1
|
Ho TY, Lo HY, Lu GL, Lin CY, Stevens ML, Chen CC, Hsiang CY. Screening and rational identification of a novel angiotensin-converting enzyme C-domain inhibitory peptide from Fabaceae food peptide library. Food Chem 2024; 452:139540. [PMID: 38723570 DOI: 10.1016/j.foodchem.2024.139540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/10/2024] [Accepted: 04/30/2024] [Indexed: 06/01/2024]
Abstract
Angiotensin-converting enzyme (ACE), consisting of N-domain and C-domain, is a key regulator of blood pressure. The use of cACE-specific inhibitors helps minimize side effects in clinical applications. Legumes are a good source of proteins containing ACE inhibitory peptides; however, no studies have reported the identification of cACE-specific inhibitory peptides from Fabaceae. In this study, thermal hydrolysates from seeds, sprouts, pods, seedlings, and flowers of legumes were analyzed. Flowers of legumes exhibited a C-domain-preference ACE inhibition and anti-hypertensive effect in rats. Screening the legume peptide library identified a novel cACE inhibitory peptide, SJ-1. This study reported the first identification of cACE inhibitory peptide from Fabaceae foods. SJ-1, identified from the legume flowers, interacted with active site residues of cACE, leading to the inhibition of ACE activity, downregulation of bradykinin levels, and reduction of blood pressure. These findings also suggested the potential of legume proteins as a source of cACE inhibitory peptides.
Collapse
Affiliation(s)
- Tin-Yun Ho
- Graduate Institute of Chinese Medicine, China Medical University, Taichung 404328, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung 413305, Taiwan
| | - Hsin-Yi Lo
- Graduate Institute of Chinese Medicine, China Medical University, Taichung 404328, Taiwan
| | - Guan-Ling Lu
- School of Medicine, China Medical University, Taichung 404328, Taiwan
| | - Chia-Yu Lin
- Department of Internal Medicine, China Medical University Hospital, Taichung 404327, Taiwan
| | - Mei-Li Stevens
- Graduate Institute of Chinese Medicine, China Medical University, Taichung 404328, Taiwan
| | - Chiao-Che Chen
- Graduate Institute of Chinese Medicine, China Medical University, Taichung 404328, Taiwan
| | - Chien-Yun Hsiang
- School of Medicine, China Medical University, Taichung 404328, Taiwan..
| |
Collapse
|
2
|
Hsiang CY, Lo HY, Lu GL, Liao PY, Ho TY. A novel heat-stable angiotensin-converting enzyme zinc-binding motif inhibitory peptide identified from corn silk. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117435. [PMID: 37979812 DOI: 10.1016/j.jep.2023.117435] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/02/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hypertension is the most common and chronic severe health problem globally. Corn silk (CS), the silky fibers of corn (Zea mays L.), has a long history of traditional usage as a remedy for edema and hypertension. AIM OF THE STUDY The aim of the study was to explore the underlying mechanism by which CS exerts its anti-hypertensive effects and investigate the presence of bioactive molecules in CS aqueous extract. MATERIALS AND METHODS We analyzed the effects of boiling water extract of CS on angiotensin-converting enzyme (ACE) activities, the critical enzyme involved in the regulation of blood pressure. ACE inhibitory peptides from CS extract were identified using proteomics and bioinformatics tools. The binding interfaces between these peptides and ACE were defined by hydrogen-deuterium exchange mass spectrometry (HDX-MS). Subsequently, the anti-hypertensive effects of peptides were further investigated in spontaneously hypertensive rats (SHR). RESULTS Our data showed that CS extract exhibited dose-dependent inhibition of ACE activity. Liquid chromatography-tandem mass spectrometry identified a heat-stable peptide bank with 1313 distinct peptide fragments within the CS boiling water extract. Among these, CS-1 (LVPGWTKPICIGR) was selected through PeptideRanker and BIOPEP-UWM analyses. In vitro ACE inhibitory assays confirmed that CS-1 exhibited dose-dependent ACE inhibition, with IC50 values of 10.32 ± 0.41 μmol/L (using HHL as the substrate) and 13.74 ± 1.87 μmol/L (using ZFHL as the substrate). Oral administration of CS-1 led to a significant dose-dependent reduction in blood pressure, with the maximal decrease (42.33 ± 13.08 mmHg) occurring 0.5 h after ingestion. HDX-MS analysis revealed that CS-1 interacted with the zinc-binding motif of ACE, and hydrogen bond interactions were predicted between CS-1 and specific residues, including His361 in the N-domain, as well as His382, Gly386, and His387 in the C-domain of ACE. These findings suggested that the interaction of CS-1 with the residues in the zinc-binding motif of ACE led to ACE activity inhibition and a subsequent decrease in blood pressure in rats. CONCLUSIONS A novel heat-stable ACE inhibitory peptide, which interacted with the zinc-binding motif of ACE and reduced blood pressure in SHR, was identified in the CS extract. The presence of ACE inhibitory peptides in the CS extract supports its traditional use in ethnopharmacology for hypertension.
Collapse
Affiliation(s)
- Chien-Yun Hsiang
- Department of Microbiology and Immunology, China Medical University, Taichung, 404333, Taiwan
| | - Hsin-Yi Lo
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, 404333, Taiwan
| | - Guan-Ling Lu
- Department of Microbiology and Immunology, China Medical University, Taichung, 404333, Taiwan
| | - Pei-Yung Liao
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, 404333, Taiwan; Division of Endocrinology and Metabolism, Department of Internal Medicine, Changhua Christian Hospital, Changhua, 500209, Taiwan
| | - Tin-Yun Ho
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, 404333, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung, 413305, Taiwan.
| |
Collapse
|
3
|
Zhang L, Yao L, Zhao F, Yu A, Zhou Y, Wen Q, Wang J, Zheng T, Chen P. Protein and Peptide-Based Nanotechnology for Enhancing Stability, Bioactivity, and Delivery of Anthocyanins. Adv Healthc Mater 2023; 12:e2300473. [PMID: 37537383 PMCID: PMC11468125 DOI: 10.1002/adhm.202300473] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/18/2023] [Indexed: 08/05/2023]
Abstract
Anthocyanin, a unique natural polyphenol, is abundant in plants and widely utilized in biomedicine, cosmetics, and the food industry due to its excellent antioxidant, anticancer, antiaging, antimicrobial, and anti-inflammatory properties. However, the degradation of anthocyanin in an extreme environment, such as alkali pH, high temperatures, and metal ions, limits its physiochemical stabilities and bioavailabilities. Encapsulation and combining anthocyanin with biomaterials could efficiently stabilize anthocyanin for protection. Promisingly, natural or artificially designed proteins and peptides with favorable stabilities, excellent biocapacity, and wide sources are potential candidates to stabilize anthocyanin. This review focuses on recent progress, strategies, and perspectives on protein and peptide for anthocyanin functionalization and delivery, i.e., formulation technologies, physicochemical stability enhancement, cellular uptake, bioavailabilities, and biological activities development. Interestingly, due to the simplicity and diversity of peptide structure, the interaction mechanisms between peptide and anthocyanin could be illustrated. This work sheds light on the mechanism of protein/peptide-anthocyanin nanoparticle construction and expands on potential applications of anthocyanin in nutrition and biomedicine.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | - Liang Yao
- College of Biotechnology, Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Feng Zhao
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | - Alice Yu
- Schulich School of Medicine and Dentistry, Western University, Ontario, N6A 3K7, Canada
| | - Yueru Zhou
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | - Qingmei Wen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Jun Wang
- College of Biotechnology, Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Tao Zheng
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Pu Chen
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| |
Collapse
|
4
|
Ho TY, Lo HY, Lu GL, Liao PY, Hsiang CY. Analysis of target organs of Houttuynia cordata: A study on the anti-inflammatory effect of upper respiratory system. JOURNAL OF ETHNOPHARMACOLOGY 2023:116687. [PMID: 37244408 DOI: 10.1016/j.jep.2023.116687] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Houttuynia cordata Thunb. (HC) is a traditional anti-pyretic herb that is classified as the lung meridian in traditional Chinese medicine. However, no articles have explored the main organs responsible for the anti-inflammatory activities of HC. AIM OF THE STUDY The aim of the study was to investigate the meridian tropism theory of HC in lipopolysaccharide (LPS)-induced pyretic mice, as well as to identify the underlying mechanisms. MATERIALS AND METHODS Transgenic mice carrying the luciferase gene driven by nuclear factor-κB (NF-κB) were intraperitoneally injected with LPS and orally administered standardized concentrated HC aqueous extract. The phytochemicals present in the HC extract were analyzed using high-performance liquid chromatography. In vivo and ex vivo luminescent imaging from transgenic mice was used to investigate the meridian tropism theory and anti-inflammatory effects of HC. Microarray analysis of gene expression patterns was used to elucidate the therapeutic mechanisms of HC. RESULTS HC extract was found to contain phenolic acids, such as protocatechuic acid (4.52%) and chlorogenic acid (8.12%), as well as flavonoids like rutin (2.05%) and quercitrin (7.73%). The bioluminescent intensities induced by LPS in the heart, liver, respiratory system, and kidney were significantly suppressed by HC, while the maximal decrease (about 90% reduction) of induced luminescent intensity was observed in the upper respiratory tract. These data suggested that upper respiratory system might be the target for HC anti-inflammatory abilities. HC affected the processes involved in innate immunity, such as chemokine-mediated signaling pathway, inflammatory response, chemotaxis, neutrophil chemotaxis, and cellular response to interleukin-1 (IL-1). Moreover, HC significantly reduced the proportions of p65-stained cells and the amount of IL-1β in trachea tissues. CONCLUSION Bioluminescent imaging coupled with gene expression profile was used to demonstrate the organ selectivity, anti-inflammatory effects, and therapeutic mechanisms of HC. Our data demonstrated for the first time that HC displayed lung meridian-guiding effects and exhibited great anti-inflammatory potential in the upper respiratory tract. The NF-κB and IL-1β pathways were associated with the anti-inflammatory mechanism of HC against LPS-provoked airway inflammation. Moreover, chlorogenic acid and quercitrin might be involved in the anti-inflammatory properties of HC.
Collapse
Affiliation(s)
- Tin-Yun Ho
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, 404333, Taiwan; Department of Health and Nutrition Biotechnology Asia University, Taichung, 413305, Taiwan
| | - Hsin-Yi Lo
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, 404333, Taiwan
| | - Guan-Ling Lu
- Department of Microbiology and Immunology, China Medical University, Taichung, 404333, Taiwan
| | - Pei-Yung Liao
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, 404333, Taiwan; Division of Endocrinology and Metabolism, Department of Internal Medicine, Changhua Christian Hospital, Changhua, 500209, Taiwan
| | - Chien-Yun Hsiang
- Department of Microbiology and Immunology, China Medical University, Taichung, 404333, Taiwan.
| |
Collapse
|
5
|
Zhang Y, Liu J, Guan L, Fan D, Xia F, Wang A, Bao Y, Xu Y. By-Products of Zea mays L.: A Promising Source of Medicinal Properties with Phytochemistry and Pharmacological Activities: A Comprehensive Review. Chem Biodivers 2023; 20:e202200940. [PMID: 36721262 DOI: 10.1002/cbdv.202200940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/02/2023]
Abstract
Zea mays (Z. mays) is one of the main cereal crops in the world, and it's by-products have exhibited medicinal properties to explore. This article intends to review the chemical compositions and pharmacological activities of by-products of Z. mays (corn silks, roots, bract, stems, bran, and leaves) which support the therapeutic potential in the treatment of different diseases, with emphasis on the natural occurring compounds and detailed pharmacological developments. Based on this review, 231 natural compounds are presented. Among them, flavonoids, terpenes, phenylpropanoids, and alkaloids are the most frequently reported. The by-products of Z. mays possess diuretic effects, hepatoprotective, anti-diabetic, antioxidant, neuroprotective, anti-inflammatory, anti-cancer, plant protection activity, and other activities. This article reviewed the phytochemistry and pharmacological activities of Z. mays for comprehensive quality control and the safety and effectiveness to enhance future application.
Collapse
Affiliation(s)
- Yunqiang Zhang
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, China
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jianyu Liu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Lu Guan
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, China
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dongxue Fan
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, China
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Feiruo Xia
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Andong Wang
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, P. R. China
| | - Ying Bao
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Yongnan Xu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| |
Collapse
|
6
|
Jian S, Yang K, Zhang L, Zhang L, Xin Z, Wen C, He S, Deng J, Deng B. The modulation effects of plant‐derived bioactive ingredients on chronic kidney disease: Focus on the gut–kidney axis. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Shiyan Jian
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Kang Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Lingna Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Limeng Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Zhongquan Xin
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Chaoyu Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Shansong He
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Jinping Deng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Baichuan Deng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| |
Collapse
|
7
|
Rivera-Jiménez J, Berraquero-García C, Pérez-Gálvez R, García-Moreno PJ, Espejo-Carpio FJ, Guadix A, Guadix EM. Peptides and protein hydrolysates exhibiting anti-inflammatory activity: sources, structural features and modulation mechanisms. Food Funct 2022; 13:12510-12540. [PMID: 36420754 DOI: 10.1039/d2fo02223k] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inflammation is the response of the immune system to harmful stimuli such as tissue injury, infection or toxic chemicals, which has the aim of eliminating irritants or pathogenic microorganisms and enhancing tissue repair. Uncontrolled long-lasting acute inflammation can gradually progress to chronic, causing a variety of chronic inflammatory diseases that are usually treated with anti-inflammatory drugs, but most of them are inadequate to control chronic responses and are also associated with adverse side effects. Thus, many efforts are being directed to develop alternative and more selective anti-inflammatory therapies from natural products. One main field of interest is the obtaining of bioactive peptides exhibiting anti-inflammatory activity from sustainable protein sources like edible insects or agroindustry and fishing by-products. This work highlighted the structure-activity relationship of anti-inflammatory peptides. Small peptides with molecular weight under 1 kDa and amino acid chain length between 2 to 20 residues are generally the most active because of the higher probability to be absorbed in the intestine and penetrate into cells when compared with the larger size peptides. The presence of hydrophobic (Val, Ile, Pro) and positively charged (His, Arg, Lys) amino acids is another common occurrence for anti-inflammatory peptides. Interestingly, a high percentage (77%) of these bioactive peptides can be found in alternative sustainable protein sources such as Tenebrio molitor or sunflower, apart from its original protein source. However, not all of these peptides with anti-inflammatory potential in vitro achieve good scores by the in silico bioactivity predictors studied. Therefore, it is essential to implement current bioinformatics tools, in order to complement in vitro experiments with prior prediction of potential bioactive peptides.
Collapse
Affiliation(s)
- Julia Rivera-Jiménez
- Department of Chemical Engineering, University of Granada, 18071, Granada, Spain.
| | | | - Raúl Pérez-Gálvez
- Department of Chemical Engineering, University of Granada, 18071, Granada, Spain.
| | | | | | - Antonio Guadix
- Department of Chemical Engineering, University of Granada, 18071, Granada, Spain.
| | - Emilia M Guadix
- Department of Chemical Engineering, University of Granada, 18071, Granada, Spain.
| |
Collapse
|
8
|
Anti-Inflammatory Function of Plant-Derived Bioactive Peptides: A Review. Foods 2022; 11:foods11152361. [PMID: 35954128 PMCID: PMC9368234 DOI: 10.3390/foods11152361] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 12/14/2022] Open
Abstract
Inflammation is considered to be a crucial factor in the development of chronic diseases, eight of which were listed among the top ten causes of death worldwide in the World Health Organization’s World Health Statistics 2019. Moreover, traditional drugs for inflammation are often linked to undesirable side effects. As gentler alternatives to traditional anti-inflammatory drugs, plant-derived bioactive peptides have been shown to be effective interventions against various chronic diseases, including Alzheimer’s disease, cardiovascular disease and cancer. However, an adequate and systematic review of the structures and anti-inflammatory activities of plant-derived bioactive peptides has been lacking. This paper reviews the latest research on plant-derived anti-inflammatory peptides (PAPs), mainly including the specific regulatory mechanisms of PAPs; the structure–activity relationships of PAPs; and their enzymatic processing based on the structure–activity relationships. Moreover, current research problems for PAPs are discussed, such as the shallow exploration of mechanisms, enzymatic solution determination difficulty, low yield and unknown in vivo absorption and metabolism and proposed future research directions. This work aims to provide a reference for functional activity research, nutritional food development and the clinical applications of PAPs.
Collapse
|
9
|
Hong ZS, Xie J, Wang XF, Dai JJ, Mao JY, Bai YY, Sheng J, Tian Y. Moringa oleifera Lam. Peptide Remodels Intestinal Mucosal Barrier by Inhibiting JAK-STAT Activation and Modulating Gut Microbiota in Colitis. Front Immunol 2022; 13:924178. [PMID: 35911761 PMCID: PMC9336532 DOI: 10.3389/fimmu.2022.924178] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/20/2022] [Indexed: 12/11/2022] Open
Abstract
Ulcerative colitis is a chronic inflammatory bowel disease (IBD), but progress in exploring its pathogenesis and finding effective drugs for its prevention and treatment has stalled in recent years. The seeds of Moringa oleifera Lam. are rich in proteins known to have multiple physiological activities. In our earlier work, we had isolated and purified a peptide (MOP) having the sequence KETTTIVR, from M. oleifera seeds; however, its anti-inflammatory activity and mechanism in vivo were unclear. Here we used the dextran sulfate sodium (DSS)-induced colitis model to study the anti-inflammatory activity and mechanism of this MOP. Our results are the first to show that MOP can ameliorate the pathological phenotype, inflammation, and intestinal barrier disruption in mice with colitis. Furthermore, RNA sequencing revealed that MOP inhibits the Janus kinase/signal transducer and activator of transcription (JAK-STAT) pathway activation. Next, by using 16s rRNA gene sequencing, we found that MOP can ameliorate DSS-induced gut microbiota dysbiosis. In addition, an untargeted metabolomics analysis suggested that MOP is able to modulate the level of lipid and amino acid metabolites in IBD-stricken mice. Altogether, these results indicate that MOP ameliorates colitis by remodeling intestinal mucosal barrier by inhibiting JAK-STAT pathway’s activation and regulating gut microbiota and its metabolites, thus providing a basis for further processing and design of bioactive foods from M. oleifera seeds.
Collapse
Affiliation(s)
- Zi-Shan Hong
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China
| | - Jing Xie
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Xue-Feng Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming, China
| | - Jing-Jing Dai
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Jia-Ying Mao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China
- Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming, China
| | - Yu-Ying Bai
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
- Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming, China
| | - Jun Sheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- *Correspondence: Jun Sheng, ; Yang Tian,
| | - Yang Tian
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
- *Correspondence: Jun Sheng, ; Yang Tian,
| |
Collapse
|
10
|
Ryuk JA, Ko BS, Moon NR, Park S. Protection against Neurological Symptoms by Consuming Corn Silk Water Extract in Artery-Occluded Gerbils with Reducing Oxidative Stress, Inflammation, and Post-Stroke Hyperglycemia through the Gut-Brain Axis. Antioxidants (Basel) 2022; 11:antiox11010168. [PMID: 35052672 PMCID: PMC8773031 DOI: 10.3390/antiox11010168] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 02/01/2023] Open
Abstract
Corn silk (Stigma maydis), rich in flavonoids, is traditionally used to treat edema, depression, and hyperglycemia and may alleviate ischemic stroke symptoms in Chinese medicine. This study examined whether corn silk water extract (CSW) could alleviate ischemic stroke symptoms and post-stroke hyperglycemia in Mongolian gerbils with transient cerebral ischemia and reperfusion (I/R). After being given 0.05% (I/R-LCSW) and 0.2% (I/R-HCSW), 0.02% aspirin (I/R-aspirin), and cellulose (I/R-control) in their 40 energy% fat diets for three weeks, the gerbils underwent an artery occlusion for eight minutes and reperfusion. They took the assigned diet for an additional three weeks. Sham-operated gerbils without artery occlusion had the same diet as Sham-control. CSW intake reduced neuronal cell death in gerbils with I/R and dose-dependently improved the neurological symptoms, including drooped eyes, crouched posture, flexor reflex, and walking patterns. CSW intake also alleviated the short-term memory and spontaneous alteration and grip strength compared to the I/R-control group. The protection against ischemic stroke symptoms was associated with the reduced tumor necrosis factor-α, interleukin-1β, superoxide, and lipid peroxide levels, promoting superoxide dismutase activity in the hippocampus in the CSW groups, compared to the I/R-control. The blood flow measured by Doppler was improved with CSW compared to the I/R-control. Furthermore, CSW intake prevented the post-stroke hyperglycemia related to decreasing pancreatic β-cell mass as much as the Sham-control, and it was related to protection against β-cell apoptosis, restoring the β-cell mass similar to the Sham-control. CSW intake elevated the relative abundance of Lactobacillus, Bifidobacterium, Allobaculum, and Akkermansia compared to the I/R-control. Picrust2 analysis showed that CSW increased the propionate and butyrate metabolism and the starch and glucose metabolism but reduced lipopolysaccharide biosynthesis compared to the I/R-control. In conclusion, CSW intake protects against neuronal cell death and post-hyperglycemia by reducing oxidative stress and inflammation and increasing blood flow and the β-cell mass. The alleviation was associated with promoting the gut-brain axis by changing the gut microbiome community.
Collapse
Affiliation(s)
- Jin Ah Ryuk
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 305-811, Korea; (J.A.R.); (B.S.K.)
| | - Byoung Seob Ko
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 305-811, Korea; (J.A.R.); (B.S.K.)
| | - Na Rang Moon
- Department of Food & Nutrition, Obesity/Diabetes Center, Hoseo University, Asan 336-795, Korea;
| | - Sunmin Park
- Department of Food & Nutrition, Obesity/Diabetes Center, Hoseo University, Asan 336-795, Korea;
- Department of Bioconvergence System, Hoseo University, Asan 336-795, Korea
- Correspondence: ; Tel.: +82-41-540-5345
| |
Collapse
|
11
|
Wang X, Dong Y, Bao Z, Lin S. Acidic Stigma maydis polysaccharides protect against podocyte injury in membranous nephropathy by maintenance of glomerular filtration barrier integrity and gut-kidney axis. Food Funct 2022; 13:11794-11810. [DOI: 10.1039/d2fo02652j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
MN mice models were induced by C-BSA, and we found that acidic stigma maydis polysaccharides maintained the integrity of the glomerular filtration barrier by promoting slit diaphragm proteins expression and PI3K/AKT signaling.
Collapse
Affiliation(s)
- Xizhu Wang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning Province, China
| | - Yifei Dong
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning Province, China
| | - Zhijie Bao
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning Province, China
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning Province, China
| |
Collapse
|
12
|
He R, Liu M, Zou Z, Wang M, Wang Z, Ju X, Hao G. Anti-inflammatory activity of peptides derived from millet bran in vitro and in vivo. Food Funct 2022; 13:1881-1889. [DOI: 10.1039/d1fo03711k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Various food-derived bioactive peptides have been found with potential anti-inflammatory effects. Millet bran peptide is a food-derived bioactive peptide extracted from millet bran, a by-product of millet processing. In this...
Collapse
|
13
|
Purification, Identification and Characterization of Antioxidant Peptides from Corn Silk Tryptic Hydrolysate: An Integrated In Vitro-In Silico Approach. Antioxidants (Basel) 2021; 10:antiox10111822. [PMID: 34829693 PMCID: PMC8615004 DOI: 10.3390/antiox10111822] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 11/23/2022] Open
Abstract
Corn silk (CS) is an agro-by-product from corn cultivation. It is used in folk medicines in some countries, besides being commercialized as health-promoting supplements and beverages. Unlike CS-derived natural products, their bioactive peptides, particularly antioxidant peptides, are understudied. This study aimed to purify, identify and characterize antioxidant peptides from trypsin-hydrolyzed CS proteins. Purification was accomplished by membrane ultrafiltration, gel filtration chromatography, and strong-cation-exchange solid-phase extraction, guided by 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt radical cation (ABTS•+) scavenging, hydrogen peroxide scavenging, and lipid peroxidation inhibition assays. De novo sequencing identified 29 peptides (6–14 residues; 633–1518 Da). The peptides consisted of 33–86% hydrophobic and 10–67% basic residues. Molecular docking found MCFHHHFHK, VHFNKGKKR, and PVVWAAKR having the strongest affinity (−4.7 to −4.8 kcal/mol) to ABTS•+, via hydrogen bonds and hydrophobic interactions. Potential cellular mechanisms of the peptides were supported by their interactions with modulators of intracellular oxidant status: Kelch-like ECH-associated protein 1, myeloperoxidase, and xanthine oxidase. NDGPSR (Asn-Asp-Gly-Pro-Ser-Arg), the most promising peptide, showed stable binding to all three cellular targets, besides exhibiting low toxicity, low allergenicity, and cell-penetrating potential. Overall, CS peptides have potential application as natural antioxidant additives and functional food ingredients.
Collapse
|
14
|
Wang X, Yuan L, Dong Y, Bao Z, Ma T, Lin S. Ameliorated membranous nephropathy activities of two ethanol extracts from corn silk and identification of flavonoid active compounds by LC-MS 2. Food Funct 2021; 12:9669-9679. [PMID: 34664605 DOI: 10.1039/d1fo01947c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The current study looks to evaluate the effect of corn silk flavonoids on membranous nephropathy (MN). Polyamide resin (PR) can be used to enrich corn silk ethanol extract (CSEE) to obtain flavonoid-rich extract (PR-CSEE), the total flavonoid content (TFC) of which we found to be 57.4%. The results of scanning electron microscope, Fourier-transform infrared, and high-performance liquid chromatography analyses determined that PR-CSEE and CSEE have different structural characteristics, but that PR-CSEE has higher TFC. MN mice models were induced by cationic bovine serum albumin, and we found that PR-CSEE administration reduced urine protein levels markedly, while renal function, glomerular atrophy, inflammatory infiltration, and in-serum immunoglobulin G and complement 3 content were improved. Through LC-MS2 spectrometry analysis, we pinpointed the 12 major flavonoid active compounds in PR-CSEE. These findings suggest that PR-CSEE can act as a potential functional food material by which to improve MN.
Collapse
Affiliation(s)
- Xizhu Wang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Liyan Yuan
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Yifei Dong
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Zhijie Bao
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Tiecheng Ma
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| |
Collapse
|
15
|
Huang R, Zhu Z, Wu Q, Bekhit AEDA, Wu S, Chen M, Wang J, Ding Y. Whole-plant foods and their macromolecules: untapped approaches to modulate neuroinflammation in Alzheimer's disease. Crit Rev Food Sci Nutr 2021; 63:2388-2406. [PMID: 34553662 DOI: 10.1080/10408398.2021.1975093] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder. Recently, sustained neuroinflammatory response in microglia and astrocytes has been found to cause the deposition of amyloid beta plaques and the hyperphosphorylation of tau protein, thereby accelerating AD progression. The lipoxin A4-transcription factor nuclear factor-kappa B and mitogen-activated protein kinase pathways have been shown to play important roles in the regulation of inflammatory processes. There is growing research-based evidence suggesting that dietary whole-plant foods, such as mushrooms and berries, may be used as inhibitors for anti-neuroinflammation. The beneficial effects of whole-plant foods were mainly attributed to their high contents of functional macromolecules including polysaccharides, polyphenols, and bioactive peptides. This review provides up-to-date information on important molecular signaling pathways of neuroinflammation and discusses the anti-neuroinflammatory effects of whole-plant foods. Further, a critical evaluation of plants' macromolecular components that have the potential to prevent and/or relieve AD is provided. This work will contribute to better understanding the pathogenetic mechanism of neuroinflammation in AD and provide new approaches for AD therapy.
Collapse
Affiliation(s)
- Rui Huang
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou, P.R. China.,Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, P.R. China
| | - Zhenjun Zhu
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou, P.R. China.,Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, P.R. China
| | - Qingping Wu
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou, P.R. China
| | | | - Shujian Wu
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou, P.R. China.,Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, P.R. China
| | - Mengfei Chen
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou, P.R. China.,Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, P.R. China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, P.R. China
| | - Yu Ding
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou, P.R. China.,Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, P.R. China
| |
Collapse
|
16
|
Mulberry (Morus atropurpurea Roxb.) leaf protein hydrolysates ameliorate dextran sodium sulfate-induced colitis via integrated modulation of gut microbiota and immunity. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
17
|
Zhu L, Shi Y, Xiong Y, Ba L, Li Q, Qiu M, Zou Z, Peng G. Emerging self-assembling peptide nanomaterial for anti-cancer therapy. J Biomater Appl 2021; 36:882-901. [PMID: 34180306 DOI: 10.1177/08853282211027882] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recently it is mainly focused on anti-tumor comprehensive treatments like finding target tumor cells or activating immune cells to inhibit tumor recurrence and metastasis. At present, chemotherapy and molecular-targeted drugs can inhibit tumor cell growth to a certain extent. However, multi-drug resistance and immune escape often make it difficult for new drugs to achieve expected effects. Peptide hydrogel nanoparticles is a new type of biological material with functional peptide chains as the core and self-assembling peptide (SAP) as the framework. It has a variety of significant biological functions, including effective local inflammation suppression and non-drug-resistant cell killing. Besides, it can induce immune activation more persistently in an adjuvant independent manner when compared with simple peptides. Thus, SAP nanomaterial has great potential in regulating cell physiological functions, drug delivery and sensitization, vaccine design and immunotherapy. Not only that, it is also a potential way to focus on some specific proteins and cells through peptides, which has already been examined in previous research. A full understanding of the function and application of SAP nanoparticles can provide a simple and practical strategy for the development of anti-tumor drugs and vaccine design, which contributes to the historical transition of peptide nanohydrogels from bench to bedside and brings as much survival benefits as possible to cancer patients.
Collapse
Affiliation(s)
- Lisheng Zhu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yangyang Shi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Xiong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Ba
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuting Li
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengjun Qiu
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenwei Zou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Peng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
18
|
Jia Y, Xue Z, Wang Y, Lu Y, Li R, Li N, Wang Q, Zhang M, Chen H. Chemical structure and inhibition on α-glucosidase of polysaccharides from corn silk by fractional precipitation. Carbohydr Polym 2021; 252:117185. [DOI: 10.1016/j.carbpol.2020.117185] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 09/20/2020] [Accepted: 09/28/2020] [Indexed: 01/09/2023]
|
19
|
Protein-phenolic aggregates with anti-inflammatory activity recovered from maize nixtamalization wastewaters (nejayote). Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109881] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Zhu W, Ren L, Zhang L, Qiao Q, Farooq MZ, Xu Q. The Potential of Food Protein-Derived Bioactive Peptides against Chronic Intestinal Inflammation. Mediators Inflamm 2020; 2020:6817156. [PMID: 32963495 PMCID: PMC7499337 DOI: 10.1155/2020/6817156] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022] Open
Abstract
Inflammation can cause various chronic diseases like inflammatory bowel diseases. Various food protein-derived bioactive peptides (BAPs) with anti-inflammatory activity have the potential to manage these diseases. The aim of this paper is to overview the mechanisms and the molecular targets of BAPs to exert anti-inflammatory activity. In this review, the in vitro and in vivo effects of BAPs on intestinal inflammation are highlighted. The mechanism, pathways, and future perspectives of BAPs as the potential sources of therapeutic treatments to alleviate intestinal inflammation are provided, including nuclear factor-κB, mitogen-activated protein kinase, Janus kinase-signal transducer and activator of transcription, and peptide transporter 1 (PepT1), finding that PepT1 and gut microbiota are the promising targets for BAPs to alleviate the intestinal inflammation. This review provides a comprehensive understanding of the role of dietary BAPs in attenuating inflammation and gives a novel direction in nutraceuticals for people or animals with intestinal inflammation.
Collapse
Affiliation(s)
- Wanying Zhu
- Shanxian Central Hospital, Heze 274300, China
| | - Liying Ren
- Shanxian Central Hospital, Heze 274300, China
| | - Li Zhang
- Shanxian Central Hospital, Heze 274300, China
| | - Qinqin Qiao
- College of Information Engineering, Fuyang Normal University, Fuyang 236000, China
| | - Muhammad Zahid Farooq
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingbiao Xu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
21
|
Ji X, Li R, Jia W, Liu G, Luo Y, Cheng Z. Co-Axial Fibers with Janus-Structured Sheaths by Electrospinning Release Corn Peptides for Wound Healing. ACS APPLIED BIO MATERIALS 2020; 3:6430-6438. [PMID: 35021774 DOI: 10.1021/acsabm.0c00860] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xuan Ji
- Department of Stomatology, the Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Rui Li
- College of Resources and Environment, Jilin Agriculture University, Changchun 130118, P. R. China
| | - Wenyuan Jia
- Department of Orthopedics, the Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Guomin Liu
- Department of Orthopedics, the Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Yungang Luo
- Department of Stomatology, the Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Zhiqiang Cheng
- College of Resources and Environment, Jilin Agriculture University, Changchun 130118, P. R. China
| |
Collapse
|
22
|
Wu JS, Li JM, Lo HY, Hsiang CY, Ho TY. Anti-hypertensive and angiotensin-converting enzyme inhibitory effects of Radix Astragali and its bioactive peptide AM-1. JOURNAL OF ETHNOPHARMACOLOGY 2020; 254:112724. [PMID: 32119952 DOI: 10.1016/j.jep.2020.112724] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/11/2020] [Accepted: 02/25/2020] [Indexed: 05/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hypertension is one of the common chronic health problems in the world. Astragalus membranaceus root (AM), also known as Huangqi, is a popular medicinal herb traditionally used to reinforce vital energy and modulate hypertension. AIM OF THE STUDY This study was to reveal the anti-hypertensive activities and mechanisms of AM in spontaneously hypertensive rats (SHRs). Moreover, the presence of bioactive components in AM was further identified. MATERIALS AND METHODS We analyzed the effects of aqueous extract of AM (AME) on the regulation of blood pressure and angiotensin converting enzyme (ACE), the major target of anti-hypertensive drugs. Proteomic, bioinformatics, and docking analyses were performed to identify the anti-hypertensive bioactive peptides in AME. RESULTS Our data showed that AME inhibited ACE activities in a dose-dependent manner, with an IC50 of 1.85 ± 0.01 μg/ml. In comparison with mock, oral administration of AME reduced systolic blood pressure (SBP) levels in SHRs, and the level of SBP was decreased by 22.33 ± 3.61 mmHg at 200 mg/kg AME. Proteomic analysis identified that an abundant 152-amino-acid putative protein kinase fragment accounted for approximately 11.7% of protein spots in AME. AM-1 (LVPPHA), a gastrointestinal enzyme-resistant peptide cleaved from putative protein kinase fragment, inhibited ACE activities, with an IC50 value of 414.88 ± 41.88 μM. Moreover, oral administration of AM-1 significantly decreased SBP levels by 42 ± 2.65 mmHg at 10 μmol/kg. Docking analysis further showed that AM-1 docked into the active site channel of ACE and interacted with Ala-354 in the active site pocket of ACE. CONCLUSIONS the ACE inhibitory effect of AM and the presence of ACE inhibitory phytopeptide in AME supported the ethnomedical use of AM on hypertension.
Collapse
Affiliation(s)
- Jing-Shan Wu
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Jung-Miao Li
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan; Department of Chinese Medicine, Show Chwan Memorial Hospital, Changhua, 50008, Taiwan
| | - Hsin-Yi Lo
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Chien-Yun Hsiang
- Department of Microbiology and Immunology, China Medical University, Taichung, 40402, Taiwan.
| | - Tin-Yun Ho
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung, 41354, Taiwan.
| |
Collapse
|
23
|
Chen JY, Sun XY, Ouyang JM. Modulation of Calcium Oxalate Crystal Growth and Protection from Oxidatively Damaged Renal Epithelial Cells of Corn Silk Polysaccharides with Different Molecular Weights. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6982948. [PMID: 32089775 PMCID: PMC7008244 DOI: 10.1155/2020/6982948] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/06/2020] [Indexed: 12/12/2022]
Abstract
Corn silk polysaccharide (CSP0; molecular weight = 124 kDa) was degraded by ultrasonication to obtain five degraded polysaccharides, namely, CSP1, CSP2, CSP3, CSP4, and CSP5, with molecular weights of 26.1, 12.2, 6.0, 3.5, and 2.0 kDa, respectively. The structures of these polysaccharides were characterized by FT-IR, 1H NMR, and 13C NMR analyses. The antioxidant activities, including scavenging ability for hydroxyl radicals and DPPH free radicals, chelation ability for Fe2+ ions, and reducing ability of CSP increased with decreased molecular weight of CSPs within 6.0 to 124 kDa. However, antioxidant activity weakened when the molecular weight of CSPs reached 3.5 and 2 kDa. CSP3 with a molecular weight of 6.0 kDa exhibited the strongest antioxidant activity. After protection with 60 μg/mL CSPs, the viability of human renal proximal tubular epithelial cells (HK-2) damaged by nano-COM crystals increased, the level of reactive oxygen species decreased, and the amount of COM crystal adhered onto the cell surface decreased. The ability of CSPs to protect cells from CaOx crystal damage was consistent with their antioxidant activity. CSPs can specifically combine with CaOx crystal to inhibit the conversion of calcium oxalate dihydrate crystal to calcium oxalate monohydrate crystal. All these results showed that the activity of CSPs was closely correlated with molecular weight. A very high or low molecular weight of CSPs was not conducive to their activity. CSPs, especially CSP3 with a molecular weight of 6.0 kDa, can be used as a potential antistone drug.
Collapse
Affiliation(s)
- Jia-Yun Chen
- Department of Chemistry, Jinan University, Guangzhou 510632, China
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| | - Xin-Yuan Sun
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, China
| | - Jian-Ming Ouyang
- Department of Chemistry, Jinan University, Guangzhou 510632, China
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| |
Collapse
|
24
|
Ho TY, Lo HY, Liu IC, Lin KA, Liao YF, Lo YC, Hsiang CY. The protective effect of quercetin on retinal inflammation in mice: the involvement of tumor necrosis factor/nuclear factor-κB signaling pathways. Food Funct 2020; 11:8150-8160. [DOI: 10.1039/d0fo01324b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oral administration of quercetin ameliorated LPS-induced retinal inflammation in mice by down-regulating TNF, cytokine, and NF-κB pathways.
Collapse
Affiliation(s)
- Tin-Yun Ho
- Graduate Institute of Chinese Medicine
- China Medical University
- Taichung 40402
- Taiwan
- Department of Health and Nutrition Biotechnology
| | - Hsin-Yi Lo
- Graduate Institute of Chinese Medicine
- China Medical University
- Taichung 40402
- Taiwan
| | - I-Chen Liu
- Graduate Institute of Chinese Medicine
- China Medical University
- Taichung 40402
- Taiwan
| | - Ken-An Lin
- Graduate Institute of Chinese Medicine
- China Medical University
- Taichung 40402
- Taiwan
| | - Yi-Fang Liao
- Graduate Institute of Biomedical Sciences
- China Medical University
- Taichung 40402
- Taiwan
| | - Yuan-Chun Lo
- School of Medicine
- China Medical University
- Taichung 40402
- Taiwan
| | - Chien-Yun Hsiang
- Department of Microbiology and Immunology
- China Medical University
- Taichung 40402
- Taiwan
| |
Collapse
|
25
|
Chai TT, Ang SY, Goh K, Lee YH, Ngoo JM, Teh LK, Wong FC. Trypsin-hydrolyzed Corn Silk Proteins: Antioxidant Activities, in vitro Gastrointestinal and Thermal Stability, and Hematoprotective Effects. EFOOD 2020. [DOI: 10.2991/efood.k.200323.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
26
|
Shi S, Yu B, Li W, Shan J, Ma T. Corn silk decoction for blood lipid in patients with angina pectoris: A systematic review and meta-analysis. Phytother Res 2019; 33:2862-2869. [PMID: 31423665 DOI: 10.1002/ptr.6474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 07/02/2019] [Accepted: 07/26/2019] [Indexed: 02/05/2023]
Abstract
The aims of this study were to evaluate the efficacy of corn silk decoction on lipid profile in patients with angina pectoris. PubMed, Cochrane, Embase, Google Scholar, Chongqing VIP Chinese Science and Technology Periodical Database, China National Knowledge Infrastructure, and Wanfang database were searched up to January 2019 for randomized controlled trials that assessed the impact of corn silk decoction on total cholesterol, triglycerides, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol in patients with angina pectoris. Study evaluation and synthesis methods were in accordance with the Cochrane Handbook, and data were analyzed using Review Manager (version 5.3) software. Random effects model was applied in this systematic review and meta-analysis to compensate for potential heterogeneity among the included studies. A total of four randomized controlled trials were eligible for meta-analysis. Pooled results of these studies indicated that corn silk decoction might improve high-density lipoprotein cholesterol and reduce total cholesterol, triglycerides, and low-density lipoprotein cholesterol in patients with angina pectoris. Subgroup analyses showed that corn silk decoction or modified corn silk decoction plus conventional pharmaceutical treatment could have favorable effects on blood lipids. However, the lack of blinding in most studies may have led to overestimation of these effects. Further studies with better design are needed to confirm these findings.
Collapse
Affiliation(s)
- Shihua Shi
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Baili Yu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Weihao Li
- Cardiology Division, West China Hospital, Sichuan University, Chengdu, China
| | - Jiayue Shan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tianhong Ma
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
27
|
Haldar S, Gan L, Tay SL, Ponnalagu S, Henry CJ. Postprandial Glycemic and Insulinemic Effects of the Addition of Aqueous Extracts of Dried Corn Silk, Cumin Seed Powder or Tamarind Pulp, in Two Forms, Consumed with High Glycemic Index Rice. Foods 2019; 8:foods8100437. [PMID: 31554322 PMCID: PMC6835365 DOI: 10.3390/foods8100437] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/13/2019] [Accepted: 09/19/2019] [Indexed: 12/22/2022] Open
Abstract
Several plant-based traditional ingredients in Asia are anecdotally used for preventing and/or treating type 2 diabetes. We investigated three such widely consumed ingredients, namely corn silk (CS), cumin (CU), and tamarind (TA). The aim of the study was to determine the effects of aqueous extracts of these ingredients consumed either as a drink (D) with high-glycemic-index rice or added to the same amount of rice during cooking (R) on postprandial glycemia (PPG), insulinemia (PPI), and blood pressure (BP), over a 3 h measurement period. Eighteen healthy Chinese men (aged 37.5 ± 12.5 years, BMI 21.8 ± 1.67 kg/m2) took part in a randomized crossover trial, each completing up to nine sessions. Compared to the control meal (plain rice + plain water), the addition of test extracts in either form did not modulate PPG, PPI, or BP. However, the extracts when added within rice while cooking gave rise to significantly lower PPI than when consumed as a drink (p < 0.01). Therefore, the form of consumption of phytochemical-rich ingredients can differentially modulate glucose homeostasis. This study also highlights the need for undertaking randomized controlled clinical trials with traditional foods/components before claims are made on their specific health effects.
Collapse
Affiliation(s)
- Sumanto Haldar
- Clinical Nutrition Research Centre (CNRC), Singapore Institute for Clinical Sciences (SICS), Agency for Science Technology and Research (A*STAR), 30 Medical Drive, Singapore 117609, Singapore.
| | - Linda Gan
- Clinical Nutrition Research Centre (CNRC), Singapore Institute for Clinical Sciences (SICS), Agency for Science Technology and Research (A*STAR), 30 Medical Drive, Singapore 117609, Singapore.
| | - Shia Lyn Tay
- Clinical Nutrition Research Centre (CNRC), Singapore Institute for Clinical Sciences (SICS), Agency for Science Technology and Research (A*STAR), 30 Medical Drive, Singapore 117609, Singapore.
| | - Shalini Ponnalagu
- Clinical Nutrition Research Centre (CNRC), Singapore Institute for Clinical Sciences (SICS), Agency for Science Technology and Research (A*STAR), 30 Medical Drive, Singapore 117609, Singapore.
| | - Christiani Jeyakumar Henry
- Clinical Nutrition Research Centre (CNRC), Singapore Institute for Clinical Sciences (SICS), Agency for Science Technology and Research (A*STAR), 30 Medical Drive, Singapore 117609, Singapore.
- Department of Biochemistry, National University of Singapore, Singapore 117596, Singapore.
| |
Collapse
|
28
|
Wang Y, Liu Q, Fan S, Yang X, Ming L, Wang H, Liu J. Rapid analysis and characterization of multiple constituents of corn silk aqueous extract using ultra‐high‐performance liquid chromatography combined with quadrupole time‐of‐flight mass spectrometry. J Sep Sci 2019; 42:3054-3066. [PMID: 31328392 DOI: 10.1002/jssc.201900407] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 07/01/2019] [Accepted: 07/15/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Yumei Wang
- Qiqihar Medical University Qiqihar Heilongjiang P. R. China
- Qiqihar Academy of Medical Sciences Qiqihar Heilongjiang P. R. China
| | - Qi Liu
- Qiqihar Medical University Qiqihar Heilongjiang P. R. China
- Qiqihar Academy of Medical Sciences Qiqihar Heilongjiang P. R. China
| | - Songjie Fan
- Qiqihar Medical University Qiqihar Heilongjiang P. R. China
- Qiqihar Academy of Medical Sciences Qiqihar Heilongjiang P. R. China
| | - Xueting Yang
- The Third Affiliated Hospital of Qiqihar Medical University Qiqihar Heilongjiang P. R. China
| | - Linlin Ming
- The Third Affiliated Hospital of Qiqihar Medical University Qiqihar Heilongjiang P. R. China
| | - Huimin Wang
- Qiqihar Medical University Qiqihar Heilongjiang P. R. China
| | - Jianhua Liu
- Qiqihar Medical University Qiqihar Heilongjiang P. R. China
- Qiqihar Academy of Medical Sciences Qiqihar Heilongjiang P. R. China
| |
Collapse
|
29
|
Antihypertensive Effects of Corn Silk Extract and Its Novel Bioactive Constituent in Spontaneously Hypertensive Rats: The Involvement of Angiotensin-Converting Enzyme Inhibition. Molecules 2019; 24:molecules24101886. [PMID: 31100914 PMCID: PMC6572293 DOI: 10.3390/molecules24101886] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 12/31/2022] Open
Abstract
Corn silk tea has been used in folk medicine for anti-hypertensive healthcare. Angiotensin-converting enzyme (ACE) plays a crucial role on the homeostasis of blood pressure. However, effects of corn silk tea on ACE activity and the presence of ACE inhibitory constituents in corn silk are still unknown. Here we applied proteomics and bioinformatics approaches to identify corn silk bioactive peptides (CSBps) that target ACE from the boiling water extract of corn silk (CSE). CSE significantly reduced systolic blood pressure (SBP) levels in spontaneously hypertensive rats and inhibited the ACE activity. By proteomics coupled with bioinformatics analyses, we identified a novel ACE inhibitory peptide CSBp5 in CSE. CSBp5 significantly inhibited the ACE activity and decreased SBP levels in a dose-dependent manner. Docking analysis showed that CSBp5 occupied the substrate-binding channel of ACE and interacted with ACE via hydrogen bonds. In conclusion, we identified that CSE exhibited anti-hypertensive effects in SHRs via the inhibition of ACE, the target of most anti-hypertensive drugs. In addition, an ACE inhibitory phytopeptide CSBp5 that decreased SBP levels in rats was newly identified. Our findings supported the ethnomedical use of corn silk tea on hypertension. Moreover, the identification of ACE inhibitory phytopeptide in corn silk further strengthened our findings.
Collapse
|
30
|
Cheng S, Tu M, Chen H, Xu Z, Wang Z, Liu H, Zhao G, Zhu B, Du M. Identification and inhibitory activity against α-thrombin of a novel anticoagulant peptide derived from oyster (Crassostrea gigas) protein. Food Funct 2019; 9:6391-6400. [PMID: 30457135 DOI: 10.1039/c8fo01635f] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A newly discovered anticoagulant peptide was isolated, purified and identified from the pepsin hydrolysate of oyster (Crassostrea gigas) which could potently prolong the activated partial thromboplastin time and the thrombin time. The anticoagulant peptide with a 1264.36 Da molecular mass was similar to the amino acid sequence of the C-terminal segment (DFEEIPEEYLQ) of hirudin (a potent thrombin inhibitor). The peptide specifically inhibited a vital blood coagulation factor: thrombin. The molecular docking energy scores of the anticoagulant peptide with the active site, exosite-I and exosite-II of thrombin were 132.355 kcal mol-1, 151.266 kcal mol-1 and 147.317 kcal mol-1, respectively. The anticoagulant peptide interacted with thrombin by competing with fibrinogen for an anion-binding exosite I. In the anticoagulant peptide-thrombin complex, there are seven hydrogen bonds and reciprocity exists between hydrogen atoms and oxygen atoms, and electrostatic and hydrophobic interactions are also involved. Such abundant interactions may be accountable for the high affinity and specificity of the anticoagulant peptide.
Collapse
Affiliation(s)
- Shuzhen Cheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Corn Silk Tea for Hypertension: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:2915498. [PMID: 30792743 PMCID: PMC6354158 DOI: 10.1155/2019/2915498] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 01/09/2019] [Indexed: 02/05/2023]
Abstract
Corn silk, a traditional Chinese medicine, has been found to exert an antihypertensive effect in clinical practice and trials. However, systematic review of current evidence on this topic was not available. Thus, this study aims to assess safety and efficacy of corn silk tea (CST) in improving clinical outcomes in patients with hypertension. A systematic literature search was conducted through popular electronic databases up to October 2018. Randomized controlled trials (RCTs) comparing CST plus conventional antihypertensive drugs with conventional antihypertensive drugs alone were included. The main outcome was total blood pressure lowering efficacy. The risk of bias assessment according to the Cochrane Handbook was used to evaluate the methodological quality of the included trials. Review Manager 5.3 software was used for data analyses. Five RCTs involving 567 participants were included. Due to the poor quality of methodologies of most trials, limited evidence showed that CST plus antihypertensive drugs might be more effective in lowering blood pressure compared with antihypertensive drugs alone (RR = 1.27; 95% CI: 1.17 to 1.38, P<0.00001; heterogeneity: P = 0.51, I2 = 0%, fixed‐effect model). However, there is no evidence that CST plus conventional antihypertensive drugs has less adverse events than conventional antihypertensive drugs.
Collapse
|
32
|
Cheng S, Tu M, Liu H, Zhao G, Du M. Food-derived antithrombotic peptides: Preparation, identification, and interactions with thrombin. Crit Rev Food Sci Nutr 2019; 59:S81-S95. [PMID: 30740983 DOI: 10.1080/10408398.2018.1524363] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Thromboembolism and its sequelae have been the leading causes of morbidity and mortality throughout the world. Food-derived antithrombotic peptides, as potential ingredients in health-promoting functional foods targeting thrombus, have attracted increasing attention because of their high biological activities, low toxicity, and ease of metabolism in the human body. This review presents the conventional workflow of preparation, isolation and identification of antithrombotic peptides from various kinds of food materials. More importantly, to analyze the antithrombotic effects and mechanism of antithrombotic peptides, methods for interaction of anticoagulant peptides and thrombin, the main participant in thrombosis, were analyzed from biochemistry, solution chemistry and crystal chemistry. The present study is intended to highlight the recent advances in research of food-derived antithrombotic peptide as a novel vehicle in the field of food science and nutrition. Future outlooks are highlighted with the aim to suggest a research line to be followed in further studies with the introduced research approach.
Collapse
Affiliation(s)
- Shuzheng Cheng
- a School of Food Science and Technology, National Engineering Research Center of Seafood , Dalian Polytechnic University , Dalian , Liaoning , China.,b Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering , China Agricultural University , Beijing , China
| | - Maolin Tu
- c Department of Food Science and Engineering , Harbin Institute of Technology , Harbin , Heilongjiang , China
| | - Hanxiong Liu
- a School of Food Science and Technology, National Engineering Research Center of Seafood , Dalian Polytechnic University , Dalian , Liaoning , China
| | - Guanghua Zhao
- b Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering , China Agricultural University , Beijing , China
| | - Ming Du
- a School of Food Science and Technology, National Engineering Research Center of Seafood , Dalian Polytechnic University , Dalian , Liaoning , China
| |
Collapse
|
33
|
Liu Q, Liu J, Fan S, Yang D, Wang H, Wang Y. Rapid discovery and global characterization of multiple components in corn silk using a multivariate data processing approach based on UHPLC coupled with electrospray ionization/quadrupole time-of-flight mass spectrometry. J Sep Sci 2018; 41:4022-4030. [PMID: 30194802 DOI: 10.1002/jssc.201800605] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/27/2018] [Accepted: 09/03/2018] [Indexed: 12/28/2022]
Abstract
Corn silk is an important traditional Chinese medicine which has been widely used as diuretic, antilithiasic, uricosuric, antiseptic, etc. for thousands of years. However, it is a pity that the chemical ingredients in corn silk, especially the constituents absorbed into blood, are unclear up to now. The aim of our study was to investigate the multiple components of corn silk in vitro and in vivo. In this present study, a sensitive and rapid method using ultra high performance liquid chromatography coupled with electrospray ionization/quadrupole time-of-flight tandem mass spectrometry and a multivariate data processing approach was established to detect the constituents of corn silk in vitro and in vivo. Consequently, total 41 ingredients in vitro and 19 of them absorbed into blood including luteolin, various C-glycosyl flavones, jasmonic acid, abscisic acid, gibberellin A, etc. were tentatively characterized in sequence. Furthermore, of particular importance, a kind of stable compound named C-glycosyl flavones is a great discovery in vivo, which can point the further pharmacological study target in future. In a word, this is the first serum pharmacochemistry study of corn silk, which played a critical role in exploring the pharmacological and effective data for further research.
Collapse
Affiliation(s)
- Qi Liu
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Jianhua Liu
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Songjie Fan
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Dezhu Yang
- Pharmacy School, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Huimin Wang
- The Academic Affairs Office, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Yumei Wang
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| |
Collapse
|
34
|
Li JM, Lee YC, Li CC, Lo HY, Chen FY, Chen YS, Hsiang CY, Ho TY. Vanillin-Ameliorated Development of Azoxymethane/Dextran Sodium Sulfate-Induced Murine Colorectal Cancer: The Involvement of Proteasome/Nuclear Factor-κB/Mitogen-Activated Protein Kinase Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:5563-5573. [PMID: 29790745 DOI: 10.1021/acs.jafc.8b01582] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Vanillin is a natural dietary flavoring widely used in the food industry. Colorectal cancer (CRC) is one of the common malignancies in the world. Chronic intestinal inflammation is a risk factor for the development of CRC. We have previously found that vanillin improves and prevents colitis in mice. Here we evaluated the inhibitory activities of vanillin on a mouse model of colitis-induced CRC. Mice were challenged intraperitoneally with azoxymethane (AOM) and orally with dextran sodium sulfate (DSS). Various dosages of vanillin were orally administered for 13 consecutive weeks. Vanillin alleviated the development of tumors in AOM/DSS-induced mice. The total number of tumors in 100 mg/kg vanillin group was significantly reduced by 57.14 ± 7.67%, compared with sham group. Gene expression analysis showed that vanillin downregulated the expression levels of proteasome genes in colon tissues. Moreover, vanillin at 10 mM significantly suppressed proteasome activities in HCT-116 cells by 41.27 ± 0.41%. Furthermore, vanillin diminished the phosphorylation of mitogen-activated protein kinases (MAPKs) and reduced the number of p65-positive cells, proliferating cells, and granulocytes in colon tissues with statistical significance. In conclusion, our data suggested that vanillin was a bioactive compound that ameliorated the development of AOM/DSS-induced colon cancer in mice. Moreover, the amelioration of vanillin might be associated with the downregulation of proteasome, nuclear factor-κB, and MAPK pathways.
Collapse
Affiliation(s)
- Jung-Miao Li
- Graduate Institute of Chinese Medicine , China Medical University , Taichung 40402 , Taiwan
- Department of Chinese Medicine , Show Chwan Memorial Hospital , Changhua 50008 , Taiwan
| | - Yu-Chen Lee
- Graduate Institute of Acupuncture Science , China Medical University , Taichung 40402 , Taiwan
| | - Chia-Cheng Li
- Graduate Institute of Chinese Medicine , China Medical University , Taichung 40402 , Taiwan
| | - Hsin-Yi Lo
- Graduate Institute of Chinese Medicine , China Medical University , Taichung 40402 , Taiwan
| | - Feng-Yuan Chen
- Graduate Institute of Chinese Medicine , China Medical University , Taichung 40402 , Taiwan
| | - Yi-Siou Chen
- Department of Microbiology , China Medical University , Taichung 40402 , Taiwan
| | - Chien-Yun Hsiang
- Department of Microbiology , China Medical University , Taichung 40402 , Taiwan
| | - Tin-Yun Ho
- Graduate Institute of Chinese Medicine , China Medical University , Taichung 40402 , Taiwan
- Department of Health and Nutrition Biotechnology , Asia University , Taichung 41354 , Taiwan
| |
Collapse
|
35
|
Cheng HM, Chen FY, Li CC, Lo HY, Liao YF, Ho TY, Hsiang CY. Oral Administration of Vanillin Improves Imiquimod-Induced Psoriatic Skin Inflammation in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10233-10242. [PMID: 29073354 DOI: 10.1021/acs.jafc.7b04259] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Vanillin is one of the most widely used flavoring products worldwide. Psoriasis is a chronic inflammatory skin disorder. The interleukin-23 (IL-23)/interleukin-17 (IL-17) axis plays a critical role in psoriasis. Here, we analyzed the effect of vanillin on imiquimod (IMQ)-induced psoriatic skin inflammation in mice. Mice were treated topically with IMQ on the back skin and orally with various amounts of vanillin for 7 consecutive days. Vanillin significantly improved IMQ-induced histopathological changes of skin in a dose-dependent manner. The thickness and number of cell layers of epidermis were reduced by 29 ± 14.4 and 27.8 ± 11%, respectively, in mice given 100 mg/kg of vanillin. A microarray showed that a total of 9042 IMQ-upregulated genes were downregulated by vanillin, and the biological pathways involved in the immune system and metabolism were significantly altered by vanillin. The upregulated expressions of IL-23, IL-17A, and IL-17F genes were suppressed by vanillin, with fold changes of -3.07 ± 0.08, -2.06 ± 0.21, and -1.62 ± 0.21, respectively. Moreover, vanillin significantly decreased both the amounts of IL-17A and IL-23 and the infiltration of immune cells in the skin tissues of IMQ-treated mice. In conclusion, our findings suggested that vanillin was an effective bioactive compound against psoriatic skin inflammation. Moreover, the downregulation of IL-23 and IL-17 expression suggested that vanillin was a novel regulator of the IL-23/IL-17 axis.
Collapse
Affiliation(s)
- Hui-Man Cheng
- Department of Integration of Traditional Chinese and Western Medicine, China Medical University Hospital , Taichung 40447, Taiwan
| | | | | | | | | | - Tin-Yun Ho
- Department of Health and Nutrition Biotechnology, Asia University , Taichung 41354, Taiwan
| | | |
Collapse
|