research, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University , Beijing , China
| |
Collapse
|
25
|
Emerging Role of Garcinol in Targeting Cancer Stem Cells of Non-small Cell Lung Cancer. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s40495-019-00169-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
26
|
Jia Y, Jiang J, Lu X, Zhang T, Zhao K, Han W, Yang W, Qian Y. Garcinol suppresses RANKL-induced osteoclastogenesis and its underlying mechanism. J Cell Physiol 2018; 234:7498-7509. [PMID: 30471112 DOI: 10.1002/jcp.27511] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/10/2018] [Indexed: 01/13/2023]
Abstract
Osteoclasts (OCs) are multinuclear giant cells responsible for bone resorption, and an excessive bone resorption by OCs plays an important role in osteoporosis. Commonly used drugs for the treatment of osteoporosis have severe side effects. As such, identification of alternative treatments is essential. Garcinol, a polyisoprenylated benzophenone extracted from the fruit of Garcinia indica, has shown a strong antitumor effect through the nuclear factor-κB (NF-κB) and mitogen-associated protein kinases (MAPK) signaling pathways. However, the role of garcinol in the osteoclastogenesis is still unclear. Here, we demonstrated that garcinol can inhibit the receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis, osteoclastogenesis-related gene expression, the f-actin ring, and resorption pit formation. In addition, garcinol abrogated RANKL-induced osteoclastogenesis by attenuating the degradation of the MAPK, NF-κB, and PI3K-AKT signaling pathway as well as downstream factors c-jun, c-fos, and NFATC1. In vivo, suppression of osteoclastogenesis by garcinol was evidenced by marked inhibition of lipopolysaccharide-induced bone resorption. In conclusion, our data demonstrated that garcinol inhibited the RANKL-induced osteoclastogenesis by suppressing the MAPK, NF-κB, and PI3K-AKT signaling pathways and thus has potential as a novel therapeutic option for osteolytic bone diseases.
Collapse
Affiliation(s)
- Yewei Jia
- Department of Orthopaedics, Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang, China
| | - Jiawei Jiang
- Department of Orthopaedics, Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang, China
| | - Xuanyuan Lu
- Department of Orthopaedics, Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang, China
| | - Tan Zhang
- Department of Orthopaedics, Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang, China.,Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Kangxian Zhao
- Department of Orthopaedics, Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang, China.,Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weiqi Han
- Department of Orthopaedics, Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang, China
| | - Wanlei Yang
- Department of Orthopaedics, Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang, China
| | - Yu Qian
- Department of Orthopaedics, Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang, China
| |
Collapse
|
27
|
Zhao J, Yang T, Ji J, Li C, Li Z, Li L. Garcinol exerts anti-cancer effect in human cervical cancer cells through upregulation of T-cadherin. Biomed Pharmacother 2018; 107:957-966. [PMID: 30257408 DOI: 10.1016/j.biopha.2018.08.060] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/02/2018] [Accepted: 08/15/2018] [Indexed: 01/22/2023] Open
Abstract
Garcinol, a polyisoprenylated benzophenone, has been demonstrated to exert anti-cancer effects in various tumor cells. However, the effect of garcinol on cervical cancer (CC) cell progression and the related molecular mechanism remains poorly understood. Accumulating evidence has verified that downregualtion of T-cadherin is closely associated with tumorigenesis, suggesting that T-cadherin might be a potential therapeutic target for cancer treatment. In the present study, Hela and SiHa cells were treated with different concentrations of garcinol (0, 5, 10, and 25 u M), and T-cadherin siRNA was synthesized and transfected into Hela and SiHa cells combined with garcinol (25 u M) treatment. We found that garcinol dose-dependently suppressed cell viability, colony formation, invasion, migration, cell cycle progression, and promoted cell apoptosis in CC cell lines, as well as inhibited tumor growth in xenograft model. Importantly, our results showed that garcinol treatment increased the expression of T-cadherin both in vitro and in vivo, and knockdown of T-cahderin partially reversed garcinol-induced inhibition of CC development via activating P13 K/AKT signaling pathway in CC cell lines. Thus, these findings demonstrated the tumor suppressive function of garcinol on CC progression, and emphasized that the T-cadherin/P13 K/AKT was a potential mechanism involved in the antumor effects of garcinol.
Collapse
Affiliation(s)
- Juan Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi Province, China
| | - Ting Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi Province, China
| | - Jing Ji
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi Province, China
| | - Chen Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi Province, China
| | - Zhen Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi Province, China
| | - Long Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi Province, China.
| |
Collapse
|
28
|
Ibrahim SRM, Abdallah HM, El-Halawany AM, Nafady AM, Mohamed GA. Mangostanaxanthone VIII, a new xanthone from Garcinia mangostana and its cytotoxic activity. Nat Prod Res 2018. [DOI: 10.1080/14786419.2018.1446012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sabrin R. M. Ibrahim
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, Taibah University, Al Madinah Al Munawwarah, Saudi Arabia
- Faculty of Pharmacy, Department of Pharmacognosy, Assiut University, Assiut, Egypt
| | - Hossam M. Abdallah
- Faculty of Pharmacy, Department of Natural Products and Alternative Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Faculty of Pharmacy, Department of Pharmacognosy, Cairo University, Cairo, Egypt
| | - Ali M. El-Halawany
- Faculty of Pharmacy, Department of Pharmacognosy, Cairo University, Cairo, Egypt
| | - Alaa M. Nafady
- Faculty of Pharmacy, Pharmacognosy Department, Al-Azhar University, Assiut, Egypt
| | - Gamal A. Mohamed
- Faculty of Pharmacy, Department of Natural Products and Alternative Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Faculty of Pharmacy, Pharmacognosy Department, Al-Azhar University, Assiut, Egypt
| |
Collapse
|
29
|
Yang XW, Grossman RB, Xu G. Research Progress of Polycyclic Polyprenylated Acylphloroglucinols. Chem Rev 2018; 118:3508-3558. [PMID: 29461053 DOI: 10.1021/acs.chemrev.7b00551] [Citation(s) in RCA: 249] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Polycyclic polyprenylated acylphloroglucinols (PPAPs) are a class of hybrid natural products sharing the mevalonate/methylerythritol phosphate and polyketide biosynthetic pathways and showing considerable structure and bioactivity diversity. This review discusses the progress of research into the chemistry and biological activity of 421 natural PPAPs in the past 11 years as well as in-depth studies of biological activities and total synthesis of some PPAPs isolated before 2006. We created an online database of all PPAPs known to date at http://www.chem.uky.edu/research/grossman/PPAPs . Two subclasses of biosynthetically related metabolites, spirocyclic PPAPs with octahydrospiro[cyclohexan-1,5'-indene]-2,4,6-trione core and complicated PPAPs produced by intramolecular [4 + 2] cycloadditions of MPAPs, are brought into the PPAP family. Some PPAPs' relative or absolute configurations are reassigned or critically discussed, and the confusing trivial names in PPAPs investigations are clarified. Pharmacologic studies have revealed a new molecular mechanism whereby hyperforin and its derivatives regulate neurotransmitter levels by activating TRPC6 as well as the antitumor mechanism of garcinol and its analogues. The antineoplastic potential of some type B PPAPs such as oblongifolin C and guttiferone K has increased significantly. As a result of the recent appearances of innovative synthetic methods and strategies, the total syntheses of 22 natural PPAPs including hyperforin, garcinol, and plukenetione A have been accomplished.
Collapse
Affiliation(s)
- Xing-Wei Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry , Kunming 650201 , People's Republic of China
| | - Robert B Grossman
- Department of Chemistry , University of Kentucky , Lexington , Kentucky 40506-0055 , United States
| | - Gang Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry , Kunming 650201 , People's Republic of China
| |
Collapse
|
30
|
Kunnumakkara AB, Sailo BL, Banik K, Harsha C, Prasad S, Gupta SC, Bharti AC, Aggarwal BB. Chronic diseases, inflammation, and spices: how are they linked? J Transl Med 2018; 16:14. [PMID: 29370858 PMCID: PMC5785894 DOI: 10.1186/s12967-018-1381-2] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/10/2018] [Indexed: 01/17/2023] Open
Abstract
Extensive research within the last several decades has revealed that the major risk factors for most chronic diseases are infections, obesity, alcohol, tobacco, radiation, environmental pollutants, and diet. It is now well established that these factors induce chronic diseases through induction of inflammation. However, inflammation could be either acute or chronic. Acute inflammation persists for a short duration and is the host defense against infections and allergens, whereas the chronic inflammation persists for a long time and leads to many chronic diseases including cancer, cardiovascular diseases, neurodegenerative diseases, respiratory diseases, etc. Numerous lines of evidence suggest that the aforementioned risk factors induced cancer through chronic inflammation. First, transcription factors NF-κB and STAT3 that regulate expression of inflammatory gene products, have been found to be constitutively active in most cancers; second, chronic inflammation such as pancreatitis, prostatitis, hepatitis etc. leads to cancers; third, activation of NF-κB and STAT3 leads to cancer cell proliferation, survival, invasion, angiogenesis and metastasis; fourth, activation of NF-κB and STAT3 leads to resistance to chemotherapy and radiation, and hypoxia and acidic conditions activate these transcription factors. Therefore, targeting these pathways may provide opportunities for both prevention and treatment of cancer and other chronic diseases. We will discuss in this review the potential of various dietary agents such as spices and its components in the suppression of inflammatory pathways and their roles in the prevention and therapy of cancer and other chronic diseases. In fact, epidemiological studies do indicate that cancer incidence in countries such as India where spices are consumed daily is much lower (94/100,000) than those where spices are not consumed such as United States (318/100,000), suggesting the potential role of spices in cancer prevention.
Collapse
Affiliation(s)
- Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| | - Bethsebie L Sailo
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Choudhary Harsha
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Sahdeo Prasad
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Subash Chandra Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Alok Chandra Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | | |
Collapse
|
31
|
Behera AK, Swamy MM, Natesh N, Kundu TK. Garcinol and Its Role in Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 928:435-452. [PMID: 27671827 DOI: 10.1007/978-3-319-41334-1_18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The various bioactive compounds isolated from leaves and fruits of Garcinia sps plants, have been characterized and experimentally demonstrated to be anti-oxidant, anti-inflammatory and anti-cancer in nature. Garcinol, a polyisoprenylated benzophenone, obtained from plant Garcinia indica has been found to be an effective inhibitor of several key regulatory pathways (e.g., NF-kB, STAT3 etc.) in cancer cells, thereby being able to control malignant growth of solid tumours in vivo. Despite its high potential as an anti-neoplastic modulator of several cancer types such as head and neck cancer, breast cancer, hepatocellular carcinoma, prostate cancer, colon cancer etc., it is still in preclinical stage due to lack of systematic and conclusive evaluation of pharmacological parameters. While it is promising anti-cancer effects are being positively ascertained for therapeutic development, studies on its effectiveness in ameliorating other chronic diseases such as cardiovascular diseases, diabetes, allergy, neurodegenerative diseases etc., though seem favourable, are very recent and require in depth scientific investigation.
Collapse
Affiliation(s)
- Amit K Behera
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India
| | - Mahadeva M Swamy
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India
| | - Nagashayana Natesh
- Central Government Health Scheme Dispensary, No. 3, Basavanagudi, Bangalore, India
| | - Tapas K Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India.
| |
Collapse
|
32
|
Xanthones from the Pericarp of Garcinia mangostana. Molecules 2017; 22:molecules22050683. [PMID: 28441346 PMCID: PMC6154529 DOI: 10.3390/molecules22050683] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 04/17/2017] [Accepted: 04/18/2017] [Indexed: 12/19/2022] Open
Abstract
Mangosteen (Garcinia mangostana L.) is one of the most popular tropical fruits (called the "Queen of Fruits"), and is a rich source of oxygenated and prenylated xanthone derivatives. In the present work, phytochemical investigation has resulted in one new prenylated xanthone and 13 known xanthones isolated from the pericarp of G. mangostana. Their structures were established by spectroscopic data analysis, including X-ray diffraction. The new one was further tested for cytotoxic activity against seven cancer cell lines (CNE-1, CNE-2, A549, H490, PC-3, SGC-7901, U87), displaying the half maximal inhibitory concentration (IC₅0) values 3.35, 4.01, 4.84, 7.84, 6.21, 8.09, and 6.39 μM, respectively. It is noteworthy that the new compound can promote CNE-2 cells apoptosis in late stage, having a remarkable inhibition effect on the side population growth of CNE-2 at 1.26 μM. The bioactive compound was also detected in extract from fresh mangosteen flesh, which indicated that the popular fruit could have potential cytotoxic activity for cancer cell lines.
Collapse
|
33
|
Hongthong S, Meesin J, Pailee P, Soorukram D, Kongsaeree P, Prabpai S, Piyachaturawat P, Jariyawat S, Suksen K, Jaipetch T, Nuntasaen N, Reutrakul V, Kuhakarn C. Cytotoxic lanostanes from fruits of Garcinia wallichii Choisy (Guttiferae). Bioorg Med Chem Lett 2016; 26:5773-5779. [PMID: 27793565 DOI: 10.1016/j.bmcl.2016.10.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/27/2016] [Accepted: 10/14/2016] [Indexed: 12/21/2022]
Abstract
Five new lanostanes, wallichinanes A-E (1-5) together with a known lanostane derivative 6 were isolated from the cytotoxic hexanes extract of fruits of Garcinia wallichii Choisy (Guttiferae). The structures of the isolated compounds were established by analysis of spectroscopic data, X-ray diffraction technique as well as comparison with the literature data. The cytotoxicity of all isolated compounds against a panel of cultured cancer cell lines was evaluated. Compound 4 exhibited good cytotoxicity with ED50 values ranging from 3.91 to 7.63μM.
Collapse
Affiliation(s)
- Sakchai Hongthong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Jatuporn Meesin
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Phanruethai Pailee
- Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand
| | - Darunee Soorukram
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Palangpon Kongsaeree
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Samran Prabpai
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Pawinee Piyachaturawat
- Department of Physiology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Surawat Jariyawat
- Department of Physiology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Kanoknetr Suksen
- Department of Physiology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Thaworn Jaipetch
- Mahidol University, Kanchanaburi Campus, Saiyok, Kanchanaburi 71150, Thailand
| | - Narong Nuntasaen
- The Forest Herbarium National Park, Wildlife and Plant Conservation Department, Ministry of Natural Resources and Environment, Bangkok, Thailand
| | - Vichai Reutrakul
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Chutima Kuhakarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand.
| |
Collapse
|
34
|
Chen X, Day DP, Teo WT, Chan PWH. Gold- and Brønsted Acid-Catalyzed Cycloisomerization of 1,8-Diynyl Vinyl Acetates to Bicyclo[2.2.1]hept-2-en-7-ones. Org Lett 2016; 18:5936-5939. [DOI: 10.1021/acs.orglett.6b03049] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Xiaoyu Chen
- School
of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - David Philip Day
- Department
of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Wan Teng Teo
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Philip Wai Hong Chan
- School
of Chemistry, Monash University, Clayton, Victoria 3800, Australia
- Department
of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
35
|
Graça I, Pereira-Silva E, Henrique R, Packham G, Crabb SJ, Jerónimo C. Epigenetic modulators as therapeutic targets in prostate cancer. Clin Epigenetics 2016; 8:98. [PMID: 27651838 PMCID: PMC5025578 DOI: 10.1186/s13148-016-0264-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/07/2016] [Indexed: 01/24/2023] Open
Abstract
Prostate cancer is one of the most common non-cutaneous malignancies among men worldwide. Epigenetic aberrations, including changes in DNA methylation patterns and/or histone modifications, are key drivers of prostate carcinogenesis. These epigenetic defects might be due to deregulated function and/or expression of the epigenetic machinery, affecting the expression of several important genes. Remarkably, epigenetic modifications are reversible and numerous compounds that target the epigenetic enzymes and regulatory proteins were reported to be effective in cancer growth control. In fact, some of these drugs are already being tested in clinical trials. This review discusses the most important epigenetic alterations in prostate cancer, highlighting the role of epigenetic modulating compounds in pre-clinical and clinical trials as potential therapeutic agents for prostate cancer management.
Collapse
Affiliation(s)
- Inês Graça
- Cancer Biology and Epigenetics Group-Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Research Center-LAB 3, F Bdg, 1st floor, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal ; School of Allied Health Sciences (ESTSP), Polytechnic of Porto, Porto, Portugal
| | - Eva Pereira-Silva
- Cancer Biology and Epigenetics Group-Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Research Center-LAB 3, F Bdg, 1st floor, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group-Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Research Center-LAB 3, F Bdg, 1st floor, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal ; Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal ; Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Porto, Portugal
| | - Graham Packham
- Cancer Research UK Centre, Cancer Sciences, The Somers Cancer Research Building, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, S016 6YD UK
| | - Simon J Crabb
- Cancer Research UK Centre, Cancer Sciences, The Somers Cancer Research Building, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, S016 6YD UK
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group-Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Research Center-LAB 3, F Bdg, 1st floor, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal ; Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Porto, Portugal
| |
Collapse
|
36
|
Qiao N, Wang L, Wang T, Li H. Inflammatory CXCL12-CXCR4/CXCR7 axis mediates G-protein signaling pathway to influence the invasion and migration of nasopharyngeal carcinoma cells. Tumour Biol 2015; 37:8169-79. [PMID: 26715277 DOI: 10.1007/s13277-015-4686-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/16/2015] [Indexed: 12/28/2022] Open
Abstract
This study explored whether the migration, invasion, and apoptosis of nasopharyngeal carcinoma (NPC) cells were affected by the CXCR4/CXCR7-CXCL12 axis and if this mechanism was related to G-protein signaling pathway. A total of 72 NPC patients admitted in our hospital between April 2013 and February 2015 were incorporated in this study. Immunohistochemistry was performed to compare the expression levels of CXCR4, CXCR7, and CXCL12 between NPC tissues and adjacent normal tissues. Then, the correlation analysis was implemented to assess the association among CXCR4, CXCR7, and CXCL12 expressions. Jellyfish glow protein experiment was carried out after the cultivation of CNE-2Z cell lines in order to observe the intracellular calcium mobilization resulted from G-protein activation contributed by CXCR4/CXCR7-CXCL12 axis. The impact of CXCR4/CXCR7-CXCL12 axis on the migration and invasion of NPC cells was explored using transwell experiments. Finally, the anti-apoptosis effects of CXCR4/CXCR7-CXCL12 axis on NPC cells were investigated by the splicing of poly ADP-ribose polymerase (PARP). Compared to NPC patients with low-grade (stage I-II) tumor node metastasis (TNM) and those without lymph node metastasis, the expression of CXCR4, CXCR7, and CXCL12 were significantly higher in NPC patients with high-grade (stage III-IV) TNM and those with lymph node metastasis (P < 0.05). Moreover, there was significant positive correlation between the expression level of CXCL12 and CXCR7 (r s = 0.484, P < 0.001) as well as the expression level of CXCL12 and CXCR4 (r s = 0.414, P < 0.001). As suggested by cellular experiments using CNE-2Z, the calcium mobilization degree induced by CXCR4-CXCL12 axis in activating G proteins seemed to be slightly more effective than that induced by CXCR4/CXCR7-CXCL12 axis, while the CXCR7-CXCL12 axis could hardly activate calcium mobilization. Furthermore, the transwell experiment showed that CXCR4/CXCR7-CXCL12 axis could exacerbate the migration and invasion of NPC cells (P < 0.05). The transwell experiment also suggested that the CXCR4/CXCR7-CXCL12 axis was associated with the expression of matrix metallo proteinase 9 (MMP9) which is a substance in the downstream of G-protein pathways (P < 0.05). Results from PARP shear zone also indicated that the CXCR4/CXCR7-CXCL12 axis could suppress NPC cell apoptosis (P < 0.05). The expressional levels of CXCR4, CXCR7, and CXCL12 significantly varied with clinical stages and status of lymph node metastasis of NPC patients. This revealed potential indicators which can be used for NPC prognosis. Additionally, the CXCR4/CXCR7-CXCL12 axis may regulate the expression of downstream proteins (e.g., MMP-9) through the activation of G-protein signaling pathways. These conclusions may provide key evidence for NPC aetiology which can be further investigated to develop novel molecular targets for NPC treatments.
Collapse
Affiliation(s)
- Naian Qiao
- Department of Radiation Oncology, Qilu Hospital, Shandong University, Jinan, 250012, Shandong Province, China
| | - Lin Wang
- Department of Radiation Oncology, Qilu Hospital, Shandong University, Jinan, 250012, Shandong Province, China
| | - Tao Wang
- Department of Radiation Oncology, Qilu Hospital, Shandong University, Jinan, 250012, Shandong Province, China
| | - Haiying Li
- Department of Ultrasonography, Qilu Hospital, Shandong University, No. 107 West Wenhua Road, Lixia District, Jinan, 250012, Shandong Province, China.
| |
Collapse
|