1
|
Wang J, Xiao X, Zhou N, Zhao M, Lang S, Ren Q, Wang D, Fu H. Rubochingosides A - J, labdane-type diterpene glycosides from leaves of Rubus chingii. PHYTOCHEMISTRY 2023; 210:113670. [PMID: 37037403 DOI: 10.1016/j.phytochem.2023.113670] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 06/19/2023]
Abstract
Ten previously undescribed labdane-type triterpenoids, rubochingosides A - J (1-10), were isolated from the leaves of Rubus chingii Hu. Their structures were elucidated by spectroscopic and chemical methods. The cytotoxicity of all isolated compounds was tested against five human tumor cell lines (Bel-7402, Caski, BGC-823, A2780, and HCT-116). Among them, compounds 4 and 8 showed cytotoxic activities against Bel-7402 and A2780 cells with IC50 values of 10.43 ± 0.51 and 29.03 ± 2.94 μM, respectively; Compound 8 exhibited cytotoxic activities against Bel-7402 and HCT-116 cells with IC50 values of 17.78 ± 1.54 and 26.23 ± 6.14 μM, respectively.
Collapse
Affiliation(s)
- Jianxiong Wang
- Jiangxi Institute for Drug Control, NMPA Key Laboratory of Quality Evaluation of Traditional Chinese Patent Medicine, Jiangxi Provincial Engineering Research Center of Drug and Medical Device Quality, Nanchang, Jiangxi, 330029, China; Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Xiaowu Xiao
- Jiangxi Institute for Drug Control, NMPA Key Laboratory of Quality Evaluation of Traditional Chinese Patent Medicine, Jiangxi Provincial Engineering Research Center of Drug and Medical Device Quality, Nanchang, Jiangxi, 330029, China
| | - Nian Zhou
- Jiangxi Institute for Drug Control, NMPA Key Laboratory of Quality Evaluation of Traditional Chinese Patent Medicine, Jiangxi Provincial Engineering Research Center of Drug and Medical Device Quality, Nanchang, Jiangxi, 330029, China
| | - Minmin Zhao
- Jiangxi Institute for Drug Control, NMPA Key Laboratory of Quality Evaluation of Traditional Chinese Patent Medicine, Jiangxi Provincial Engineering Research Center of Drug and Medical Device Quality, Nanchang, Jiangxi, 330029, China; Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Shuqin Lang
- Jiangxi Institute for Drug Control, NMPA Key Laboratory of Quality Evaluation of Traditional Chinese Patent Medicine, Jiangxi Provincial Engineering Research Center of Drug and Medical Device Quality, Nanchang, Jiangxi, 330029, China; Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Qi Ren
- Jiangxi Institute for Drug Control, NMPA Key Laboratory of Quality Evaluation of Traditional Chinese Patent Medicine, Jiangxi Provincial Engineering Research Center of Drug and Medical Device Quality, Nanchang, Jiangxi, 330029, China
| | - Dong Wang
- Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, China; Jiangxi General Institute of Inspection, Testing and Certification, Nanchang, Jiangxi, 330052, China.
| | - Huizheng Fu
- Jiangxi Institute for Drug Control, NMPA Key Laboratory of Quality Evaluation of Traditional Chinese Patent Medicine, Jiangxi Provincial Engineering Research Center of Drug and Medical Device Quality, Nanchang, Jiangxi, 330029, China; Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, China.
| |
Collapse
|
2
|
Islam MR, Akash S, Rahman MM, Nowrin FT, Akter T, Shohag S, Rauf A, Aljohani AS, Simal-Gandara J. Colon cancer and colorectal cancer: Prevention and treatment by potential natural products. Chem Biol Interact 2022; 368:110170. [DOI: 10.1016/j.cbi.2022.110170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/24/2022] [Accepted: 09/03/2022] [Indexed: 11/29/2022]
|
3
|
Wang X, Zhou X, Zhang L, Zhang X, Yang C, Piao Y, Zhao J, Jin L, Jin G, An R, Ren X. Crowberry inhibits cell proliferation and migration through a molecular mechanism that includes inhibition of DEK and Akt signaling in cholangiocarcinoma. Chin Med 2022; 17:69. [PMID: 35698073 PMCID: PMC9190153 DOI: 10.1186/s13020-022-00623-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/08/2022] [Indexed: 11/17/2022] Open
Abstract
Background Cholangiocarcinoma (CCA) is a rare biliary adenocarcinoma related to poor clinical prognosis. Crowberry is an herbal medicine used to control inflammatory diseases and reestablish antioxidant enzyme activity. Although crowberry shows significant therapeutic efficacy in various tumors and diseases, its anticancer effects and specific molecular mechanisms in CCA are poorly understood. Aim of the study This study was conducted to characterize crowberry effects on CCA cells behavior. Materials and methods The chemical profiles of crowberry extract was qualitatively analyzed by high-performance liquid chromatography (HPLC) and HPLC–tandem mass spectrometry. MTT, colony formation and EdU assays were performed to measure cell proliferation. The effect of crowberry treatment on CCA cell migration was assessed by wound healing and migration assays. Moreover, Hoechst staining assay and flow cytometry were performed to assess the cell apoptosis rate. Western blotting was used to assess the protein expression levels of key factors associated with apoptosis, the Akt signaling pathway, and the epithelial-mesenchymal transition. A xenograft model was established and immunohistochemical and H&E staining was performed to assess crowberry antitumor effects in vivo. Results Crowberry clearly inhibited CCA cells proliferation and migration in a dose-dependent manner and induced apoptosis in vitro. Crowberry inactivated the PI3K/Akt signaling pathway by regulating DEK in vitro and significantly inhibited tumor growth by downregulating the DEK expression in xenograft models. Conclusion Crowberry inhibits CCA cells proliferation and migration through a molecular mechanism that includes inhibition of DEK and Akt signaling pathway inhibition in vitro and in vivo. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13020-022-00623-6. Crowberry alterd expression levels of key mediators in PI3K/Akt signaling pathway. Crowberry alterd expression levels of key mediators in PI3K/Akt signaling pathway. Crowberry suppressed the expression of the proto-oncogene DEK in vivo and in vitro. Crowberry inhibited CCA progression and migration through a molecular mechanism that includes inhibition of DEK and the Akt signaling pathway in vivo and in vitro.
Collapse
Affiliation(s)
- Xue Wang
- Department of Pathology and Cancer Research Center, Yanbian University, Jilin Yanbian, 133002, China.,Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanji, China
| | - Xuebing Zhou
- Department of Pathology and Cancer Research Center, Yanbian University, Jilin Yanbian, 133002, China.,Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanji, China
| | - Ludan Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain (Yanbian University), Ministry of Education, Jilin Yanbian, 133002, China
| | - Xin Zhang
- Department of Pathology and Cancer Research Center, Yanbian University, Jilin Yanbian, 133002, China.,Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanji, China
| | - Chunyu Yang
- Department of Pathology and Cancer Research Center, Yanbian University, Jilin Yanbian, 133002, China.,Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanji, China
| | - Yingshi Piao
- Department of Pathology and Cancer Research Center, Yanbian University, Jilin Yanbian, 133002, China.,Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanji, China
| | - Jinhua Zhao
- Key Laboratory of Natural Medicines of the Changbai Mountain (Yanbian University), Ministry of Education, Jilin Yanbian, 133002, China
| | - Lili Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain (Yanbian University), Ministry of Education, Jilin Yanbian, 133002, China
| | - Guihua Jin
- Department of Immunology and Pathogenic Biology, Yanbian University, Yanji, 133002, China.
| | - Renbo An
- Key Laboratory of Natural Medicines of the Changbai Mountain (Yanbian University), Ministry of Education, Jilin Yanbian, 133002, China.
| | - Xiangshan Ren
- Department of Pathology and Cancer Research Center, Yanbian University, Jilin Yanbian, 133002, China. .,Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanji, China. .,Key Laboratory of Natural Medicines of the Changbai Mountain (Yanbian University), Ministry of Education, Jilin Yanbian, 133002, China.
| |
Collapse
|
4
|
Yang Y, Zhang K, Xiao Y, Zhang L, Huang Y, Li X, Chen S, Peng Y, Yang S, Liu Y, Cheng F. Genome Assembly and Population Resequencing Reveal the Geographical Divergence of Shanmei (Rubus corchorifolius). GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:1106-1118. [PMID: 35643190 DOI: 10.1016/j.gpb.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 04/28/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022]
Abstract
Rubus corchorifolius (Shanmei or mountain berry, 2n = 14) is widely distributed in China, and its fruits possess high nutritional and medicinal values. Here, we reported a high-quality chromosome-scale genome assembly of Shanmei, with contig size of 215.69 Mb and 26,696 genes. Genome comparison among Rosaceae species showed that Shanmei and Fupenzi (Rubus chingii Hu) were most closely related, followed by blackberry (Rubus occidentalis), and that environmental adaptation-related genes were significantly expanded in the Shanmei genome. Further resequencing of 101 samples of Shanmei collected from four regions in the provinces of Yunnan, Hunan, Jiangxi, and Sichuan in China revealed that the Hunan population of Shanmei possessed the highest diversity and represented the more ancestral population. Moreover, the Yunnan population underwent strong selection based on the nucleotide diversity, linkage disequilibrium, and historical effective population size analyses. Furthermore, genes from candidate genomic regions that showed strong divergence were significantly enriched in the flavonoid biosynthesis and plant hormone signal transduction pathways, indicating the genetic basis of adaptation of Shanmei to the local environment. The high-quality assembled genome and the variome dataset of Shanmei provide valuable resources for breeding applications and for elucidating the genome evolution and ecological adaptation of Rubus species.
Collapse
Affiliation(s)
- Yinqing Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 100081, China
| | - Kang Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 100081, China
| | - Ya Xiao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 100081, China; Biotechnology Research Center, Xiangxi Academy of Agricultural Sciences, Jishou 416000, China
| | - Lingkui Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 100081, China
| | - Yile Huang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 100081, China
| | - Xing Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 100081, China
| | - Shumin Chen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 100081, China
| | - Yansong Peng
- Lushan Botanical Garden, Chinese Academy of Sciences, Lushan 332900, China
| | - Shuhua Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 100081, China.
| | - Yongbo Liu
- State Environmental Protection Key Laboratory of Regional Eco-process and Function Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Feng Cheng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 100081, China.
| |
Collapse
|
5
|
Chen X, Wu X, Liu G, Wang Q, Itenberg SA, Ouyang W, Song M, Dixon WR, Cao Y, Xiao H. Structure analysis of ethyl ferulate from Rubus corchorifolius L.f. leaves and its inhibitory effects on HepG2 liver cancer cells. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Huang M, Han Y, Li L, Rakariyatham K, Wu X, Gao Z, Xiao H. Protective effects of non-extractable phenolics from strawberry against inflammation and colon cancer in vitro. Food Chem 2021; 374:131759. [PMID: 34896944 DOI: 10.1016/j.foodchem.2021.131759] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/25/2021] [Accepted: 11/29/2021] [Indexed: 12/26/2022]
Abstract
Strawberry is a rich source of phenolics. However, most studies focused on extractable phenolics (EP) while neglecting non-extractable phenolics (NEP). The aim of this study was to characterize EP and NEP from strawberry (Fragaria × ananassa) and determine their anti-inflammatory and anti-colon cancer potentials in cell culture models. NEP contained flavonols, flavanols and phenolic acids that were released through alkaline hydrolysis. NEP dose-dependently inhibited lipopolysaccharides -induced NO production in RAW 264.7 macrophage. Western blotting showed that NEP reduced the expression levels of pro-inflammatory proteins such as iNOS and c-FOS, but increased the expression level of antioxidative protein, such as HO-1. Moreover, NEP markedly suppressed proliferation of human colon cancer HCT116 cells via inducing G2/M phase cell cycle arrest and apoptosis. Collectively, these findings illustrated preventive effects of strawberry NEP against inflammation and colon cancer, shedding light on potential contribution of NEP from strawberry as a health-promoting agent.
Collapse
Affiliation(s)
- Meigui Huang
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, PR China; Department of Food Science, University of Massachusetts, Amherst, MA 01003, United States
| | - Yanhui Han
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, United States
| | - Lingfei Li
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, United States; College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650000, PR China
| | - Kanyasiri Rakariyatham
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, United States
| | - Xian Wu
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, United States; Department of Kinesiology and Health, Miami University, Oxford, OH 45056, USA
| | - Zili Gao
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, United States
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
7
|
He H, Feng M, Xu H, Li X, He Y, Qin H, Zhang Y, Tang H, Zou K. Total triterpenoids from the fruits of Chaenomeles speciosa exerted gastroprotective activities on indomethacin-induced gastric damage via modulating microRNA-423-5p-mediated TFF/NAG-1 and apoptotic pathways. Food Funct 2020; 11:662-679. [PMID: 31895380 DOI: 10.1039/c9fo02322d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Our previous studies have demonstrated that the total triterpenes from the fruits of Chaenomeles speciosa (CSTT) exhibit effective therapeutic effects on gastric ulcer patients and animals. The present aim is to further investigate the mechanisms involved. The results indicated that CSTT could ameliorate IND-induced gastric injury, which was related to promoting IND-damaged GES-1 cell proliferation and migration, improving the IND-damaged rat GBF, ulcer area, inhibition rate and pathologic changes of gastric mucous tissue, increasing the amount of adhered gastric mucus, attenuating the volume and total acidity of the gastric effluents, and augmenting the gastric pH; further studies showed that CSTT obviously downregulated miR-423-5p mRNA, NAG-1 mRNA and protein expression, Bax, Bad, cytosol cytochrome C, Apaf-1, cleaved-caspase-3, and cleaved-caspase-9 protein expression and cytosol cytochrome C concentration, and upregulated TFF1, TFF2 and TFF3 mRNA and protein expression, Bcl-2, Bcl-xl, pro-caspase-3, and pro-caspase-9 protein expression, mitochondrial viability, mitochondrial cytochrome C concentration and Bcl-2/Bax, Bcl-xl/Bad ratios. These findings demonstrated that CSTT protected against IND-induced gastric damage by depressing miR-423-5p expression and modulating the TFF/NAG-1 pathway, which in turn restrained mitochondrion-mediated apoptosis.
Collapse
Affiliation(s)
- Haibo He
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Wu X, Li Z, Sun Y, Li F, Gao Z, Zheng J, Xiao H. Identification of Xanthomicrol as a Major Metabolite of 5-Demethyltangeretin in Mouse Gastrointestinal Tract and Its Inhibitory Effects on Colon Cancer Cells. Front Nutr 2020; 7:103. [PMID: 32850933 PMCID: PMC7405597 DOI: 10.3389/fnut.2020.00103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/08/2020] [Indexed: 12/26/2022] Open
Abstract
5-Demethyltangeretin (5DT) is a unique polymethoxyflavone mainly found in the peel of citrus, and has shown potent suppressive effects on multiple human cancer cells. Biotransformation plays a critical role in the biological activities of dietary bioactive components because their metabolites may exert significant bioactivities. In the present study, the metabolic fate of 5DT in mouse gastrointestinal (GI) tract after long-term oral intake and the anti-cancer effects of its major metabolite were determined. It was found that 5DT underwent extensive biotransformation after oral ingestion in mice. A major demethylated metabolite was produced via phase I metabolism, while conjugates (glucuronide and sulfate) were generated via phase II metabolism. Specifically, 4'-position on the B ring of 5DT was the major site for demethylation reaction, which led to the production of xanthomicrol (XAN) as a major metabolite. More importantly, the level of XAN in the colon was significantly higher than that of 5DT in 5DT-fed mice. Thus, we further determined the suppressive effects of XAN on human colon cancer HCT116 cells. We found that XAN effectively inhibited the proliferation of HCT116 cells by arresting cell cycle and inducing cellular apoptosis, which was further evidenced by upregulated p53 and p21 and downregulated cyclin D and CDK4/6 level. In conclusion, this study identified XAN as a major metabolite of 5DT in mouse GI tract, and demonstrated its suppressive effects on HCT116 colon cancer cells.
Collapse
Affiliation(s)
- Xian Wu
- Department of Food Science, University of Massachusetts, Amherst, MA, United States.,Department of Kinesiology and Health, Miami University, Oxford, OH, United States
| | - Zhengze Li
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Yue Sun
- Department of Food Science, University of Massachusetts, Amherst, MA, United States.,Anhui Engineering Laboratory for Agro-products Processing, School of Tea & Food Science, Anhui Agricultural University, Hefei, China
| | - Fang Li
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Zili Gao
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Jinkai Zheng
- Department of Food Science, University of Massachusetts, Amherst, MA, United States.,Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
9
|
Mechanistic Pathways and Molecular Targets of Plant-Derived Anticancer ent-Kaurane Diterpenes. Biomolecules 2020; 10:biom10010144. [PMID: 31963204 PMCID: PMC7023344 DOI: 10.3390/biom10010144] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 02/07/2023] Open
Abstract
Since the first discovery in 1961, more than 1300 ent-kaurane diterpenoids have been isolated and identified from different plant sources, mainly the genus Isodon. Chemically, they consist of a perhydrophenanthrene subunit and a cyclopentane ring. A large number of reports describe the anticancer potential and mechanism of action of ent-kaurane compounds in a series of cancer cell lines. Oridonin is one of the prime anticancer ent-kaurane diterpenoids that is currently in a phase-I clinical trial in China. In this review, we have extensively summarized the anticancer activities of ent-kaurane diterpenoids according to their plant sources, mechanistic pathways, and biological targets. Literature analysis found that anticancer effect of ent-kauranes are mainly mediated through regulation of apoptosis, cell cycle arrest, autophagy, and metastasis. Induction of apoptosis is associated with modulation of BCL-2, BAX, PARP, cytochrome c, and cleaved caspase-3, -8, and -9, while cell cycle arrest is controlled by cyclin D1, c-Myc, p21, p53, and CDK-2 and -4. The most common metastatic target proteins of ent-kauranes are MMP-2, MMP-9, VEGF, and VEGFR whereas LC-II and mTOR are key regulators to induce autophagy.
Collapse
|
10
|
Zhu X, Ouyang W, Pan C, Gao Z, Han Y, Song M, Feng K, Xiao H, Cao Y. Identification of a new benzophenone from Psidium guajava L. leaves and its antineoplastic effects on human colon cancer cells. Food Funct 2020; 10:4189-4198. [PMID: 31250851 DOI: 10.1039/c9fo00569b] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Psidium guajava L. leaves have a long history of being consumed as herbal teas in many countries. The aim of this study was to identify compounds with anticancer potentials from Psidium guajava L. leaves. Utilizing various extraction and chromatographical techniques, we have isolated one new (2) and two known compounds (1, 3). Structural analyses by the spectroscopic methods of TOF-MS, 1H NMR, 13C NMR, HSQC, and HMBC identified these three compounds as guavinoside E (1), 3,5-dihydroxy-2,4-dimethyl-1-O-(6'-O-galloyl-β-d-glucopyranosyl)-benzophenone (2), and guavinoside B (3). Cell viability assays showed that compounds 2 and 3 inhibited the growth of HCT116 human colon cancer cells in a dose-dependent manner, where compound 2 was more potent than compound 3. Based on flow cytometry analysis, compound 2 showed stronger activity in inducing cellular apoptosis in cancer cells than compound 3. Furthermore, compounds 2 and 3 modulated expression levels of key proteins involved in cell proliferation and apoptotic signaling. Specifically, compound 2 increased the levels of p53, p-ERK1/2, p-JNK, and cleaved caspases 8 and 9, and compound 3 increased the levels of p53 and cleaved caspase 8. Overall, this study provided identities of three bioactive compounds from P. guajava L. leaves and their anti-cancer effects against human colon cancer cells, which could facilitate the utilization of these compounds and P. guajava L. leaves as potential chemoprevention agents against colon carcinogenesis.
Collapse
Affiliation(s)
- Xiaoai Zhu
- College of Food Science, South China Agricultural University, Guangzhou 510642, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Zhang Y, Xu H, He H, Li X, Feng M, He Y, Jiang W, Wang J, Xu D, Zou K. Total triterpenes from the fruits of Chaenomeles speciosa (Sweet) Nakai protects against indomethacin-induced gastric mucosal injury: involvement of TFF1-mediated EGF/EGFR and apoptotic pathways. ACTA ACUST UNITED AC 2019; 72:409-423. [PMID: 31863472 DOI: 10.1111/jphp.13207] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 11/03/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Our previous studies indicated that the triterpenes from the fruits of Chaenomeles speciosa (Sweet) Nakai (TCS) owned effectively therapeutic effects on gastric ulcer patients and animals, but its mechanisms have not been fully understood. The current study was to further investigate its protective effect on indomethacin (IND)-damaged RGM-1 cells and rats, as well as its mechanisms involved. METHODS The gastroprotection of TCS was evaluated with IND-induced gastric lesions model in RGM-1 cells and rats. In vitro, the proliferation, migration, mitochondrial viability and apoptosis were assessed. In vivo, ulcer index, ulcer inhibition rate, gastric juice acidity, gastric wall mucus (GWM) and histopathology of gastric mucosa were detected. The gastroprotective effects of TCS through the TFF1-mediated EGF/EGFR and apoptotic pathways were measured by qRT-PCR and Western blot assays. KEY FINDINGS The results demonstrated that TCS had gastroprotective function, which was related to the amelioration in promoting IND-damaged RGM-1 cell proliferation and migration, hoisting gastric juice acidity and GWM, improving ulcer index and ulcer inhibition rate, attenuating the haemorrhage, oedema, epithelial cell loss and inflammatory cell infiltration of gastric mucosa, upregulating PCNA, Bcl-2, Bcl-xl mRNA and TFF1, EGF, p-EGFR, p-Src, pro-caspase-3, pro-caspase-9 protein expressions, mitochondrial viability, mitochondrial cytochrome c concentration and p-EGFR/EGFR, p-Src/Src, Bcl-2/Bax, Bcl-xl/Bad ratioes, downregulating Bax, Bad, Apaf-1 mRNA and cleaved-caspase-3, cleaved-caspase-9, cleaved PARP-1 protein expressions and cytosol cytochrome c concentration. CONCLUSIONS Our present study demonstrated that TCS's gastroprotective effect was closely connected with boosting TFF1 expression, activating TFF1-mediated EGF/EGFR pathway, thus restraining mitochondrial-dependent apoptosis, which provided new insights into interpreting its underlying mechanism and promised to act as a candidate drug to treat gastric mucosal injury.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, China
| | - Haiyan Xu
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, China
| | - Haibo He
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, China
| | - Xiaomei Li
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, China
| | - Minlu Feng
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, China
| | - Yumin He
- College of Medical Sciences, China Three Gorges University, Yichang, China
| | - Weijie Jiang
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, China
| | - Junzhi Wang
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, China
| | - Daoxiang Xu
- Seventh People's Hospital of Wenzhou, Wenzhou, China
| | - Kun Zou
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, China
| |
Collapse
|
12
|
Lee KF, Tsai MM, Tsai CY, Huang CG, Ou YH, Hsieh CC, Hsieh HL, Wang CS, Lin KH. DEK Is a Potential Biomarker Associated with Malignant Phenotype in Gastric Cancer Tissues and Plasma. Int J Mol Sci 2019; 20:E5689. [PMID: 31766266 PMCID: PMC6888682 DOI: 10.3390/ijms20225689] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/08/2019] [Accepted: 11/09/2019] [Indexed: 12/13/2022] Open
Abstract
Gastric cancer (GC) is the second most widespread cause of cancer-related mortality worldwide. The discovery of novel biomarkers of oncoproteins can facilitate the development of therapeutic strategies for GC treatment. In this study, we identified novel biomarkers by integrating isobaric tags for relative and absolute quantitation (iTRAQ), a human plasma proteome database, and public Oncomine datasets to search for aberrantly expressed oncogene-associated proteins in GC tissues and plasma. One of the most significantly upregulated biomarkers, DEK, was selected and its expression validated. Our immunohistochemistry (IHC) (n = 92) and quantitative real-time polymerase chain reaction (qRT-PCR) (n = 72) analyses disclosed a marked increase in DEK expression in tumor tissue, compared with paired nontumor mucosa. Importantly, significantly higher preoperative plasma DEK levels were detected in GC patients than in healthy controls via enzyme-linked immunosorbent assay (ELISA). In clinicopathological analysis, higher expression of DEK in both tissue and plasma was significantly associated with advanced stage and poorer survival outcomes of GC patients. Data from receiver operating characteristic (ROC) curve analysis disclosed a better diagnostic accuracy of plasma DEK than carcinoembryonic antigen (CEA), carbohydrate antigen 19.9 (CA 19.9), and C-reactive protein (CRP), highlighting its potential as an effective plasma biomarker for GC. Plasma DEK is also more sensitive in tumor detection than the other three biomarkers. Knockdown of DEK resulted in inhibition of GC cell migration via a mechanism involving modulation of matrix metalloproteinase MMP-2/MMP-9 level and vice versa. Our results collectively support plasma DEK as a useful biomarker for making diagnosis and prognosis of GC patients.
Collapse
Affiliation(s)
- Kam-Fai Lee
- Department of Pathology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan;
| | - Ming-Ming Tsai
- Department of Nursing, Division of Basic Medical Sciences, Chang-Gung University of Science and Technology, Taoyuan 333, Taiwan; (M.-M.T.); (H.-L.H.)
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
- Department of General Surgery, Chang Gung Memorial Hospital, Chia-yi 613, Taiwan;
| | - Chung-Ying Tsai
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan; (C.-Y.T.); (Y.-H.O.)
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Chung-Guei Huang
- Department of Medical Biotechnology and Laboratory Science, and Graduate Institute of Biomedical Science, Chang Gung University, Taoyuan 333, Taiwan;
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan
| | - Yu-Hsiang Ou
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan; (C.-Y.T.); (Y.-H.O.)
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan
| | - Ching-Chuan Hsieh
- Department of General Surgery, Chang Gung Memorial Hospital, Chia-yi 613, Taiwan;
| | - Hsi-Lung Hsieh
- Department of Nursing, Division of Basic Medical Sciences, Chang-Gung University of Science and Technology, Taoyuan 333, Taiwan; (M.-M.T.); (H.-L.H.)
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
- Department of Neurology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Chia-Siu Wang
- Department of General Surgery, Chang Gung Memorial Hospital, Chia-yi 613, Taiwan;
| | - Kwang-Huei Lin
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan; (C.-Y.T.); (Y.-H.O.)
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan
| |
Collapse
|
13
|
Huang XM, Yang ZJ, Xie Q, Zhang ZK, Zhang H, Ma JY. Natural products for treating colorectal cancer: A mechanistic review. Biomed Pharmacother 2019; 117:109142. [DOI: 10.1016/j.biopha.2019.109142] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 12/17/2022] Open
|
14
|
Zong S, Li J, Yang L, Huang Q, Hou G, Ye Z, Ye M. Mechanism of bioactive polysaccharide from Lachnum sp. acts synergistically with 5-fluorouracil against human hepatocellular carcinoma. J Cell Physiol 2019; 234:15548-15562. [PMID: 30770552 DOI: 10.1002/jcp.28202] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/03/2019] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
The antimetabolite 5-fluorouracil (5-FU) is a widely used antitumor agent, however the overall response rate to 5-FU as a single agent is usually limited. Herein, how Lachnum expolysaccharide (LEP-2a), a type of active polysaccharide isolated from Lachnum sp., acted synergistically with 5-FU on HepG2 cells was investigated. It was found that LEP-2a notably enhanced 5-FU sensitivity in HepG2 cells in a synergistic manner. After combination treatment of 5-FU and LEP-2a, Ras/Raf/MEK/ERK and PI3K/AKT/mTOR pathway were inactivated. In addition, combination treatment induced generation of reactive oxygen species, decreased the levels of intracellular antioxidant enzymes and triggered mitochondrial apoptosis pathway. Furthermore, 5-FU combined with LEP-2a also resulted in p53 activation and NF-κB inhibition, and cell cycle arrest in the S phase as well as cell metastasis stagnation. Interestingly, LEP-2a treatment also blocked the DNA damage repair procedure. These findings demonstrate that LEP-2a enhanced 5-FU sensitivity and combination of 5-FU and LEP-2a exerts synergistic antitumor efficiency through multiple approaches.
Collapse
Affiliation(s)
- Shuai Zong
- Engineering Research Center of Bio-process, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Jinglei Li
- Engineering Research Center of Bio-process, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Liu Yang
- Engineering Research Center of Bio-process, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Qianli Huang
- Engineering Research Center of Bio-process, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Guohua Hou
- Engineering Research Center of Bio-process, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Ziyang Ye
- Engineering Research Center of Bio-process, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Ming Ye
- Engineering Research Center of Bio-process, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| |
Collapse
|
15
|
Yang YN, Zheng FP, Yu AN, Sun BG. Changes of the free and bound volatile compounds in Rubus corchorifolius L. f. fruit during ripening. Food Chem 2019; 287:232-240. [PMID: 30857694 DOI: 10.1016/j.foodchem.2019.02.080] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/17/2019] [Accepted: 02/17/2019] [Indexed: 11/25/2022]
Abstract
The changes of free and bound volatile compounds in Rubus corchorifolius fruit during ripening were determined with a headspace SPME-GC-MS method. The results suggest that the free aldehydes, alcohols, esters and phenols increases, while that of free terpenoids decreases, with the ripening of the fruit. The bound aldehydes, alcohols, terpenoids, esters and phenols gradually decreases during ripening because these bound compounds are hydrolyzed to their free form. The characteristic free aroma compounds of ripened red fruit were found to be hexanal, 2-heptanone, ethyl hexanoate, 4-terpineol, geranial and methyleugenol. The free aroma compounds in red and yellow fruits exhibit similar odor profiles, and both of them are much sweeter, more floral and greener than the green fruit. The overall aroma of the fruits all ripening stages are mainly attributed to the free aroma compounds including β-damascenone, hexanal, 2-hexenal and linalool. The formation mechanisms of some volatile compounds were proposed.
Collapse
Affiliation(s)
- Yi-Ni Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; School of Chemistry & Environmental Engineering, Hubei University for Nationalities, Enshi, Hubei 445000, China
| | - Fu-Ping Zheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Ai-Nong Yu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; School of Chemistry & Environmental Engineering, Hubei University for Nationalities, Enshi, Hubei 445000, China.
| | - Bao-Guo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
16
|
Lin Y, Li B, Zhao J, Wei L, Wang Y, Wang M, Dia VP, Meng X. Combinatorial effect of blueberry extracts and oxaliplatin in human colon cancer cells. J Cell Physiol 2019; 234:17242-17253. [DOI: 10.1002/jcp.28341] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/23/2019] [Accepted: 01/28/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Yang Lin
- College of Food Science Shenyang Agricultural University Shenyang Liaoning China
- Department of Food Science The University of Tennessee Institute of Agriculture Knoxville Tennessee
| | - Bin Li
- College of Food Science Shenyang Agricultural University Shenyang Liaoning China
| | - Jin Zhao
- College of Food Science Shenyang Agricultural University Shenyang Liaoning China
| | - Lulu Wei
- College of Food Science Shenyang Agricultural University Shenyang Liaoning China
| | - Yuehua Wang
- College of Food Science Shenyang Agricultural University Shenyang Liaoning China
| | - Mingyue Wang
- College of Food Science Shenyang Agricultural University Shenyang Liaoning China
| | - Vermont P. Dia
- Department of Food Science The University of Tennessee Institute of Agriculture Knoxville Tennessee
| | - Xianjun Meng
- College of Food Science Shenyang Agricultural University Shenyang Liaoning China
| |
Collapse
|
17
|
Hanson JR, Nichols T, Mukhrish Y, Bagley MC. Diterpenoids of terrestrial origin. Nat Prod Rep 2019; 36:1499-1512. [DOI: 10.1039/c8np00079d] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review covers the isolation and chemistry of diterpenoids from terrestrial sources from 2017.
Collapse
Affiliation(s)
- James R. Hanson
- Department of Chemistry
- School of Life Sciences
- University of Sussex
- East Sussex
- UK
| | - Tyler Nichols
- Department of Chemistry
- School of Life Sciences
- University of Sussex
- East Sussex
- UK
| | - Yousef Mukhrish
- Department of Chemistry
- School of Life Sciences
- University of Sussex
- East Sussex
- UK
| | - Mark C. Bagley
- Department of Chemistry
- School of Life Sciences
- University of Sussex
- East Sussex
- UK
| |
Collapse
|
18
|
Liu G, Sun S, Guo B, Miao B, Luo Z, Xia Z, Ying D, Liu F, Guo B, Tang J, Cao Y, Miao J. Bioactive peptide isolated from casein phosphopeptides promotes calcium uptake in vitro and in vivo. Food Funct 2018; 9:2251-2260. [PMID: 29557438 DOI: 10.1039/c7fo01709j] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Casein phosphopeptides (CPPs) have been demonstrated to be calcium chelators. Unfortunately, few studies have been reported on the effects of CPPs on the mechanism of the uptake and absorption of Ca2+ and bone metabolism. In this study, a monomeric peptide fraction isolated by RP-HPLC (F6-1) that possessed high calcium transport capacity in Caco-2 cell monolayers was separated and characterized. The effects of F6-1 on the absorption mechanisms of Ca2+ in a Caco-2 monolayer model and bone metabolism in rats were investigated. F6-1 was isolated by preparative and analytical RP-HPLC. Results for calcium transport suggested that the rates of Ca2+ transportation by F6-1 were approximately 2.57, 2.87 and 2.38 times higher than those in the control group at 30, 60 and 120 min, respectively. Results of ultraviolet (UV) spectroscopy indicated that the intensity of UV absorption changed because of the binding of Ca2+ to F6-1. Analysis of transepithelial electrical resistance (TEER) and the expression of TRPV6 in Caco-2 cells showed that F6-1 was likely to influence the transcellular pathway of intestinal absorption of Ca2+ rather than the paracellular pathway. Furthermore, the F6-1 group (1% Ca, 0.03% F6-1) exhibited increases in serum Ca2+ levels, femur length and femur Ca and decreases in serum alkaline phosphatase (ALP) levels and urinary pyridinoline content in a Sprague-Dawley rat model, which implied that F6-1 was beneficial for bone calcification. Overall, our results suggested that F6-1 enhanced the transport of Ca2+ in Caco-2 cells by affecting the transcellular pathway by upregulating the expression of TRPV6. F6-1 also improved bone formation and prevented bone resorption to benefit bone health in rats, which provided a basis for using F6-1 in calcium supplements or functional foods.
Collapse
Affiliation(s)
- Guo Liu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China. and CSIRO Agriculture and Food, 671 Sneydes Road, Werribee, VIC 3030, Australia
| | - Shengwei Sun
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Baoyan Guo
- College of Food Science, South China Agricultural University, Guangzhou 510642, China. and CSIRO Agriculture and Food, 671 Sneydes Road, Werribee, VIC 3030, Australia
| | - Benchun Miao
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Zhen Luo
- Infinitus (China) Company Ltd, Guangzhou 510000, China
| | - Zumeng Xia
- Infinitus (China) Company Ltd, Guangzhou 510000, China
| | - Danyang Ying
- CSIRO Agriculture and Food, 671 Sneydes Road, Werribee, VIC 3030, Australia
| | - Fei Liu
- Guangzhou Greencream Biotech Co., Ltd, Guangzhou 510663, China
| | - Bin Guo
- Guangzhou Greencream Biotech Co., Ltd, Guangzhou 510663, China
| | - Jian Tang
- Infinitus (China) Company Ltd, Guangzhou 510000, China
| | - Yong Cao
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Jianyin Miao
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
19
|
Functional foods and cancer on Pinterest and PubMed: myths and science. Future Sci OA 2018; 4:FSO328. [PMID: 30416741 PMCID: PMC6225095 DOI: 10.4155/fsoa-2018-0023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/08/2018] [Indexed: 12/25/2022] Open
Abstract
Aim This article examines whether social media postings dealing with cancer and so-called 'functional foods' simply reflect a fashionable subject or are based on scientific evidence. Methods The first step consisted of an analysis of a sample of Pins published on Pinterest. The second consisted of an analysis to determine whether the content of the Pins was based on scientific research. Results From a set of 507 Pins on cancer, we found 204 that also dealt with food. We selected 75 Pins representing different foods and we identified about 80,000 scientific articles on cancer and food indexed in PubMed. Conclusion We concluded that material published on Pinterest has some correlation with the scientific literature.
Collapse
|
20
|
Wu X, Song M, Qiu P, Li F, Wang M, Zheng J, Wang Q, Xu F, Xiao H. A metabolite of nobiletin, 4'-demethylnobiletin and atorvastatin synergistically inhibits human colon cancer cell growth by inducing G0/G1 cell cycle arrest and apoptosis. Food Funct 2018; 9:87-95. [PMID: 29063088 DOI: 10.1039/c7fo01155e] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Combining different chemopreventive agents is a promising strategy to reduce cancer incidence and mortality due to potential synergistic interactions between these agents. Previously, we demonstrated that oral administration of nobiletin (NBT, a citrus flavonoid) at 0.05% (w/w, in diet) together with atorvastatin (ATST, a lipid-lowering drug) at 0.02% (w/w, in diet) produced much stronger inhibition against colon carcinogenesis in rats in comparison with that produced by NBT (at 0.1% w/w in diet) or ATST (at 0.04% w/w in diet) alone at higher doses. To further elucidate the mechanism of this promising synergy between NBT and ATST, herein, we measured the levels of NBT, its major metabolites and ATST in the colonic tissue of rats fed NBT (0.05% w/w, in diet) + ATST (0.02% w/w, in diet), and determined the mode of interaction between the major NBT metabolite and ATST in inhibiting colon cancer cell growth. HPLC-MS analysis showed that 4'-demethylnobiletin (4DN) is the most abundant metabolite of NBT with a level about 5-fold as high as that of NBT in the colonic tissue, which indicated the potential significance of 4DN in mediating the biological effects of NBT in the colon. We found that co-treatments of 4DN/ATST at 2 : 1 concentration ratio produced much stronger growth inhibitory effects on human colon cancer HT-29 cells than 4DN or ATST alone, and isobologram analysis confirmed that this enhanced inhibitory effect by the 4DN/ATST combination was highly synergistic. The co-treatment of 4DN/ATST led to G0/G1 cell cycle arrest and induced extensive apoptosis in HT-29 cells. Furthermore, the 4DN/ATST co-treatment profoundly modulated key signaling proteins related to the regulation of the cell cycle and apoptosis. Our results demonstrated a strong synergy produced by the 4DN/ATST co-treatment in inhibiting colon cancer cell growth, which provided a novel mechanism by which NBT/ATST in combination synergistically inhibit colon carcinogenesis.
Collapse
Affiliation(s)
- Xian Wu
- Department of Food Science, University of Massachusetts, Amherst, MA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Zhao Y, Hu X, Zuo X, Wang M. Chemopreventive effects of some popular phytochemicals on human colon cancer: a review. Food Funct 2018; 9:4548-4568. [DOI: 10.1039/c8fo00850g] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The present review summarizes (1) the epidemiology and etiology of colon cancer, (2) generalized cancer chemoprotective mechanisms, and (3) the chemopreventive properties of some popular phytochemicals as well as some phytochemicals developed by our research group recently.
Collapse
Affiliation(s)
- Yueliang Zhao
- College of Food Science and Technology
- Shanghai Ocean University
- Shanghai
- China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai)
| | - Xiaoqian Hu
- College of Food Science and Technology
- Shanghai Ocean University
- Shanghai
- China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai)
| | - Xinyuan Zuo
- School of Petroleum and Chemical Engineering
- Dalian University of Technology
- Panjin City
- China
| | - Mingfu Wang
- College of Food Science and Technology
- Shanghai Ocean University
- Shanghai
- China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai)
| |
Collapse
|
22
|
Yang Y, Gao M, Lin Z, Chen L, Jin Y, Zhu G, Wang Y, Jin T. DEK promoted EMT and angiogenesis through regulating PI3K/AKT/mTOR pathway in triple-negative breast cancer. Oncotarget 2017; 8:98708-98722. [PMID: 29228721 PMCID: PMC5716761 DOI: 10.18632/oncotarget.21864] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/21/2017] [Indexed: 12/13/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer associated with poor prognosis. As an oncogene, DEK involves in regulation of various cellular metabolisms and plays an important role in tumor growth and progression. Increasing evidences suggested that abnormal expression of DEK is closely related to multiple malignant tumors. However, the possible involvement of DEK in epithelial to mesenchymal transition (EMT) and angiogenesis in TNBC remains unclear. In the present study, we revealed that the over-expression of DEK was significantly correlated with clinical stage, differentiation, and lymph node (LN) metastasis of TNBC and indicated poor overall survival of TNBC patients. Moreover, we demonstrated that DEK depletion could significantly reduce cell proliferation, migration, invasion and angiogenesis in vitro. We also found that DEK promoted cancer cell angiogenesis and metastasis by activating the PI3K/AKT/mTOR pathway. Furthermore, we revealed the inhibitory effect of DEK depletion on tumor growth and progression in a xenograft tumor model in mice. These data indicated that DEK promotes TNBC cell proliferation, angiogenesis, and metastasis via PI3K/AKT/mTOR signaling pathway, and therefore, it might be a potential target in TNBC therapy.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pathology, Cancer Research Center, Yanbian University Medical College, Yanji 133002, China
| | - Meihua Gao
- Department of Internal Medicine, Yanbian University Hospital, Yanji 133000, China
| | - Zhenhua Lin
- Department of Pathology, Cancer Research Center, Yanbian University Medical College, Yanji 133002, China
| | - Liyan Chen
- Department of Biochemistry and Molecular Biology, Yanbian University Medical College, Yanji 133002, China
| | - Yu Jin
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji 133002, China
| | - Guang Zhu
- Department of Pathology, Cancer Research Center, Yanbian University Medical College, Yanji 133002, China
| | - Yixuan Wang
- Department of Pathology, Cancer Research Center, Yanbian University Medical College, Yanji 133002, China
| | - Tiefeng Jin
- Department of Pathology, Cancer Research Center, Yanbian University Medical College, Yanji 133002, China
| |
Collapse
|
23
|
Wu S, Wu F, Jiang Z. Identification of hub genes, key miRNAs and potential molecular mechanisms of colorectal cancer. Oncol Rep 2017; 38:2043-2050. [PMID: 28902367 PMCID: PMC5652954 DOI: 10.3892/or.2017.5930] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/17/2017] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer (CRC) is the most common cancer of the digestive system. The aim of the present study was to identify the potential biomarkers and uncover the underlying mechanisms. The gene and miRNA expression profiles were obtained from GEO database. The differentially expressed genes (DEGs) and miRNAs (DE miRNAs) were identified by GEO2R. The Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed by KOBAS 3.0. The protein-protein interaction (PPI) network and miRNA-gene network were constructed by Cytoscape software. Then, the identified genes were verified by quantitative real-time PCR in both CRC tissue samples and cell lines. A total of 600 upregulated DEGs, 283 downregulated DEGs, 13 upregulated DE miRNAs and 7 downregulated DE miRNAs were identified. GO analysis results showed that upregulated DEGs were significantly enriched in binding, organelle and cellular process. Downregulated DEGs were enriched in binding, extracellular region and chemical homeostasis. KEGG analysis showed that the DEGs were mostly enriched in cell cycle and pathways in cancer. A total of eight genes were identified as biomarkers, including CAD, ITGA2, E2F3, BCL2, PRKACB, IGF1, SGK1 and NR3C1. Experimental validation showed that seven of the eight identified genes had the same expression trend as predicted, except for ITGA2. Besides, hsa-miR-552 and hsa-miR-30a were identified as key miRNAs. The present study provides a series of biomarkers and mechanisms for the diagnosis and therapy of CRC. We also prove that although bioinformatics analysis is a wonderful approach, experiment validation is necessary.
Collapse
Affiliation(s)
- Shasha Wu
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Feixiang Wu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Zheng Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|