1
|
Itzhakov R, Hak H, Sadhasivam S, Belausov E, Fallik E, Spiegelman Z, Sionov E, Poverenov E. Nanogel Particles Based on Modified Nucleosides and Oligosaccharides as Advanced Delivery System. ACS NANO 2023; 17:23020-23031. [PMID: 37934119 DOI: 10.1021/acsnano.3c08627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
This work addresses the challenge of delivering bioactive molecules by designing biocompatible nanogel particles (NGPs) utilizing rationally modified nature-sourced building blocks: capryl-oligochitosan and oxidized inosine. Capryl substituents endowed the resultant NGPs with membrane-penetration capabilities, while purine-containing inosine allowed H-bond/π-π/π-cation interactions. The prepared NGPs were complexed with carboxyfluorescein-labeled single-stranded oligonucleotide (FAM-oligo) and DsRed-encoding plasmid DNA. The successful delivery of FAM-oligo to the cell cytoplasm of the Nicotiana benthamiana plant was observed. Alexa 555-labeled bovine serum albumin (Alexa 555-BSA) was also efficiently encapsulated and delivered to the plant. In addition to delivering FAM-oligo and Alexa 555-BSA separately, NGPs also successfully co-delivered both biomolecules to the plant. Finally, NGPs successfully encapsulated the drug amphotericin B and reduced its toxicity while maintaining its efficacy. The presented findings suggest that NGPs may become a promising platform for the advanced delivery of bioactive molecules in various applications.
Collapse
Affiliation(s)
- Rafael Itzhakov
- Agro-Nanotechnology and Advanced Materials Research Center, Department of Food Sciences, Agricultural Research Organization, Volcani Institute, Rishon LeZion 7505101, Israel
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Biochemistry and Food Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Hagit Hak
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Rishon LeZion 7505101, Israel
| | - Sudharsan Sadhasivam
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Biochemistry and Food Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel
- Institute of Food and Postharvest Sciences, Agricultural Research Organization, Volcani Institute, Rishon LeZion 7505101, Israel
| | - Eduard Belausov
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Institute, Rishon LeZion 7505101, Israel
| | - Elazar Fallik
- Institute of Food and Postharvest Sciences, Agricultural Research Organization, Volcani Institute, Rishon LeZion 7505101, Israel
| | - Ziv Spiegelman
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Rishon LeZion 7505101, Israel
| | - Edward Sionov
- Institute of Food and Postharvest Sciences, Agricultural Research Organization, Volcani Institute, Rishon LeZion 7505101, Israel
| | - Elena Poverenov
- Agro-Nanotechnology and Advanced Materials Research Center, Department of Food Sciences, Agricultural Research Organization, Volcani Institute, Rishon LeZion 7505101, Israel
| |
Collapse
|
2
|
Akopova TA, Popyrina TN, Demina TS. Mechanochemical Transformations of Polysaccharides: A Systematic Review. Int J Mol Sci 2022; 23:10458. [PMID: 36142370 PMCID: PMC9501544 DOI: 10.3390/ijms231810458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 01/05/2023] Open
Abstract
Taking into consideration the items of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), this study reviews application of mechanochemical approaches to the modification of polysaccharides. The ability to avoid toxic solvents, initiators, or catalysts during processes is an important characteristic of the considered approach and is in line with current trends in the world. The mechanisms of chemical transformations in solid reactive systems during mechanical activation, the structure and physicochemical properties of the obtained products, their ability to dissolve and swell in different media, to form films and fibers, to self-organize in solution and stabilize nanodispersed inorganic particles and biologically active substances are considered using a number of polysaccharides and their derivatives as examples.
Collapse
Affiliation(s)
- Tatiana A. Akopova
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsouznaya Str., 117393 Moscow, Russia
| | | | - Tatiana S. Demina
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsouznaya Str., 117393 Moscow, Russia
| |
Collapse
|
3
|
Arora S, Murmu G, Mukherjee K, Saha S, Maity D. A Comprehensive Overview of Nanotechnology in Sustainable Agriculture. J Biotechnol 2022; 355:21-41. [PMID: 35752390 DOI: 10.1016/j.jbiotec.2022.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/18/2022] [Accepted: 06/19/2022] [Indexed: 10/17/2022]
Abstract
Plant nutrition is crucial in crop productivity and providing food security to the ever-expanding population. Application of chemical/biological fertilizers and pesticides are the mainstays for any agricultural economy. However, there are unintended consequences of using chemical fertilizers and pesticides. The environment and ecological balance are adversely affected by their usage. Biofertilizers and biopesticides counter some undesired environmental effects of chemical fertilizers/pesticides; inspite of some drawbacks associated with their use. The recent developments in nanotechnology offer promise towards sustainable agriculture. Sustainable agriculture involves addressing the concerns about agriculture as well as of the environment. This review briefs about important nanomaterials used in agriculture as nanofertilizers, nanopesticides, and a combination called nanobiofertilizers. Both nanofertilizers and nanopesticides enable slow and sustained release besides their eco-friendly environmental consequences. They can be tailored to specific needs to crop. Nanofertilizers also offer greater stress tolerance and, therefore, of considerable value in the era of climate change. Furthermore, nanofertilizers/nanopesticides are applied in minute amounts, reducing transportation costs associated and thus positively affecting the economy. Their uses extend beyond such as if nanoparticles (NPs) are used at high concentrations; they affect plant pathogens adversely. Polymer-based biodegradable nanofertilizers and nanopesticides offer various benefits. There is also a dark side to the use of nanomaterials in agriculture. Nanotechnology often involves the use of metal/metal oxide nanoparticles, which might get access to human bodies leading to their accumulation through bio-magnification. Although their effects on human health are not known, NPs may reach toxic concentrations in soil and runoff into rivers, and other water bodies with their removal to become a huge economic burden. Nevertheless, a risk-benefit analysis of nanoformulations must be ensured before their application in sustainable agriculture.
Collapse
Affiliation(s)
- Smriti Arora
- Department of Biotechnology, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Gajiram Murmu
- Materials Chemistry Department, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar, Odisha 751013, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Koel Mukherjee
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India
| | - Sumit Saha
- Materials Chemistry Department, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar, Odisha 751013, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Dipak Maity
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India.
| |
Collapse
|
4
|
An C, Sun C, Li N, Huang B, Jiang J, Shen Y, Wang C, Zhao X, Cui B, Wang C, Li X, Zhan S, Gao F, Zeng Z, Cui H, Wang Y. Nanomaterials and nanotechnology for the delivery of agrochemicals: strategies towards sustainable agriculture. J Nanobiotechnology 2022; 20:11. [PMID: 34983545 PMCID: PMC8725417 DOI: 10.1186/s12951-021-01214-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/16/2021] [Indexed: 12/27/2022] Open
Abstract
Nanomaterials (NMs) have received considerable attention in the field of agrochemicals due to their special properties, such as small particle size, surface structure, solubility and chemical composition. The application of NMs and nanotechnology in agrochemicals dramatically overcomes the defects of conventional agrochemicals, including low bioavailability, easy photolysis, and organic solvent pollution, etc. In this review, we describe advances in the application of NMs in chemical pesticides and fertilizers, which are the two earliest and most researched areas of NMs in agrochemicals. Besides, this article concerns with the new applications of NMs in other agrochemicals, such as bio-pesticides, nucleic acid pesticides, plant growth regulators (PGRs), and pheromone. We also discuss challenges and the industrialization trend of NMs in the field of agrochemicals. Constructing nano-agrochemical delivery system via NMs and nanotechnology facilitates the improvement of the stability and dispersion of active ingredients, promotes the precise delivery of agrochemicals, reduces residual pollution and decreases labor cost in different application scenarios, which is potential to maintain the sustainability of agricultural systems and improve food security by increasing the efficacy of agricultural inputs. ![]()
Collapse
Affiliation(s)
- Changcheng An
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Changjiao Sun
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ningjun Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Bingna Huang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiajun Jiang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yue Shen
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chong Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiang Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Bo Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chunxin Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xingye Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shenshan Zhan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Fei Gao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhanghua Zeng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Haixin Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Yan Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
5
|
Wei W, Evseenko VI, Khvostov MV, Borisov SA, Tolstikova TG, Polyakov NE, Dushkin AV, Xu W, Min L, Su W. Solubility, Permeability, Anti-Inflammatory Action and In Vivo Pharmacokinetic Properties of Several Mechanochemically Obtained Pharmaceutical Solid Dispersions of Nimesulide. Molecules 2021; 26:molecules26061513. [PMID: 33802031 PMCID: PMC7998760 DOI: 10.3390/molecules26061513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 12/25/2022] Open
Abstract
Nimesulide (NIM, N-(4-nitro-2-phenoxyphenyl)methanesulfonamide) is a relatively new nonsteroidal anti-inflammatory analgesic drug. It is practically insoluble in water (<0.02 mg/mL). This very poor aqueous solubility of the drug may lead to low bioavailability. The objective of the present study was to investigate the possibility of improving the solubility and the bioavailability of NIM via complexation with polysaccharide arabinogalactan (AG), disodium salt of glycyrrhizic acid (Na2GA), hydroxypropyl-β-cyclodextrin (HP-β-CD) and MgCO3. Solid dispersions (SD) have been prepared using a mechanochemical technique. The physical properties of nimesulide SD in solid state were characterized by differential scanning calorimetry and X-ray diffraction studies. The characteristics of the water solutions which form from the obtained solid dispersions were analyzed by reverse phase and gel permeation HPLC. It was shown that solubility increases for all complexes under investigation. These phenomena are obliged by complexation with auxiliary substances, which was shown by 1H-NMR relaxation methods. The parallel artificial membrane permeability assay (PAMPA) was used for predicting passive intestinal absorption. Results showed that mechanochemically obtained complexes with polysaccharide AG, Na2GA, and HP-β-CD enhanced permeation of NIM across an artificial membrane compared to that of the pure NIM. The complexes were examined for anti-inflammatory activity on a model of histamine edema. The substances were administered per os to CD-1 mice. As a result, it was found that all investigated complexes dose-dependently reduce the degree of inflammation. The best results were obtained for the complexes of NIM with Na2GA and HP-β-CD. In noted case the inflammation can be diminished up to 2-fold at equal doses of NIM.
Collapse
Affiliation(s)
- Wei Wei
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; (W.W.); (A.V.D.); (W.X.); (L.M.)
| | - Veronica I. Evseenko
- Institute of Solid State Chemistry and Mechanochemistry, Kutateladze, 18, Novosibirsk 630128, Russia; (V.I.E.); (M.V.K.); (N.E.P.)
| | - Mikhail V. Khvostov
- Institute of Solid State Chemistry and Mechanochemistry, Kutateladze, 18, Novosibirsk 630128, Russia; (V.I.E.); (M.V.K.); (N.E.P.)
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Lavrentiev Avenue 9, Novosibirsk 630090, Russia; (S.A.B.); (T.G.T.)
| | - Sergey A. Borisov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Lavrentiev Avenue 9, Novosibirsk 630090, Russia; (S.A.B.); (T.G.T.)
| | - Tatyana G. Tolstikova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Lavrentiev Avenue 9, Novosibirsk 630090, Russia; (S.A.B.); (T.G.T.)
| | - Nikolay E. Polyakov
- Institute of Solid State Chemistry and Mechanochemistry, Kutateladze, 18, Novosibirsk 630128, Russia; (V.I.E.); (M.V.K.); (N.E.P.)
- Voevodsky Institute of Chemical Kinetics and Combustion, Institutskaya Str. 3, Novosibirsk 630090, Russia
| | - Aleksandr V. Dushkin
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; (W.W.); (A.V.D.); (W.X.); (L.M.)
- Institute of Solid State Chemistry and Mechanochemistry, Kutateladze, 18, Novosibirsk 630128, Russia; (V.I.E.); (M.V.K.); (N.E.P.)
| | - Wenhao Xu
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; (W.W.); (A.V.D.); (W.X.); (L.M.)
| | - Lu Min
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; (W.W.); (A.V.D.); (W.X.); (L.M.)
| | - Weike Su
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; (W.W.); (A.V.D.); (W.X.); (L.M.)
- Correspondence:
| |
Collapse
|
6
|
Prudnikova S, Streltsova N, Volova T. The effect of the pesticide delivery method on the microbial community of field soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:8681-8697. [PMID: 33064277 DOI: 10.1007/s11356-020-11228-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 10/11/2020] [Indexed: 05/26/2023]
Abstract
The study deals with the effects of herbicides (metribuzin, tribenuron-methyl, fenoxaprop-P-ethyl) and fungicides (tebuconazole, epoxiconazole, azoxystrobin) applied to soil as free pesticides or as slow release formulations embedded in a biodegradable composite matrix on the structure of the soil microbial community. The matrix consisted of a natural biopolymer poly-3-hydroxybutyrate [P(3HB)] and a filler-one of the natural materials (peat, clay, and wood flour). The soil microbial community was characterized, including the major eco-trophic groups of bacteria, dominant taxa of bacteria and fungi, and primary P(3HB)-degrading microorganisms, such as Pseudomonas, Bacillus, Pseudarthrobacter, Streptomyces, Penicillium, and Talaromyces. The addition of free pesticides adversely affected the abundance of soil microorganisms; the decrease varied from 1.4 to 56.0 times for different types of pesticides. The slow release pesticide formulations, in contrast to the free pesticides, exerted a much weaker effect on soil microorganisms, no significant inhibition in the abundance of saprotrophic bacteria was observed, partly due to the positive effects of the composite matrix (polymer/natural material), which was a supplementary substrate for microorganisms. The slow release fungicide formulations, like the free fungicides, reduced the total abundance of fungi and inhibited the development of the phytopathogens Fusarium and Alternaria. Thus, slow release formulations of pesticides preserve the bioremediation potential of soil microorganisms, which are the main factor of removing xenobiotics from the biosphere.
Collapse
Affiliation(s)
| | | | - Tatiana Volova
- Siberian Federal University, 79 Svobodny pr, Krasnoyarsk, 660041, Russia
- Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", 50/50 Akademgorodok, Krasnoyarsk, 660036, Russia
| |
Collapse
|
7
|
Selyutina OY, Khalikov SS, Polyakov NE. Arabinogalactan and glycyrrhizin based nanopesticides as novel delivery systems for plant protection. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:5864-5872. [PMID: 31858418 DOI: 10.1007/s11356-019-07397-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/11/2019] [Indexed: 06/10/2023]
Abstract
During the past decade, nanotechnologies opened a new era in delivery of plant protection products through the development of nanosized controlled release systems, such as polymer nanoparticles, micelles, and so on using a wide variety of materials. To increase the pesticides penetration into the grain under the presowing seed treatment, a new approach based on non-covalent associate preparation with natural polysaccharides and oligosaccharides as delivery systems (DSs) was applied. Earlier, this approach was tested on antidote 1,8-naphthalic anhydride (NA). Enhancement of the NA solubility and penetration into the barley and wheat seeds had been demonstrated. In the present study, these DSs were used to prepare nanocomposites of pesticides (tebuconazole, imidacloprid, imazalil, prochloraz). The composite formation of the pesticides with poly- and oligosaccharides was proved by NMR relaxation method. Enhancement of the pesticides solubility and improvement of its penetration into the seeds of corn and rapeseeds has been detected. The strongest enhancement of penetration ability was observed for arabinogalactan nanocomposites: 5-folds for tebuconazole and imidacloprid, and more than 10-folds for imazalil and prochloraz. Our data show that the effect of polysaccharides and oligosaccharides on the nanopesticide penetration might be associated with the solubility enhancement, affinity of DSs to the surface of grains, and the modification of cell membranes by poly- and oligosaccharides.
Collapse
Affiliation(s)
- Olga Yu Selyutina
- Voevodsky Institute of Chemical Kinetics and Combustion of Siberian Branch of the Russian Academy of Sciences, Institutskaya St., 3, Novosibirsk, Russia, 630090.
| | - Salavat S Khalikov
- Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St., 28, Moscow, Russia, 119334
| | - Nikolay E Polyakov
- Voevodsky Institute of Chemical Kinetics and Combustion of Siberian Branch of the Russian Academy of Sciences, Institutskaya St., 3, Novosibirsk, Russia, 630090
- Institute of Solid State Chemistry and Mechanochemistry, Novosibirsk, Russia
| |
Collapse
|
8
|
Supramolecular Carotenoid Complexes of Enhanced Solubility and Stability-The Way of Bioavailability Improvement. Molecules 2019; 24:molecules24213947. [PMID: 31683692 PMCID: PMC6864715 DOI: 10.3390/molecules24213947] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/08/2019] [Accepted: 10/15/2019] [Indexed: 12/12/2022] Open
Abstract
Carotenoids are natural dyes and antioxidants widely used in food processing and in therapeutic formulations. However, their practical application is restricted by their high sensitivity to external factors such as heat, light, oxygen, metal ions and processing conditions, as well as by extremely low water solubility. Various approaches have been developed to overcome these problems. In particular, it was demonstrated that application of supramolecular complexes of “host-guest” type with water-soluble nanoparticles allows minimizing the abovementioned disadvantages. From this point of view, nanoencapsulation of carotenoids is an effective strategy to improve their stability during storage and food processing. Also, nanoencapsulation enhances bioavailability of carotenoids via modulating their release kinetics from the delivery system, influencing the solubility and absorption. In the present paper, we present the state of the art of carotenoid nanoencapsulation and summarize the data obtained during last five years on preparation, analysis and reactivity of carotenoids encapsulated into various nanoparticles. The possible mechanisms of carotenoids bioavailability enhancement by multifunctional delivery systems are also discussed.
Collapse
|
9
|
Kong R, Zhu X, Meteleva ES, Chistyachenko YS, Suntsova LP, Polyakov NE, Khvostov MV, Baev DS, Tolstikova TG, Yu J, Dushkin AV, Su W. Enhanced solubility and bioavailability of simvastatin by mechanochemically obtained complexes. Int J Pharm 2017; 534:108-118. [DOI: 10.1016/j.ijpharm.2017.10.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/19/2017] [Accepted: 10/06/2017] [Indexed: 10/18/2022]
|