1
|
Dong J, Wang Y, Chen Y, Wang Q, Zhang B, Li X, Jin Z, Bai Y. Structural elucidation and functional characteristics of novel potential prebiotics produced from Limosilactobacillus reuteri N1 GtfB-treated maize starches. Carbohydr Polym 2024; 340:122249. [PMID: 38858018 DOI: 10.1016/j.carbpol.2024.122249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 06/12/2024]
Abstract
The recently characterized Limosilactobacillus reuteri N1 GtfB (LrN1 GtfB) from glycoside hydrolase family 70 is a novel 4,6-α-glucanotransferase acting on starch/maltooligosaccharides with high enzyme activity and soluble protein yield (in heterogenous system). In this study, the influence of the treatment by LrN1 GtfB on the fine structure and functional characteristics of three maize starches were furtherly investigated and elucidated. Due to the treatment of LrN1 GtfB, the starch molecules were transformed into reuterans containing linear and branched (α1 → 6) linkages with notably smaller molecular weight and shorter chain length. Moreover, the (α1 → 6) linkage ratios in the GtfB-modified high-amylose maize starch (GHMS)/normal maize starch (GNMS)/waxy maize starch (GWMS) increased by 18.3 %/12.6 %/9.0 % as compared to their corresponding controls. In vitro digestibility experiment revealed that the resistant starch content of GHMS, GNMS and GWMS increased by 16 %, 18 % and 25 % as compared to the starch substrates. Furthermore, the butyric acid yielded from GHMS, GNMS and GWMS in the in vitro fermentation experiments were 1.4, 1.5 and 1.4 times higher than those of commercial galactose oligosaccharides. These results indicated that the highly-branched short-clustered reuteran synthesized by LrN1 GtfB might serve as novel potential prebiotics, and provide insights for the synthesis of promising prebiotic dietary fiber from starch.
Collapse
Affiliation(s)
- Jingjing Dong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yanli Wang
- College of Food Sciences and Engineering, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Ying Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qin Wang
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, Shandong 264003, China
| | - Bo Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaoxiao Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuxiang Bai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
2
|
Dong J, Bai Y, Wang Q, Chen Q, Li X, Wang Y, Ji H, Meng X, Pijning T, Svensson B, Dijkhuizen L, Abou Hachem M, Jin Z. Insights into the Structure-Function Relationship of GH70 GtfB α-Glucanotransferases from the Crystal Structure and Molecular Dynamic Simulation of a Newly Characterized Limosilactobacillus reuteri N1 GtfB Enzyme. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5391-5402. [PMID: 38427803 DOI: 10.1021/acs.jafc.4c00104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
α-Glucanotransferases of the CAZy family GH70 convert starch-derived donors to industrially important α-glucans. Here, we describe characteristics of a novel GtfB-type 4,6-α-glucanotransferase of high enzyme activity (60.8 U mg-1) from Limosilactobacillus reuteri N1 (LrN1 GtfB), which produces surprisingly large quantities of soluble protein in heterologous expression (173 mg pure protein per L of culture) and synthesizes the reuteran-like α-glucan with (α1 → 6) linkages in linear chains and branch points. Protein structural analysis of LrN1 GtfB revealed the potential crucial residues at subsites -2∼+2, particularly H265, Y214, and R302, in the active center as well as previously unidentified surface binding sites. Furthermore, molecular dynamic simulations have provided unprecedented insights into linkage specificity hallmarks of the enzyme. Therefore, LrN1 GtfB represents a potent enzymatic tool for starch conversion, and this study promotes our knowledge on the structure-function relationship of GH70 GtfB α-glucanotransferases, which might facilitate the production of tailored α-glucans by enzyme engineering in future.
Collapse
Affiliation(s)
- Jingjing Dong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuxiang Bai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qin Wang
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, Shandong 264003, China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaoxiao Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yanli Wang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Hangyan Ji
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiangfeng Meng
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan 250100, China
| | - Tjaard Pijning
- Biomolecular X-ray Crystallography, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, 9747 AG Groningen, The Netherlands
| | - Birte Svensson
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Lubbert Dijkhuizen
- Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, 9747 AG Groningen, The Netherlands
- CarbExplore Research BV, 9747 AA Groningen, The Netherlands
| | - Maher Abou Hachem
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
3
|
Gänzle MG, Qiao N, Bechtner J. The quest for the perfect loaf of sourdough bread continues: Novel developments for selection of sourdough starter cultures. Int J Food Microbiol 2023; 407:110421. [PMID: 37806010 DOI: 10.1016/j.ijfoodmicro.2023.110421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/17/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023]
Abstract
Sourdough fermentation, one of the oldest unit operations in food production, is currently experiencing a revival in bread production at the household, artisanal, and the industrial level. The expanding use of sourdough fermentation in bread production and the adaptation of fermentation to large scale industrial bread production also necessitate the development of novel starter cultures. Developments in the last years also have expanded the tools that are used to assess the metabolic potential of specific strains, species or genera of the Lactobacillaceae and have identified multiple ecological and metabolic traits as clade-specific. This review aims to provide an overview on the clade-specific metabolic potential of members of the Lactobacillaceae for use in sourdough baking, and the impact of these clade-specific traits on bread quality. Emphasis is placed on carbohydrate metabolism, including the conversion of sucrose and starch to soluble polysaccharides, conversion of amino acids, and the metabolism of organic acids. The current state of knowledge to compose multi-strain starter cultures (synthetic microbial communities) that are suitable for back-slopping will also be discussed. Taken together, the communication outlines the current tools for selection of microbes for use in sourdough baking.
Collapse
Affiliation(s)
- Michael G Gänzle
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Canada.
| | - Nanzhen Qiao
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Canada
| | - Julia Bechtner
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Canada
| |
Collapse
|
4
|
Wang G, Xie L, Huang Z, Xie J. Recent advances in polysaccharide biomodification by microbial fermentation: production, properties, bioactivities, and mechanisms. Crit Rev Food Sci Nutr 2023:1-25. [PMID: 37740706 DOI: 10.1080/10408398.2023.2259461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Polysaccharides are natural chemical compounds that are extensively employed in the food and pharmaceutical industries. They exhibit a wide range of physical and biological properties. These properties are commonly improved by using chemical and physical methods. However, with the advancement of biotechnology and increased demand for green, clean, and safe products, polysaccharide modification via microbial fermentation has gained importance in improving their physicochemical and biological activities. The physicochemical and structural characteristics, biological activity, and modification mechanisms of microbially fermented polysaccharides were reviewed and summarized in this study. Polysaccharide modifications were categorized and discussed in terms of strains and fermentation techniques. The effects of microbial fermentation on the physicochemical characteristics of polysaccharides were highlighted. The impact of modification of polysaccharides on their antioxidant, immune, hypoglycemic, and other activities, as well as probiotic digestive enhancement, were also discussed. Finally, we investigated a potential enzyme-based process for polysaccharide modification via microbial fermentation. Modification of polysaccharides via microbial fermentation has significant value and application potential.
Collapse
Affiliation(s)
- Gang Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Liuming Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Zhibing Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| |
Collapse
|
5
|
Liu Y, Wu Y, Ji H, Li X, Jin Z, Svensson B, Bai Y. Cost-effective and controllable synthesis of isomalto/malto-polysaccharides from β-cyclodextrin by combined action of cyclodextrinase and 4,6-α-glucanotransferase GtfB. Carbohydr Polym 2023; 310:120716. [PMID: 36925243 DOI: 10.1016/j.carbpol.2023.120716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/27/2023] [Accepted: 02/14/2023] [Indexed: 02/21/2023]
Abstract
Isomalto/malto-polysaccharides (IMMPs) derived from malto-oligosaccharides such as maltoheptaose (G7) are elongated non-branched gluco-oligosaccharides produced by 4,6-α-glucanotransferase (GtfB). However, G7 is expensive and cumbersome to produce commercially. In this study, a cost-effective enzymatic process for IMMPs synthesis is developed that utilizes the combined action of cyclodextrinase from Palaeococcus pacificus (PpCD) and GtfB-ΔN from Limosilactobacillus reuteri 121 to convert β-cyclodextrin into IMMPs with a maximum yield (16.19 %, w/w). The purified IMMPs synthesized by simultaneous or sequential treatments, designated as IMMP-Sim and IMMP-Seq, possess relatively high contents of α-(1 → 6) glucosidic linkages. By controlling the release of G7 and smaller malto-oligosaccharides by PpCD, IMMP-Seq was obtained of DP varying from 12.9 to 29.5. Enzymatic fingerprinting revealed different linkage-type distribution of α-(1 → 6) linked segments with α-(1 → 4) segments embedded at the reducing end and middle part. The proportion of α-(1 → 6) segments containing the non-reducing end was 56.76 % for IMMP-Sim but 28.98 % for IMMP-Seq. Addition of G3 or G4 as specific acceptors resulted in IMMPs exhibiting low polydispersity. This procedure can be applied as a novel bioprocess that does not require costy high-purity malto-oligosaccharides and with control of the average DP of IMMPs by adjusting the substrate composition.
Collapse
Affiliation(s)
- Yixi Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Starch Related Enzyme at Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yazhen Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Starch Related Enzyme at Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hangyan Ji
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Starch Related Enzyme at Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaoxiao Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Starch Related Enzyme at Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Starch Related Enzyme at Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Birte Svensson
- International Joint Research Laboratory for Starch Related Enzyme at Jiangnan University, Wuxi, Jiangsu 214122, China; Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Yuxiang Bai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Starch Related Enzyme at Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
6
|
Li X, Jiang T, Wang Y, Dong J, Jin Z, Bai Y. Exploring the roles of amylopectin in starch modification with Limosilactobacillus reuteri 121 4,6-α-glucanotransferase via developed methods. Int J Biol Macromol 2023:125040. [PMID: 37230441 DOI: 10.1016/j.ijbiomac.2023.125040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/20/2023] [Accepted: 05/21/2023] [Indexed: 05/27/2023]
Abstract
Limosilactobacillus reuteri 121 4,6-α-glucanotransferase (GtfBΔN) modifies starch by cleaving (α1 → 4) linkages and introducing non-branched (α1 → 6) linkages to produce functional starch derivatives. Research has mainly focused on GtfBΔN converting amylose (linear substrate), whereas the conversion of amylopectin (branched substrate) has not been studied in detail. In this study, we used GtfBΔN to understand amylopectin modification and performed a set of experiments to analyze this modification pattern. The donor substrates were segments from the non-reducing ends to the nearest branch point in amylopectin as shown from the results of the chain length distribution of GtfBΔN-modified starches. Decreased and increased contents of β-limit dextrin and reducing sugars, respectively, during the incubation of β-limit dextrin with GtfBΔN indicated that the segments from the reducing end to the nearest branch point in amylopectin act as donor substrates. Dextranase was involved in the hydrolysis of the GtfBΔN conversion products of three different substrates groups, maltohexaose (G6), amylopectin, and G6 plus amylopectin. No reducing sugars were detected, therefore, amylopectin was not used as an acceptor substrate, and no non-branched (α1 → 6) linkages were introduced into it. Thus, these methods provide a reasonable and effective approach to studying GtfB-like 4,6-α-glucanotransferase in analyzing the roles and contribution of branched substrates.
Collapse
Affiliation(s)
- Xiaoxiao Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tong Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yu Wang
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Jingjing Dong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuxiang Bai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
7
|
Jiang Y, Li X, Pijning T, Bai Y, Dijkhuizen L. Mutations in Amino Acid Residues of Limosilactobacillus reuteri 121 GtfB 4,6-α-Glucanotransferase that Affect Reaction and Product Specificity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1952-1961. [PMID: 35129339 DOI: 10.1021/acs.jafc.1c07618] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Limosilactobacillus reuteri 121 4,6-α-glucanotransferase (Lr121 4,6-α-GTase), belonging to the glycosyl hydrolase (GH) 70 GtfB subfamily, converts starch and maltodextrins into linear isomalto/malto polysaccharides (IMMPs) with consecutive (α1 → 6) linkages. The recent elucidation of its crystal structure allowed identification and analysis of further structural features that determine its reaction and product specificity. Herein, sequence alignments between GtfB enzymes with different product linkage specificities (4,6-α-GTase and 4,3-α-GTase) identified amino acid residues in GH70 homology motifs, which may be critical for reaction and product specificity. Based on these alignments, four Lr121 GtfB-ΔN mutants (I1020M, S1057P, H1056G, and Q1126I) were constructed. Compared to wild-type Lr121 GtfB-ΔN, mutants S1057P and Q1126I had considerably improved catalytic efficiencies. Mutants H1056G and Q1126I showed a 9% decrease and an 11% increase, respectively, in the ratio of (α1 → 6) over (α1 → 4) linkages in maltodextrin-derived products. A change in linkage type (e.g., (α1 → 6) linkages to (α1 → 3) linkages) was not observed. The possible functional roles of these Lr121 GtfB-ΔN residues located around the acceptor substrate-binding subsites are discussed. The results provide new insights into structural determinants of the reaction and product specificity of Lr121 GtfB 4,6-α-GTase.
Collapse
Affiliation(s)
- Yawen Jiang
- State Key laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, Jiangsu Province, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Xiaoxiao Li
- State Key laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, Jiangsu Province, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Tjaard Pijning
- Biomolecular X-ray Crystallography, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, 9747 AG Groningen, The Netherlands
| | - Yuxiang Bai
- State Key laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, Jiangsu Province, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Lubbert Dijkhuizen
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, 9747 AG Groningen, The Netherlands
- CarbExplore Research B.V., 9747 AA Groningen, The Netherlands
| |
Collapse
|
8
|
Ryu JJ, Li X, Lee ES, Li D, Lee BH. Slowly digestible property of highly branched α-limit dextrins produced by 4,6-α-glucanotransferase from Streptococcus thermophilus evaluated in vitro and in vivo. Carbohydr Polym 2022; 275:118685. [PMID: 34742415 DOI: 10.1016/j.carbpol.2021.118685] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/16/2021] [Accepted: 09/16/2021] [Indexed: 11/02/2022]
Abstract
Starch molecules are first degraded to slowly digestible α-limit dextrins (α-LDx) and rapidly hydrolyzable linear malto-oligosaccharides (LMOs) by salivary and pancreatic α-amylases. In this study, we designed a slowly digestible highly branched α-LDx with maximized α-1,6 linkages using 4,6-α-glucanotransferase (4,6-αGT), which creates a short length of α-1,4 side chains with increasing branching points. The results showed that a short length of external chains mainly composed of 1-8 glucosyl units was newly synthesized in different amylose contents of corn starches, and the α-1,6 linkage ratio of branched α-LDx after the chromatographical purification was significantly increased from 4.6% to 22.1%. Both in vitro and in vivo studies confirmed that enzymatically modified α-LDx had improved slowly digestible properties and extended glycemic responses. Therefore, 4,6-αGT treatment enhanced the slowly digestible properties of highly branched α-LDx and promises usefulness as a functional ingredient to attenuate postprandial glucose homeostasis.
Collapse
Affiliation(s)
- Jae-Jin Ryu
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - Xiaolei Li
- Key Laboratory of Agro-products Processing Technology at Jilin Provincial Universities, Education Department of Jilin Provincial Government, Changchun University, Changchun 130022, People's Republic of China
| | - Eun-Sook Lee
- Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Dan Li
- Key Laboratory of Agro-products Processing Technology at Jilin Provincial Universities, Education Department of Jilin Provincial Government, Changchun University, Changchun 130022, People's Republic of China
| | - Byung-Hoo Lee
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea.
| |
Collapse
|
9
|
Pijning T, Gangoiti J, te Poele EM, Börner T, Dijkhuizen L. Insights into Broad-Specificity Starch Modification from the Crystal Structure of Limosilactobacillus Reuteri NCC 2613 4,6-α-Glucanotransferase GtfB. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13235-13245. [PMID: 34708648 PMCID: PMC8587608 DOI: 10.1021/acs.jafc.1c05657] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 05/31/2023]
Abstract
GtfB-type α-glucanotransferase enzymes from glycoside hydrolase family 70 (GH70) convert starch substrates into α-glucans that are of interest as food ingredients with a low glycemic index. Characterization of several GtfBs showed that they differ in product- and substrate specificity, especially with regard to branching, but structural information is limited to a single GtfB, preferring mostly linear starches and featuring a tunneled binding groove. Here, we present the second crystal structure of a 4,6-α-glucanotransferase (Limosilactobacillus reuteri NCC 2613) and an improved homology model of a 4,3-α-glucanotransferase GtfB (L. fermentum NCC 2970) and show that they are able to convert both linear and branched starch substrates. Compared to the previously described GtfB structure, these two enzymes feature a much more open binding groove, reminiscent of and evolutionary closer to starch-converting GH13 α-amylases. Sequence analysis of 287 putative GtfBs suggests that only 20% of them are similarly "open" and thus suitable as broad-specificity starch-converting enzymes.
Collapse
Affiliation(s)
- Tjaard Pijning
- Biomolecular
X-ray Crystallography, Groningen Biomolecular Sciences and Biotechnology
Institute (GBB), University of Groningen, Nijenborgh 7, Groningen 9747 AG, The
Netherlands
| | - Joana Gangoiti
- Microbial
Physiology, Groningen Biomolecular Sciences and Biotechnology Institute
(GBB), University of Groningen, Nijenborgh 7, Groningen 9747 AG, The
Netherlands
| | - Evelien M. te Poele
- Microbial
Physiology, Groningen Biomolecular Sciences and Biotechnology Institute
(GBB), University of Groningen, Nijenborgh 7, Groningen 9747 AG, The
Netherlands
- CarbExplore
Research B.V., Zernikelaan
8, Groningen 9747 AA, The Netherlands
| | - Tim Börner
- Nestlé
Research, Société des Produits Nestlé SA, Route du Jorat 57, 1000 Lausanne, Switzerland
| | - Lubbert Dijkhuizen
- Microbial
Physiology, Groningen Biomolecular Sciences and Biotechnology Institute
(GBB), University of Groningen, Nijenborgh 7, Groningen 9747 AG, The
Netherlands
- CarbExplore
Research B.V., Zernikelaan
8, Groningen 9747 AA, The Netherlands
| |
Collapse
|
10
|
Logtenberg MJ, Akkerman R, Hobé RG, Donners KMH, Van Leeuwen SS, Hermes GDA, de Haan BJ, Faas MM, Buwalda PL, Zoetendal EG, de Vos P, Schols HA. Structure-Specific Fermentation of Galacto-Oligosaccharides, Isomalto-Oligosaccharides and Isomalto/Malto-Polysaccharides by Infant Fecal Microbiota and Impact on Dendritic Cell Cytokine Responses. Mol Nutr Food Res 2021; 65:e2001077. [PMID: 34060703 PMCID: PMC8459273 DOI: 10.1002/mnfr.202001077] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/18/2021] [Indexed: 12/23/2022]
Abstract
SCOPE Next to galacto-oligosaccharides (GOS), starch-derived isomalto-oligosaccharide preparation (IMO) and isomalto/malto-polysaccharides (IMMP) could potentially be used as prebiotics in infant formulas. However, it remains largely unknown how the specific molecular structures of these non-digestible carbohydrates (NDCs) impact fermentability and immune responses in infants. METHODS AND RESULTS In vitro fermentation of GOS, IMO and IMMP using infant fecal inoculum of 2- and 8-week-old infants shows that only GOS and IMO are fermented by infant fecal microbiota. The degradation of GOS and IMO coincides with an increase in Bifidobacterium and production of acetate and lactate, which is more pronounced with GOS. Individual isomers with an (1↔1)-linkage or di-substituted reducing terminal glucose residue are more resistant to fermentation. GOS, IMO, and IMMP fermentation digesta attenuates cytokine profiles in immature dendritic cells (DCs), but the extent is dependent on the infants age and NDC structure. CONCLUSION The IMO preparation, containing reducing and non-reducing isomers, shows similar fermentation patterns as GOS in fecal microbiota of 2-week-old infants. Knowledge obtained on the substrate specificities of infant fecal microbiota and the subsequent regulatory effects of GOS, IMO and IMMP on DC responses might contribute to the design of tailored NDC mixtures for infants of different age groups.
Collapse
Affiliation(s)
- Madelon J. Logtenberg
- Laboratory of Food ChemistryWageningen University & ResearchBornse Weilanden 9Wageningen6708 WGThe Netherlands
| | - Renate Akkerman
- ImmunoendocrinologyDivision of Medical BiologyDepartment of Pathology and Medical BiologyUniversity of Groningen and University Medical Centre GroningenGroningenThe Netherlands
| | - Rosan G. Hobé
- Laboratory of Food ChemistryWageningen University & ResearchBornse Weilanden 9Wageningen6708 WGThe Netherlands
| | - Kristel M. H. Donners
- Laboratory of Food ChemistryWageningen University & ResearchBornse Weilanden 9Wageningen6708 WGThe Netherlands
| | - Sander S. Van Leeuwen
- Cluster Human Nutrition & HealthDepartment of Laboratory MedicineUniversity Medical Center GroningenGroningenThe Netherlands
| | - Gerben D. A. Hermes
- Laboratory of MicrobiologyWageningen University & ResearchWageningenThe Netherlands
| | - Bart J. de Haan
- ImmunoendocrinologyDivision of Medical BiologyDepartment of Pathology and Medical BiologyUniversity of Groningen and University Medical Centre GroningenGroningenThe Netherlands
| | - Marijke M. Faas
- ImmunoendocrinologyDivision of Medical BiologyDepartment of Pathology and Medical BiologyUniversity of Groningen and University Medical Centre GroningenGroningenThe Netherlands
| | - Piet L. Buwalda
- Biobased Chemistry and TechnologyWageningen University & ResearchWageningenThe Netherlands
- Avebe Innovation CenterGroningenThe Netherlands
| | - Erwin G. Zoetendal
- Laboratory of MicrobiologyWageningen University & ResearchWageningenThe Netherlands
| | - Paul de Vos
- ImmunoendocrinologyDivision of Medical BiologyDepartment of Pathology and Medical BiologyUniversity of Groningen and University Medical Centre GroningenGroningenThe Netherlands
| | - Henk A. Schols
- Laboratory of Food ChemistryWageningen University & ResearchBornse Weilanden 9Wageningen6708 WGThe Netherlands
| |
Collapse
|
11
|
Quinoa Flour, the Germinated Grain Flour, and Sourdough as Alternative Sources for Gluten-Free Bread Formulation: Impact on Chemical, Textural and Sensorial Characteristics. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7030115] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The demand for gluten-free breads has increased in the last years, but important quality and nutritional challenges remain unsolved. This research evaluated the addition of quinoa in whole quinoa grain flour, germinated quinoa flour, and quinoa sourdough, as a functional ingredient in the formulation of a rice flour-based bread. Twenty percent (w/w) of the rice flour was replaced with quinoa flour alternatives in bread formulations. The chemical composition, shelf-life, and sensory attributes of the rice-quinoa breads were analyzed. The addition of quinoa in sourdough resulted in breads with a significantly improved protein content at 9.82%, relative to 2.70% in the control breads. The amino acid content in quinoa sourdough breads also was also 5.2, 4.4, 2.6, 3.0, and 2.1 times higher in arginine, glutamic acid, leucine, lysine, and phenylalanine, respectively, relative to control breads with rice flour only. The addition of quinoa sourdough in rice breads also improved the texture, color, and shelf-life (up to 6 days), and thus they became moderately accepted among consumers. Although the germinated quinoa flour addition also resulted in a higher protein (9.77%) and amino acid content, they had a reduced shelf-life (4 days). Similarly, the addition of quinoa flour resulted in a higher protein content (9.61%), but the breads had poor texture attributes and were the least preferred by the consumers.
Collapse
|
12
|
Abstract
Opportunistic feeding and multiple other environment factors can modulate the gut microbiome, and bias conclusions, when wild animals are used for studying the influence of phylogeny and diet on their gut microbiomes. Here, we controlled for these other confounding factors in our investigation of the magnitude of the effect of diet on the gut microbiome assemblies of nonpasserine birds. We collected fecal samples, at one point in time, from 35 species of birds in a single zoo as well as 6 species of domestic poultry from farms in Guangzhou city to minimize the influences from interfering factors. Specifically, we describe 16S rRNA amplicon data from 129 fecal samples obtained from 41 species of birds, with additional shotgun metagenomic sequencing data generated from 16 of these individuals. Our data show that diets containing native starch increase the abundance of Lactobacillus in the gut microbiome, while those containing plant-derived fiber mainly enrich the level of Clostridium Greater numbers of Fusobacteria and Proteobacteria are detected in carnivorous birds, while in birds fed a commercial corn-soybean basal diet, a stronger inner-connected microbial community containing Clostridia and Bacteroidia was enriched. Furthermore, the metagenome functions of the microbes (such as lipid metabolism and amino acid synthesis) were adapted to the different food types to achieve a beneficial state for the host. In conclusion, the covariation of diet and gut microbiome identified in our study demonstrates a modulation of the gut microbiome by dietary diversity and helps us better understand how birds live based on diet-microbiome-host interactions.IMPORTANCE Our study identified food source, rather than host phylogeny, as the main factor modulating the gut microbiome diversity of nonpasserine birds, after minimizing the effects of other complex interfering factors such as weather, season, and geography. Adaptive evolution of microbes to food types formed a dietary-microbiome-host interaction reciprocal state. The covariation of diet and gut microbiome, including the response of microbiota assembly to diet in structure and function, is important for health and nutrition in animals. Our findings help resolve the major modulators of gut microbiome diversity in nonpasserine birds, which had not previously been well studied. The diet-microbe interactions and cooccurrence patterns identified in our study may be of special interest for future health assessment and conservation in birds.
Collapse
|
13
|
Münkel F, Fischer A, Wefers D. Structural characterization of mixed-linkage α-glucans produced by mutants of Lactobacillus reuteri TMW 1.106 dextransucrase. Carbohydr Polym 2020; 231:115697. [PMID: 31888841 DOI: 10.1016/j.carbpol.2019.115697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/28/2019] [Accepted: 11/28/2019] [Indexed: 11/29/2022]
Abstract
Dextrans and other bacterial α-glucans are versatile and structurally diverse polysaccharides which can be enzymatically synthesized by using glucansucrases. By substituting certain amino acids in the active site of these enzymes, the structure of the synthesized polysaccharides can be modified. In this study, such amino acid substitutions were applied (single and combined) to the dextransucrase from Lactobacillus reuteri TMW 1.106 and the structures of the synthesized polysaccharides were subsequently characterized in detail. Besides methylation analysis, α-glucans were hydrolyzed by several glycoside hydrolases and the liberated oligosaccharides were identified by comparison to standard compounds or by isolation and NMR spectroscopic characterization. Furthermore, two-dimensional NMR spectroscopy was used to analyze the untreated polysaccharides. The results demonstrated that structurally different α-glucans were formed, for example different highly O4-branched dextrans or several reuteran-like polymers with varying fine structures. Consequently, mutant Lactobacillus reuteri TMW 1.106 dextransucrases can be used to form structurally unique polysaccharides.
Collapse
Affiliation(s)
- Franziska Münkel
- Department of Food Chemistry and Phytochemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany
| | - Anja Fischer
- Department of Food Chemistry and Phytochemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany
| | - Daniel Wefers
- Department of Food Chemistry and Phytochemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany.
| |
Collapse
|
14
|
Pham H, Pijning T, Dijkhuizen L, van Leeuwen SS. Mutational Analysis of the Role of the Glucansucrase Gtf180-ΔN Active Site Residues in Product and Linkage Specificity with Lactose as Acceptor Substrate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12544-12554. [PMID: 30396274 PMCID: PMC6328278 DOI: 10.1021/acs.jafc.8b04486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 06/08/2023]
Abstract
Glucansucrase Gtf180-ΔN from Lactobacillus reuteri uses lactose as acceptor substrate to synthesize five glucosylated lactose molecules (F1-F5) with a degree of polymerization (DP) of 3-4 (GL34) and with (α1→2)/(α1→3)/(α1→4) glycosidic linkages. Q1140/W1065/N1029 mutations significantly changed the GL34 product ratios. Q1140 mutations clearly decreased F3 3'-glc-lac with an (α1→3) linkage and increased F4 4',2-glc-lac with (α1→4)/(α1→2) linkages. Formation of F2 2-glc-lac with an (α1→2) linkage and F4 was negatively affected in most W1065 and N1029 mutants, respectively. Mutant N1029G synthesized four new products with additional (α1→3)-linked glucosyl moieties (2xDP4 and 2xDP5). Sucrose/lactose strongly reduced Gtf180-ΔN hydrolytic activity and increased transferase activity of Gtf180-ΔN and mutant N1029G, in comparison to activity with sucrose alone. N1029/W1065/Q1140 thus are key determinants of Gtf180-ΔN linkage and product specificity in the acceptor reaction with lactose. Mutagenesis of key residues in Gtf180-ΔN may allow synthesis of tailor-made mixtures of novel lactose-derived oligosaccharides with potential applications as prebiotic compounds in food/feed and in pharmacy/medicine.
Collapse
Affiliation(s)
- Hien Pham
- Microbial
Physiology, Groningen Biomolecular Sciences and Biotechnology Institute
(GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Tjaard Pijning
- Biophysical
Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute
(GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Lubbert Dijkhuizen
- Microbial
Physiology, Groningen Biomolecular Sciences and Biotechnology Institute
(GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Sander S. van Leeuwen
- Microbial
Physiology, Groningen Biomolecular Sciences and Biotechnology Institute
(GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
15
|
Pham HTT, Boger MCL, Dijkhuizen L, van Leeuwen SS. Stimulatory effects of novel glucosylated lactose derivatives GL34 on growth of selected gut bacteria. Appl Microbiol Biotechnol 2018; 103:707-718. [PMID: 30406451 PMCID: PMC6373440 DOI: 10.1007/s00253-018-9473-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 12/11/2022]
Abstract
Previously we structurally characterized five glucosylated lactose derivatives (F1-F5) with a degree of polymerization (DP) of 3-4 (GL34), products of Lactobacillus reuteri glucansucrases, with lactose and sucrose as substrates. Here, we show that these GL34 compounds are largely resistant to the hydrolytic activities of common carbohydrate-degrading enzymes. Also, the ability of single strains of gut bacteria, bifidobacteria, lactobacilli, and commensal bacteria, to ferment the GL34 compounds was studied. Bifidobacteria clearly grew better on the GL34 mixture than lactobacilli and commensal bacteria. Lactobacilli and the commensal bacteria Escherichia coli Nissle and Bacteroides thetaiotaomicron only degraded the F2 compound α-D-Glcp-(1 → 2)-[β-D-Galp-(1 → 4)-]D-Glcp, constituting around 30% w/w of GL34. Bifidobacteria digested more than one compound from the GL34 mixture, varying with the specific strain tested. Bifidobacterium adolescentis was most effective, completely degrading four of the five GL34 compounds, leaving only one minor constituent. GL34 thus represents a novel oligosaccharide mixture with (potential) synbiotic properties towards B. adolescentis, synthesized from cheap and abundantly available lactose and sucrose.
Collapse
Affiliation(s)
- Hien T T Pham
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Markus C L Boger
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Lubbert Dijkhuizen
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands. .,CarbExplore Research B.V, Zernikepark 12, 9747 AN, Groningen, The Netherlands.
| | - Sander S van Leeuwen
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.,Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ, Groningen, The Netherlands
| |
Collapse
|
16
|
|
17
|
Miao M, Jiang B, Jin Z, BeMiller JN. Microbial Starch-Converting Enzymes: Recent Insights and Perspectives. Compr Rev Food Sci Food Saf 2018; 17:1238-1260. [PMID: 33350152 DOI: 10.1111/1541-4337.12381] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/28/2018] [Accepted: 07/02/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Ming Miao
- State Key Laboratory of Food Science & Technology; Jiangnan Univ.; 1800 Lihu Ave. Wuxi Jiangsu 214122 P. R. China
| | - Bo Jiang
- State Key Laboratory of Food Science & Technology; Jiangnan Univ.; 1800 Lihu Ave. Wuxi Jiangsu 214122 P. R. China
| | - Zhengyu Jin
- State Key Laboratory of Food Science & Technology; Jiangnan Univ.; 1800 Lihu Ave. Wuxi Jiangsu 214122 P. R. China
| | - James N. BeMiller
- State Key Laboratory of Food Science & Technology; Jiangnan Univ.; 1800 Lihu Ave. Wuxi Jiangsu 214122 P. R. China
- Dept. of Food Science; Whistler Center for Carbohydrate Research, Purdue Univ.; 745 Agriculture Mall Drive West Lafayette IN 47907-2009 U.S.A
| |
Collapse
|
18
|
Isomalto/malto-polysaccharide structure in relation to the structural properties of starch substrates. Carbohydr Polym 2018; 185:179-186. [DOI: 10.1016/j.carbpol.2017.11.072] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/15/2017] [Accepted: 11/20/2017] [Indexed: 12/11/2022]
|
19
|
Lynch KM, Zannini E, Coffey A, Arendt EK. Lactic Acid Bacteria Exopolysaccharides in Foods and Beverages: Isolation, Properties, Characterization, and Health Benefits. Annu Rev Food Sci Technol 2018; 9:155-176. [DOI: 10.1146/annurev-food-030117-012537] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kieran M. Lynch
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Emanuele Zannini
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Aidan Coffey
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland
| | - Elke K. Arendt
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| |
Collapse
|
20
|
Gangoiti J, Pijning T, Dijkhuizen L. Biotechnological potential of novel glycoside hydrolase family 70 enzymes synthesizing α-glucans from starch and sucrose. Biotechnol Adv 2017; 36:196-207. [PMID: 29133008 DOI: 10.1016/j.biotechadv.2017.11.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 10/24/2017] [Accepted: 11/06/2017] [Indexed: 11/18/2022]
Abstract
Transglucosidases belonging to the glycoside hydrolase (GH) family 70 are promising enzymatic tools for the synthesis of α-glucans with defined structures from renewable sucrose and starch substrates. Depending on the GH70 enzyme specificity, α-glucans with different structures and physicochemical properties are produced, which have found diverse (potential) commercial applications, e.g. in food, health and as biomaterials. Originally, the GH70 family was established only for glucansucrase enzymes of lactic acid bacteria that catalyze the synthesis of α-glucan polymers from sucrose. In recent years, we have identified 3 novel subfamilies of GH70 enzymes (designated GtfB, GtfC and GtfD), inactive on sucrose but converting starch/maltodextrin substrates into novel α-glucans. These novel starch-acting enzymes considerably enlarge the panel of α-glucans that can be produced. They also represent very interesting evolutionary intermediates between sucrose-acting GH70 glucansucrases and starch-acting GH13 α-amylases. Here we provide an overview of the repertoire of GH70 enzymes currently available with focus on these novel starch-acting GH70 enzymes and their biotechnological potential. Moreover, we discuss key developments in the understanding of structure-function relationships of GH70 enzymes in the light of available three-dimensional structures, and the protein engineering strategies that were recently applied to expand their natural product specificities.
Collapse
Affiliation(s)
- Joana Gangoiti
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Tjaard Pijning
- Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Lubbert Dijkhuizen
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
21
|
Xia L, Bai Y, Mu W, Wang J, Xu X, Jin Z. Efficient Synthesis of Glucosyl-β-Cyclodextrin from Maltodextrins by Combined Action of Cyclodextrin Glucosyltransferase and Amyloglucosidase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:6023-6029. [PMID: 28660762 DOI: 10.1021/acs.jafc.7b02079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Instead of β-cyclodextrin (β-CD), branched β-CDs have been increasingly used in many aspects as they possess better solubility and higher bioadaptability. But most commercialized branched β-CDs were chemically synthesized. Thus, the glucosyl-β-cyclodextrin (G1-β-CD) prepared via enzymatic approach could be a nice substitute. However, the yield of G1-β-CD was low. Here, we reported a controlled two-step reaction to efficiently prepare G1-β-CD from maltodextrins by β-cyclodextrin glucosyltransferase (β-CGTase) and amyloglucosidase (AG). Compared to the single β-CGTase reaction, controlled two-step reaction caused a yield increase of G1-β-CD by 130%. Additionally, the percentage of G1-β-CD was enhanced from 2.4% to 24.0% and the side products α-CD and γ-CD were hydrolyzed because of the coupling activity of β-CGTase. Thus, this controlled two-step reaction might be an efficient approach for industrial production of pure G1-β-CD.
Collapse
Affiliation(s)
- Liuxi Xia
- State Key laboratory of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu Province 214122, China
- School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu Province 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University , Wuxi, Jiangsu Province 214122, China
| | - Yuxiang Bai
- State Key laboratory of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu Province 214122, China
- School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu Province 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University , Wuxi, Jiangsu Province 214122, China
| | - Wanmeng Mu
- State Key laboratory of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu Province 214122, China
| | - Jinpeng Wang
- State Key laboratory of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu Province 214122, China
- School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu Province 214122, China
| | - Xueming Xu
- State Key laboratory of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu Province 214122, China
- School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu Province 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University , Wuxi, Jiangsu Province 214122, China
| | - Zhengyu Jin
- State Key laboratory of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu Province 214122, China
- School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu Province 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University , Wuxi, Jiangsu Province 214122, China
| |
Collapse
|
22
|
Sawale PD, Shendurse AM, Mohan MS, Patil G. Isomaltulose (Palatinose) – An emerging carbohydrate. FOOD BIOSCI 2017. [DOI: 10.1016/j.fbio.2017.04.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Bai Y, Gangoiti J, Dijkstra BW, Dijkhuizen L, Pijning T. Crystal Structure of 4,6-α-Glucanotransferase Supports Diet-Driven Evolution of GH70 Enzymes from α-Amylases in Oral Bacteria. Structure 2017; 25:231-242. [DOI: 10.1016/j.str.2016.11.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/03/2016] [Accepted: 11/28/2016] [Indexed: 10/20/2022]
|
24
|
4,3-α-Glucanotransferase, a novel reaction specificity in glycoside hydrolase family 70 and clan GH-H. Sci Rep 2017; 7:39761. [PMID: 28059108 PMCID: PMC5216370 DOI: 10.1038/srep39761] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/25/2016] [Indexed: 12/11/2022] Open
Abstract
Lactic acid bacteria possess a diversity of glucansucrase (GS) enzymes that belong to glycoside hydrolase family 70 (GH70) and convert sucrose into α-glucan polysaccharides with (α1 → 2)-, (α1 → 3)-, (α1 → 4)- and/or (α1 → 6)-glycosidic bonds. In recent years 3 novel subfamilies of GH70 enzymes, inactive on sucrose but using maltodextrins/starch as substrates, have been established (e.g. GtfB of Lactobacillus reuteri 121). Compared to the broad linkage specificity found in GSs, all GH70 starch-acting enzymes characterized so far possess 4,6-α-glucanotransferase activity, cleaving (α1 → 4)-linkages and synthesizing new (α1 → 6)-linkages. In this work a gene encoding a putative GH70 family enzyme was identified in the genome of Lactobacillus fermentum NCC 2970, displaying high sequence identity with L. reuteri 121 GtfB 4,6-α-glucanotransferase, but also with unique variations in some substrate-binding residues of GSs. Characterization of this L. fermentum GtfB and its products revealed that it acts as a 4,3-α-glucanotransferase, converting amylose into a new type of α-glucan with alternating (α1 → 3)/(α 1 → 4)-linkages and with (α1 → 3,4) branching points. The discovery of this novel reaction specificity in GH70 family and clan GH-H expands the range of α-glucans that can be synthesized and allows the identification of key positions governing the linkage specificity within the active site of the GtfB-like GH70 subfamily of enzymes.
Collapse
|
25
|
Structural basis for the roles of starch and sucrose in homo-exopolysaccharide formation by Lactobacillus reuteri 35-5. Carbohydr Polym 2016; 151:29-39. [DOI: 10.1016/j.carbpol.2016.05.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 05/12/2016] [Accepted: 05/15/2016] [Indexed: 12/22/2022]
|