1
|
Zhang Y, Liu J, Cao A, Tang X, Chen X, Fang W, Li Y, Yan D, Wang Q. Effects of fertilizers and soil amendments on the degradation rate of allyl isothiocyanate in two typical soils of China. PEST MANAGEMENT SCIENCE 2022; 78:5191-5202. [PMID: 36087020 DOI: 10.1002/ps.7138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/13/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Allyl isothiocyanate (AITC) is a soil fumigant that protects plants against soil-borne pathogens, weeds and insects when present in the root-zone. However, the degradation of AITC under different fertilizers and soil amendments affects its emission and pest control efficacy. Degradation rates of AITC in soil amended with organic and inorganic fertilizers, zeolite and biochar were determined in the laboratory to improve its field applications. RESULTS The degradation half-lives of AITC were 24.4 and 35.4 h in Fangshan and Yongzhou soils, respectively, without any added fertilizer or soil amendment. Nitrogen fertilizer and organic fertilizer accelerated the degradation rate of AITC, while phosphorus fertilizer had the opposite effect. The degradation rate of AITC on adding unsterilized chicken manure was over 3.5 and 1.1 times higher than that of sterilization in Fangshan and Yongzhou soil. Inorganic and organic fertilizers affected the degradation of AITC by affecting soil microbial activity on the basis of CO2 cumulative release. The degradation rate of AITC increased more than 0.4 times in response to zeolite, but this was independent of particle size. The AITC degradation rate increased 1.0-2.6 and 0.3-9.7 times in response to biochar made from corn stalk and pine wood, respectively. Cow manure biochar manufactured at different pyrolyzation temperatures had different effects on the degradation rate of AITC. CONCLUSION Soil type, fertilizers and soil amendments differentially affect the degradation rate of AITC by changing soil physicochemical characteristics, microorganisms, etc., which shows great potential in reducing AITC emissions and increasing pest control efficacy when AITC is applied commercially. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yi Zhang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Liu
- People's Government of Mingchuan Township, Anhui Province, China
| | - Aocheng Cao
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiujun Tang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinhua Chen
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wensheng Fang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuan Li
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dongdong Yan
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiuxia Wang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
2
|
Jiang W, Chen R, Zhao L, Qin L, Fan H, Chen X, Wang Y, Yin C, Mao Z. Chemical fumigants control apple replant disease: Microbial community structure-mediated inhibition of Fusarium and degradation of phenolic acids. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129786. [PMID: 36007363 DOI: 10.1016/j.jhazmat.2022.129786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/31/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Fusarium and phenolic acids in apple replant soil have deleterious effects on soil, which affects the growth of young replanted apple trees. Here, we studied the effects of different chemical fumigants (metham sodium, dazomet, calcium cyanamide, 1,3-dichloropropene, and methyl bromide) on Fusarium and phenolic acids in soil. The chemical fumigants disturbed the apple replant soil microbial community to different degrees in the order from highest to the lowest as methyl bromide > 1,3-dichloropropene > dazomet > metham sodium > calcium cyanamide. Compared with the control, the total numbers of Operational Taxonomic Unit (OTU) were 104.63 % and 9.38 % lower in the methyl bromide and calcium cyanamide treatments, respectively while the average contents of Fusarium were 88.04 % and 59.18% lower in these treatments, respectively. Higher disturbance degrees resulted in a slower recovery rate of the soil microbial community, which facilitated the transformation of the soil into a disease-suppressing state. During the recovery process, the roots recruited Streptomyces OTU2796 and Bacillus OTU2243, which alleviated Fusarium-induced stress via the synthesis of polyketones and macrolides. The roots also recruited Sphingomonas OTU3488, OTU5572, and OTU8147, which alleviated phenolic acid-induced stress through the degradation of benzoate and polycyclic aromatic hydrocarbons.
Collapse
Affiliation(s)
- Weitao Jiang
- State Key Laboratory of Crop Biology College of Horticulture Science and Engineering Shandong Agricultural University Tai'an, Shandong 271018, PR China
| | - Ran Chen
- State Key Laboratory of Crop Biology College of Horticulture Science and Engineering Shandong Agricultural University Tai'an, Shandong 271018, PR China
| | - Lei Zhao
- State Key Laboratory of Crop Biology College of Horticulture Science and Engineering Shandong Agricultural University Tai'an, Shandong 271018, PR China
| | - Lei Qin
- State Key Laboratory of Crop Biology College of Horticulture Science and Engineering Shandong Agricultural University Tai'an, Shandong 271018, PR China
| | - Hai Fan
- College of Chemistry and Material Science Shandong Agricultural University Tai'an, Shandong 271018, PR China
| | - Xuesen Chen
- State Key Laboratory of Crop Biology College of Horticulture Science and Engineering Shandong Agricultural University Tai'an, Shandong 271018, PR China
| | - Yanfang Wang
- College of Chemistry and Material Science Shandong Agricultural University Tai'an, Shandong 271018, PR China
| | - Chengmiao Yin
- State Key Laboratory of Crop Biology College of Horticulture Science and Engineering Shandong Agricultural University Tai'an, Shandong 271018, PR China
| | - Zhiquan Mao
- State Key Laboratory of Crop Biology College of Horticulture Science and Engineering Shandong Agricultural University Tai'an, Shandong 271018, PR China.
| |
Collapse
|
3
|
Huang X, Yang X, Lin J, Franks AE, Cheng J, Zhu Y, Shi J, Xu J, Yuan M, Fu X, He Y. Biochar alleviated the toxicity of atrazine to soybeans, as revealed by soil microbial community and the assembly process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155261. [PMID: 35447188 DOI: 10.1016/j.scitotenv.2022.155261] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
Atrazine has a detrimental effect on soybean growth in corn-soybean rotation systems. A knowledge gap exists regarding how rhizosphere microbial interactions respond to atrazine stress, and specifically, whether they may alleviate the detriment of atrazine on soybeans, this serving as a target to alleviate the adverse impact. Biochar are widely used for remediation in herbicide contamination soil, however, little is known about how biochar fuels the microbiomes in rhizosphere to improve soybean performance. We investigated the response of the microbial community to atrazine stress with and without biochar application to soybean cultivation in a greenhouse experiment. Atrazine had detrimental effects on soybeans and nodules, reshaping the microbial community in both the bulk and rhizosphere soil. Biochar application was able to ameliorate atrazine effects on soybean and nodule activity, with an increase in competition among microbes in the soybean rhizosphere soils. Biochar favored the probiotics such as the bacteria Lysobacter, Paenarthrobacter, and Sediminibacterium in the rhizosphere soils. The relative abundance of Lysobacter exhibited strong-negative correlations with potential pathogens. Elastic net regression with bioindicators and environmental factors accurately predicted the residual content of atrazine in soil. Collectively, our results provide a practical strategy of using biochar to improve soil quality for corn-soybean rotation that is contaminated with residual atrazine. Overall, beneficial plant microbes and changes in microbial interactions and assembly processes in the soybean rhizosphere are capable of alleviating atrazine stress on soybean growth.
Collapse
Affiliation(s)
- Xiaowei Huang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Xueling Yang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Jiahui Lin
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Ashely E Franks
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne Campus, Bundoora, VIC 3086, Australia; Centre for Future Landscapes, La Trobe University, Melbourne Campus, Bundoora, VIC 3086, Australia
| | - Jie Cheng
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Yanjie Zhu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Jiachun Shi
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Ming Yuan
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar 161000, China
| | - Xujun Fu
- Institute of Crop and Nuclear Technology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310000, China.
| | - Yan He
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China.
| |
Collapse
|
4
|
Wang Q, Gao S, Wang D, Cao A. Biochar significantly reduced fumigant emissions and benefited germination and plant growth under field conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 303:119113. [PMID: 35271955 DOI: 10.1016/j.envpol.2022.119113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/22/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Soil fumigation continues to play an important role in soil disinfection, but tools to significantly reduce emissions while providing environmental benefits (e.g., biochar) are lacking. The objective of this study was to determine the effects of biochar products on fumigant 1,3-dichloropropene (1,3-D) and chloropicrin (CP) emissions, their distribution and persistence in soil, nematode control, and potential toxicity to plants in a field trial. Treatments included three biochar products [two derived from almond shells (ASB) at either 550 or 900 °C pyrolysis temperature and one from coconut shells (CSB) at 550 °C] at 30 and 60 t ha-1, a surface covering with a low permeability film (TIF), and no surface covering (control). A mixture of 1,3-D (∼65%) and CP (∼35%) was injected to ∼60 cm soil depth at a combined rate of 640 kg ha-1. All biochar treatments significantly reduced emissions by 38-100% compared to the control. The ASB (900 °C) at both rates reduced emissions as effectively as the TIF (by 99-100%). Both fumigant emission reduction and residue in surface soil were positively correlated with biochar's adsorption capacity while cucumber germination rate and dry biomass were negatively correlated with residual fumigant concentrations in surface soil. This research demonstrated the potential and benefits of using biochar produced from local orchard feedstocks to control fumigant emissions. Additional research is needed to maximize the benefits of biochar on fumigant emission reductions without impacting plant growth.
Collapse
Affiliation(s)
- Qiuxia Wang
- Chinese Academy of Agricultural Sciences, Institute of Plant Protection, Beijing, China; USDA-ARS, San Joaquin Valley Agricultural Sciences Center, Parlier, CA, USA.
| | - Suduan Gao
- USDA-ARS, San Joaquin Valley Agricultural Sciences Center, Parlier, CA, USA
| | - Dong Wang
- USDA-ARS, San Joaquin Valley Agricultural Sciences Center, Parlier, CA, USA
| | - Aocheng Cao
- Chinese Academy of Agricultural Sciences, Institute of Plant Protection, Beijing, China
| |
Collapse
|
5
|
Tang X, Cao A, Zhang Y, Chen X, Hao B, Xu J, Fang W, Yan D, Li Y, Wang Q. Soil properties affect vapor-phase adsorption to regulate dimethyl disulfide diffusion in soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:154012. [PMID: 35189207 DOI: 10.1016/j.scitotenv.2022.154012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Dimethyl disulfide (DMDS) is efficacious against nematodes and other soil-borne pathogens known to reduce crop quality and yield. Previous studies reported inconsistent efficacy and suggested that the diffusion of DMDS varied with different soil types. The effect of soil adsorption on gaseous DMDS diffusion through different soil types is poorly understood. To clarify the role and mechanism of soil adsorption in the diffusion of gaseous DMDS in soil, we have studied the diffusion rate constant (Rt) of gaseous DMDS in soils using a soil column experiment. The adsorption of DMDS at each gas-soil, soil-water and gas-water partition was measured by a batch-equilibrium headspace method. The results showed the DMDS adsorption equilibrium was well-described by the nonlinear Freundlich isotherm and the linear Henry isotherm. Rt values were strongly negatively correlated with the Henry coefficient (Kd) values. The Kd values of dry soil were several orders of magnitude higher than those observed in moist soil within each moisture content range. The Kd values in dry soil were strongly positively correlated with soil pore size (<2 nm). However, when the soil moisture content ranged from 3 to 12% (w/w), the Kd values were strongly correlated with specific surface area (SSA). Elevated temperatures promoted the gaseous phase of DMDS (consistent with Henry's Law) and its diffusion through soil. The soil-water partition coefficient (K'f) ranged from 1.83 to 2.20 μg11/n mL1/n g-1 in tested soils. Our results suggest that the DMDS vapor-phase diffusion in soil was significantly affected by soil adsorption, which in turn depended on the soil's properties especially the SSA and soil moisture content. These findings suggest applicators can reduce the risk of unsatisfactory and inconsistent efficacy results against soil-borne pests by adjusting the DMDS dose and fumigation period according to soil type, moisture conditions, and other environmental factors.
Collapse
Affiliation(s)
- Xiujun Tang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Aocheng Cao
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yi Zhang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xinhua Chen
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Baoqiang Hao
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jin Xu
- Beijing Agricultural Technology Extension, Beijing 100029, China
| | - Wensheng Fang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dongdong Yan
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuan Li
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qiuxia Wang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
6
|
Fang W, Wang Q, Li Y, Hua J, Jin X, Yan D, Cao A. Microbial regulation of nitrous oxide emissions from chloropicrin-fumigated soil amended with biochar. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128060. [PMID: 35236032 DOI: 10.1016/j.jhazmat.2021.128060] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
The microbial mechanism underpinning biochar's ability to reduce emissions of the potent greenhouse gas nitrous oxide (N2O) is little understood. We combined high-throughput gene sequencing with a dual-label 15N-18O isotope to examine microbial mechanisms operative in biochar made from Crofton Weed (BC1) or pine wood pellets (BC2) and the N2O emissions from those biochar materials when present in chloropicrin (CP)-fumigated soil. Both BC1 and BC2 reduced N2O total emissions by 62.9-71.9% and 48.8-52.0% in CP-fumigated soil, respectively. During the 7-day fumigation phase, however, both BC1 and BC2 increased N2O production by significantly promoting nirKS and norBC gene abundance, which indicated that the N2O emission pathway had switched from heterotrophic denitrification to nitrifier denitrification. During the post-fumigation phase, BC1 and BC2 significantly decreased N2O production as insufficient nitrogen was available to support rapid population increases of nitrifying or denitrifying bacteria. BC1 and BC2 significantly reduced CP's inhibition of nitrifying archaeal bacteria (AOA, AOB) and the denitrifying bacterial genes (nirS, nirK, nosZ), which promoted those bacterial populations in fumigated soil to similar levels observed in unfumigated soil. Our study provided insight on the impact of biochar and microbes on N2O emissions.
Collapse
Affiliation(s)
- Wensheng Fang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qiuxia Wang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuan Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Juling Hua
- Institute of Plant Protection, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China
| | - Xi Jin
- Hebei Technology Innovation Center for Green Management of Soil-borne Diseases, Baoding University, Baoding, Hebei 071000, China
| | - Dongdong Yan
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Aocheng Cao
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
7
|
Jiang Z, Zhou L, Wang B, Yin J, Wu F, Wang D, Li L, Song X. Construction of a Novel Degradation Model of Bacillus thuringiensis Protein in Soil and Its Application in Estimation of the Degradation Dynamics of Bt-Cry1Ah Protein. FRONTIERS IN PLANT SCIENCE 2022; 13:875020. [PMID: 35498653 PMCID: PMC9043894 DOI: 10.3389/fpls.2022.875020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Bacillus thuringiensis (Bt) protein expressed by genetically modified (GM) crops is released into the soil ecosystem, where it accumulates for a long time; therefore, degradation of Bt protein has gained increased attention for environmental risk assessments. A first-order kinetic model (Y = ae-b*X) is usually used to evaluate the degradation of Bt proteins, including Bt-Cry1Ab and Bt-Cry1Ac; this has some limitations regarding the precise fitting and explanation of the influence of various factors on Bt protein degradation in the later stage. Therefore, to amend these limitations, we report a new degradation model Y = Y0 + ae-b*X. The effects of soil temperature, water content, soil types, and soil sterilization on the degradation of Bt-Cry1Ah protein in soil were estimated in a 96d long laboratory study using a GM maize leaf-soil mixture. The results showed that the Bt-Cry1Ah protein degraded rapidly in the early stage and then slowly in the middle and late stages. Temperature was identified as the key factor affecting the degradation of Cry1Ah protein-a relatively higher temperature favored the degradation. The degradation rate of Cry1Ah protein was the fastest when the water content was 33 and 20% in the early and later stages, respectively. The soil types had a significant effect on the degradation of Cry1Ah protein. Moreover, soil sterilization slowed down the rate of protein degradation in both the early and later stages. In conclusion, the model Y = Y0 + ae-b*X established in this study provided a more robust model for exploring and simulating the degradation of Bt protein in soil growing GM crops and overcame the shortcomings of the Y = ae-b*X model. The findings of this study enriched the understanding of Bt protein degradation in soil ecosystems. They would be helpful for evaluating the environmental safety of GM crops.
Collapse
Affiliation(s)
- Zhilei Jiang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Agro-Biotechnology Research Institute, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Lei Zhou
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Agro-Biotechnology Research Institute, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Baifeng Wang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Agro-Biotechnology Research Institute, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Junqi Yin
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Agro-Biotechnology Research Institute, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Fengci Wu
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Agro-Biotechnology Research Institute, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Daming Wang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Agro-Biotechnology Research Institute, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Liang Li
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinyuan Song
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Agro-Biotechnology Research Institute, Jilin Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
8
|
Ogura AP, Lima JZ, Marques JP, Massaro Sousa L, Rodrigues VGS, Espíndola ELG. A review of pesticides sorption in biochar from maize, rice, and wheat residues: Current status and challenges for soil application. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113753. [PMID: 34537561 DOI: 10.1016/j.jenvman.2021.113753] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
The use of pesticides has been increasing in recent years for maintaining traditional agricultural practices. However, these chemicals are associated with several environmental impacts, demanding urgent remediation techniques. Biochar is a carbonaceous material produced by pyrolysis that has the potential for pesticide sorption and remediation. In this context, this interdisciplinary review systematically assessed the state of the knowledge of crop residues to produce biochar for pesticide sorption. We focused on maize, rice, and wheat residues since these are the three most-produced grains worldwide. Besides, we evaluated different biochar handling, storage, and soil dispersion techniques to ease its implementation in agriculture. In general, pyrolysis temperature influences biochar characteristics and its potential for pesticide sorption. Furthermore, biochar amended soils had greater pesticide sorption capacity, limiting potential leaching and runoff. Most studies showed that the feedstock and specific surface area influence the biochar sorption properties, among other factors. Also, biochar reduces pesticides' bioavailability, decreasing their toxicity to soil organisms and improving soil fertility and crop yields. Nonetheless, the retrieved papers assessed only 21 pesticides, mainly consisting of lab-scale batch experiments. Therefore, there is still a gap in studies evaluating biochar aging, its potential desorption, pesticide co-contaminations, the associated microbiological processes, and field applications. Determining flow properties for biochars of different sizes and pellets is vital for reliable handling equipment design, and performing techno-economic assessment under different farm contexts is encouraged. Ultimately, coupling biochar production with residue management could address this challenge on sustainable agricultural systems.
Collapse
Affiliation(s)
- Allan Pretti Ogura
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, 13560-970, Brazil.
| | - Jacqueline Zanin Lima
- Department of Geotechnical Engineering, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, 13560-970, Brazil
| | - Jéssica Pelinsom Marques
- Department of Geotechnical Engineering, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, 13560-970, Brazil
| | - Lucas Massaro Sousa
- Process Design and Modeling Division, IFP Energies Nouvelles, Rond-Point Échangeur de Solaize, 69360, Solaize, France
| | | | - Evaldo Luiz Gaeta Espíndola
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, 13560-970, Brazil
| |
Collapse
|
9
|
Tang F, Gao M, Zeng F, Xu Z, Tian G. An old story with new insights into an ignored issue of metabolites in biochar-amended soil: Effect of biochar on dissipation of carbosulfan as an example. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148100. [PMID: 34380258 DOI: 10.1016/j.scitotenv.2021.148100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/13/2021] [Accepted: 05/24/2021] [Indexed: 06/13/2023]
Abstract
Carbofuran (CAS) is one of extensively used carbamate pesticides, which is considered as a derivative or a candidate of carbofuran (CAN) for its lower toxicity and persistence. Nevertheless, CAS could be degraded into its toxic metabolites, imposing potential risks on ecological safety. In this paper, biochars, derived from rice straw (RS), chicken manure (CM), corn straw (CS) and tire rubber (TR), were applied in CAS-contaminated soil to explore their effects on the dissipation of CAS and its metabolites. The dissipation rate of CAS was depressed by the amendment of biochar, mainly because biochar inhibited the hydrolysis of CAS by elevating soil pH value. Nevertheless, CS has efficiently enhanced the dissipation of CAN by almost 2-times for its promotion in hydrolysis and biodegradation. CS and CM improved biodegradation by altering the composition and structure of the microbial communities, exhibiting potential for facilitating bioremediation of CAS and CAN. Moreover, steam activated biochar accelerated the dissipation rate by 1.7-2.9 times and 1.3-2.4 times for CAS and CAN, respectively. This study investigated the effects of biochar on CAS and its toxic metabolites as well as possible governing mechanisms, providing rational instruction for biochar application in ambient atmosphere.
Collapse
Affiliation(s)
- Fan Tang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mao Gao
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fanjian Zeng
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhenlan Xu
- Institute of Quality and Standard of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Guangming Tian
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
10
|
Nakarmi A, Bourdo SE, Ruhl L, Kanel S, Nadagouda M, Kumar Alla P, Pavel I, Viswanathan T. Benign zinc oxide betaine-modified biochar nanocomposites for phosphate removal from aqueous solutions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 272:111048. [PMID: 32677621 DOI: 10.1016/j.jenvman.2020.111048] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/05/2020] [Accepted: 07/03/2020] [Indexed: 05/12/2023]
Abstract
Phosphate is one of the most costly and complex environmental pollutants that leads to eutrophication, which decreases water quality and access to clean water. Among different adsorbents, biochar is one of the promising adsorbents for phosphate removal as well as heavy metal removal from an aqueous solution. In this study, biochar was impregnated with nano zinc oxide in the presence of glycine betaine. The Zinc Oxide Betaine-Modified Biochar Nanocomposites (ZnOBBNC) proved to be an excellent adsorbent for the removal of phosphate, exhibiting a maximum adsorption capacity of phosphate (265.5 mg. g-1) and fast adsorption kinetics (~100% removal at 15 min at 10 mg. L-1 phosphate and 3 g. L-1 nanocomposite dosage) in phosphate solution. The synthesis of these benign ZnOBBNC involves a process that is eco-friendly and economically feasible. From material characterization, we found that the ZnOBBNC has ~20-30 nm particle size, high surface area (100.01 m2. g-1), microporous (25.79 Å) structures, and 7.64% zinc content. The influence of pH (2-10), coexisting anions (Cl-, CO32-, NO3- and SO43-), initial phosphate concentration (10-500 mg. L-1), and ZnOBBNC dosage (0.5-5 g. L-1) were investigated in batch experiments. From the adsorption isotherms data, the adsorption of phosphate using ZnOBBNC followed Langmuir isotherm (R2 = 0.9616), confirming the mono-layered adsorption mechanism. The kinetic studies showed that the phosphate adsorption using ZnOBBNC followed the pseudo-second-order model (R2 = 1.0000), confirming the chemisorption adsorption mechanism with inner-sphere complexion. Our results demonstrated ZnOBBNC as a suitable, competitive candidate for phosphate removal from both mock lab-prepared and real field-collected wastewater samples when compared to commercial nanocomposites.
Collapse
Affiliation(s)
- Amita Nakarmi
- Department of Chemistry, University of Arkansas at Little Rock, Little Rock, AR, 72204, USA.
| | - Shawn E Bourdo
- Center for Integrative Nanotechnology Science, University of Arkansas at Little Rock, Little Rock, AR, 72204, USA
| | - Laura Ruhl
- Department of Earth Sciences, University of Arkansas at Little Rock, USA
| | - Sushil Kanel
- Pegasus Technical Services, Inc., 46 E. Hollister Street, Cincinnati, OH, 45219, USA
| | - Mallikarjuna Nadagouda
- The United States Environmental Protection Agency, ORD, CESER, WID, CMTB, 26 W. Martin Luther King Drive, Cincinnati, OH, 45268, United States
| | - Praveen Kumar Alla
- Department of Chemistry, Wright State University, Dayton, OH, 45435, USA
| | - Ioana Pavel
- Department of Chemistry, Wright State University, Dayton, OH, 45435, USA
| | - Tito Viswanathan
- Department of Chemistry, University of Arkansas at Little Rock, Little Rock, AR, 72204, USA.
| |
Collapse
|
11
|
Qin J, Ashworth DJ, Yates SR, Shen G. Coupled use of Fe-impregnated biochar and urea-hydrogen peroxide to simultaneously reduce soil-air emissions of fumigant and improve crop growth. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122762. [PMID: 32361626 DOI: 10.1016/j.jhazmat.2020.122762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
Reducing the emissions of soil fumigants such as 1,3-dichloropropene (1,3-D) is essential to protecting air quality. Although biochar is useful in reducing such emissions, biochar-adsorbed fumigants may desorb and cause secondary air pollution. This study investigated the degradation of 1,3-D on iron (Fe)-impregnated biochar (FBC) amended with urea-hydrogen peroxide (UHP). The results indicated the degradation rate of trans-1,3-D on FBC-UHP was 54-fold higher than that on pristine biochar (PBC). Electron paramagnetic resonance (EPR) combined with other characterization methods revealed that the presence of semiquinone-type radicals in FBC effectively accelerated the Fe(III)/Fe(II) cycleto maintain enough Fe(IIII) for UHP activation and ·OH generation. ·OH, rather than ·O2-, was the dominant active oxidant. Soil column tests showed that application of FBC to the soil surface reduced cumulative 1,3-D emissions from 34.80 % (bare soil) to 0.81%. After the column experiment, the mixing of the FBC with UHP resulted in the residual cis-isomers decreasing from 32.5% to 10.5%. Greenhouse bioassays showed that mixing post-1,3-D degradation FBC-UHP with soil significantly promoted lettuce growth relative to PBC. The findings of this study provide a new approach for biochar application, especially for the emission reduction of hazardous volatile organic compounds from soil.
Collapse
Affiliation(s)
- Jiaolong Qin
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Daniel J Ashworth
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States; USDA-ARS, Salinity Laboratory, 450 West Big Springs Road, Riverside, California 92507, United States.
| | - Scott R Yates
- USDA-ARS, Salinity Laboratory, 450 West Big Springs Road, Riverside, California 92507, United States
| | - Guoqing Shen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| |
Collapse
|
12
|
Fang W, Wang X, Huang B, Zhang D, Liu J, Zhu J, Yan D, Wang Q, Cao A, Han Q. Comparative analysis of the effects of five soil fumigants on the abundance of denitrifying microbes and changes in bacterial community composition. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 187:109850. [PMID: 31677569 DOI: 10.1016/j.ecoenv.2019.109850] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/28/2019] [Accepted: 10/20/2019] [Indexed: 06/10/2023]
Abstract
Soil fumigation is currently the most effective method for controlling soil-borne pests and diseases in high-value crops. To better understand the effect of chloropicrin (CP), dazomet (DZ), dimethyl disulfide (DMDS), allyl isothiocyanate (AITC) and 1,3-dichloropropene (1,3-D) fumigants on soil microorganisms, this study monitored changes in the diversity and community composition of soil bacteria involved in denitrification using real-time PCR and high-throughput gene sequencing techniques. These five fumigants significantly decreased the bacterial population size in some phyla including Proteobacteria, Chloroflexi and Acidobacteria, and increased the bacterial population size in other phyla such as Firmicutes, Gemmatimonadetes, Actinobacteria, Verrucomicrobia, Saccharibacteria and Parcubacteria. Although bacterial diversity declined after CP fumigation, it was briefly stimulated by the other four fumigants. Meanwhile, all five fumigants temporarily decreased populations of denitrifying bacteria containing the napA, narG, nirS or nirK enzyme-encoding genes. Denitrifiers bearing the cnorB, qnorB or nosZ genes were relatively stable following DZ and DMDS fumigation. However, cnorB and nosZ decreased initially following CP, AITC and 1,3-D fumigation. Simultaneously, the abundance of qnorB significantly increased in AITC and 1,3-D fumigated soils. These results showed that soil fumigation significantly shifted the abundance and community structure of denitrifying bacteria. This study will help to predict the response of different phyla of denitrifying bacteria to soil fumigation.
Collapse
Affiliation(s)
- Wensheng Fang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing, 100193, China
| | - Xianli Wang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing, 100193, China
| | - Bin Huang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing, 100193, China
| | - Daqi Zhang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing, 100193, China
| | - Jie Liu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing, 100193, China
| | - Jiahong Zhu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing, 100193, China
| | - Dongdong Yan
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing, 100193, China
| | - Qiuxia Wang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing, 100193, China
| | - Aocheng Cao
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing, 100193, China.
| | - Qingli Han
- College of Biodiversity Conservation, Southwest Forestry University, Kunming, 650224, China
| |
Collapse
|
13
|
Zhou W, Du J, Li W, Zhang Y, Jia H, Huang H, Wu G, Wu B, Li B. Evaluation of the disappearance of cyanogen and hydrogen cyanide in different soil types using gas chromatography–mass spectrometry. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
14
|
Qin J, Qian S, Chen Q, Chen L, Yan L, Shen G. Cow manure-derived biochar: Its catalytic properties and influential factors. JOURNAL OF HAZARDOUS MATERIALS 2019; 371:381-388. [PMID: 30870642 DOI: 10.1016/j.jhazmat.2019.03.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 02/26/2019] [Accepted: 03/05/2019] [Indexed: 06/09/2023]
Abstract
The conversion of waste biomass into biochar is considered as a waste disposal alternative, especially because biochar is a low-cost adsorbent for soil contaminants. However, a risk of desorption of contaminants from biochar may lead to secondary pollution. This study investigated the degradation behavior of soil fumigant, 1,3-dichloropropne (1,3-D), on cow manure-derived biochar (CMB) pyrolyzed at five different temperatures from 300 to 700 °C (termed as C-300 to C-700). Results showed that 1,3-D degradation rate was U-shape related to biochar pyrolysis temperature. Four degradation byproducts (NH2CH2CH2CH3OH, CH3CH2NH2, NH2COCONH2, OHCH2COOH) were identified by headspace GC-MS. When biochar humidity improved from 0 to 50% or incubation temperature increased from 20 to 40 °C, the degradation of cis-1,3-D on C-300 improved 24.26% and 35.48%, respectively. The OH concentrations, detected by the terephthalic acid method, were considerably higher for C-300 than that for C-700. Pyrolysis temperature (300-700 ° C) governed biochar physicochemical properties and further affected 1,3-D degradation mechanisms (pH-controlled substitution or OH-restricted oxidation reaction). All these findings showed that CMB can adsorb and degrade 1,3-D, thereby reduce its desorption risk, indicative of the conversion of cow manure into biochar as an effective waste management practice.
Collapse
Affiliation(s)
- Jiaolong Qin
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shiying Qian
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Qincheng Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Lu Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Lili Yan
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China
| | - Guoqing Shen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
15
|
Tang T, Ji C, Xu Z, Zhang C, Zhao M, Zhao X, Wang Q. Degradation Kinetics and Transformation Products of Levonorgestrel and Quinestrol in Soils. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4160-4169. [PMID: 30900888 DOI: 10.1021/acs.jafc.8b04788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Levonorgestrel (LNG) and quinestrol (QUN) are typical endocrine disruptors that enter the soil via sewage irrigation and sludge return. However, the fates of both compounds in soil are not well-understood. Laboratory microcosm studies were conducted to fill the gap of understanding of LNG and QUN behavior in soils. High values of goodness-of-fit indices (GFIs) were obtained using the double-first-order in parallel (DFOP) model and the single-first-order (SFO) model to fit the degradation kinetics of LNG and QUN in soils, respectively. The end-points (DT50 and DT90) of LNG and QUN were positively correlated with soil total organic carbon (TOC). Soil water content and temperature were observed to be critical factors in degradation of LNG and QUN. The degradation rates of LNG and QUN were very slow under sterile and flooded conditions, indicating that the aerobic microbial degradation was dominant in the degradation of LNG and QUN. Moreover, major transformation products were identified, and biodegradation pathways of LNG and QUN were proposed. The present study is expected to provide basic information for ecological risk assessment of LNG and QUN in the soil compartment.
Collapse
Affiliation(s)
- Tao Tang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products , Zhejiang Academy of Agricultural Sciences , No. 298 Desheng Road , Hangzhou , Zhejiang 310021 , China
| | - Chenyang Ji
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment , Zhejiang University of Technology , Hangzhou , Zhejiang 310032 , China
| | - Zhenlan Xu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products , Zhejiang Academy of Agricultural Sciences , No. 298 Desheng Road , Hangzhou , Zhejiang 310021 , China
| | - Changpeng Zhang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products , Zhejiang Academy of Agricultural Sciences , No. 298 Desheng Road , Hangzhou , Zhejiang 310021 , China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment , Zhejiang University of Technology , Hangzhou , Zhejiang 310032 , China
| | - Xueping Zhao
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products , Zhejiang Academy of Agricultural Sciences , No. 298 Desheng Road , Hangzhou , Zhejiang 310021 , China
| | - Qiang Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products , Zhejiang Academy of Agricultural Sciences , No. 298 Desheng Road , Hangzhou , Zhejiang 310021 , China
| |
Collapse
|
16
|
Tang F, Xu Z, Gao M, Li L, Li H, Cheng H, Zhang C, Tian G. The dissipation of cyazofamid and its main metabolite in soil response oppositely to biochar application. CHEMOSPHERE 2019; 218:26-35. [PMID: 30465972 DOI: 10.1016/j.chemosphere.2018.11.094] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 11/03/2018] [Accepted: 11/14/2018] [Indexed: 06/09/2023]
Abstract
Biochars derived from rice straw (RS), corn straw (CS), chicken manure (CM) and tire rubber (TR) were applied to soil to investigate their effects on the dissipation of cyazofamid and its metabolite CCIM (4-chloro-5-p-tolylimidazole-2-carbonitrile), with high acute toxicity compared to cyazofamid. The enhancement of cyazofamid dissipation followed the order of CS > RS > CM, whereas TR depressed the cyazofamid dissipation. Adsorption, hydrolysis and microbial degradation were all involved in cyazofamid dissipation. CM and CS enhanced the contribution of biodegradation to cyazofamid dissipation, which might be related with the shifted microbial community. More importantly, CCIM residual was drastically increased by 8-15 times after biochar application, regardless of biochar type. In total, this study shed light on the issue of build-up of metabolites in biochar-amended soil, especially for metabolites having higher toxicities than parent compounds, providing new insights into potential risk of biochar application for soil remediation.
Collapse
Affiliation(s)
- Fan Tang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhenlan Xu
- Institute of Quality and Standard of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Mao Gao
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lingxiangyu Li
- Department of Chemistry, School of Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Hua Li
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Haixiang Cheng
- Department of Environmental Engineering, College of Chemical and Material Engineering, Quzhou University, Quzhou, 324000, China
| | - Changpeng Zhang
- Institute of Quality and Standard of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Guangming Tian
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
17
|
Fang W, Yan D, Wang Q, Huang B, Ren Z, Wang X, Wang X, Li Y, Ouyang C, Migheli Q, Cao A. Changes in the abundance and community composition of different nitrogen cycling groups in response to fumigation with 1,3-dichloropropene. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:44-55. [PMID: 30196225 DOI: 10.1016/j.scitotenv.2018.08.432] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 06/08/2023]
Abstract
The fumigant 1,3-dichloropropene (1,3-D) is widely-used to control pathogenic bacteria, fungi, nematodes and insects in soil before a crop is planted. Although fumigants in general have been reported to have a 'fertilizer effect' in the soil by increasing nitrogen availability, little is known of how a specific fumigant such as 1,3-D affects available nitrogen. This study used real-time quantitative PCR (qPCR) and 16S rRNA gene amplicon sequencing techniques to investigate the effects of 1,3-D on microorganisms involved in nitrogen cycling that were present in 2 soils: Jiangxi lateritic red soil and Beijing fluvo-aquic soil. The fumigant 1,3-D temporarily decreased the abundance of 11 functional genes involved in nitrogen-fixing, nitrification and denitrification in both soil types. Different nitrogen cycling groups recovered to the unfumigated level in various incubation phases. Microorganisms containing nifH, nxrB, napA and qnorB genes were most vulnerable to 1,3-D fumigation. However, a stronger and longer inhibition effect of 1,3-D on these 11 functional genes was observed in Jiangxi soil than in Beijing soil. At the same time, the abundance of nifH, AOBamoA, nirS, qnorB and cnorB genes was significantly increased 59 days after 1,3-D fumigation. Fumigation with 1,3-D significantly reduced the nitrogen-fixing bacteria Azospirillum and Paenibacillus; the nitrifiers Nitrosomonas and Nitrospira; and the denitrifiers Pseudomonas, Paracoccus and Sphingomonas. Conversely, fumigation with 1,3-D increased the nitrogen-fixing bacteria Bradyrhizobium and Rhizobium; the nitrification bacteria Nitrosospira and Nitrolancea; and the denitrification bacteria Sphingobium, Alcanivorax, Bacillus, Streptomyces and Aeromonas. Fumigation with 1,3-D therefore caused significant shifts in the species composition and number of microbes directly involved in nitrogen cycling in the short-term. These results contribute toward a better understanding of the impact of 1,3-D fumigation on various types of soil nitrogen-cycling groups.
Collapse
Affiliation(s)
- Wensheng Fang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dongdong Yan
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Qiuxia Wang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bin Huang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zongjie Ren
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xianli Wang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoning Wang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuan Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Canbin Ouyang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Quirico Migheli
- Dipartimento di Agraria, Universita degli Studi di Sassari, Sassari 07100, Italy
| | - Aocheng Cao
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
18
|
Gao S, Doll DA, Stanghellini MS, Westerdahl BB, Wang D, Hanson BD. Deep injection and the potential of biochar to reduce fumigant emissions and effects on nematode control. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 223:469-477. [PMID: 29957420 DOI: 10.1016/j.jenvman.2018.06.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 06/08/2018] [Accepted: 06/10/2018] [Indexed: 06/08/2023]
Abstract
Reducing fumigant emissions is essential for minimizing the environmental impacts of pre-plant soil fumigation. Low permeability plastic films are effective at reducing emissions but have high initial purchase, installation, and disposal costs. The objective of this study was to evaluate if deep fumigant injection and biochar soil amendments can reduce emissions, improve fumigant distribution in soil, and provide acceptable control of plant parasitic nematodes. A pre-plant soil fumigation trial was conducted in a commercial orchard in the San Joaquin Valley, CA, USA. Treatments included two rates of Telone® C-35 (a mixture of 1,3-dichloropropene and chloropicrin) under totally impermeable film or with no surface seal, two injection depths (45 or 65 cm), and two biochar rates (20 or 40 ton ha-1). Emission rates were generally low due to rain events encountered during the trial, but data clearly showed that the deep injection enhanced fumigant delivery to depths below 60 cm and resulted in significantly lower peak emission compared to the standard injection depth. Biochar applied at 40 ton ha-1 had the lowest emission rates during 1-month monitoring period. Although variability in nematode survival was high, tarped, deep injection, and biochar treatment showed lower survival of nematodes at various depths. Increase in fumigant persistence, especially chloropicrin, was observed in this study, likely due to the high soil moisture and low temperature. All data indicate that biochar amendments can help reduce fumigant emissions without reducing nematode control; however, additional research is needed to optimize treatments, determine the affordability of various biochar materials, and validate results under a range of field conditions.
Collapse
Affiliation(s)
- Suduan Gao
- USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 S. Riverbend Avenue, Parlier, CA 93648, USA.
| | - David A Doll
- University of California Cooperative Extension, Merced, CA 95341, USA.
| | | | - Becky B Westerdahl
- Department of Entomology and Nematology, University of California, Davis, CA 95616, USA.
| | - Dong Wang
- USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 S. Riverbend Avenue, Parlier, CA 93648, USA.
| | - Bradley D Hanson
- Department of Plant Sciences, University of California, Davis, CA 95616, USA.
| |
Collapse
|
19
|
Fang W, Wang Q, Yan D, Huang B, Ren Z, Wang Q, Song Z, Liu X, Li Y, Ouyang C, Cao A. Environmental Factors and Soil Amendment Affect the Decomposition Rate of Dazomet Fumigant. JOURNAL OF ENVIRONMENTAL QUALITY 2018; 47:1223-1231. [PMID: 30272792 DOI: 10.2134/jeq2018.01.0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Dazomet (3,5-dimethyl-1,3,5-thiadiazinane-2-thione) is widely used as a soil fumigant for controlling soil-borne diseases and pests in China and other agricultural countries. The active ingredient of dazomet is its degradation product, methyl isothiocyanate. Little is known about the environmental conditions that affect the degradation of dazomet in soil. In this study, we conducted laboratory incubation experiments to test the effects of several environmental factors, including soil texture, water content, temperature, pH, and soil amendments, such as chicken manure or urea fertilizer, on the decomposition of dazomet. Results showed that dazomet degradation in soil is an abiotic process strongly dependent on soil texture, water content, temperature, and pH. Decomposition rates differed greatly in various soils, depending mainly on soil physicochemical properties such as pH and organic matter content. The degradation rate increased by 15 to 24 times and by 16 to 37 times when soil temperature increased from 5 to 45°C, and water content increased from 10 to 30%, respectively. Dazomet degraded faster in alkaline versus acidic soil. Both chicken manure and urea fertilizer moderately slowed dazomet degradation. Dazomet was degraded in soil mainly by hydrolysis. The results of our study contribute to a better understanding of the environmental behavior of dazomet, potentially leading to its more efficient, safe, profitable, and effective use by farmers.
Collapse
|
20
|
The Effect of Two Types of Biochars on the Efficacy, Emission, Degradation, and Adsorption of the Fumigant Methyl Isothiocyanate. ENERGIES 2016. [DOI: 10.3390/en10010016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Qin J, Cheng Y, Sun M, Yan L, Shen G. Catalytic degradation of the soil fumigant 1,3-dichloropropene in aqueous biochar slurry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 569-570:1-8. [PMID: 27323331 DOI: 10.1016/j.scitotenv.2016.06.092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/13/2016] [Accepted: 06/13/2016] [Indexed: 06/06/2023]
Abstract
Biochar has been explored as a cost-effective sorbent of contaminants, such as soil fumigant. However, contaminant-loaded biochar probably becomes a source of secondary air pollution. In this study, biochars developed from cow manure and rice husk at 300°C or 700°C were used to investigate the catalytic degradation of the soil fumigant 1,3-dichloropropene (1,3-D) in aqueous biochar slurry. Results showed that the adsorption of 1,3-D on the biochars was influenced by Langmuir surface monolayer adsorption. The maximum adsorption capacity of cow manure was greater than that of rice husk at the same pyrolysis temperature. Batch experiments revealed that 1,3-D degradation was improved in aqueous biochar slurry. The most rapid 1,3-D degradation occurred on cow manure-derived biochar produced at 300°C (C-300), with t1/2=3.47days. The degradation efficiency of 1,3-D on C-300 was 95.52%. Environmentally persistent free radicals (EPFRs) in biochars were detected via electron paramagnetic resonance (EPR) techniques. Dissolved organic matter (DOM) and hydroxyl radical (·OH) in biochars were detected by using a fluorescence spectrophotometer coupled with a terephthalic acid trapping method. The improvement of 1,3-D degradation efficiency may be attributed to EPFRs and DOM in aqueous biochar slurry. Our results may pose implications in the development of effective reduction strategies for soil fumigant emission with biochar.
Collapse
Affiliation(s)
- Jiaolong Qin
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Yuxiao Cheng
- Shanghai Entry-Exit Inspection and Quarantine Bureau, Shanghai 200135, PR China
| | - Mingxing Sun
- Shanghai Entry-Exit Inspection and Quarantine Bureau, Shanghai 200135, PR China
| | - Lili Yan
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Guoqing Shen
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China.
| |
Collapse
|