1
|
Monteiro E, Baltazar M, Pereira S, Correia S, Ferreira H, Bragança R, Cortez I, Castro I, Gonçalves B. Foliar application of nettle and Japanese knotweed extracts on Vitis vinifera: impact on phenylpropanoid biosynthesis and antioxidant activity during veraison and harvest of cv. Touriga Franca. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:4260-4267. [PMID: 38385801 DOI: 10.1002/jsfa.13310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Plant-based extracts have been recently used as sustainable tools to improve biotic and abiotic stress tolerance and increase grape (Vitis vinifera L.) quality. However, knowledge about the effect of these extracts on secondary metabolism compounds, that are fundamental for grape and wine quality, is still scarce. In this study, a trial was installed in an experimental vineyard with the variety Touriga Franca located at University of Trás-os-Montes e Alto Douro, Baixo Corgo sub-region of the Douro Demarcated Region, Portugal in two growing seasons: 2019 and 2020. The aim was to evaluate the effect of foliar application of nettle (Urtica spp.) extract (NE) and Japanese knotweed (Reynoutria japonica) extract (JKE) on grapevines leaves and berries bioactive compounds contents and antioxidant activity, at veraison and harvest. RESULTS The application of NE increased the total carotenoids in leaves and the total phenolics content and the antioxidant activity (ferric reducing antioxidant power, FRAP) in berries while JKE increased flavonoids content in leaves and the antioxidant activity (2,2-diphenyl-1-picrylhydrazyl, DPPH) in berries. CONCLUSION These extracts seem to have a stimulatory effect on grapevine, enhancing bioactive compounds contents and antioxidant capacity and, consequently, the physiological performance of the plant and the quality of the berries. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Eliana Monteiro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - Miguel Baltazar
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - Sandra Pereira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - Sofia Correia
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - Helena Ferreira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | | | - Isabel Cortez
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Department of Agronomy, University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - Isaura Castro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - Berta Gonçalves
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Department of Biology and Environment, University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| |
Collapse
|
2
|
Pérez-Álvarez EP, Rubio-Bretón P, Intrigliolo DS, Parra-Torrejón B, Ramírez-Rodríguez GB, Delgado-López JM, Garde-Cerdán T. Nanoparticles doped with methyl jasmonate: foliar application to Monastrell vines under two watering regimes. An alternative to improve grape volatile composition? JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:598-610. [PMID: 37615514 DOI: 10.1002/jsfa.12937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/02/2023] [Accepted: 08/24/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Elicitors induce defense mechanisms, triggering the synthesis of secondary metabolites. Irrigation has implications for a more sustainable viticulture and for grape composition. The aim was to investigate the influence on grape aroma composition during 2019 and 2020 of the foliar application of amorphous calcium phosphate (ACP) nanoparticles and ACP doped with methyl jasmonate (ACP-MeJ), as an elicitor, with rainfed or regulated deficit irrigation (RDI) grapevines. RESULTS In both growing seasons, nearly all terpenoids, C13 norisoprenoids, benzenoid compounds and alcohols increased with ACP-MeJ under the RDI regimen. In 2019, under the rainfed regime, ACP treatment increased limonene, p-cymene, α-terpineol, 1,1,6-trimethyl-1,2-dihydronaphthalene (TDN), 2-ethyl-1-hexanol, (E,E)-2,4-heptadienal, and MeJ concentration in comparison with control grapes. In 2020, the rainfed regime treated with ACP-MeJ only increased the nonanoic acid content. Grape volatile compounds were most influenced by season and watering status whereas the foliar application mainly affected the terpenoids. CONCLUSION A RDI regime combined with the elicitor ACP-MeJ application could improve the synthesis of certain important volatile compounds, such as p-cymene, linalool, α-terpineol, geranyl acetone, β-ionone, 2-phenylethanol, benzyl alcohol, and nonanoic acid in Monastrell grapes. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Eva P Pérez-Álvarez
- Centro de Edafología y Biología Aplicada del Segura (CEBAS), Campus Universitario de Espinardo, Murcia, Spain
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de La Rioja, Gobierno de La Rioja). Ctra. de Burgos, Logroño, Spain
| | - Pilar Rubio-Bretón
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de La Rioja, Gobierno de La Rioja). Ctra. de Burgos, Logroño, Spain
| | - Diego S Intrigliolo
- Centro de Edafología y Biología Aplicada del Segura (CEBAS), Campus Universitario de Espinardo, Murcia, Spain
- Departamento de Ecología, Centro de Investigaciones sobre Desertificación (CIDE, CSIC-UV-GV), Moncada, Spain
| | - Belén Parra-Torrejón
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | | | - José M Delgado-López
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Teresa Garde-Cerdán
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de La Rioja, Gobierno de La Rioja). Ctra. de Burgos, Logroño, Spain
| |
Collapse
|
3
|
Peng J, Wang X, Wang H, Li X, Zhang Q, Wang M, Yan J. Advances in understanding grapevine downy mildew: From pathogen infection to disease management. MOLECULAR PLANT PATHOLOGY 2024; 25:e13401. [PMID: 37991155 PMCID: PMC10788597 DOI: 10.1111/mpp.13401] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/29/2023] [Indexed: 11/23/2023]
Abstract
Plasmopara viticola is geographically widespread in grapevine-growing regions. Grapevine downy mildew disease, caused by this biotrophic pathogen, leads to considerable yield losses in viticulture annually. Because of the great significance of grapevine production and wine quality, research on this disease has been widely performed since its emergence in the 19th century. Here, we review and discuss recent understanding of this pathogen from multiple aspects, including its infection cycle, disease symptoms, genome decoding, effector biology, and management and control strategies. We highlight the identification and characterization of effector proteins with their biological roles in host-pathogen interaction, with a focus on sustainable control methods against P. viticola, especially the use of biocontrol agents and environmentally friendly compounds.
Collapse
Affiliation(s)
- Junbo Peng
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North ChinaInstitute of Plant Protection, Beijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Xuncheng Wang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North ChinaInstitute of Plant Protection, Beijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Hui Wang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North ChinaInstitute of Plant Protection, Beijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Xinghong Li
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North ChinaInstitute of Plant Protection, Beijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Qi Zhang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North ChinaInstitute of Plant Protection, Beijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Meng Wang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North ChinaInstitute of Plant Protection, Beijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Jiye Yan
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North ChinaInstitute of Plant Protection, Beijing Academy of Agriculture and Forestry SciencesBeijingChina
| |
Collapse
|
4
|
Toffolatti SL, Davillerd Y, D’Isita I, Facchinelli C, Germinara GS, Ippolito A, Khamis Y, Kowalska J, Maddalena G, Marchand P, Marcianò D, Mihály K, Mincuzzi A, Mori N, Piancatelli S, Sándor E, Romanazzi G. Are Basic Substances a Key to Sustainable Pest and Disease Management in Agriculture? An Open Field Perspective. PLANTS (BASEL, SWITZERLAND) 2023; 12:3152. [PMID: 37687399 PMCID: PMC10490370 DOI: 10.3390/plants12173152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
Pathogens and pests constantly challenge food security and safety worldwide. The use of plant protection products to manage them raises concerns related to human health, the environment, and economic costs. Basic substances are active, non-toxic compounds that are not predominantly used as plant protection products but hold potential in crop protection. Basic substances' attention is rising due to their safety and cost-effectiveness. However, data on their protection levels in crop protection strategies are lacking. In this review, we critically analyzed the literature concerning the field application of known and potential basic substances for managing diseases and pests, investigating their efficacy and potential integration into plant protection programs. Case studies related to grapevine, potato, and fruit protection from pre- and post-harvest diseases and pests were considered. In specific cases, basic substances and chitosan in particular, could complement or even substitute plant protection products, either chemicals or biologicals, but their efficacy varied greatly according to various factors, including the origin of the substance, the crop, the pathogen or pest, and the timing and method of application. Therefore, a careful evaluation of the field application is needed to promote the successful use of basic substances in sustainable pest management strategies in specific contexts.
Collapse
Affiliation(s)
- Silvia Laura Toffolatti
- Dipartimento di Scienze Agrarie e Ambientali (DiSAA), Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy; (G.M.); (D.M.)
| | - Yann Davillerd
- Institut de l’Agriculture et de l’Alimentation Biologiques (ITAB), 149 rue de BERCY, F-75012 Paris, France; (Y.D.); (P.M.)
| | - Ilaria D’Isita
- Dipartimento di Scienze Agrarie, Alimenti, Risorse Naturali e Ingegneria (DAFNE), University of Foggia, Via Napoli 25, 71122 Foggia, Italy; (I.D.); (G.S.G.)
| | - Chiara Facchinelli
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (C.F.); (A.M.); (N.M.)
| | - Giacinto Salvatore Germinara
- Dipartimento di Scienze Agrarie, Alimenti, Risorse Naturali e Ingegneria (DAFNE), University of Foggia, Via Napoli 25, 71122 Foggia, Italy; (I.D.); (G.S.G.)
| | - Antonio Ippolito
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy;
| | - Youssef Khamis
- Agricultural Research Center, Plant Pathology Research Institute, 9 Gamaa St., Giza 12619, Egypt;
| | - Jolanta Kowalska
- Department of Organic Agriculture and Environmental Protection, Institute of Plant Protection–National Research Institute, Władysława Wêgorka 20, 60-318 Poznañ, Poland;
| | - Giuliana Maddalena
- Dipartimento di Scienze Agrarie e Ambientali (DiSAA), Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy; (G.M.); (D.M.)
| | - Patrice Marchand
- Institut de l’Agriculture et de l’Alimentation Biologiques (ITAB), 149 rue de BERCY, F-75012 Paris, France; (Y.D.); (P.M.)
| | - Demetrio Marcianò
- Dipartimento di Scienze Agrarie e Ambientali (DiSAA), Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy; (G.M.); (D.M.)
| | - Kata Mihály
- Faculty of Agricultural and Food Science and Environmental Management, Institute of Food Science, University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary; (K.M.); (E.S.)
| | - Annamaria Mincuzzi
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (C.F.); (A.M.); (N.M.)
| | - Nicola Mori
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (C.F.); (A.M.); (N.M.)
| | - Simone Piancatelli
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche 10, 60131 Ancona, Italy; (S.P.); (G.R.)
| | - Erzsébet Sándor
- Faculty of Agricultural and Food Science and Environmental Management, Institute of Food Science, University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary; (K.M.); (E.S.)
| | - Gianfranco Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche 10, 60131 Ancona, Italy; (S.P.); (G.R.)
| |
Collapse
|
5
|
Taibi O, Salotti I, Rossi V. Plant Resistance Inducers Affect Multiple Epidemiological Components of Plasmopara viticola on Grapevine Leaves. PLANTS (BASEL, SWITZERLAND) 2023; 12:2938. [PMID: 37631150 PMCID: PMC10459891 DOI: 10.3390/plants12162938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/02/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023]
Abstract
Plant resistance inducers (PRIs) harbor promising potential for use in downy mildew (DM) control in viticulture. Here, the effects of six commercial PRIs on some epidemiological components of Plasmopara viticola (Pv) on grapevine leaves were studied over 3 years. Disease severity, mycelial colonization of leaf tissue, sporulation severity, production of sporangia on affected leaves, and per unit of DM lesion were evaluated by inoculating the leaves of PRI-treated plants at 1, 3, 6, 12, and 19 days after treatment (DAT). Laminarin, potassium phosphonate (PHO), and fosetyl-aluminium (FOS) were the most effective in reducing disease severity as well as the Pv DNA concentration of DM lesions on leaves treated and inoculated at 1 and 3 DAT; PHO and FOS also showed long-lasting effects on leaves established after treatment (inoculations at 6 to 19 DAT). PRIs also prevented the sporulation of Pv on lesions; all the PRI-treated leaves produced fewer sporangia than the nontreated control, especially in PHO-, FOS-, and cerevisane-treated leaves (>75% reduction). These results illustrate the broader and longer effect of PRIs on DM epidemics. The findings open up new perspectives for using PRIs in a defense program based on single, timely, and preventative field interventions.
Collapse
Affiliation(s)
| | | | - Vittorio Rossi
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy; (O.T.); (I.S.)
| |
Collapse
|
6
|
Soares B, Barbosa C, Oliveira MJ. Chitosan application towards the improvement of grapevine performance and wine quality. CIÊNCIA E TÉCNICA VITIVINÍCOLA 2023. [DOI: 10.1051/ctv/ctv20233801043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Intensification of agrochemicals application in vineyards has raised several concerns in Viticulture and Oenology value chain. Efforts have been developed to optimize grapevine health and productivity, assuring that viticulture is sustainable and competitive in today’s wine market. Viticulture practices have constantly been improved for a more sustainable and environment-friendly production, reducing the application of agrochemicals, replacing them by natural compounds that can have a double effect: protect grapevine against pathogens and improve compounds related to grape organoleptic quality. In this context, the development and optimization of alternative strategies to improve and enhance plant defences and grape/wine quality is becoming a necessity. Since the 1980s, chitosan has become a compound of special interest due to its double effect as elicitor and grapevine biostimulant, representing a complement to soil fertilisation, and reducing the negative effects nutrients leaching into the groundwater. The present review aims to present the wide possibilities of chitosan applications on grapevines to prevent and combat the main diseases and to improve wine quality. In this way, relevant studies about chitosan application will be presented as well as some concerns and limitations in order to cover the knowledge gaps inherent to its application in vineyard and wine as well.
Collapse
|
7
|
Deolu-Ajayi AO, van der Meer IM, van der Werf A, Karlova R. The power of seaweeds as plant biostimulants to boost crop production under abiotic stress. PLANT, CELL & ENVIRONMENT 2022; 45:2537-2553. [PMID: 35815342 DOI: 10.1111/pce.14391] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 06/24/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Abiotic stresses like drought and salinity are major factors resulting in crop yield losses and soil degradation worldwide. To meet increasing food demands, we must improve crop productivity, especially under increasing abiotic stresses due to climate change. Recent studies suggest that seaweed-based biostimulants could be a solution to this problem. Here, we summarize the current findings of using these biostimulants and highlight current knowledge gaps. Seaweed extracts were shown to enhance nutrient uptake and improve growth performance in crops under stressed and normal conditions. Seaweed extracts contain several active compounds, for example, polysaccharides, polyphenols and phytohormones. Although some of these compounds have growth-promoting properties on plants, the molecular mechanisms that underly seaweed extract action remain understudied. In this paper, we review the role of these extracts and their bioactive compounds as plant biostimulants. The targeted application of seaweed extract to improve crop performance and protein accumulation is also discussed.
Collapse
Affiliation(s)
- Ayodeji O Deolu-Ajayi
- Agrosystems Research, Plant Sciences Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Ingrid M van der Meer
- Bioscience, Plant Sciences Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Adrie van der Werf
- Agrosystems Research, Plant Sciences Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Rumyana Karlova
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
8
|
Pérez-Álvarez EP, Marinozzi S, Garde-Cerdán T, Romanazzi G. Influence on grape aromatic compounds of natural fungicides used for the control of downy mildew. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4570-4576. [PMID: 35137424 DOI: 10.1002/jsfa.11814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/27/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The grape volatile fraction determines to a great extent its aroma, which is one of the most important characteristics influencing wine quality and consumer preferences. Grapevine downy mildew (GDM) is one of the most important and devastating diseases of grapevines worldwide. In this study, the impact on the volatile composition of cv. Verdicchio grapes of classical copper formulations, was compared to that of alternative products. Thus, 11 treatments were foliar applied throughout one grapevine cycle. RESULTS Most of the volatile compounds present in the grapes were not affected by the treatments used in order to prevent GDM. In the case of the total C13 norisoprenoids, some differences were found between grapes untreated control and those applied with the grapefruit seed extract. Moreover, the content of alcohols was smaller in grapes from Bordeaux mixture treatment and higher in the samples from chitosan application. CONCLUSION Therefore, from the qualitative point of view of the berry, treatment with tested products alternative to copper is recommended, which minimize the environmental and health problems that this heavy metal brings to the soil and in the winery, since it means that their applications did not affect the grape aroma. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Eva P Pérez-Álvarez
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de La Rioja, Gobierno de La Rioja), Logroño, Spain
| | - Sofia Marinozzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Teresa Garde-Cerdán
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de La Rioja, Gobierno de La Rioja), Logroño, Spain
| | - Gianfranco Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| |
Collapse
|
9
|
Gur L, Cohen Y, Frenkel O, Schweitzer R, Shlisel M, Reuveni M. Mixtures of Macro and Micronutrients Control Grape Powdery Mildew and Alter Berry Metabolites. PLANTS (BASEL, SWITZERLAND) 2022; 11:978. [PMID: 35406958 PMCID: PMC9002579 DOI: 10.3390/plants11070978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Powdery mildew caused by the fungus Erysiphe necator is a major grape disease worldwide. It attacks foliage and berries and reduces yield and wine quality. Fungicides are mainly used for combating the disease. Fungicide resistance and the global requisite to reduce pesticide deployment encourage the use of environment-friendly alternatives for disease management. Our field experiments showed that the foliar application of the potassium phosphate fertilizer Top-KP+ (1-50-33 NPK) reduced disease incidence on leaves and clusters by 15-65% and severity by 75-90%, compared to untreated vines. Top-KP+ mixed with Nanovatz (containing the micronutrients boron (B) and zinc (Zn)) or with TruPhos Platinum (a mixture containing N, P2O5, K2O, Zn, B, Mg, Fe, Mn, Cu, Mo, and CO) further reduced disease incidence by 30-90% and disease severity by 85-95%. These fertilizers were as effective as the fungicide tebuconazole. Tank mixtures of fertilizers and tebuconazole further enhanced control efficacy in the vineyards. The modes of action of fertilizers in disease control were elucidated via tests with grape seedlings, microscopy, and berry metabolomics. Fertilizers applied preventively to the foliage of grape seedlings inhibited powdery mildew development. Application onto existing mildew colonies plasmolyzed mycelia and conidia and arrested the development of the disease. Berries treated with fertilizers or with a fungicide showed a significant increase in anti-fungal and antioxidant metabolites. Twenty-two metabolites, including non-protein amino acids and carbohydrates, known for their anti-fungal and bioactive effects, were significantly upregulated in grapes treated with fertilizers as compared to grapes treated with a fungicide, suggesting possible indirect activity against the pathogen. Esters and organic acids that contribute to wine quality were also upregulated. We conclude that integrating macro and micronutrients in spray programs in commercial vineyards shall control powdery mildew, reduce fungicide deployment, delay the buildup of fungicide resistance, and may improve wine quality.
Collapse
Affiliation(s)
- Lior Gur
- Shamir Research Institute, University of Haifa, Haifa 3498838, Israel; (L.G.); (M.R.)
- Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290000, Israel
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Center, Rishon LeZion 7528809, Israel;
| | - Yigal Cohen
- Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290000, Israel
| | - Omer Frenkel
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Center, Rishon LeZion 7528809, Israel;
| | - Ron Schweitzer
- Analytical Chemistry Laboratory, Tel-Hai College, Qiryat Shemona 1220800, Israel; (R.S.); (M.S.)
| | - Meir Shlisel
- Analytical Chemistry Laboratory, Tel-Hai College, Qiryat Shemona 1220800, Israel; (R.S.); (M.S.)
| | - Moshe Reuveni
- Shamir Research Institute, University of Haifa, Haifa 3498838, Israel; (L.G.); (M.R.)
- STK Bio-Ag Technologies Ltd., Petach Tikva 4951447, Israel
| |
Collapse
|
10
|
Monteiro E, Gonçalves B, Cortez I, Castro I. The Role of Biostimulants as Alleviators of Biotic and Abiotic Stresses in Grapevine: A Review. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030396. [PMID: 35161376 PMCID: PMC8839214 DOI: 10.3390/plants11030396] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 06/01/2023]
Abstract
The viticulture and wine industry contribute to the economy and reputation of many countries all over the world. With the predicted climate change, a negative impact on grapevine physiology, growth, production, and quality of berries is expected. On the other hand, the impact of these changes in phytopathogenic fungi development, survival rates, and host susceptibility is unpredictable. Grapevine fungal diseases control has been a great challenge to winegrowers worldwide. The use of chemicals in viticulture is high, which can result in the development of pathogen resistance, increasingly raising concerns regarding residues in wine and effects on human and environmental health. Promoting sustainable patterns of production is one of the overarching objectives and essential requirements for sustainable development. Alternative holistic approaches, such as those making use of biostimulants, are emerging in order to reduce the consequences of biotic and abiotic stresses in the grapevine, namely preventing grape fungal diseases, improving grapevine resistance to water stress, and increasing yield and berry quality.
Collapse
Affiliation(s)
- Eliana Monteiro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (B.G.); (I.C.); (I.C.)
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Berta Gonçalves
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (B.G.); (I.C.); (I.C.)
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Biology and Environment, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Isabel Cortez
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (B.G.); (I.C.); (I.C.)
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Agronomy, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Isaura Castro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (B.G.); (I.C.); (I.C.)
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
11
|
Romanazzi G, Piancatelli S, D’Ignazi G, Moumni M. Innovative approaches to grapevine downy mildew management on large and commercial scale. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20225003010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
12
|
Llamazares-Miguel D, Bodin E, Laurens M, Corio-Costet M, Nieto J, Fernández-Navarro J, Mena-Petite A, Diez-Navajas AM. Genetic regulation in Vitis vinifera by approved basic substances against downy mildew. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20225003001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
13
|
Romanazzi G, Mancini V, Foglia R, Marcolini D, Kavari M, Piancatelli S. Use of Chitosan and Other Natural Compounds Alone or in Different Strategies with Copper Hydroxide for Control of Grapevine Downy Mildew. PLANT DISEASE 2021; 105:3261-3268. [PMID: 33206016 DOI: 10.1094/pdis-06-20-1268-re] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Grapevine downy mildew (GDM) is one of the most serious diseases of grapevines. Limitations to the use of copper-based products in organic agriculture according to the European Union (EU) regulation EU/2002/473 and the later EU Commission implementing regulation 2018/1981 have promoted a search for alternatives. This 5-year field trial evaluated the effectiveness of several strategies against GDM using different chitosan-based formulations and application rates in comparison with other natural compounds applied individually or with copper hydroxide. Trials were performed in commercial vineyards with different environmental conditions and grapevine cultivars. For the natural compounds applied as individual treatments, a 0.5%/0.8% chitosan formulation provided the best protection against GDM; the other compounds and formulations were less effective. When copper hydroxide use was halved by combining it with the natural compounds according to three different strategies, the GDM incidence, severity, and McKinney index were reduced, particularly for copper hydroxide applied in combination with the 0.5%/0.8% chitosan formulation. The 0.5%/0.8% chitosan formulation alone and with copper hydroxide provided good protection against GDM during both high-pressure and low-pressure disease seasons. Therefore, chitosan represents a good alternative to copper formulations for the control of GDM and both organic and integrated disease management.
Collapse
Affiliation(s)
- Gianfranco Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Valeria Mancini
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Renzo Foglia
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Diego Marcolini
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | | | - Simone Piancatelli
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
14
|
Gutiérrez-Gamboa G, Moreno-Simunovic Y. Seaweeds in viticulture: a review focused on grape quality. CIÊNCIA E TÉCNICA VITIVINÍCOLA 2021. [DOI: 10.1051/ctv/20213601009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Cell walls of seaweeds contain a wide number of organic and inorganic constituents, of which polysaccharides have important biological activity. Some researchers suggest that polysaccharides from seaweeds can behave as biotic elicitors in viticulture, triggering the synthesis of phenolic compounds in leaves and grape berries. The mechanism of action of seaweeds after a foliar application to grapevines is not fully understood but it is discussed in this review. An overview of the recent research focused on the effects of seaweeds foliar applications on grapevine productivity, on grape and wine quality is included as well as a short-term future perspective for the research in this field.
Collapse
|
15
|
Pezzotti G, Fujita Y, Boschetto F, Zhu W, Marin E, Vandelle E, McEntire BJ, Bal SB, Giarola M, Makimura K, Polverari A. Activity and Mechanism of Action of the Bioceramic Silicon Nitride as an Environmentally Friendly Alternative for the Control of the Grapevine Downy Mildew Pathogen Plasmopara viticola. Front Microbiol 2020; 11:610211. [PMID: 33381101 PMCID: PMC7767917 DOI: 10.3389/fmicb.2020.610211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/11/2020] [Indexed: 02/03/2023] Open
Abstract
Downy mildew of grapevine, caused by Plasmopara viticola (Berk. and Curt.) Berl. and de Toni, is one of the most devastating diseases of grapevine, severely affecting grape and wine production and quality worldwide. Infections are usually controlled by the intensive application of synthetic fungicides or by copper-based products in organic farming, rising problems for soil contamination and adverse impacts on environment and human health. While strict regulations attempt to minimize their harmful consequences, the situation calls for the development of alternative fungicidal strategies. This study presents the unprecedented case of a bioceramic, silicon nitride, with antimicrobial properties against P. viticola, but without adverse effects on human cells and environment, opening the way to the possible extension of silicon nitride applications in agriculture. Raman spectroscopic assessments of treated sporangia in conjunction with microscopic observations mechanistically showed that the nitrogen-chemistry of the bioceramic surface affects pathogen's biochemical components and cell viability, thus presenting a high potential for host protection from P. viticola infections.
Collapse
Affiliation(s)
- Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, Japan
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Orthopedic Surgery, Tokyo Medical University, Tokyo, Japan
- The Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka, Japan
| | - Yuki Fujita
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, Japan
| | - Francesco Boschetto
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, Japan
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Wenliang Zhu
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, Japan
| | - Elia Marin
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, Japan
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Elodie Vandelle
- Laboratory of Phytopathology, Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Sonny B. Bal
- SINTX Technologies Corporation, Salt Lake City, UT, United States
| | - Marco Giarola
- Raman Laboratory, Centro Piattaforme Tecnologiche, University of Verona, Verona, Italy
| | - Koichi Makimura
- Medical Mycology, Graduate School of Medicine, Teikyo University, Tokyo, Japan
| | - Annalisa Polverari
- Laboratory of Phytopathology, Department of Biotechnology, University of Verona, Verona, Italy
| |
Collapse
|
16
|
Gutiérrez-Gamboa G, Alañón-Sánchez N, Mateluna-Cuadra R, Verdugo-Vásquez N. An overview about the impacts of agricultural practices on grape nitrogen composition: Current research approaches. Food Res Int 2020; 136:109477. [PMID: 32846560 DOI: 10.1016/j.foodres.2020.109477] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 10/24/2022]
Abstract
Nitrogen is a structural component of proteins, nucleic acids, chlorophyll, hormones and amino acids. The last one and ammonium are important primary metabolites in grapes and are key compounds in winemaking since they are primary sources for yeast fermentation. Currently, grape quality has been affected due to the negative impacts of global warming and anthropogenic activity. Certain studies have reported a significant decrease in the free amino acids content and an increase in berry soluble solids and in proline biosynthesis in grapes in some grapevine varieties cultivated under warm climate conditions and water restriction. Proline is not metabolized by yeasts and stuck and sluggish fermentations can occur when the content of yeast assimilable nitrogen is low. Nitrogen composition of grape is mainly affected by variety, edaphoclimatic conditions of the vineyard and agricultural practices performed to the grapevines. This review summarized the most current research carried out to modify the nitrogen composition of the grape and give an overview of the technical and scientific aspects that should be considered for future research in this field.
Collapse
Affiliation(s)
- Gastón Gutiérrez-Gamboa
- Universidad de Talca, Facultad de Ciencias Agrarias, 2 Norte 685, Casilla 747, 346000 Talca, Chile.
| | - Noelia Alañón-Sánchez
- Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja), Carretera de Burgos, Km. 6, 26007 Logroño, Spain
| | - Roberto Mateluna-Cuadra
- Universidad de Talca, Facultad de Ciencias Agrarias, 2 Norte 685, Casilla 747, 346000 Talca, Chile
| | - Nicolás Verdugo-Vásquez
- Instituto de Investigaciones Agropecuarias INIA, Centro de Investigación Intihuasi, Colina San Joaquín s/n, La Serena, Chile
| |
Collapse
|
17
|
De Iseppi A, Lomolino G, Marangon M, Curioni A. Current and future strategies for wine yeast lees valorization. Food Res Int 2020; 137:109352. [PMID: 33233056 DOI: 10.1016/j.foodres.2020.109352] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/15/2020] [Accepted: 05/24/2020] [Indexed: 12/21/2022]
Abstract
Wine lees is a sludge material mainly composed of dead yeast precipitated at the bottom of wine tanks. Along with grape pomace and grape stalks, it is one of the main by-products of the winemaking industry. Given that wine lees are considered a soil pollutant, their disposal represents a cost for wineries. Numerous wine lees recovery and valorization strategies have been proposed, with a particularly steep increase in published research in recent years. This attention is strictly linked to the concepts of circular economy and environmental sustainability that are attracting the interest of the scientific community. In this review, an overview on the available wine lees recovery and valorization strategies is reported. Additionally, the methods for the extraction and valorization of yeast's cell wall polysaccharides (β-glucans and mannoproteins) are discussed. Finally, current and future innovative applications in different sectors of yeast β-glucans and mannoproteins are described and critically discussed.
Collapse
Affiliation(s)
- Alberto De Iseppi
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020 Legnaro, Padova, Italy
| | - Giovanna Lomolino
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020 Legnaro, Padova, Italy
| | - Matteo Marangon
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020 Legnaro, Padova, Italy.
| | - Andrea Curioni
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020 Legnaro, Padova, Italy; Centre for Research in Viticulture and Enology (CIRVE), Viale XXVIII Aprile 14, 31015 Conegliano, Italy
| |
Collapse
|
18
|
Rantsiou K, Giacosa S, Pugliese M, Englezos V, Ferrocino I, Río Segade S, Monchiero M, Gribaudo I, Gambino G, Gullino ML, Rolle L. Impact of Chemical and Alternative Fungicides Applied to Grapevine cv Nebbiolo on Microbial Ecology and Chemical-Physical Grape Characteristics at Harvest. FRONTIERS IN PLANT SCIENCE 2020; 11:700. [PMID: 32547588 PMCID: PMC7272676 DOI: 10.3389/fpls.2020.00700] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 05/04/2020] [Indexed: 05/07/2023]
Abstract
Viticulture is a cropping system in which treatment against fungal diseases (in particular powdery and downy mildews) can be extremely frequent. Accordingly, a reduction in antimicrobial treatments and the application of environmentally-friendly compounds are becoming increasingly important for a more sustainable viticulture. In addition to their effect against pathogens, the impact of these products on the quality of the grapes is very important for the oenological industries, but unfortunately at present few data are available. We evaluated the effect of the application of biocontrol products and resistance inducers in the vineyard on the mechanical properties, microbial ecology, technological and phenolic maturity of Vitis vinifera "Nebbiolo" grapes at harvest. The yield and vigor of vines were not influenced by the treatments, nor were the production of primary and secondary metabolites. However, the active ingredients influenced the mechanical properties of the skin (hardness and thickness). A significant hardening of the skin was detected when laminarin and chito-oligosaccharides were used, and sulfur induced a thickening of the skin with potential consequences for wine quality. Furthermore, the yeast community present on grape berries was influenced by the treatments. The abundance of Aureobasidium pullulans, the dominant species on the grape berry, changed in response to the compounds used. In addition, Alternaria sp. was reduced in some treatments with a potentially positive effect on the quality and the safety of the grapes. This study provides an overview of the effect of biocontrol products and resistance inducers on microbial ecology and "Nebbiolo" grape quality, contributing to the establishment of more sustainable and effective defense strategies in viticulture.
Collapse
Affiliation(s)
- Kalliopi Rantsiou
- Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy
| | - Simone Giacosa
- Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy
| | - Massimo Pugliese
- Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy
- Agroinnova-Centre of Competence for the Innovation in the Agro-Environmental Sector, University of Turin, Grugliasco, Italy
| | - Vasileios Englezos
- Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy
| | - Ilario Ferrocino
- Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy
| | - Susana Río Segade
- Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy
| | | | - Ivana Gribaudo
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Turin, Italy
| | - Giorgio Gambino
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Turin, Italy
- *Correspondence: Giorgio Gambino,
| | - Maria Lodovica Gullino
- Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy
- Agroinnova-Centre of Competence for the Innovation in the Agro-Environmental Sector, University of Turin, Grugliasco, Italy
| | - Luca Rolle
- Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy
| |
Collapse
|
19
|
Assessment of amino acids and total soluble solids in intact grape berries using contactless Vis and NIR spectroscopy during ripening. Talanta 2019; 199:244-253. [PMID: 30952253 DOI: 10.1016/j.talanta.2019.02.037] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/04/2019] [Accepted: 02/07/2019] [Indexed: 11/20/2022]
Abstract
The amino acid concentration assessment along grape ripening would provide valuable information regarding harvest scheduling, wine aroma potential and must nitrogen supplement addition. In this work the use of Visible (Vis) and near-infrared (NIR) spectroscopy to estimate the grape amino acid content along maturation on intact berries was investigated. Spectral data on two ranges (570-1000 and 1100-2100 nm) were acquired contactless from intact Grenache berries. A total of 22 free amino acids in 128 grape clusters were quantified by HPLC. Partial least squares was used to build calibration, cross validation and prediction models. The best performances (R2P ~ 0.60) were found for asparagine (SEP: 0.45 mg N/l), tyrosine (SEP: 0.33 mg N/l) and proline (SEP: 17.5 mg N/l) in the 570-1000 nm range, and for lysine (SEP: 0.44 mg N/l), tyrosine (SEP: 0.26 mg N/l), and proline (SEP: 15.54 mg N/l) in the 1100-2100 nm range. Remarkable models (R2P~0.90, SEP~1.60 ºBrix, and RPD~3.79) were built for total soluble solids in both spectral ranges. Contactless, non-destructive spectroscopy could be an alternative to provide information about grape amino acids composition.
Collapse
|
20
|
Gutiérrez-Gamboa G, Romanazzi G, Garde-Cerdán T, Pérez-Álvarez EP. A review of the use of biostimulants in the vineyard for improved grape and wine quality: effects on prevention of grapevine diseases. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:1001-1009. [PMID: 30198154 DOI: 10.1002/jsfa.9353] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/29/2018] [Accepted: 09/01/2018] [Indexed: 05/08/2023]
Abstract
Foliar application of biostimulants (including resistance inducers or elicitors) in the vineyard has become an interesting strategy to prevent plant diseases and improve grape quality on the grapevine. This also represents a partial alternative to soil fertilisation, avoiding some of the negative effects to the environment from leaching of nutrients into the groundwater. The foliar applications that most promote the synthesis of secondary metabolites in grape berries are treatments with nitrogen, elicitors, other biostimulants, and waste from the agricultural industry. However, the impact of their use in the vineyard depends on a number of conditions, including mainly the type of compound, application rate, timing and number of applications, and cultivar. This review thus summarises the influence of biostimulants as foliar applications to grapevines on grape amino acids and their phenolic and volatile concentrations, to define the most important factors in their effectiveness. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Gastón Gutiérrez-Gamboa
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino, Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja), CSIC, Gobierno de La Rioja, Universidad de La Rioja, Logroño, Spain
| | - Gianfranco Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche Ancona, Italy
| | - Teresa Garde-Cerdán
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino, Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja), CSIC, Gobierno de La Rioja, Universidad de La Rioja, Logroño, Spain
| | - Eva P Pérez-Álvarez
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino, Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja), CSIC, Gobierno de La Rioja, Universidad de La Rioja, Logroño, Spain
| |
Collapse
|
21
|
Kumar S, Nehra M, Dilbaghi N, Marrazza G, Hassan AA, Kim KH. Nano-based smart pesticide formulations: Emerging opportunities for agriculture. J Control Release 2019; 294:131-153. [PMID: 30552953 DOI: 10.1016/j.jconrel.2018.12.012] [Citation(s) in RCA: 245] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 12/11/2022]
Abstract
The incorporation of nanotechnology as a means for nanopesticides is in the early stage of development. The main idea behind this incorporation is to lower the indiscriminate use of conventional pesticides to be in line with safe environmental applications. Nanoencapsulated pesticides can provide controlled release kinetics, while efficiently enhancing permeability, stability, and solubility. Nanoencapsulation can enhance the pest-control efficiency over extended durations by preventing the premature degradation of active ingredients (AIs) under harsh environmental conditions. This review is thus organized to critically assess the significant role of nanotechnology for encapsulation of AIs for pesticides. The smart delivery of pesticides is essential to reduce the dosage of AIs with enhanced efficacy and to overcome pesticide loss (e.g., due to leaching and evaporation). The future trends of pesticide nanoformulations including nanomaterials as AIs and nanoemulsions of biopesticides are also explored. This review should thus offer a valuable guide for establishing regulatory frameworks related to field applications of these nano-based pesticides in the near future.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India; Department of Civil Engineering, College of Engineering, University of Nebraska Lincoln, P.O. Box 886105, Lincoln, NE 68588-6105, United States.
| | - Monika Nehra
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India; Department of Electronics and Communication Engineering, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India
| | - Giovanna Marrazza
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy; Istituto Nazionale Biostrutture e Biosistemi (INBB), Unit of Florence, Viale delle Medaglie d'Oro 305, 00136, Roma, Italy
| | - Ashraf Aly Hassan
- Department of Civil Engineering, College of Engineering, University of Nebraska Lincoln, P.O. Box 886105, Lincoln, NE 68588-6105, United States
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| |
Collapse
|
22
|
Effects on chlorophyll and carotenoid contents in different grape varieties (Vitis vinifera L.) after nitrogen and elicitor foliar applications to the vineyard. Food Chem 2018; 269:380-386. [DOI: 10.1016/j.foodchem.2018.07.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 06/04/2018] [Accepted: 07/02/2018] [Indexed: 01/10/2023]
|
23
|
Xing K, Xing Y, Liu Y, Zhang Y, Shen X, Li X, Miao X, Feng Z, Peng X, Qin S. Fungicidal effect of chitosan via inducing membrane disturbance against Ceratocystis fimbriata. Carbohydr Polym 2018; 192:95-103. [DOI: 10.1016/j.carbpol.2018.03.053] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/13/2018] [Accepted: 03/16/2018] [Indexed: 01/19/2023]
|