1
|
Popstoyanova D, Gerasimova A, Gentscheva G, Nikolova S, Gavrilova A, Nikolova K. Ziziphus jujuba: Applications in the Pharmacy and Food Industry. PLANTS (BASEL, SWITZERLAND) 2024; 13:2724. [PMID: 39409594 PMCID: PMC11479145 DOI: 10.3390/plants13192724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/18/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024]
Abstract
Ziziphus jujuba has been used since ancient times in traditional Eastern medicine. It is widely cultivated in numerous countries between the tropical and temperate climatic zones due to its high ecological plasticity and resilience to adverse weather. The different classes of chemical compounds contained in the plant are the reason for its medicinal properties. Research shows that every part of Ziziphus jujuba, the leaves, fruits and seeds, demonstrate therapeutic properties. This review focuses on the chemical composition in order to establish the relationship between the plant and its clinical use. Various biological effects are summarized and discussed: anticancer, anti-inflammatory, immunostimulating, antioxidant, hepatoprotective, gastrointestinal, etc. Apart from medicinal uses, the fruits of Ziziphus jujuba are edible and used in fresh and dried form. This literature review reveals possible medical applications of Ziziphus jujuba and its great potential for improving the diet of people in areas where the plant is abundant.
Collapse
Affiliation(s)
- Desislava Popstoyanova
- Department of Physics and Biophysics, Faculty of Pharmacy, Medical University of Varna, 9002 Varna, Bulgaria;
| | - Anelia Gerasimova
- Department of Chemistry, Faculty of Pharmacy, Medical University of Varna, 9000 Varna, Bulgaria;
| | - Galia Gentscheva
- Department of Chemistry and Biochemistry, Medical University-Pleven, 5800 Pleven, Bulgaria
| | - Stoyanka Nikolova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv Paisii Hilendarski, 4000 Plovdiv, Bulgaria;
| | - Anna Gavrilova
- Department of Pharmaceutical Chemistry and Pharmacognosy, Medical University-Pleven, 5800 Pleven, Bulgaria;
| | - Krastena Nikolova
- Department of Physics and Biophysics, Faculty of Pharmacy, Medical University of Varna, 9002 Varna, Bulgaria;
| |
Collapse
|
2
|
Liu Z, Zhu C, Sun J, Zhang Z, Zhao S, Shi W, Wang W, Zhao B. Influence of rootstock on endogenous hormones and color change in Cabernet Sauvignon grapes. Sci Rep 2023; 13:6608. [PMID: 37095085 PMCID: PMC10125983 DOI: 10.1038/s41598-023-33089-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 04/06/2023] [Indexed: 04/26/2023] Open
Abstract
Different rootstocks for grapes can significantly affect fruit color and quality, possibly by affecting hormone contents, related genetic pathways, and fruit coloring mechanisms in skin. 'Cabernet Sauvignon' was grafted to '5BB', 'SO4', '140R', 'CS', '3309M' and 'Vitis riparia' rootstocks, with self-rooting seedlings as the control (CS/CS), and sampled from the early stage of veraison to the ripening stage. The effects of rootstock on the contents of gibberellin (GA3), auxin (IAA), and abscisic acid (ABA) in grape skin were determined alongside the expression levels of eight anthocyanin synthesis related genes using real-time fluorescence quantitative PCR methods. The rootstock cultivars exhibited accelerated fruit color change, and the CS/140R combination resulted in grapes with more color than the control group in the same period. With the development of fruit, the IAA and GA3 contents in the skin of different rootstock combinations showed trends of increasing initially, then decreasing, while the ABA content decreased initially and then increased. During the verasion (28 July), the various 'Cabernet Sauvignon' rootstock combinations exhibited varying degrees of increases in GA3, ABA, and IAA contents; correlation analysis showed that, at the start of veraison, the expression levels of the anthocyanin synthesis-related genes VvCHS, VvDFR, and VvUFGT had strong positive correlations with hormone contents, which indicated they are key genes involved in the endogenous hormone responsive anthocyanin biosynthesis pathway. The results of this study showed that rootstock regulates the fruit coloring process by influencing the metabolism level of peel hormones in the 'Cabernet Sauvignon' grape.
Collapse
Affiliation(s)
- Zhiyu Liu
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, 832003, China
- The Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of the Xinjiang Production and Construction, Xinjiang, China
| | - Chunmei Zhu
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, 832003, China
- The Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of the Xinjiang Production and Construction, Xinjiang, China
| | - Junli Sun
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, 832003, China
- The Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of the Xinjiang Production and Construction, Xinjiang, China
| | - Zhijun Zhang
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, 832003, China
- The Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of the Xinjiang Production and Construction, Xinjiang, China
| | - Shucheng Zhao
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, 832003, China
| | - Wenchao Shi
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, 832003, China
- The Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of the Xinjiang Production and Construction, Xinjiang, China
| | - Wei Wang
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, 832003, China
| | - Baolong Zhao
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, 832003, China.
- The Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of the Xinjiang Production and Construction, Xinjiang, China.
| |
Collapse
|
3
|
Zhang S, Chen H, Gao M, Gu C, Wang R. Effects of different iron treatments on wine grape berry quality and peel flavonoid contents. Food Sci Nutr 2022; 10:3598-3607. [PMID: 36348792 PMCID: PMC9632213 DOI: 10.1002/fsn3.2957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/14/2022] [Accepted: 06/18/2022] [Indexed: 11/17/2022] Open
Abstract
In this study, eight-year-old wine grape plants (Cabernet Sauvignon) were subjected to five different iron treatments: ferrous sulfate, ferric ethylenediaminetetraacetic acid (EDTA-Fe), ferric citrate, ferric gluconate, and ferric sugar alcohol, and conventional fertilization. Foliar spraying with clear water was used as the control treatment. The effects of different iron treatments on berry quality and flavonoid accumulation in grape peels were explored. All five iron treatments affected the sugar, acid, and peel flavonoid contents of grape berries, but the contents varied greatly among the different iron treatments. Foliar spraying with iron increased berry sugar content and reduced acid content. In addition, foliar spraying with ferrous sulfate, EDTA-Fe, ferric gluconate, and ferric sugar alcohol reduced the total anthocyanin, flavanol, and flavonol contents in the peel. The unique flavonoid monomer content of the peel was significantly higher under ferric citrate treatment than under the control and other iron treatments. Moreover, the results showed that foliar spraying with ferric citrate balanced the berry sugar-acid ratio and also increased the anthocyanin, flavanol, and flavonol contents of the grape peel, thereby improving the overall nutritional status of the berries and the final wine quality. The results obtained in this study demonstrate that different iron treatments could improve grape berry quality and clarify the effects of different exogenous iron treatments.
Collapse
Affiliation(s)
- Shu Zhang
- College of AgronomyNingxia UniversityYinchuanP.R. China
| | - Heting Chen
- College of AgronomyNingxia UniversityYinchuanP.R. China
| | - Ming Gao
- College of AgronomyNingxia UniversityYinchuanP.R. China
| | - Chaofeng Gu
- College of AgronomyNingxia UniversityYinchuanP.R. China
| | - Rui Wang
- College of AgronomyNingxia UniversityYinchuanP.R. China
- Ningxia Grape and Wine Research InstituteYinchuanP.R. China
- China Wine Industry Technology InstituteYinchuanP.R. China
| |
Collapse
|
4
|
The Expression of Aroma Components and Related Genes in Merlot and Marselan Scion-Rootstock Grape and Wine. Foods 2022; 11:foods11182777. [PMID: 36140906 PMCID: PMC9497891 DOI: 10.3390/foods11182777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/13/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Rootstocks were bred and selected from several species in order to enhance the resistance against biotic or abiotic stresses. There are few studies on the effect of rootstocks on aroma and related gene expression. This study focused on the effects of three rootstocks, Kober 5BB (5BB), 1103 Paulsen (1103P), and Selection Oppenheim (SO4), on the aroma and volatile-related gene expression levels of Merlot and Marselan berries and wines. These three rootstocks reduced the total aroma content of Merlot wine. 5BB upregulated VvLoXA and showed increased C6 alcohols. 1103P enhanced the linalool from Merlot berry, with marked upregulation of VvLinNer1. Conversely, rootstocks increased the total aroma content of Marselan berry, verified by the related expression levels of volatile-related genes. For Marselan berry, 5BB and 1103P upregulated five VvGTs and nine genes from the LOX and MEP pathway. 1103P increased the contents of C6 alcohols, C6 aldehydes, and citronellol from Marselan berry. Compared to 5BB and SO4, rootstock 1103P provided berries of better quality and richer aroma volatiles to Merlot and Marselan, while all three of the rootstocks had a significant effect on scion–rootstocks.
Collapse
|
5
|
Zhang F, Zhong H, Zhou X, Pan M, Xu J, Liu M, Wang M, Liu G, Xu T, Wang Y, Wu X, Xu Y. Grafting with rootstocks promotes phenolic compound accumulation in grape berry skin during development based on integrative multi-omics analysis. HORTICULTURE RESEARCH 2022; 9:uhac055. [PMID: 35664240 PMCID: PMC9154076 DOI: 10.1093/hr/uhac055] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 02/21/2022] [Indexed: 06/01/2023]
Abstract
In viticulture, grafting has been practiced widely and influences grape development as well as berry and wine quality. However, there is limited understanding of the effects of rootstocks on grape phenolic compounds, which are located primarily in the berry skin and contribute to certain sensory attributes of wine. In this study, scion-rootstock interactions were investigated at the green-berry stage and the veraison stage when grapevines were hetero-grafted with three commonly used rootstock genotypes (5BB, 101-14MG, and SO4). Physiological investigations showed that hetero-grafts, especially CS/5BB, contained higher concentrations of total proanthocyanidins (PAs) and various PA components in berry skins compared with the auto-grafted grapevines. Further metabolomics analysis identified 105 differentially accumulated flavonoid compounds, the majority of which, including anthocyanins, PAs, and flavonols, were significantly increased in the berry skins of hetero-grafted grapevines compared with auto-grafted controls. In addition, transcriptomic analysis of the same samples identified several thousand differentially expressed genes between hetero-grafted and auto-grafted vines. The three rootstocks not only increased the transcript levels of stilbene, anthocyanin, PA, and flavonol synthesis genes but also affected the expression of numerous transcription factor genes. Taken together, our results suggest that hetero-grafting can promote phenolic compound accumulation in grape berry skin during development. These findings provide new insights for improving the application value of grafting by enhancing the accumulation of nutritious phenolic components in grape.
Collapse
Affiliation(s)
- Fuchun Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, China
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), 830091, Urumqi, Xinjiang, China
| | - Haixia Zhong
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), 830091, Urumqi, Xinjiang, China
| | - Xiaoming Zhou
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), 830091, Urumqi, Xinjiang, China
| | - Mingqi Pan
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), 830091, Urumqi, Xinjiang, China
| | - Juan Xu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), 830091, Urumqi, Xinjiang, China
| | - Mingbo Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, China
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), 830091, Urumqi, Xinjiang, China
| | - Min Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), 830091, Urumqi, Xinjiang, China
| | - Guotian Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Tengfei Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Yuejin Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | | | - Yan Xu
- Corresponding author: E-mail: ;
| |
Collapse
|
6
|
WANG J, GU C, MA T, WANG R. Effects of foliar iron spraying on Cabernet Sauvignon phenolic acids and proanthocyanidins. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.44622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | - Tinghui MA
- Ningxia Academy of Agriculture and Forestry Sciences, China
| | - Rui WANG
- Ningxia Universit, China; Ningxia Grape and Wine Research Institute, China
| |
Collapse
|
7
|
A. A. L, Ghazi DA, Al-Harbi NA, Al-Qahtani SM, Hassan S, Abdein MA. Growth, Yield, and Bunch Quality of "Superior Seedless" Vines Grown on Different Rootstocks Change in Response to Salt Stress. PLANTS 2021; 10:plants10102215. [PMID: 34686024 PMCID: PMC8541443 DOI: 10.3390/plants10102215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/03/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022]
Abstract
The growth and quality of vines are negatively affected by soil salinity if enough salts accumulate in the root zone. As part of the current study, we estimated the remediating effects of rootstocks under salinity. For this reason, "superior seedless" vines were grafted onto three different rootstocks, such as SO4, 1103 Paulson, and own-root ("superior seedless" with their own-root). The experiment was conducted in the 2019 and 2020 seasons. This study examines the effects of different rootstocks on vine growth, yield, and quality using "superior seedless" vines grown in sandy soil with salinity. Four stages of berry development were examined (flowering, fruit set, veraison, and harvest time). At harvest, yield characteristics (clusters per vine and cluster weight) were also assessed. Each parameter of the growth season was influenced separately. The K+ and Na+ ratios were also significantly increased, as were the salinity symptoms index and bunch yield per vine and quality. Rootstock 1103 Paulson improved photosynthetic pigments, K+ accumulation, Na+ uptake, and cell membrane damage in "superior seedless" vines compared to other rootstocks, according to the study results. As determined in the arid regions of northwestern Egypt, the 1103 Paulson can mitigate salinity issues when planting "superior seedless" vines on sandy soil.
Collapse
Affiliation(s)
- Lo’ay A. A.
- Pomology Department, Faculty of Agriculture, Mansoura University, EL-Mansoura 35516, Egypt
- Correspondence: (L.A.A.); (M.A.A.)
| | - Dina A. Ghazi
- Soil Department, Faculty of Agriculture, Mansoura University, EL-Mansoura 35516, Egypt;
| | - Nadi Awad Al-Harbi
- Biology Department, University College of Tayma, Tabuk University, Tabuk 71411, Saudi Arabia; (N.A.A.-H.); (S.M.A.-Q.)
| | - Salem Mesfir Al-Qahtani
- Biology Department, University College of Tayma, Tabuk University, Tabuk 71411, Saudi Arabia; (N.A.A.-H.); (S.M.A.-Q.)
| | - Sabry Hassan
- Department of Biology, College of Science, Taif University, Taif 21944, Saudi Arabia;
| | - Mohamed A. Abdein
- Biology Department, Faculty of Arts and Science, Northern Border University, Rafha 91911, Saudi Arabia
- Correspondence: (L.A.A.); (M.A.A.)
| |
Collapse
|
8
|
Hui Y, Wang J, Jiang T, Ma T, Wang R. Effect of nitrogen regulation on berry quality and flavonoids during veraison stage. Food Sci Nutr 2021; 9:5448-5456. [PMID: 34646515 PMCID: PMC8498049 DOI: 10.1002/fsn3.2503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/13/2021] [Accepted: 07/17/2021] [Indexed: 11/29/2022] Open
Abstract
Nitrogen regulation can effectively promote the improvement of berry components and the formation of flavor compounds in wine grapes. In order to understand the effects of foliar nitrogen spraying on grape quality and flavonoid substance, took Cabernet Sauvignon as the test subject, grape leaves were sprayed by ammonium sulfate, calcium ammonium nitrate, urea, phenylalanine, and glutamate during veraison, and clear water was used as the control. The results showed that spraying ammonium sulfate could improve the contents of soluble solids, anthocyanins, and total phenols of grape berries; spraying phenylalanine significantly increased the content of titratable acid and tannin and decreased the ratio of sugar to acid in grape berries; compared with the control group, spraying glutamate could significantly upregulate some flavonol monomers; spraying calcium ammonium nitrate can adjust the monomer content of some flavanols; urea spraying significantly increased the contents of most anthocyanins, flavanols, and flavonol and increased the contents of total anthocyanins, total flavanols, and total flavonol in grape skins, laying a foundation for the improvement of the nutritional value of grapes and wine in the future.
Collapse
Affiliation(s)
- Yueran Hui
- College of AgronomyNingxia UniversityYinchuanChina
| | - Jing Wang
- College of AgronomyNingxia UniversityYinchuanChina
| | | | - Tinghui Ma
- Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Rui Wang
- College of AgronomyNingxia UniversityYinchuanChina
- Ningxia Grape and Wine Research InstituteYinchuanChina
- China Wine Industry Technology InstituteYinchuanChina
| |
Collapse
|
9
|
Huang L, Grosser J, Gmitter FG, Sims CA, Wang Y. Effects of Scion/Rootstock Combination on Flavor Quality of Orange Juice from Huanglongbing (HLB)-Affected Trees: A Two-Year Study of the Targeted Metabolomics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3286-3296. [PMID: 32052973 DOI: 10.1021/acs.jafc.9b07934] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The bacterial disease Huanglongbing (HLB) has been causing large economic losses in the citrus industry worldwide. Aimed at unraveling the mechanisms of scion/rootstock combination on improving HLB-affected orange juice quality, a specific scion/rootstock combination field trial was designed using three sibling rootstocks and two late-maturing sweet orange scion cultivars. Scion/rootstock combination significantly improved the overall consumer liking of orange juice from the HLB-affected trees. Rootstocks showed significant effects on the consumer liking and overall flavor, while scions had significant effects on the freshness and overall orange flavor intensity of the juice. A PLS-DA model combined with KEGG pathway enrichment analysis and some biomarker metabolites further indicated that scions mainly affected metabolism of alanine, aspartate, and glutamate in orange fruits. Meanwhile, rootstocks had an impact on the biosynthetic pathways of secondary metabolites. Sugars and organic acids were not closely correlated with the overall liking and sensory perception of orange juice. Rather, flavonoids, terpenoids, and volatile aromas played important roles in improving consumer overall liking. These results indicated that an optimum tolerant scion/rootstock combination can make a positive contribution toward improved fruit or juice quality from HLB-affected citrus trees.
Collapse
Affiliation(s)
- Linhua Huang
- Citrus Research Institute, Southwest University, Xiema, Beibei, Chongqing 400712, China
- Citrus Research and Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, Florida 33850, United States
| | - Jude Grosser
- Citrus Research and Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, Florida 33850, United States
| | - Frederick G Gmitter
- Citrus Research and Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, Florida 33850, United States
| | - Charles A Sims
- Food Science and Human Nutrition, University of Florida, 572 Newell Drive, Gainesville, Florida 32611, United States
| | - Yu Wang
- Citrus Research and Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, Florida 33850, United States
- Food Science and Human Nutrition, University of Florida, 572 Newell Drive, Gainesville, Florida 32611, United States
| |
Collapse
|
10
|
Yuan H, Chen J, Yang Y, Shen C, Xu D, Wang J, Yan D, He Y, Zheng B. Quantitative succinyl-proteome profiling of Chinese hickory (Carya cathayensis) during the grafting process. BMC PLANT BIOLOGY 2019; 19:467. [PMID: 31684873 PMCID: PMC6829946 DOI: 10.1186/s12870-019-2072-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 10/14/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND Chinese hickory (Carya cathayensis) is a popular nut plant having high economic value. Grafting is applied to accelerate the transition from vegetative phase to reproductive phase. Lysine succinylation occurs frequently in the proteins associated with metabolic pathways, which may participate in the regulation of the grafting process. However, the exact regulatory mechanism underlying grafting process in Chinese hickory has not been studied at post-translational modification level. RESULTS A comprehensive proteome-wide lysine succinylation profiling of Chinese hickory was explored by a newly developed method combining affinity enrichment and high-resolution LC-MS/MS. In total, 259 succinylation sites in 202 proteins were identified, representing the first comprehensive lysine succinylome in Chinese hickory. The succinylation was biased to occur in the cytosolic proteins of Chinese hickory. Moreover, four conserved succinylation motifs were identified in the succinylated peptides. Comparison of two grafting stages of Chinese hickory revealed that the differential expressed succinylated proteins were mainly involved in sugar metabolism, carbon fixation, amino acid metabolism and plant-pathogen interaction. Besides, seven heat shock proteins (HSPs) with 11 succinylation sites were also identified, all of which were observed to be up-regulated during the grafting process. CONCLUSIONS Succinylation of the proteins involved in amino acid biosynthesis might be required for a successful grafting. Succinylated HSPs might play a role in stress tolerance of the grafted Chinese hickory plants. Our results can be a good resource for functional validation of the succinylated proteins and a starting point for the investigation of molecular mechanisms during lysine succinylation occurring at grafting site.
Collapse
Affiliation(s)
- Huwei Yuan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300 People’s Republic of China
- Center for Cultivation of Subtropical Forest Resources (CCSFR, Zhejiang A&F University, Hangzhou, 311300 People’s Republic of China
| | - Juanjuan Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300 People’s Republic of China
- Center for Cultivation of Subtropical Forest Resources (CCSFR, Zhejiang A&F University, Hangzhou, 311300 People’s Republic of China
| | - Ying Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300 People’s Republic of China
- Center for Cultivation of Subtropical Forest Resources (CCSFR, Zhejiang A&F University, Hangzhou, 311300 People’s Republic of China
| | - Chenjia Shen
- College of Life and Environmental Sciences Hangzhou Normal University, Hangzhou, 310036 People’s Republic of China
| | - Dongbin Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300 People’s Republic of China
- Center for Cultivation of Subtropical Forest Resources (CCSFR, Zhejiang A&F University, Hangzhou, 311300 People’s Republic of China
| | - Junfeng Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300 People’s Republic of China
- Center for Cultivation of Subtropical Forest Resources (CCSFR, Zhejiang A&F University, Hangzhou, 311300 People’s Republic of China
| | - Daoliang Yan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300 People’s Republic of China
- Center for Cultivation of Subtropical Forest Resources (CCSFR, Zhejiang A&F University, Hangzhou, 311300 People’s Republic of China
| | - Yi He
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300 People’s Republic of China
- Center for Cultivation of Subtropical Forest Resources (CCSFR, Zhejiang A&F University, Hangzhou, 311300 People’s Republic of China
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300 People’s Republic of China
- Center for Cultivation of Subtropical Forest Resources (CCSFR, Zhejiang A&F University, Hangzhou, 311300 People’s Republic of China
| |
Collapse
|
11
|
Zhang X, Zhang F, Wang J, Lin L, Liao M, Tang Y, Sun G, Wang X, Lv X, Deng Q, Chen C, Ren W. Cutting after grafting affects the growth and cadmium accumulation of Nasturtium officinale. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:15436-15442. [PMID: 30937751 DOI: 10.1007/s11356-019-04977-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 03/25/2019] [Indexed: 06/09/2023]
Abstract
The growth and cadmium (Cd) accumulation of emergent plant Nasturtium officinale R. Br. cuttings taken from plants grafted onto rootstocks of four terrestrial Cruciferae species were studied in a pot experiment. Scions from N. officinale seedlings were grafted onto rootstocks of Brassica chinensis L., Raphanus sativus L., Brassica napus L., and Rorippa dubia (Pers.) H. Hara. Cuttings were taken after 1 month and grown in Cd-contaminated soil (10 mg Cd kg-1) for 60 days. Compared with non-grafted N. officinale, grafting onto R. sativus and B. napus rootstocks increased the root, shoot, and whole plant biomasses of N. officinale cuttings. Brassica napus rootstock was more effective than R. sativus rootstock for increasing the biomass of N. officinale cuttings. The four rootstocks decreased or had no significant effect on photosynthetic pigment contents in N. officinale cuttings compared with non-grafted N. officinale. Only grafting onto B. napus rootstock enhanced antioxidant enzyme activities. Compared with non-grafted N. officinale, R. sativus and B. napus rootstocks decreased the Cd contents in roots and shoots of N. officinale cuttings, whereas the other rootstocks had no significant effect on the shoot Cd content. The four rootstocks had no increase effects on Cd extraction by N. officinale cuttings. Therefore, cutting after grafting did not enhance the phytoremediation ability of N. officinale for growth in Cd-contaminated soil. However, R. sativus and B. napus rootstocks decreased the Cd content in N. officinale cuttings, which offers a potential approach for N. officinale safety production as a wild vegetable in Cd-contaminated soils.
Collapse
Affiliation(s)
- Xingyu Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Fenqin Zhang
- College of Agriculture and Biological Technology, Hexi University, Zhangye, Gansu, China
| | - Jin Wang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lijin Lin
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China.
| | - Ming'an Liao
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yi Tang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Guochao Sun
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xun Wang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiulan Lv
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qunxian Deng
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Cheng Chen
- College of Economics, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wei Ren
- Maize Research Institute, Neijiang Academy of Agricultural Sciences, Neijiang, Sichuan, China
| |
Collapse
|
12
|
Rootstock-Mediated Effects on Cabernet Sauvignon Performance: Vine Growth, Berry Ripening, Flavonoids, and Aromatic Profiles. Int J Mol Sci 2019; 20:ijms20020401. [PMID: 30669297 PMCID: PMC6358736 DOI: 10.3390/ijms20020401] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 01/01/2023] Open
Abstract
Rootstocks are widely used in viticulture due to their resistance to biotic and abiotic stress. Additionally, rootstocks can affect vine growth and berry quality. This study evaluated the effects of eight rootstocks (101-14, 110R, 5A, 5BB, Ganzin 1, Harmony, Riparia Gloire, and SO4) on the vine growth, berry ripening, and flavonoids and aromatic profiles of Cabernet Sauvignon in two consecutive seasons (2015⁻2016). With few exceptions, minor differences were observed among grafted and own-rooted vines. Own-rooted vines produced the least pruning weight but the highest yield. 101-14, 5BB, and SO4 slightly reduced total soluble solids, but increased acidity, showing tendencies for retarding maturation. Ganzin 1 inhibited the accumulation of flavan-3-ols in berry skins. Furthermore, concentrations and proportions of epicatechin-3-O-galate were decreased by rootstocks, except for 110R. 5A, Harmony, and Riparia Gloire enhanced flavonol concentrations. SO4 slightly decreased most of the individual anthocyanin concentrations. With respect to volatile compounds, 110R, Riparia Gloire, and SO4 induced reductions in concentrations of total esters, whilst 101-14, Ganzin 1, 110R, and 5BB led to increases in the concentrations of C13-norisoprenoids. Therefore, with respect to the negative effects of SO4 on berry ripening and the accumulation of anthocyanin and volatile esters, SO4 is not recommended in practice.
Collapse
|
13
|
Shi P, Song C, Chen H, Duan B, Zhang Z, Meng J. Foliar applications of iron promote flavonoids accumulation in grape berry of Vitis vinifera cv. Merlot grown in the iron deficiency soil. Food Chem 2018; 253:164-170. [PMID: 29502817 DOI: 10.1016/j.foodchem.2018.01.109] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 12/14/2017] [Accepted: 01/15/2018] [Indexed: 10/18/2022]
Abstract
Flavonoids are important compounds for grape and wine quality. Foliar fertilization with iron compounds has been reported to have a substantial impact on grape composition in the grapevines growing in calcareous soil. However, much less is known about its real impact on flavonoid composition. In the present study, Ferric ethylenediamine di (O-hydroxyphenylacetic) acid (Fe-EDDHA) was foliar applied to Merlot (Vitis vinifera L.) grapevines growing in calcareous soil over two consecutive vintages in order to study its effect on grape flavonoid composition. Fe-EDDHA foliar supply tended to increase grape sugar, anthocyanin and flavonol content, decrease acid content and enhance the juice pH when compared to the control. Principal component analysis showed that the vintage also had influence on grape quality. The results suggested that Fe-EDDHA foliar application had an enhancement effect on grape secondary metabolism, and the effect increased the nutritional value of the consequent grapes and wines.
Collapse
Affiliation(s)
- Pengbao Shi
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi, China; College of Food Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066600, Hebei, China.
| | - Changzheng Song
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Haiju Chen
- College of Horticulture Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066600, Hebei, China.
| | - Bingbing Duan
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Zhenwen Zhang
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi, China; Shaanxi Engineering Research Center for Viti-Viniculture, Yangling 712100, Shaanxi, China.
| | - Jiangfei Meng
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi, China; Shaanxi Engineering Research Center for Viti-Viniculture, Yangling 712100, Shaanxi, China.
| |
Collapse
|
14
|
Shi P, Li B, Chen H, Song C, Meng J, Xi Z, Zhang Z. Iron Supply Affects Anthocyanin Content and Related Gene Expression in Berries of Vitis vinifera cv. Cabernet Sauvignon. Molecules 2017; 22:molecules22020283. [PMID: 28216591 PMCID: PMC6155850 DOI: 10.3390/molecules22020283] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/08/2017] [Accepted: 02/10/2017] [Indexed: 11/16/2022] Open
Abstract
Anthocyanins are important compounds for red grape and red wine quality, and can be influenced by supply of nutrients such as nitrogen, phosphorus, potassium, zinc, and iron. The present work aims to gain a better understanding of the effect of iron supply on anthocyanins concentration in grape berries. To this end, own-rooted four-year-old Cabernet Sauvignon grapevines (Vitis vinifera) were fertigated every three days with 0, 23, 46, 92, and 184 μM iron (Fe) from ferric ethylenediamine di (o-hydroxyphenylacetic) acid (Fe-EDDHA) in a complete nutrient solution. Fe deficiency or excess generally led to higher concentrations of titratable acidity and skin/berry ratio, and to lower reducing sugar content, sugar/acid ratio, pH, berry weight, and concentration of anthocyanins. Most of the individual anthocyanins detected in this study, except cyanidin-3-O-glucoside, delphinidin-3-O-glucoside, and cyanidin-3-O-(6-O-coumaryl)-glucoside, in moderate Fe treatment (46 μM) grapes were significantly higher than those of other treatments. Genes encoding chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), leucoanthocyanidin dioxygenase (LDOX), and anthocyanin O-methyltransferase (AOMT) exhibited higher transcript levels in berries from plants cultivated with 46 μM Fe compared to the ones cultivated with other Fe concentrations. We suggest that grape sugar content, anthocyanins content, and transcriptions of genes involved in anthocyanin biosynthesis were correlated with Fe supply concentrations.
Collapse
Affiliation(s)
- Pengbao Shi
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi, China.
- College of Food Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066600, Hebei, China.
| | - Bing Li
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Haiju Chen
- College of Horticulture Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066600, Hebei, China.
| | - Changzheng Song
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Jiangfei Meng
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Zhumei Xi
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi, China.
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling 712100, Shaanxi, China.
| | - Zhenwen Zhang
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi, China.
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling 712100, Shaanxi, China.
| |
Collapse
|