1
|
Wang Y, Wang Q, Wang M, Wang X, Liu Q, Lv S, Nie H, Liu G. Epigallocatechin-3-Gallate Ameliorates Diabetic Kidney Disease by Inhibiting the TXNIP/NLRP3/IL-1β Signaling Pathway. Food Sci Nutr 2024; 12:10800-10815. [PMID: 39723074 PMCID: PMC11666909 DOI: 10.1002/fsn3.4617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/14/2024] [Accepted: 11/06/2024] [Indexed: 12/28/2024] Open
Abstract
Recent research indicates that the activation of the NLRP3 inflammasome is crucial in the development of diabetic kidney disease (DKD). Epigallocatechin-3-gallate (EGCG), the predominant catechin in green tea, has been noted for its anti-inflammatory properties in DKD. However, the specific mechanisms are not yet fully understood. In this study, our objective was to explore the effects of EGCG on podocytes and in diabetic kidney disease (DKD) mice and investigate how EGCG modulates the TXNIP/NLRP3/IL-1β signaling pathway in DKD, both in podocytes and animal models. In vitro, we co-cultured podocytes with EGCG and detected the viability, apoptosis, inflammation and the TXNIP/NLRP3/IL-1β signaling pathway. In vivo, DKD mice were given EGCG via oral gavage, followed by evaluations of renal function, inflammation, and the aforementioned signaling pathway. Our findings revealed that oxidative stress, inflammatory cytokines, and the TXNIP/NLRP3/IL-1β pathway were upregulated in podocytes exposed to high glucose (HG) and in the kidneys of DKD mice. However, EGCG treatment reduced the expression of the NLRP3 inflammasome and its associated proteins, including TXNIP, ASC, caspase-1, and IL-1β, as well as the levels of ROS and inflammatory factors such as TNF-α, IL-6, and IL-18. Furthermore, in vivo, EGCG improved kidney function, reduced albuminuria and body weight, and alleviated renal pathological damage. In summary, our study suggests that EGCG mitigates inflammation in podocytes and DKD through the TXNIP/NLRP3/IL-1β signaling pathway, indicating potential benefits of EGCG or green tea in managing DKD.
Collapse
Affiliation(s)
- Yinghui Wang
- Department of Nephrology, Multidisciplinary Innovation Center for NephrologyThe Second Hospital of Shandong UniversityJinanShandongChina
- Nephrology Research Institute of Shandong UniversityJinanShandongChina
| | - Qimeng Wang
- Department of Nephrology, Multidisciplinary Innovation Center for NephrologyThe Second Hospital of Shandong UniversityJinanShandongChina
- Nephrology Research Institute of Shandong UniversityJinanShandongChina
| | - Mingming Wang
- Department of Nephrology, Multidisciplinary Innovation Center for NephrologyThe Second Hospital of Shandong UniversityJinanShandongChina
- Nephrology Research Institute of Shandong UniversityJinanShandongChina
| | - Xueling Wang
- Department of Nephrology, Multidisciplinary Innovation Center for NephrologyThe Second Hospital of Shandong UniversityJinanShandongChina
- Nephrology Research Institute of Shandong UniversityJinanShandongChina
| | - Qingzhen Liu
- Department of Nephrology, Multidisciplinary Innovation Center for NephrologyThe Second Hospital of Shandong UniversityJinanShandongChina
- Nephrology Research Institute of Shandong UniversityJinanShandongChina
| | - Shasha Lv
- Department of Nephrology, Multidisciplinary Innovation Center for NephrologyThe Second Hospital of Shandong UniversityJinanShandongChina
- Nephrology Research Institute of Shandong UniversityJinanShandongChina
| | - Huibin Nie
- Department of Nephrology, Chengdu First People's HospitalIntegrated TCM and Western Medicine Hospital Affiliated to Chengdu University of TCMChengduSichuanChina
| | - Gang Liu
- Department of Nephrology, Multidisciplinary Innovation Center for NephrologyThe Second Hospital of Shandong UniversityJinanShandongChina
- Nephrology Research Institute of Shandong UniversityJinanShandongChina
- Key Laboratory of Reproductive Endocrinology of Ministry of EducationShandong UniversityJinanShandongChina
| |
Collapse
|
2
|
Abudoureyimu M, Tayier T, Zhang L. The role and mechanism of action of miR-483-3p in mediating the effects of IGF-1 on human renal tubular epithelial cells induced by high glucose. Sci Rep 2024; 14:15635. [PMID: 38972889 PMCID: PMC11228025 DOI: 10.1038/s41598-024-66433-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 07/01/2024] [Indexed: 07/09/2024] Open
Abstract
This study aimed to elucidate the influence of miR-483-3p on human renal tubular epithelial cells (HK-2) under high glucose conditions and to understand its mechanism. Human proximal tubular epithelial cells (HK-2) were exposed to 50 mmol/L glucose for 48 h to establish a renal tubular epithelial cell injury model, denoted as the high glucose group (HG group). Cells were also cultured for 48 h in a medium containing 5.5 mmol/L glucose, serving as the low glucose group. Transfection was performed in various groups: HK-2 + low glucose (control group), high glucose (50 mM) (HG group), high glucose + miR-483-3p mimics (HG + mimics group), high glucose +miR-483-3p inhibitor (HG + inhibitor group), and corresponding negative controls. Real-time quantitative polymerase chain reaction (qPCR) assessed the mRNA expression of miR-483-3p, bax, bcl-2, and caspase-3. Western blot determined the corresponding protein levels. Proliferation was assessed using the CCK-8 assay, and cell apoptosis was analyzed using the fluorescence TUNEL method. Western blot and Masson's staining were conducted to observe alterations in cell fibrosis post miR-483-3p transfection. Furthermore, a dual-luciferase assay investigated the targeting relationship between miR-483-3p and IGF-1. The CCK8 assay demonstrated that the HG + mimics group inhibited HK-2 cell proliferation, while the fluorescent TUNEL method revealed induced cell apoptosis in this group. Conversely, the HG + inhibitor group promoted cell proliferation and suppressed cell apoptosis. The HG + mimics group upregulated mRNA and protein expression of pro-apoptotic markers (bax and caspase-3), while downregulating anti-apoptotic marker (bcl-2) expression. In contrast, the HG + inhibitor group showed opposite effects. Collagen I and FN protein levels were significantly elevated in the HG + mimics group compared to controls (P < 0.05). Conversely, in the HG + inhibitor group, the protein expression of Collagen I and FN was notably reduced compared to the HG group (P < 0.05). The dual luciferase reporter assay confirmed that miR-483-3p could inhibit the luciferase activity of IGF-1's 3'-UTR region (P < 0.05). miR-483-3p exerts targeted regulation on IGF-1, promoting apoptosis and fibrosis in renal tubular epithelial cells induced by high glucose conditions.
Collapse
Affiliation(s)
- Maidina Abudoureyimu
- First Department of Comprehensive Internal Medicine of People's Hospital of Xinjiang Uygur Autonomous Region, No.91 Tianchi Road, Urumqi, 830001, Xinjiang, China
| | - Talaiti Tayier
- Department of Urology, People's Hospital of Xinjiang Uygur Autonomous Region, No.91 Tianchi Road, Urumqi, 830001, Xinjiang, China
| | - Ling Zhang
- First Department of Comprehensive Internal Medicine of People's Hospital of Xinjiang Uygur Autonomous Region, No.91 Tianchi Road, Urumqi, 830001, Xinjiang, China.
| |
Collapse
|
3
|
Wei Y, Shao J, Pang Y, Wen C, Wei K, Peng L, Wang Y, Wei X. Antidiabetic Potential of Tea and Its Active Compounds: From Molecular Mechanism to Clinical Evidence. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11837-11853. [PMID: 38743877 DOI: 10.1021/acs.jafc.3c08492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Diabetes mellitus (DM) is a chronic endocrine disorder that poses a long-term risk to human health accompanied by serious complications. Common antidiabetic drugs are usually accompanied by side effects such as hepatotoxicity and nephrotoxicity. There is an urgent need for natural dietary alternatives for diabetic treatment. Tea (Camellia sinensis) consumption has been widely investigated to lower the risk of diabetes and its complications through restoring glucose metabolism homeostasis, safeguarding pancreatic β-cells, ameliorating insulin resistance, ameliorating oxidative stresses, inhibiting inflammatory response, and regulating intestinal microbiota. It is indispensable to develop effective strategies to improve the absorption of tea active compounds and exert combinational effects with other natural compounds to broaden its hypoglycemic potential. The advances in clinical trials and population-based investigations are also discussed. This review primarily delves into the antidiabetic potential and underlying mechanisms of tea active compounds, providing a theoretical basis for the practical application of tea and its active compounds against diabetes.
Collapse
Affiliation(s)
- Yang Wei
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Jie Shao
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Yuxuan Pang
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Caican Wen
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Kang Wei
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Lanlan Peng
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Yuanfeng Wang
- College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, P.R. China
| | - Xinlin Wei
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| |
Collapse
|
4
|
Azimi-Bahnamiri F, Mokhtari H, Khalilollah S, Soltanahmadi SV, Omraninava M, Disfani RA, Mirzaie MS, Ranjbaran H, Javan R, Shooraj M, Akhavan-Sigari R. Decellularized human amniotic membrane loaded with epigallocatechin-3-gallate accelerated diabetic wound healing. J Tissue Viability 2024; 33:18-26. [PMID: 38042701 DOI: 10.1016/j.jtv.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/10/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023]
Abstract
Diabetic wounds, as one of the most important complications of diabetes, face many challenges in treatment. Herein we investigated whether decellularized human amniotic membrane (dAM) loaded with epigallocatechin-3-gallate (EGCG) could promote healing in diabetic rats. Sixty diabetic rats were randomly planned into the untreated group, dAM group, EGCG group, and dAM + EGCG group. On days 7, 14, and 21, five rats from each group were sampled for stereological, molecular, and tensiometrical assessments. Our finding revealed that the wound closure rate, the total volumes of new epidermis and dermis, the numerical densities of fibroblasts, blood vessels, collagen density as well as tensiometrical parameters of the healed wounds were considerably increased in the treated groups than in the untreated group, and these changes were more obvious in the dAM + EGCG ones. Furthermore, the expression of TGF-β, bFGF, and VEGF genes were significantly upregulated in all treated groups compared to the untreated group and were greater in the dAM + EGCG group. This is while expression of TNF-α and IL-1β, as well as cell numerical densities of neutrophils and macrophages decreased more considerably in the dAM + EGCG group in comparison to the other groups. In conclusion, it was found that using both dAM transplantation and EGCG has more effect on diabetic wound healing.
Collapse
Affiliation(s)
| | - Hossein Mokhtari
- Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shayan Khalilollah
- School of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Melody Omraninava
- Health Reproductive Research Center, Islamic Azad University, Sari, Iran
| | | | | | - Hossein Ranjbaran
- Immunogenetics Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Roghayeh Javan
- Non-Comunicable Disease Risearch Center, Sabzevar University of Medical Sciences, Sabzevar, Iran.
| | - Mahdi Shooraj
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reza Akhavan-Sigari
- University Medical Center, Tuebingen, Germany; Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Poland
| |
Collapse
|
5
|
Raoofi A, Omraninava M, Javan R, Maghsodi D, Rustamzadeh A, Nasiry D, Ghaemi A. Protective effects of epigallocatechin gallate in the mice induced by chronic scrotal hyperthermia. Tissue Cell 2023; 84:102165. [PMID: 37480630 DOI: 10.1016/j.tice.2023.102165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/24/2023]
Abstract
One of the most common complications of chronic scrotal hyperthermia (SHT) is a serious disorder in the male reproductive system. The most important factor in the occurrence of these disorders is oxidative stress. Currently, we investigated the effects of epigallocatechin gallate (EGCG), as a highly potent antioxidant, against cells and tissue disorders in mice affected by chronic SHT. Fifty-six male adult NMRI mice were allocated into seven equal groups. Except the non-treated (Control) group, six other groups were exposed to heat stress. Two treated groups including Preventive and Curative received oral administration of EGCG (50 mg/kg/day) starting immediately before heat exposure and fifteen consecutive days after the end of the heat exposure, respectively. For each treated group, two subgroups including positive control (Pre/Cur + PC groups) and vehicle (Pre/Cur + vehicle groups) were considered. At the end of the study, sperm characteristics, testosterone levels, stereological parameters, apoptosis, oxidant state, and molecular assessments were performed. We found that the sperm parameters, testosterone levels, the numerical density of spermatogonia, primary spermatocytes, spermatids, sertoli, leydig cells, and seminiferous tubules, biochemical factors (except MDA), and expression of c-kit gene were significantly higher in the Preventive and Curative groups, especially in Preventive ones, compared to other groups (P < 0.05). This is while expression of HSP72 and NF-κβ genes, MDA levels, as well as density of apoptotic cells considerably decreased in both EGCG-treated groups compared to other groups and it was more pronounced in Preventive ones (P < 0.05). Generally, EGCG attenuated cellular and molecular disorders induced by heat stress in the testis and it was more pronounced in Preventive status.
Collapse
Affiliation(s)
- Amir Raoofi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Melody Omraninava
- Health Reproductive Research Center, Islamic Azad University, Sari, Iran
| | - Roghayeh Javan
- Traditional and Complementary Medicine Research Center, Sabzevar University of Medical Science, Sabzevar, Iran
| | - Davood Maghsodi
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Auob Rustamzadeh
- Department of Anatomical sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Davood Nasiry
- Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Alireza Ghaemi
- Department of Basic Sciences and Nutrition, Health Sciences Research Center, Faculty of Public Health, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
6
|
Alshahrani SH, Almajidi YQ, Hasan EK, Musad Saleh EA, Alsaab HO, Pant R, Hassan ZF, Al-Hasnawi SS, Romero-Parra RM, Mustafa YF. Hyperbaric Oxygen in Combination with Epigallocatechin-3-Gallate Synergistically Enhance Recovery from Spinal Cord Injury in Rats. Neuroscience 2023; 527:52-63. [PMID: 37499782 DOI: 10.1016/j.neuroscience.2023.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023]
Abstract
Spinal cord injury (SCI) following trauma is a devastating neurological event that can lead to loss of sensory and motor functions. However, the most effective measures to prevent the spread of damage are treatment measures in the early stages. Currently, we investigated the combined effects of hyperbaric oxygen (HBO) along with epigallocatechin-3-gallate (EGCG) in the recovery of SCI in rats. Ninety male mature Sprague-Dawley rats were randomly planned into five equal groups (n = 18). In addition to sham group that only underwent laminectomy, SCI rats were allocated into 4 groups as follows: control group; HBO group; EGCG group; and HBO + EGCG group. Tissue samples at the lesion site were obtained for stereological, immunohistochemical, biochemical, and molecular evaluation. In addition, behavioral tests were performed to assess of neurological functions. The finding indicated that the stereological parameters, antioxidant factors (CAT, GSH, and SOD), IL-10 gene expression levels and neurological functions were considerably increased in the treatment groups in comparison with control group, and these changes were more obvious in the HBO + EGCG group (P < 0.05). On the other hand, we observed that the density of apoptotic cells and gliosis, the biochemical levels of MDA and the expression levels of inflammatory genes (TNF-α and IL-1β) in the treatment groups, especially the HBO + EGCG group, were considerably reduced in comparison with control group (P < 0.05). We conclude that co-administration of HBO and EGCG has a synergistic neuroprotective effects in animals undergoing SCI.
Collapse
Affiliation(s)
| | - Yasir Qasim Almajidi
- Baghdad College of Medical Sciences-department of Pharmacy (Pharmaceutics), Baghdad, Iraq.
| | | | - Ebraheem Abdu Musad Saleh
- Department of Chemistry, Prince Sattam Bin Abdulaziz University, College of Arts and Science, Wadi Al-Dawasir 11991, Saudi Arabia
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif 21944, Saudi Arabia
| | - Ruby Pant
- Mechanical in Department, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun 248007, India
| | | | | | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| |
Collapse
|
7
|
Zhao G, Teng J, Dong R, Ban Q, Yang L, Du K, Wang Y, Pu H, Yang CS, Ren Z. Alleviating effects and mechanisms of action of large-leaf yellow tea drinking on diabetes and diabetic nephropathy in mice. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
8
|
Wu H, Xu F, Huang X, Li X, Yu P, Zhang L, Yang X, Kong J, Zhen C, Wang X. Lupenone improves type 2 diabetic nephropathy by regulating NF-κB pathway-mediated inflammation and TGF-β1/Smad/CTGF-associated fibrosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154959. [PMID: 37478684 DOI: 10.1016/j.phymed.2023.154959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/12/2023] [Accepted: 07/07/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND Type 2 diabetic nephropathy is a common diabetic complication and the main cause of death in patients with diabetes. Research has aimed to find an ideal drug with minimal side effects for treating this disease. Banana peel has been shown to be anti-diabetic, with lupenone isolated from banana peel exhibiting antidiabetic and anti-inflammatory activities; However, the effects of lupenone on type 2 diabetic nephropathy are largely unknown. PURPOSE This study aimed to investigate the ameliorative effect of lupenone on type 2 diabetic nephropathy, and its mechanism from both anti-inflammatory and anti-fibrotic perspectives. METHODS Spontaneous type 2 diabetic nephropathy db/db mouse models were given three levels of lupenone (24 or 12 or 6 mg/kg/d) via intragastric administration for six weeks, and irbesartan treatment was used for the positive control group. We explored the effects and mechanism of lupenone action using enzyme-linked immunosorbent assay, automatic biochemical analyzer, hematoxylin-eosin and Masson staining, real time-PCR, and western blotting. Concurrently, a high-sugar and high-fat diet combined with a low-dose streptozotocin-induced type 2 diabetic nephropathy rat model was used for confirmatory research. RESULTS Lupenone administration maintained the fasting blood glucose; reduced glycosylated hemoglobin, insulin, and 24 h proteinuria levels; and markedly regulated changes in biochemical indicators associated with kidney injury in serum and urine (including 24 h proteinuria, micro-albumin, N-acetyl-β-d-glucosaminidase, α1-micro-globulin, creatinine, urea nitrogen, uric acid, total protein, and albumin) of type 2 diabetic nephropathy mice and rats. Hematoxylin-eosin and Masson staining as well as molecular biology tests revealed that inflammation and fibrosis are the two key processes affected by lupenone treatment. Lupenone protected type 2 diabetic nephropathy kidneys by regulating the NF-κB-mediated inflammatory response and TGF-β1/Smad/CTGF pathway-associated fibrosis. CONCLUSION Lupenone has potential as an innovative drug for preventing and treating diabetic nephropathy. Additionally, it has great value for the utilization of banana peel resources.
Collapse
Affiliation(s)
- Hongmei Wu
- School of pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025 Guizhou, PR China
| | - Feng Xu
- School of pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025 Guizhou, PR China
| | - Xulong Huang
- School of pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025 Guizhou, PR China
| | - Xiaofen Li
- School of pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025 Guizhou, PR China
| | - Piao Yu
- School of pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025 Guizhou, PR China
| | - Lingling Zhang
- School of pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025 Guizhou, PR China
| | - Xiaosong Yang
- School of pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025 Guizhou, PR China
| | - Juan Kong
- School of pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025 Guizhou, PR China
| | - Cheng Zhen
- School of pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025 Guizhou, PR China
| | - Xiangpei Wang
- School of Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang 550025 Guizhou, PR China.
| |
Collapse
|
9
|
Atia T, Sakr HI, Damanhory AA, Moawad K, Alsawy M. The protective effect of green tea on diabetes-induced hepato-renal pathological changes: a histological and biochemical study. Arch Physiol Biochem 2023; 129:168-179. [PMID: 32816576 DOI: 10.1080/13813455.2020.1806885] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We investigated the protective effect of green tea on diabetic hepato-renal complications. Thirty male Wistar rats were randomly divided into five equal groups: normal control, diabetic control, glibenclamide-treated, green tea-treated, and combined therapy-treated groups; ethical approval number "BERC-014-01-20." After eight weeks, animals were sacrificed by CO2 euthanasia method, liver and kidney tissues were processed and stained for pathological changes, and blood samples were collected for biochemical analysis. Diabetic rats showed multiple hepato-renal morphological and apoptotic changes associated with significantly increased some biochemical parameters, while serum albumin and HDL decreased significantly compared to normal control (p < .05). Monotherapy can induce significant improvements in pathological and biochemical changes but has not been able to achieve normal patterns. In conclusion, green tea alone has a poor hypoglycaemic effect but can reduce diabetic complications, whereas glibenclamide cannot prevent diabetic complications. The addition of green tea to oral hypoglycaemic therapy has shown a potent synergistic effect.
Collapse
Affiliation(s)
- Tarek Atia
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences Prince, Sattam Bin Abdulaziz University, Al-Kharj, KSA
- Department of Histology and Cytology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Hader I Sakr
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
- Batterjee Medical College, Jeddah, KSA
| | - Ahmed A Damanhory
- Batterjee Medical College, Jeddah, KSA
- Department of Biochemistry, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Karim Moawad
- School of Biological Science, UCI, Irvine, CA, USA
| | - Moustfa Alsawy
- Department of Histology and Cytology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
- Batterjee Medical College, Jeddah, KSA
| |
Collapse
|
10
|
The Protective Effect of Theaflavins on the Kidney of Mice with Type II Diabetes Mellitus. Nutrients 2022; 15:nu15010201. [PMID: 36615858 PMCID: PMC9824224 DOI: 10.3390/nu15010201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Diabetic nephropathy, primarily caused by advanced glycation end products (AGEs), is a serious complication resulting from type 2 diabetes mellitus (T2DM). Reportedly, theaflavins (TFs) can improve diabetic nephropathy; however, the underlying molecular mechanism is not fully clear. In this study, T2DM mice were treated with different concentrations of TFs by gavage for 10 weeks to investigate the effect of TFs on diabetic nephropathy and their potential molecular mechanism of action. Biochemical and pathological analysis showed that the TFs effectively improved blood glucose, insulin resistance, kidney function, and other symptoms in diabetic mice. The mechanism studies indicated that TFs inhibited the formation of AGEs, thereby inhibiting the activation of the MAPK/NF-κB signaling pathway. Therefore, our study suggested that TFs improved diabetic nephropathy by inhibiting the formation of AGEs.
Collapse
|
11
|
Wan C, Ouyang J, Li M, Rengasamy KRR, Liu Z. Effects of green tea polyphenol extract and epigallocatechin-3-O-gallate on diabetes mellitus and diabetic complications: Recent advances. Crit Rev Food Sci Nutr 2022; 64:5719-5747. [PMID: 36533409 DOI: 10.1080/10408398.2022.2157372] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Diabetes mellitus is one of the major non-communicable diseases accounting for millions of death annually and increasing economic burden. Hyperglycemic condition in diabetes creates oxidative stress that plays a pivotal role in developing diabetes complications affecting multiple organs such as the heart, liver, kidney, retina, and brain. Green tea from the plant Camellia sinensis is a common beverage popular in many countries for its health benefits. Green tea extract (GTE) is rich in many biologically active compounds, e.g., epigallocatechin-3-O-gallate (EGCG), which acts as a potent antioxidant. Recently, several lines of evidence have shown the promising results of GTE and EGCG for diabetes management. Here, we have critically reviewed the effects of GTE and EGCC on diabetes in animal models and clinical studies. The concerns and challenges regarding the clinical use of GTE and EGCG against diabetes are also briefly discussed. Numerous beneficial effects of green tea and its catechins, particularly EGCG, make this natural product an attractive pharmacological agent that can be further developed to treat diabetes and its complications.
Collapse
Affiliation(s)
- Chunpeng Wan
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Jian Ouyang
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha, Hunan, China
| | - Mingxi Li
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Kannan R R Rengasamy
- Laboratory of Natural Products and Medicinal Chemistry (LNPMC), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
12
|
Yue L, Yang YR, Ma WX, Wang HY, Fan QW, Wang YY, Li C, Wang J, Hu ZM, Wang XF, Li FH, Liu MM, Jin J, Shi C, Wen JG. Epigallocatechin Gallate Attenuates Gentamicin-Induced Nephrotoxicity by Suppressing Apoptosis and Ferroptosis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238564. [PMID: 36500657 PMCID: PMC9735461 DOI: 10.3390/molecules27238564] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Gentamicin (GEN) is a kind of aminoglycoside antibiotic with the adverse effect of nephrotoxicity. Currently, no effective measures against the nephrotoxicity have been approved. In the present study, epigallocatechin gallate (EG), a useful ingredient in green tea, was used to attenuate its nephrotoxicity. EG was shown to largely attenuate the renal damage and the increase of malondialdehyde (MDA) and the decrease of glutathione (GSH) in GEN-injected rats. In NRK-52E cells, GEN increased the cellular ROS in the early treatment phase and ROS remained continuously high from 1.5 H to 24 H. Moreover, EG alleviated the increase of ROS and MDA and the decrease of GSH caused by GEN. Furthermore, EG activated the protein levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1). After the treatment of GEN, the protein level of cleaved-caspase-3, the flow cytometry analysis and the JC-1 staining, the protein levels of glutathione peroxidase 4 (GPX4) and SLC7A11, were greatly changed, indicating the occurrence of both apoptosis and ferroptosis, whereas EG can reduce these changes. However, when Nrf2 was knocked down by siRNA, the above protective effects of EG were weakened. In summary, EG attenuated GEN-induced nephrotoxicity by suppressing apoptosis and ferroptosis.
Collapse
Affiliation(s)
- Lin Yue
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ya-Ru Yang
- Department of Clinical Pharmacology, Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Wen-Xian Ma
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Hong-Yan Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qian-Wen Fan
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yue-Yue Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Chao Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jing Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Zi-Mu Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xue-Fu Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Feng-He Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ming-Ming Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Juan Jin
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Chao Shi
- Department of Cardiac Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
- Correspondence: (C.S.); (J.-G.W.); Tel.: +86-0552-308635 (C.S.); +86-0551-65172131 (J.-G.W.)
| | - Jia-Gen Wen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
- Correspondence: (C.S.); (J.-G.W.); Tel.: +86-0552-308635 (C.S.); +86-0551-65172131 (J.-G.W.)
| |
Collapse
|
13
|
The Role of Diacylglycerol Kinase in the Amelioration of Diabetic Nephropathy. Molecules 2022; 27:molecules27206784. [PMID: 36296376 PMCID: PMC9607625 DOI: 10.3390/molecules27206784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 12/02/2022] Open
Abstract
The drastic increase in the number of patients with diabetes and its complications is a global issue. Diabetic nephropathy, the leading cause of chronic kidney disease, significantly affects patients’ quality of life and medical expenses. Furthermore, there are limited drugs for treating diabetic nephropathy patients. Impaired lipid signaling, especially abnormal protein kinase C (PKC) activation by de novo-synthesized diacylglycerol (DG) under high blood glucose, is one of the causes of diabetic nephropathy. DG kinase (DGK) is an enzyme that phosphorylates DG and generates phosphatidic acid, i.e., DGK can inhibit PKC activation under diabetic conditions. Indeed, it has been proven that DGK activation ameliorates diabetic nephropathy. In this review, we summarize the involvement of PKC and DGK in diabetic nephropathy as therapeutic targets, and its mechanisms, by referring to our recent study.
Collapse
|
14
|
Chen B, Zhang W, Lin C, Zhang L. A Comprehensive Review on Beneficial Effects of Catechins on Secondary Mitochondrial Diseases. Int J Mol Sci 2022; 23:ijms231911569. [PMID: 36232871 PMCID: PMC9569714 DOI: 10.3390/ijms231911569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/13/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Mitochondria are the main sites for oxidative phosphorylation and synthesis of adenosine triphosphate in cells, and are known as cellular power factories. The phrase "secondary mitochondrial diseases" essentially refers to any abnormal mitochondrial function other than primary mitochondrial diseases, i.e., the process caused by the genes encoding the electron transport chain (ETC) proteins directly or impacting the production of the machinery needed for ETC. Mitochondrial diseases can cause adenosine triphosphate (ATP) synthesis disorder, an increase in oxygen free radicals, and intracellular redox imbalance. It can also induce apoptosis and, eventually, multi-system damage, which leads to neurodegenerative disease. The catechin compounds rich in tea have attracted much attention due to their effective antioxidant activity. Catechins, especially acetylated catechins such as epicatechin gallate (ECG) and epigallocatechin gallate (EGCG), are able to protect mitochondria from reactive oxygen species. This review focuses on the role of catechins in regulating cell homeostasis, in which catechins act as a free radical scavenger and metal ion chelator, their protective mechanism on mitochondria, and the protective effect of catechins on mitochondrial deoxyribonucleic acid (DNA). This review highlights catechins and their effects on mitochondrial functional metabolic networks: regulating mitochondrial function and biogenesis, improving insulin resistance, regulating intracellular calcium homeostasis, and regulating epigenetic processes. Finally, the indirect beneficial effects of catechins on mitochondrial diseases are also illustrated by the warburg and the apoptosis effect. Some possible mechanisms are shown graphically. In addition, the bioavailability of catechins and peracetylated-catechins, free radical scavenging activity, mitochondrial activation ability of the high-molecular-weight polyphenol, and the mitochondrial activation factor were also discussed.
Collapse
|
15
|
Li Y, He K, Cao L, Tang X, Gou R, Luo T, Xiao S, Chen Z, Li T, Qin J, Zhang Z, Cai J. Association between plasma cadmium and renal stone prevalence in adults in rural areas of Guangxi, China: a case-control study. BMC Nephrol 2022; 23:323. [PMID: 36171551 PMCID: PMC9520925 DOI: 10.1186/s12882-022-02945-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/14/2022] [Indexed: 11/26/2022] Open
Abstract
Background Kidney stones have become a worldwide public health problem. The purpose of this research is to study the relationship between plasma cadmium level and the prevalence of kidney stones in an adult population. Methods The data of this study were based on a current survey conducted from December 2018 to November 2019 in Gongcheng Yao Autonomous County, Guangxi, China. A total of 940 study subjects of the same sex and age (within 2 years of each other) according to 1:1 matching were selected for a case–control study. The diagnosis of kidney stones was based on the presence of strong light spots, patches, clusters, or bands within the renal sinus region, followed by an echo-free bundle of acoustic images. Plasma metal elements were determined by the metal plasma method. The relationship between plasma cadmium concentration and the prevalence of kidney stones was assessed using logistic regression and restricted cubic spline regression. Results The crude ratio for kidney stones in the highest quartile of plasma cadmium was 1.164 (95% CI, 1.121 to 2.324) compared with the lowest quartile. A positive correlation was found between the two (P for trend = 0.039). After adjusting for potential confounders, the ratio of plasma cadmium to kidney stones in the highest quartile was 1.606 (95% CI, 1.100 to 2.344) compared with the lowest quartile, and the findings remained unchanged. Conclusion The odds of kidney stones in adults increased with increasing plasma cadmium exposure, and high plasma cadmium may be a risk factor for kidney stones.
Collapse
Affiliation(s)
- You Li
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, Lingui District, No. 1 Zhiyuan Road, Guilin, 541199, Guangxi, China.,Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care (Guilin Medical University ), Lingui District, No. 1 Zhiyuan Road, Guilin, 541199, Guangxi, China
| | - Kailian He
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, Lingui District, No. 1 Zhiyuan Road, Guilin, 541199, Guangxi, China.,Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care (Guilin Medical University ), Lingui District, No. 1 Zhiyuan Road, Guilin, 541199, Guangxi, China
| | - Liang Cao
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, Lingui District, No. 1 Zhiyuan Road, Guilin, 541199, Guangxi, China.,Department of Experimental Teaching Center, School of Public Health, Guilin Medical University, Lingui District, No. 1 Zhiyuan Road, Guilin, 541199, Guangxi, China
| | - Xu Tang
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Shuangyong Road No.22Guangxi province, Nanning, 530021, People's Republic of China
| | - Ruoyu Gou
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, Lingui District, No. 1 Zhiyuan Road, Guilin, 541199, Guangxi, China.,Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care (Guilin Medical University ), Lingui District, No. 1 Zhiyuan Road, Guilin, 541199, Guangxi, China
| | - Tingyu Luo
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, Lingui District, No. 1 Zhiyuan Road, Guilin, 541199, Guangxi, China.,Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care (Guilin Medical University ), Lingui District, No. 1 Zhiyuan Road, Guilin, 541199, Guangxi, China
| | - Song Xiao
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, Lingui District, No. 1 Zhiyuan Road, Guilin, 541199, Guangxi, China.,Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care (Guilin Medical University ), Lingui District, No. 1 Zhiyuan Road, Guilin, 541199, Guangxi, China
| | - Ziqi Chen
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, Lingui District, No. 1 Zhiyuan Road, Guilin, 541199, Guangxi, China.,Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care (Guilin Medical University ), Lingui District, No. 1 Zhiyuan Road, Guilin, 541199, Guangxi, China
| | - Tingjun Li
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, Lingui District, No. 1 Zhiyuan Road, Guilin, 541199, Guangxi, China.,Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care (Guilin Medical University ), Lingui District, No. 1 Zhiyuan Road, Guilin, 541199, Guangxi, China
| | - Jian Qin
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Shuangyong Road No.22Guangxi province, Nanning, 530021, People's Republic of China
| | - Zhiyong Zhang
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, Lingui District, No. 1 Zhiyuan Road, Guilin, 541199, Guangxi, China. .,Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care (Guilin Medical University ), Lingui District, No. 1 Zhiyuan Road, Guilin, 541199, Guangxi, China.
| | - Jiansheng Cai
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Lingui District, No. 1 Zhiyuan Road, Guilin, 541199, Guangxi, China.
| |
Collapse
|
16
|
Yang R, Chen J, Jia Q, Yang X, Mehmood S. Epigallocatechin-3-gallate ameliorates renal endoplasmic reticulum stress-mediated inflammation in type 2 diabetic rats. Exp Biol Med (Maywood) 2022; 247:1410-1419. [PMID: 35775606 PMCID: PMC9493765 DOI: 10.1177/15353702221106479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Epigallocatechin-3-gallate (EGCG), an essential polyphenolic constituent found in tea leaves, possesses various potent biological activities. This research was undertaken to investigate the impact of EGCG against endoplasmic reticulum (ER) stress-mediated inflammation and to clarify the underlying molecular mechanism in type 2 diabetic kidneys. The male rats were randomized into four groups: normal, diabetic, low-dose EGCG, and high-dose EGCG. In type 2 diabetic rats, hyperglycemia and hyperlipidemia noticeably caused renal structural damage and dysfunction and aggravated ER stress. Meanwhile, sustained ER stress activated the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome and then upregulated the contents of inflammatory cytokines in the diabetic kidney. Following supplementation with 40 mg/kg and 80 mg/kg EGCG, hyperglycemia, hyperlipidemia, and renal histopathological alterations and dysfunction were noticeably ameliorated; renal ER stress, NLRP3 inflammasome, and inflammatory response were markedly repressed in the EGCG treatment groups. In summary, the current study highlighted the renoprotective effects of EGCG in type 2 diabetes and its mechanisms are mainly associated with the repression of ER stress-mediated NLRP3 inflammasome overactivation.
Collapse
Affiliation(s)
- Rui Yang
- School of Life Sciences, Hefei Normal
University, Hefei 230601, China
| | - Jinwu Chen
- School of Life Sciences, Hefei Normal
University, Hefei 230601, China;,Anhui Province Key Laboratory of
Medical Physics and Technology, Institute of Health & Medical Technology, Hefei
Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031,
China
| | - Qiang Jia
- Department of Physiology, Bengbu
Medical College, Bengbu 233030, China;,Qiang Jia.
| | - Xingxing Yang
- School of Life Sciences, Hefei Normal
University, Hefei 230601, China
| | | |
Collapse
|
17
|
Wang A, Chen X, Wang L, Jia W, Wan X, Jiao J, Yao W, Zhang Y. Catechins protect against acrylamide- and glycidamide-induced cellular toxicity via rescuing cellular apoptosis and DNA damage. Food Chem Toxicol 2022; 167:113253. [PMID: 35738327 DOI: 10.1016/j.fct.2022.113253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/05/2022] [Accepted: 06/19/2022] [Indexed: 10/18/2022]
Abstract
Acrylamide (AA) occurs in both various environmental and dietary sources and has raised widespread concern as a probable carcinogen. Glycidamide (GA) is the main genotoxic metabolite through P450 2E1 (CYP2E1). In the present study, we investigate the protective effect of (-)-epigallocatechin gallate (EGCG) and (-)-epicatechin (EC) against AA- and GA-induced hepatotoxicity in HepG2 cells. The results demonstrated that EC and EGCG inhibited AA- and GA-induced cytotoxicity and mitochondria-mediated cellular apoptosis. Moreover, exposure to AA (100 μg/mL) and GA (50 μg/mL) caused cell cycle arrest and DNA damage, while EC and EGCG ranging from 12.5 to 50 μg/mL rescued cell cycle arrest and inhibited DNA damage. Furthermore, EC and EGCG down-regulated pro-apoptotic protein Bax and Caspase 3 after 24 h treatment in HepG2 cells exposed to AA (100 μg/mL) or GA (50 μg/mL). Also, the intervention with EC or EGCG up-regulated DNA repair related protein PARP and down-regulated expression of cleaved-PARP. Besides, EC exerted better protective effect than EGCG against AA- and GA-induced cytotoxicity in HepG2 cells. Altogether, EC and EGCG were effective in protecting AA- and GA-induced hepatotoxicity via rescuing cellular apoptosis and DNA damage, as well as promoting cell cycle progression in HepG2 cells.
Collapse
Affiliation(s)
- Anli Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinyu Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Laizhao Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Jia
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xuzhi Wan
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingjing Jiao
- Department of Nutrition, School of Public Health, Department of Clinical Nutrition of Affiliated Second Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Weixuan Yao
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang, China.
| | - Yu Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
18
|
Xia B, Liu J, Sun D, Liu YL, Liu D. Changes in egg production, egg quality and egg nutritional values of laying hens in response to dietary supplementation with green tea water extracts. JOURNAL OF APPLIED ANIMAL RESEARCH 2022. [DOI: 10.1080/09712119.2022.2039155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Bing Xia
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Tea Group Co. Ltd., Hangzhou, People’s Republic of China
| | - Jun Liu
- Hangzhou Tea Research Institute, China COOP, Hangzhou, People’s Republic of China
- Zhejiang Key Laboratory of Transboundary Applied Technology for Tea Resources, Hangzhou, People’s Republic of China
| | - Da Sun
- Zhejiang Economics and Trade Polytechnic, Hangzhou, People’s Republic of China
| | - Ya-Li Liu
- The Agriculture Department of Zhejiang Province Bureau of Animal Husbandry and Veterinary Medicine, Hangzhou, People’s Republic of China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, People’s Republic of China
| |
Collapse
|
19
|
Guerreiro Í, Ferreira-Pêgo C, Carregosa D, Santos CN, Menezes R, Fernandes AS, Costa JG. Polyphenols and Their Metabolites in Renal Diseases: An Overview. Foods 2022; 11:foods11071060. [PMID: 35407148 PMCID: PMC8997953 DOI: 10.3390/foods11071060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 12/12/2022] Open
Abstract
Kidney diseases constitute a worldwide public health problem, contributing to morbidity and mortality. The present study aimed to provide an overview of the published data regarding the potential beneficial effects of polyphenols on major kidney diseases, namely acute kidney injury, chronic kidney disease, diabetic nephropathy, renal cancer, and drug-induced nephrotoxicity. This study consists of a bibliographical review including in vitro and in vivo studies dealing with the effects of individual compounds. An analysis of the polyphenol metabolome in human urine was also conducted to estimate those compounds that are most likely to be responsible for the kidney protective effects of polyphenols. The biological effects of polyphenols can be highly attributed to the modulation of specific signaling cascades including those involved in oxidative stress responses, anti-inflammation processes, and apoptosis. There is increasing evidence that polyphenols afford great potential in renal disease protection. However, this evidence (especially when in vitro studies are involved) should be considered with caution before its clinical translation, particularly due to the unfavorable pharmacokinetics and extensive metabolization that polyphenols undergo in the human body. Future research should consider polyphenols and their metabolites that indeed reach kidney tissues.
Collapse
Affiliation(s)
- Íris Guerreiro
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (Í.G.); (C.F.-P.); (R.M.); (A.S.F.)
| | - Cíntia Ferreira-Pêgo
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (Í.G.); (C.F.-P.); (R.M.); (A.S.F.)
| | - Diogo Carregosa
- CEDOC, Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (D.C.); (C.N.S.)
| | - Cláudia N. Santos
- CEDOC, Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (D.C.); (C.N.S.)
| | - Regina Menezes
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (Í.G.); (C.F.-P.); (R.M.); (A.S.F.)
- CEDOC, Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (D.C.); (C.N.S.)
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| | - Ana S. Fernandes
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (Í.G.); (C.F.-P.); (R.M.); (A.S.F.)
| | - João G. Costa
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (Í.G.); (C.F.-P.); (R.M.); (A.S.F.)
- Correspondence:
| |
Collapse
|
20
|
LIU J, LV YJ, PAN JX, JIANG YL, ZHU YJ, ZHANG SK. Effects of tea polyphenols and EGCG on glucose metabolism and intestinal flora in diabetic mice fed a cornstarch-based functional diet. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.50821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jun LIU
- Hangzhou Tea Research Institute, China
| | | | | | | | | | | |
Collapse
|
21
|
Luo Z, Li T, Gao Q, Chen Y, Su G, Zhao Y. Impact of licochalcone A on the progression of diabetic nephropathy in type 2 diabetes mellitus of C57BL/6 mice. Food Funct 2021; 12:10676-10689. [PMID: 34605512 DOI: 10.1039/d1fo01630j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Diabetic nephropathy (DN) is the most common chronic microvascular complication of diabetes. Therefore, it is of great significance to effectively prevent and treat DN. Licochalcone A (LicA) is a flavonoid found in licorice; previous studies have shown that LicA can reduce blood glucose, blood lipids and improve insulin resistance. There has been no research on whether LicA can prevent and treat DN. In this study, an animal model of type 2 diabetes mellitus (T2DM) mice induced by high fat diet/streptozotocin was established, and the intervention of LicA was applied to investigate the protective effect of LicA on the kidneys of DN mice. After 4 weeks of intervention, LicA could effectively reduce blood glucose and alleviate the phenomenon of weight loss in mice. Meanwhile, the levels of MDA, SOD and GSH-Px in the kidney tissue and serum were recovered to different degrees. Besides, LicA decreased the levels of TC, TG and LDL-C in the kidney tissue and increased the level of HDL-C in the kidney tissue. The 24 h urinary protein, blood urea nitrogen (BUN) and serum creatinine (SCr) levels of mice in the treatment group of LicA were significantly lower than those in the model group. Furthermore, HE staining, PAS staining and Masson staining indicated that LicA improved the pathological damage of kidneys, and the kidney index of mice also decreased. Western blotting results indicated that LicA could significantly down-regulate the protein expression of AGEs/RAGE, TGF-β1, HIF-1α and GLUT1, and up-regulate the protein expression of Nrf2. It provides a theoretical basis for the further development and utilization of LicA.
Collapse
Affiliation(s)
- Zhonghua Luo
- Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Tao Li
- Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Qingqing Gao
- Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Yu Chen
- Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Guangyue Su
- Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Yuqing Zhao
- Shenyang Pharmaceutical University, Shenyang 110016, China. .,Key Laboratory of Structure-based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
22
|
Xu H, Wu T, Huang L. Therapeutic and delivery strategies of phytoconstituents for renal fibrosis. Adv Drug Deliv Rev 2021; 177:113911. [PMID: 34358538 DOI: 10.1016/j.addr.2021.113911] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/07/2021] [Accepted: 07/29/2021] [Indexed: 12/11/2022]
Abstract
Chronic kidney disease (CKD) is one of the most common diseases endangering human health and life. By 2030, 14 per 100,000 people may die from CKD. Renal fibrosis (RF) is an important intermediate link and the final pathological change during CKD progression to the terminal stage. Therefore, identifying safe and effective treatment methods for RF has become an important goal. In 2018, the World Health Organization introduced traditional Chinese medicine into its effective global medical program. Various phytoconstituents that affect the RF process have been extracted from different plants. Here, we review the potential therapeutic capabilities of active phytoconstituents in RF treatment and discuss how phytoconstituents can be structurally modified or combined with other ingredients to enhance efficiency and reduce toxicity. We also summarize phytoconstituent delivery strategies to overcome renal barriers and improve bioavailability and targeting.
Collapse
Affiliation(s)
- Huan Xu
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China.
| | - Tianyi Wu
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| |
Collapse
|
23
|
Yang L, Li DX, Cao BQ, Liu SJ, Xu DH, Zhu XY, Liu YJ. Exercise training ameliorates early diabetic kidney injury by regulating the H 2 S/SIRT1/p53 pathway. FASEB J 2021; 35:e21823. [PMID: 34396581 DOI: 10.1096/fj.202100219r] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 07/05/2021] [Accepted: 07/15/2021] [Indexed: 12/29/2022]
Abstract
Exercise training exerts protective effects against diabetic nephropathy. This study aimed to investigate whether exercise training could attenuate diabetic renal injury via regulating endogenous hydrogen sulfide (H2 S) production. First, C57BL/6 mice were allocated into the control, diabetes, exercise, and diabetes + exercise groups. Diabetes was induced by intraperitoneal injection of streptozotocin (STZ). Treadmill exercise continued for four weeks. Second, mice was allocated into the control, diabetes, H2 S and diabetes + H2 S groups. H2 S donor sodium hydrosulfide (NaHS) was intraperitoneally injected once daily for four weeks. STZ-induced diabetic mice exhibited glomerular hypertrophy, tissue fibrosis and increased urine albumin levels, urine protein- and albumin-to-creatinine ratios, which were relieved by exercise training. Diabetic renal injury was associated with apoptotic cell death, as evidenced by the enhanced caspase-3 activity, the increased TdT-mediated dUTP nick-end labeling -positive cells and the reduced expression of anti-apoptotic proteins, all of which were attenuated by exercise training. Exercise training enhanced renal sirtuin 1 (SIRT1) expression in diabetic mice, accompanied by an inhibition of the p53-#ediated pro-apoptotic pathway. Furthermore, exercise training restored the STZ-mediated downregulation of cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE) and the reduced renal H2 S production. NaHS treatment restored SIRT1 expression, inhibited the p53-mediated pro-apoptotic pathway and attenuated diabetes-associated apoptosis and renal injury. In high glucose-treated MPC5 podocytes, NaHS treatment inhibited the p53-mediated pro-apoptotic pathway and podocyte apoptosis in a SIRT1-dependent manner. Collectively, exercise training upregulated CBS/CSE expression and enhanced the endogenous H2 S production in renal tissues, thereby contributing to the modulation of the SIRT1/p53 apoptosis pathway and improvement of diabetic nephropathy.
Collapse
Affiliation(s)
- Lu Yang
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Dong-Xia Li
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Bu-Qing Cao
- Department of Physiology, Navy Medical University, Shanghai, China.,Department of Laboratory Medicine, Ruikang Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Shu-Juan Liu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Dan-Hong Xu
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Xiao-Yan Zhu
- Department of Physiology, Navy Medical University, Shanghai, China
| | - Yu-Jian Liu
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
24
|
Wang X, Li C, Huan Y, Cao H, Sun S, Lei L, Liu Q, Liu S, Ji W, Huang K, Shen Z, Zhou J. Diphenyl diselenide ameliorates diabetic nephropathy in streptozotocin-induced diabetic rats via suppressing oxidative stress and inflammation. Chem Biol Interact 2021; 338:109427. [PMID: 33639173 DOI: 10.1016/j.cbi.2021.109427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/14/2021] [Accepted: 02/19/2021] [Indexed: 12/31/2022]
Abstract
Oxidative stress and inflammation are implicated in the occurrence and progression of diabetic nephropathy (DN). Diphenyl diselenide (DPDS) is a stable and simple diaryl diselenide with anti-hyperglycemic, anti-inflammatory, and antioxidant activities. However, the effects of DPDS on DN are still unclear to date. Herein, we aimed to explore whether DPDS could improve renal dysfunction in streptozotocin (STZ)-induced diabetic rats and its underlying mechanisms. STZ-induced DN rats were administered with DPDS (5 or 15 mg/kg) or metformin (200 mg/kg) once daily by intragastric gavage for 12 weeks. DPDS supplementation significantly improved hyperglycemia, glucose intolerance, dyslipidemia, and the renal pathological abnormalities, concurrent with significantly reduced serum levels of creatinine, urea nitrogen, urine volume, and urinary levels of micro-albumin, β2-microglobulin and N-acetyl-glucosaminidase activities. Moreover, DPDS effectively promoted the activities of antioxidant enzymes, and reduced the levels of MDA and pro-inflammatory factors in serum and the kidney. Furthermore, DPDS supplementation activated the renal Nrf2/Keap1 signaling pathway, but attenuated the high phosphorylation levels of NFκB, JNK, p38 and ERK1/2. Altogether, the current study indicated for the first time that DPDS ameliorated STZ-induced renal dysfunction in rats, and its mechanism of action may be attributable to suppressing oxidative stress via activating the renal Nrf2/Keap1 signaling pathway and mitigating inflammation by suppressing the renal NFκB/MAPK signaling pathways, suggesting a potential therapeutic approach for DN.
Collapse
MESH Headings
- Animals
- Antioxidants/metabolism
- Benzene Derivatives/pharmacology
- Benzene Derivatives/therapeutic use
- Cytokines/metabolism
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/physiopathology
- Diabetic Nephropathies/complications
- Diabetic Nephropathies/drug therapy
- Diabetic Nephropathies/pathology
- Diabetic Nephropathies/physiopathology
- Dyslipidemias/complications
- Dyslipidemias/drug therapy
- Dyslipidemias/genetics
- Gene Expression Regulation/drug effects
- Glucose/metabolism
- Inflammation/complications
- Inflammation/drug therapy
- Inflammation/genetics
- Kelch-Like ECH-Associated Protein 1/metabolism
- Kidney/pathology
- Kidney/physiopathology
- Lipid Metabolism/drug effects
- MAP Kinase Signaling System/drug effects
- Male
- Models, Biological
- NF-E2-Related Factor 2/metabolism
- NF-kappa B/metabolism
- Organoselenium Compounds/pharmacology
- Organoselenium Compounds/therapeutic use
- Oxidative Stress/drug effects
- Rats, Sprague-Dawley
- Streptozocin
- Rats
Collapse
Affiliation(s)
- Xing Wang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Caina Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Huan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui Cao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Sujuan Sun
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Lei
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Quan Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuainan Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenming Ji
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kaixun Huang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhufang Shen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jun Zhou
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518057, China.
| |
Collapse
|
25
|
Du C, Lv T, Liu Q, Cheng Y, Liu C, Han M, Zhang W, Qian H. Carotenoids in Sporidiobolus pararoseus ameliorate diabetic nephropathy in mice through attenuating oxidative stress. Biol Chem 2021; 402:785-794. [PMID: 33713590 DOI: 10.1515/hsz-2021-0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/02/2021] [Indexed: 11/15/2022]
Abstract
Diabetic nephropathy (DN) is the major life-threatening complication of diabetes, and oxidative stress takes part in its initiation and development. This study was performed to evaluate the effects of carotenoids from Sporidiobolus pararoseus (CSP) on the renal function and oxidative stress status of mice with streptozotocin (STZ)-induced DN. The results indicated that CSP significantly attenuated symptoms of STZ-induced DN shown by decreased fasting blood glucose, reduced urine volume, urine albumin, serum creatinine and serum urea nitrogen, and improved kidney histological morphology. Furthermore, biochemical analysis of serum and kidney revealed a marked increase in oxidative stress of DN mice as evidenced by reduced total antioxidant capacity (T-AOC), decreased activity of antioxidant enzyme -superoxide dismutase (SOD) and increased level of malondialdehyde (MDA). However, treatment with CSP improved oxidative stress status in DN mice as compared with the mice in model group. Exploration of the potential mechanism validated that CSP ameliorated the oxidative stress status in DN mice by activating the expressions of Nrf2, NQO-1, HO-1, GST and CAT in kidney. These data revealed that CSP may retard the progression of DN by ameliorating renal function, improving the oxidative stress status and activating the Nrf2/ARE pathway.
Collapse
Affiliation(s)
- Chao Du
- School of Food Engineering, Ludong University, 186 Middle Hongqi Road, Yantai264025, Shandong Province, P. R. China.,BioNanotechnology Institute, Ludong University, 186 Middle Hongqi Road, Yantai264025, Shandong Province, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Tianqi Lv
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Quanwen Liu
- School of Food Engineering, Ludong University, 186 Middle Hongqi Road, Yantai264025, Shandong Province, P. R. China.,BioNanotechnology Institute, Ludong University, 186 Middle Hongqi Road, Yantai264025, Shandong Province, P. R. China
| | - Yuliang Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Chang Liu
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Mei Han
- School of Biotechnology, Jiangnan University, Wuxi, P. R. China
| | - Weiguo Zhang
- School of Biotechnology, Jiangnan University, Wuxi, P. R. China
| | - He Qian
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, 1800 Lihu Avenue, Wuxi214122, Jiangsu Province, P. R. China
| |
Collapse
|
26
|
Zhang YL, Zhang YQ, Lin HL, Qin YJ, Zeng J, Chen YL, Niu YY, Pang CP, Chu WK, Zhang HY. Epigallocatechin-3-gallate increases autophagic activity attenuating TGF-β1-induced transformation of human Tenon's fibroblasts. Exp Eye Res 2021; 204:108447. [PMID: 33465394 DOI: 10.1016/j.exer.2021.108447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/03/2020] [Accepted: 01/12/2021] [Indexed: 02/05/2023]
Abstract
We previously found that epigallocatechin-3-gallate (EGCG) could inhibit the myofibroblast transformation of human Tenon's fibroblasts, however, the underlying mechanism remained unclear. We therefore investigated whether the autophagic regulation involved in the anti-fibrotic function of EGCG. The fibroblasts were subjected to transforming growth factor beta-1 (TGF-β1) induction followed by EGCG treatments. The autophagic flux was examined by transmission electron microscopy and autophagic flux analysis. The levels of autophagy-related proteins (LC3β and p62) and alpha-smooth muscle actin (α-SMA) were measured by Western blot and immunofluorescence. Results showed that TGF-β1 partially inhibited the autophagic function of Tenon's fibroblasts. But this inhibition effect was rescued by LY2157299, a TGF-βR1 selective inhibitor. Compared with the cells treated with TGF-β1 alone, EGCG treatments increased the amount of autophagosomes and autolysosomes, evaluated the ratio of LC3-II to LC3-I and decreased p62 level. Our results indicated that EGCG could recover the activity of autophagy in the TGF-β1-treated cells. Moreover, treatments with EGCG significantly decreased the α-SMA expression. Taken together, these findings revealed that autophagic regulation involved in the action of EGCG against TGF-β1-induced transformation of Tenon's fibroblasts. Through increasing intracellular autophagy, EGCG could be a potential anti-fibrotic reagent for preventing subconjunctival fibrosis after glaucoma filtration surgery.
Collapse
Affiliation(s)
- Yu Lin Zhang
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences. Guangzhou, China; Shantou University Medical College, Shantou, China
| | - Yu Qiao Zhang
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences. Guangzhou, China; Shantou University Medical College, Shantou, China
| | - Hong Liang Lin
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences. Guangzhou, China; Shantou University Medical College, Shantou, China
| | - Yong Jie Qin
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences. Guangzhou, China
| | - Jin Zeng
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences. Guangzhou, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yan Lei Chen
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences. Guangzhou, China
| | - Yong Yi Niu
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences. Guangzhou, China
| | - Chi Pui Pang
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Wai Kit Chu
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Hong Yang Zhang
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences. Guangzhou, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
27
|
Mohan T, Narasimhan KKS, Ravi DB, Velusamy P, Chandrasekar N, Chakrapani LN, Srinivasan A, Karthikeyan P, Kannan P, Tamilarasan B, Johnson T, Kalaiselvan P, Periandavan K. Role of Nrf2 dysfunction in the pathogenesis of diabetic nephropathy: Therapeutic prospect of epigallocatechin-3-gallate. Free Radic Biol Med 2020; 160:227-238. [PMID: 32768570 DOI: 10.1016/j.freeradbiomed.2020.07.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/21/2020] [Accepted: 07/26/2020] [Indexed: 12/25/2022]
Abstract
Diabetic nephropathy (DN), a progressive kidney disease afflicts more than 20 and up to 40% of the diabetic population and it is characterized by persistent microalbuminuria declined glomerular filtration rate. The interesting feature associated with DN is that, even though the progression of the disease correlates with oxidative stress, Nrf2, the master regulator of antioxidant defense system involved in counteracting oxidative stress is also upregulated in the diabetic kidneys of both human as well as experimental animals in early stages of DN. Despite the increased expression, the ability of this protein to get translocated into the nucleus is diminished signifying the functional impairment of Nrf2, implying redox imbalance. Hence, it is understood that agents that boost the translocation of Nrf2 might be beneficial rather than those that quantitatively overexpress Nrf2 in treating DN. The deleterious effects of synthetic Nrf2 activators have instigated the researchers to search for phytochemicals that have ambient Nrf2 boosting ability with no side effects, one such phytochemical is Epigallocatechin-3-gallate (EGCG) and it has shown beneficial effects by preventing the progression of DN via influencing Nrf2/ARE pathway, however, the modus operandi is unclear, despite speculations. This study was designed to find out whether supplementation of Nrf2 booster like EGCG at the crucial time of Nrf2 dysfunction can mitigate the progression of DN. Based on the findings of the present study, it might be concluded that the beneficial effect of EGCG in mitigating DN is mediated mainly through its ability to activate the Nrf2/ARE signaling pathway at multiple stages i.e., by downregulating Keap1 and boosting the nuclear Nrf2 level by disrupting Nrf2-Keap1 interaction. These results emphasize that supplementation of EGCG might be more beneficial at an early stage of DN, where dysfunctional Nrf2 accumulation occurs, which should be further validated.
Collapse
Affiliation(s)
- Thangarajeswari Mohan
- Department of Medical Biochemistry, University of Madras, Taramani, Chennai, 600113, India
| | - Kishore Kumar S Narasimhan
- Department of Medical Biochemistry, University of Madras, Taramani, Chennai, 600113, India; Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Divya Bhavani Ravi
- Department of Medical Biochemistry, University of Madras, Taramani, Chennai, 600113, India
| | - Prema Velusamy
- Department of Medical Biochemistry, University of Madras, Taramani, Chennai, 600113, India
| | - Navvi Chandrasekar
- Department of Biochemistry, University of Madras, Guindy, Chennai, 600025, India
| | | | - Ashokkumar Srinivasan
- Department of Medical Biochemistry, University of Madras, Taramani, Chennai, 600113, India
| | - Porkodi Karthikeyan
- Department of Medical Biochemistry, University of Madras, Taramani, Chennai, 600113, India
| | - Pugazhendhi Kannan
- Department of Medical Biochemistry, University of Madras, Taramani, Chennai, 600113, India
| | - Bhavani Tamilarasan
- Department of Medical Biochemistry, University of Madras, Taramani, Chennai, 600113, India
| | - Thanka Johnson
- Department of Pathology, Sri Ramachandra University, Chennai, 600116, India
| | | | - Kalaiselvi Periandavan
- Department of Medical Biochemistry, University of Madras, Taramani, Chennai, 600113, India.
| |
Collapse
|
28
|
Zhao G, Wu X, Wang W, Yang CS, Zhang J. Tea Drinking Alleviates Diabetic Symptoms via Upregulating Renal Water Reabsorption Proteins and Downregulating Renal Gluconeogenic Enzymes in db/db Mice. Mol Nutr Food Res 2020; 64:e2000505. [PMID: 33052021 DOI: 10.1002/mnfr.202000505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/19/2020] [Indexed: 01/01/2023]
Abstract
SCOPE Tea, made from the plant Camellia sinensis, is known to have anti-diabetes effects and different mechanisms of action are proposed. Kidney is a vital organ in managing water reabsorption and glucose metabolism, and is greatly influenced by diabetes. The present study investigates the effects of tea administration on water reabsorption and gluconeogenesis in the kidney of diabetic mice. METHODS AND RESULTS Db/db mice are given tea infusion as drinking fluid when they begin to exhibit hyperglycemia. It is found that green tea or black tea infusion potently elevates renal proteins vital for water reabsorption, including protein kinase C-α, aquaporin 2, and urea transporter-A1, as well as increases trafficking of these proteins to apical plasma membrane where they exert water reabsorption function. The treatment also downregulates renal gluconeogenic enzymes, including glucose-6-phosphatase-α and phosphoenolpyruvate carboxykinase. Associated with these biochemical changes are the rectified polyuria, polydipsia, polyphagia, and hyperglycemia, all symptoms of diabetes. CONCLUSIONS For the first time, the present study demonstrates that tea has robust effects in enhancing kidney water reabsorption proteins and downregulating gluconeogenic enzymes in db/db mice. It remains to be investigated whether such beneficial effects of tea occur in humans.
Collapse
Affiliation(s)
- Guangshan Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
- Biology Postdoctoral Research Station, Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, China
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Ximing Wu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Wenping Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854-8020, USA
- International Joint Research Laboratory of Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Jinsong Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
- International Joint Research Laboratory of Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, 230036, China
| |
Collapse
|
29
|
Huang S, Tan M, Guo F, Dong L, Liu Z, Yuan R, Dongzhi Z, Lee DS, Wang Y, Li B. Nepeta angustifolia C. Y. Wu improves renal injury in HFD/STZ-induced diabetic nephropathy and inhibits oxidative stress-induced apoptosis of mesangial cells. JOURNAL OF ETHNOPHARMACOLOGY 2020; 255:112771. [PMID: 32201300 DOI: 10.1016/j.jep.2020.112771] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/03/2020] [Accepted: 03/14/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As an important medicinal material constituting a variety of traditional Chinese medicine prescriptions, Nepeta angustifolia C. Y. Wu was used as a folk medicine to treat various vascular-related diseases including apoplexia, and cerebral haemorrhage in Tibet, China. Our previous studies have shown that this plant had a significant protective effect on vascular dysfunction of the intracerebral haemorrhage and diabetic rats. In present study, we aimed to investigate the protective effects and underlying mechanisms of Nepeta angustifolia on diabetic nephropathy (DN), a microvascular complication. AIM OF THE STUDY This study is aim to evaluate the protective effect of ethanol extracts of N. angustifolia (NA) on DN, and explore mechanism of action to provide basis for its pharmacological action against DN. MATERIALS AND METHODS High-fat diet and low-dose streptozotocin administration (HFD/STZ) induced diabetic rats were randomly divided into 5 groups (n = 8): the diabetic model group, metformin group, and three dose groups of NA (60 mg/kg, 120 mg/kg, 240 mg/kg). After administration of NA for 8 weeks, the blood, urine and renal tissue were collected for subsequent experiments. Biochemical markers (urine protein, Cr, BUN), oxidative stress makers (SOD, GSH-px and MDA) and pro-inflammatory mediators (TNF-α, IL-1β, IL-6 and MCP-1) were evaluated by commercial kit and ELISA, respectively. The effect of NA on DN was further confirmed by evaluation of renal histopathology by using the H&E, PAS and Masson staining. The H2O2-induced HBZY-1 cells (rat glomerular mesangial cells) were also been used to evaluate the renal protective effect of NA (50 μg/mL, 100 μg/mL, 200 μg/mL). The oxidative stress makers were detected by commercial kit. The levels of apoptosis and related proteins (caspase 3, 9) were detected by TUNEL assay and western blot analysis, respectively. The depolarization of mitochondrial membrane potential was detected by JC-1 staining assay. RESULTS The administration of NA is helpful to maintain near normal body weight, blood glucose, urine volume, urine protein, kidney index and serum levels of Cr and BUN. NA treatment significantly improve renal dysfunction by the down-regulation of renal oxidative stress and pro-inflammatory mediators in HFD/STZ induced diabetic rats. In vitro experiments, NA has a significant cellular protective effect in H2O2-induced HBZY-1 cells, as well as the regulation in increases of SOD level and the decreases of ROS and MDA levels. Furthermore, NA treatment can significantly inhibit H2O2 induced mesangial cells apoptosis by the increasing mitochondrial potential and suppressing caspases-madiated signaling pathway. CONCLUSIONS NA has obvious improvement on renal dysfunction in HFD/STZ induced diabetic rats. NA can protect mesangial cells by inhibiting oxidative stress induced apoptosis, which may be related to its regulation of mitochondrial-caspase apoptosis pathway.
Collapse
Affiliation(s)
- Shan Huang
- Department of Pharmacy, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Meng Tan
- Department of Pharmacy, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Feng Guo
- Department of Pharmacy, Baicheng Medical College, Baicheng, 137000, China
| | - Linsha Dong
- Department of Pharmacy, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Zhiming Liu
- Department of Pharmacy, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Ruiying Yuan
- Department of Medicament, College of Medicine, Tibet University, Lhasa, 850000, China
| | - Zhuoma Dongzhi
- Department of Medicament, College of Medicine, Tibet University, Lhasa, 850000, China; Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Dong-Sung Lee
- College of Pharmacy, Chosun University, Dong-gu, Gwangju, 61452, South Korea
| | - Yuefei Wang
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 300000, China
| | - Bin Li
- Department of Pharmacy, Qingdao University of Science & Technology, Qingdao, 266042, China.
| |
Collapse
|
30
|
Álvarez-Cilleros D, López-Oliva ME, Martín MÁ, Ramos S. Cocoa ameliorates renal injury in Zucker diabetic fatty rats by preventing oxidative stress, apoptosis and inactivation of autophagy. Food Funct 2020; 10:7926-7939. [PMID: 31773121 DOI: 10.1039/c9fo01806a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Redox balance, autophagy and apoptosis are main processes involved in the development of diabetic nephropathy. Epidemiological and animal studies suggest that cocoa might reduce the risk of diabetic complications. However, the molecular mechanisms responsible for these potential preventive activities and whether cocoa exerts beneficial effects on dysregulated signalling pathways involved in cellular antioxidant defence, autophagy and apoptosis in the diabetic kidney remain largely unknown. Therefore, this work investigated the effect of a cocoa-rich diet on the mentioned processes in the renal cortex of Zucker Diabetic Fatty (ZDF) rats. Male ZDF rats were fed either a control or cocoa-rich diet (10%), and Zucker lean animals received the control diet (10-20 weeks-of-life). ZDF rats fed with cocoa decreased body weight and glucose and insulin levels, and improved renal function. Cocoa intake further prevented the enhanced renal cortical oxidative stress in diabetic rats by regulating the antioxidant defence system and close-related proteins to cytoprotection and cell response; thus, cocoa diminished oxidative markers (reactive oxygen species and carbonyl groups) and NADPH-oxidase-4 levels, and restored key enzymatic antioxidant activities (superoxide dismutase and catalase), nuclear-erythroid-2-related factor-2, and ERK-MAPK levels, as well as sirtuin-1/5'-AMP-activated-protein kinase signalling. Moreover, in ZDF rats cocoa-rich diet contributed to alleviation of the renal cortical injury through autophagy activation (p62 upregulation, and downregulation of beclin-1 and LC3), and inhibition of apoptosis (Bcl-xL stimulation and suppression of Bax and caspases-9 and -3). These findings provide the first in vivo evidence on the molecular mechanisms of cocoa to circumvent renal cortical damage that involve improvement of antioxidant competences, stimulation of autophagy and suppression of apoptosis in ZDF rats.
Collapse
Affiliation(s)
- David Álvarez-Cilleros
- Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition (ICTAN), Consejo Superior de Investigaciones Científicas (CSIC), José Antonio Novais 10, Ciudad Universitaria, 28040 Madrid, Spain.
| | | | | | | |
Collapse
|
31
|
Zheng HX, Qi SS, He J, Hu CY, Han H, Jiang H, Li XS. Cyanidin-3-glucoside from Black Rice Ameliorates Diabetic Nephropathy via Reducing Blood Glucose, Suppressing Oxidative Stress and Inflammation, and Regulating Transforming Growth Factor β1/Smad Expression. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4399-4410. [PMID: 32192334 DOI: 10.1021/acs.jafc.0c00680] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Diabetic nephropathy (DN) is one of the serious complications in diabetes. Cyanidin-3-glucoside (C3G) from black rice was reported to have hypoglycemic effects and an anti-osteoporosis effect in diabetic rats. Whether it has preventive effects on DN has not been reported. In this study, we established a rat model of DN, and C3G at two doses (10 and 20 mg kg-1 day-1) were administered to see its anti-DN effect. A total of 8 weeks of C3G supplementation decreased blood glucose and serum insulin, improved the renal function, and relieved renal glomerular sclerosis and interstitial fibrosis of DN rats. Also, the kidneys of DN rats had improved the oxidative defense system. Pro-inflammatory mediators were markedly reduced in serum and kidneys of the C3G-treated groups. Transforming growth factor β1 (TGF-β1), phosphor-Smad2, and phosphor-Smad3 protein expression levels were significantly decreased in the kidney of the C3G-treated group, whereas the Smad7 expression level was upregulated by C3G. Our results indicate that C3G can ameliorate DN via antioxidative stress and anti-inflammation and regulate the TGF-β1/Smad2/3 pathway. Our results suggest that C3G from black rice might be used as a renal-protective nutrient in DN.
Collapse
Affiliation(s)
- Hong Xing Zheng
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi 723000, People's Republic of China
| | - Shan Shan Qi
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi 723000, People's Republic of China
- Shaanxi Black Organic Food Engineering Center, Hanzhong, Shaanxi 723000, People's Republic of China
| | - Jia He
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi 723000, People's Republic of China
| | - Ching Yuan Hu
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, 1955 East-West Road, AgSci. 415J, Honolulu, Hawaii 96822, United States
| | - Hao Han
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi 723000, People's Republic of China
| | - Hai Jiang
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi 723000, People's Republic of China
| | - Xin Shen Li
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi 723000, People's Republic of China
| |
Collapse
|
32
|
Ren Z, Yang Z, Lu Y, Zhang R, Yang H. Anti‑glycolipid disorder effect of epigallocatechin‑3‑gallate on high‑fat diet and STZ‑induced T2DM in mice. Mol Med Rep 2020; 21:2475-2483. [PMID: 32236613 PMCID: PMC7185284 DOI: 10.3892/mmr.2020.11041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 02/06/2020] [Indexed: 02/07/2023] Open
Abstract
Epigallocatechin-3-gallate (EGCG) is beneficial for inhibiting dyslipidemia and reducing hyperlipidemic risk. The purpose of the present study was to investigate the glycolipid regulatory effects and potential mechanisms of EGCG in a high-fat diet and streptozotocin-induced type 2 diabetes mellitus (T2DM) mouse model. The results demonstrated that EGCG can decrease blood glucose levels and increase insulin resistance in T2DM mice. In addition, EGCG can regulate serum lipid levels, including those of total cholesterol, triglyceride and low-density lipoprotein receptor (LDL-r), and reduce lipid deposition in vascular endothelial cells in a dose-dependent manner. In addition, the gene and protein expression of related scavenger receptors, including cluster of differentiation 36, sterol regulatory element binding protein 2 (SREBP), SREBP cleavage-activating protein and LDL-r, were downregulated in a dose-dependent manner. The present study noted that EGCG possesses potential as a natural product for preventing and treating metabolic hyperlipidemia syndrome, probably by reducing the blood lipid levels, alleviating vascular endothelial cell damage, maintaining normal lipid metabolism in blood vessels and ameliorating glycolipid disorders.
Collapse
Affiliation(s)
- Zhongkun Ren
- Department of Medical Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Zhiyong Yang
- Department of Medical Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yi Lu
- Department of Medical Imaging, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Rongping Zhang
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Hui Yang
- Biomedical Engineering Center, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
33
|
Kanlaya R, Thongboonkerd V. Molecular Mechanisms of Epigallocatechin-3-Gallate for Prevention of Chronic Kidney Disease and Renal Fibrosis: Preclinical Evidence. Curr Dev Nutr 2019; 3:nzz101. [PMID: 31555758 PMCID: PMC6752729 DOI: 10.1093/cdn/nzz101] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/28/2019] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) is a common public health problem worldwide characterized by gradual decline of renal function over months/years accompanied by renal fibrosis and failure in tissue wound healing after sustained injury. Patients with CKD frequently present with profound signs/symptoms that require medical treatment, mostly culminating in hemodialysis and renal transplantation. To prevent CKD more efficiently, there is an urgent need for better understanding of the pathogenic mechanisms and molecular pathways of the disease pathogenesis and progression, and for developing novel therapeutic targets. Recently, several lines of evidence have shown that epigallocatechin-3-gallate (EGCG), an abundant phytochemical polyphenol derived from Camellia sinensis, might be a promising bioactive compound for prevention of CKD development/progression. This review summarizes current knowledge of molecular mechanisms underlying renoprotective roles of EGCG in CKD based on available preclinical evidence (from both in vitro and in vivo animal studies), particularly its antioxidant property through preservation of mitochondrial function and activation of Nrf2 (nuclear factor erythroid 2-related factor 2)/HO-1 (heme oxygenase-1) signaling, anti-inflammatory activity, and protective effect against epithelial mesenchymal transition. Finally, future perspectives, challenges, and concerns regarding its clinical use in CKD and renal fibrosis are discussed.
Collapse
Affiliation(s)
- Rattiyaporn Kanlaya
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
34
|
Laddha AP, Kulkarni YA. Tannins and vascular complications of Diabetes: An update. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 56:229-245. [PMID: 30668344 DOI: 10.1016/j.phymed.2018.10.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Diabetes mellitus is a chronic metabolic disorder associated with persistent increased level of glucose in the blood. According to a report by World Health Organisation (WHO), prevalence of diabetes among adults over 18 years of age had reached to 8.5% in year 2014 which was 4.7% in 1980s. The Prolong increased level of glucose in blood leads to development of microvascular (blindness, nephropathy and neuropathy) and macrovascular (cardiovascular and stroke) degenerative complications because of uncontrolled level of glucose in blood. This also leads to the progression of oxidative stress and affecting metabolic, genetic and haemodynamic system by activation of polyol pathway, protein kinase C pathway, hexosamine pathway and increases advanced glycation end products (AGEs) formation. Diabetes mellitus and its associated complications are one of the major leading causes of mortality worldwide. Various natural products like alkaloids, glycosides, flavonoids, terpenoids and polyphenols are reported for their activity in management of diabetes and its associated diabetic complications. Tannins are systematically studied by many researchers in past few decades for their effect in diabetes and its complications. AIM The present review was designed to compile the data of tannins and their beneficial effects in the management of diabetic complications. METHOD Literature search was performed using various dataset like pubmed, EBSCO, proQuest Scopus and selected websites including the National Institutes of Health (NIH) and the World Health Organization (WHO). RESULTS Globally, more than 400 natural products have been investigated in diabetes and its complications. Tannins are the polyphenolic compounds present in many medicinal plants and various dietary sources like fruits, nuts, grains, spices and beverages. Various reports have shown that compounds like gallic acid, ellagic acid, catechin, epicatechin and procynidins from medicinal plants play major role in controlling progression of diabetes and its related complications by acting on molecular pathways and key targets involved in progression. Many chemists used above mentioned phyto-constituents as a pharmacophore for the developing new chemical entities having higher therapeutic benefits in management of diabetic complications. CONCLUSION This review focuses on the role of various tannins in prevention and management of diabetic complications like diabetic nephropathy, diabetic neuropathy, diabetic retinopathy and diabetic cardiomyopathy. It will help researchers to find some leads for the development of new cost effective therapy using dietary source for the management of diabetic complications.
Collapse
Affiliation(s)
- Ankit P Laddha
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400 056, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400 056, India.
| |
Collapse
|
35
|
Wang FL, Wang YH, Han L, An HY, Zhang JH, Zhang XY, Chen ZQ, Qin JG. Renoprotective Effect of Yiqi Yangyin Huayu Tongluo Formula against Diabetic Nephropathy in Diabetic Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:4276052. [PMID: 30622601 PMCID: PMC6304536 DOI: 10.1155/2018/4276052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/30/2018] [Accepted: 11/15/2018] [Indexed: 01/15/2023]
Abstract
Diabetic nephropathy is developed in 20-40% of patients with diabetes mellitus, and patients with diabetic nephropathy require dialysis and renal transplantation. Traditional Chinese medicine has been widely used in treating patients with diabetic nephropathy in China. However, the detailed mechanisms of traditional Chinese medicine remain unclear. Yiqi Yangyin Huayu Tongluo formula (ZY formula) is a traditional Chinese medicinal formula. Here, we demonstrated kidney protective effect of ZY formula on the rats with diabetic nephropathy. The therapeutic effect of ZY formula on the diabetic nephropathy was almost the same as that of Irbesartan, which proved to have excellent curative effects on diabetic nephropathy. We also demonstrated the mechanism of ZY formula effect on the diabetic nephropathy. First, we validated that the activation of ROS-JNK signaling pathway in diabetic rats could be reduced by ZY. Furthermore, collagen I expression could be downregulated by ZY formula treatment. Meanwhile, cell apoptosis in the kidney of diabetic rats could be alleviated by ZY formula.
Collapse
Affiliation(s)
- Feng-li Wang
- Central Laboratory, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China
| | - Yue-hua Wang
- Department of Nephropathy, Hebei Medical University Third Hospital, Shijiazhuang, Hebei 050081, China
| | - Lin Han
- School of Basic Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Hai-yan An
- Department of Nephropathy, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China
| | - Jiang-hua Zhang
- School of Integrated Traditional Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Xue-yun Zhang
- School of Integrated Traditional Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Zhi-qiang Chen
- Department of Nephropathy, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei 050017, China
| | - Jian-guo Qin
- Department of Nephropathy, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China
| |
Collapse
|
36
|
Pathophysiological mechanisms of diabetic cardiomyopathy and the therapeutic potential of epigallocatechin-3-gallate. Biomed Pharmacother 2018; 109:2155-2172. [PMID: 30551473 DOI: 10.1016/j.biopha.2018.11.086] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/14/2018] [Accepted: 11/20/2018] [Indexed: 12/26/2022] Open
Abstract
Cardiovascular complications are considered one of the leading causes of morbidity and mortality among diabetic patients. Diabetic cardiomyopathy (DCM) is a type of cardiovascular damage presents in diabetic patients independent of the coexistence of ischemic heart disease or hypertension. It is characterized by impaired diastolic relaxation time, myocardial dilatation and hypertrophy and reduced systolic and diastolic functions of the left ventricle. Molecular mechanisms underlying these pathological changes in the diabetic heart are most likely multifactorial and include, but not limited to, oxidative/nitrosative stress, increased advanced glycation end products, mitochondrial dysfunction, inflammation and cell death. The aim of this review is to address the major molecular mechanisms implicated in the pathogenesis of DCM. In addition, this review provides studies conducted to determine the pharmacological effects of (-)-epigallocatechin-3-gallate (EGCG), the major polyphenol in green tea, focusing on its therapeutic potential against the processes involved in the pathogenesis and progression of DCM. EGCG has been shown to exert several potential therapeutic properties both in vitro and in vivo. Given its therapeutic potential, EGCG might be a promising drug candidate to decrease the morbidity and mortality associated with DCM and other diabetes complications.
Collapse
|
37
|
Ahmed HI, Mohamed EA. Candesartan and epigallocatechin-3-gallate ameliorate gentamicin-induced renal damage in rats through p38-MAPK and NF-κB pathways. J Biochem Mol Toxicol 2018; 33:e22254. [DOI: 10.1002/jbt.22254] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 09/14/2018] [Accepted: 10/02/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Hebatalla I. Ahmed
- Department of Pharmacology and Toxicology; Faculty of Pharmacy, Al-Azhar University; Cairo Egypt
| | - Eman A. Mohamed
- Department of Pharmacology and Toxicology; Faculty of Pharmacy, Al-Azhar University; Cairo Egypt
| |
Collapse
|
38
|
Vargas F, Romecín P, García-Guillén AI, Wangesteen R, Vargas-Tendero P, Paredes MD, Atucha NM, García-Estañ J. Flavonoids in Kidney Health and Disease. Front Physiol 2018; 9:394. [PMID: 29740333 PMCID: PMC5928447 DOI: 10.3389/fphys.2018.00394] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/04/2018] [Indexed: 12/13/2022] Open
Abstract
This review summarizes the latest advances in knowledge on the effects of flavonoids on renal function in health and disease. Flavonoids have antihypertensive, antidiabetic, and antiinflammatory effects, among other therapeutic activities. Many of them also exert renoprotective actions that may be of interest in diseases such as glomerulonephritis, diabetic nephropathy, and chemically-induced kidney insufficiency. They affect several renal factors that promote diuresis and natriuresis, which may contribute to their well-known antihypertensive effect. Flavonoids prevent or attenuate the renal injury associated with arterial hypertension, both by decreasing blood pressure and by acting directly on the renal parenchyma. These outcomes derive from their interference with multiple signaling pathways known to produce renal injury and are independent of their blood pressure-lowering effects. Oral administration of flavonoids prevents or ameliorates adverse effects on the kidney of elevated fructose consumption, high fat diet, and types I and 2 diabetes. These compounds attenuate the hyperglycemia-disrupted renal endothelial barrier function, urinary microalbumin excretion, and glomerular hyperfiltration that results from a reduction of podocyte injury, a determinant factor for albuminuria in diabetic nephropathy. Several flavonoids have shown renal protective effects against many nephrotoxic agents that frequently cause acute kidney injury (AKI) or chronic kidney disease (CKD), such as LPS, gentamycin, alcohol, nicotine, lead or cadmium. Flavonoids also improve cisplatin- or methotrexate-induced renal damage, demonstrating important actions in chemotherapy, anticancer and renoprotective effects. A beneficial prophylactic effect of flavonoids has been also observed against AKI induced by surgical procedures such as ischemia/reperfusion (I/R) or cardiopulmonary bypass. In several murine models of CKD, impaired kidney function was significantly improved by the administration of flavonoids from different sources, alone or in combination with stem cells. In humans, cocoa flavanols were found to have vasculoprotective effects in patients on hemodialysis. Moreover, flavonoids develop antitumor activity against renal carcinoma cells with no toxic effects on normal cells, suggesting a potential therapeutic role in patients with renal carcinoma.
Collapse
Affiliation(s)
- Félix Vargas
- Departamento de Fisiología, Facultad de Medicina, Instituto de Investigación Biosanitaria GRANADA, Hospitales Universitarios de Granada, Universidad de Granada, Granada, Spain
| | - Paola Romecín
- Departamento de Fisiología, Facultad de Medicina, Instituto Murciano de Investigación Biomédica, Universidad de Murcia, Murcia, Spain
| | - Ana I García-Guillén
- Departamento de Fisiología, Facultad de Medicina, Instituto Murciano de Investigación Biomédica, Universidad de Murcia, Murcia, Spain
| | - Rosemary Wangesteen
- Departamento de Ciencias de la Salud, Area de Fisiología, Universidad de Jaén, Jaén, Spain
| | - Pablo Vargas-Tendero
- Departamento de Fisiología, Facultad de Medicina, Instituto de Investigación Biosanitaria GRANADA, Hospitales Universitarios de Granada, Universidad de Granada, Granada, Spain
| | - M Dolores Paredes
- Departamento de Fisiología, Facultad de Medicina, Instituto Murciano de Investigación Biomédica, Universidad de Murcia, Murcia, Spain
| | - Noemí M Atucha
- Departamento de Fisiología, Facultad de Medicina, Instituto Murciano de Investigación Biomédica, Universidad de Murcia, Murcia, Spain
| | - Joaquín García-Estañ
- Departamento de Fisiología, Facultad de Medicina, Instituto Murciano de Investigación Biomédica, Universidad de Murcia, Murcia, Spain
| |
Collapse
|
39
|
Jia JJ, Zeng XS, Song XQ, Zhang PP, Chen L. Diabetes Mellitus and Alzheimer's Disease: The Protection of Epigallocatechin-3-gallate in Streptozotocin Injection-Induced Models. Front Pharmacol 2017; 8:834. [PMID: 29209211 PMCID: PMC5702501 DOI: 10.3389/fphar.2017.00834] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 11/01/2017] [Indexed: 12/27/2022] Open
Abstract
Diabetes mellitus is considered as a risk factor of Alzheimer’s disease (AD), the front runner of neurodegenerative disorders. Streptozotocin (STZ) is a toxin for pancreatic β-cell, which can construct a model of insulin deficient diabetes through intraperitoneal or intravenous injection. A model generated by intracerebroventricular STZ (icv-STZ) also shows numerous aspects of sporadic AD. The protective roles of tea polyphenols epigallocatechin-3-gallate (EGCG) on both two diseases were researched by some scientists. This review highlights the link between diabetes and AD and recent studies on STZ injection-induced models, and also discusses the protection of EGCG to clarify its treatment in STZ-induced diabetes and AD.
Collapse
Affiliation(s)
- Jin-Jing Jia
- College of Life Sciences, Xinyang Normal University, Xinyang, China.,Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China.,Henan Key Laboratory of Tea Biology, Xinyang Normal University, Xinyang, China
| | - Xian-Si Zeng
- College of Life Sciences, Xinyang Normal University, Xinyang, China.,Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China.,Henan Key Laboratory of Tea Biology, Xinyang Normal University, Xinyang, China
| | - Xin-Qiang Song
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Peng-Peng Zhang
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Lei Chen
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| |
Collapse
|
40
|
Jia JJ, Zeng XS, Song XQ, Zhang PP, Chen L. Diabetes Mellitus and Alzheimer's Disease: The Protection of Epigallocatechin-3-gallate in Streptozotocin Injection-Induced Models. Front Pharmacol 2017; 8:834. [PMID: 29209211 DOI: 10.3389/fphar.2017.00834if:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 11/01/2017] [Indexed: 11/16/2024] Open
Abstract
Diabetes mellitus is considered as a risk factor of Alzheimer's disease (AD), the front runner of neurodegenerative disorders. Streptozotocin (STZ) is a toxin for pancreatic β-cell, which can construct a model of insulin deficient diabetes through intraperitoneal or intravenous injection. A model generated by intracerebroventricular STZ (icv-STZ) also shows numerous aspects of sporadic AD. The protective roles of tea polyphenols epigallocatechin-3-gallate (EGCG) on both two diseases were researched by some scientists. This review highlights the link between diabetes and AD and recent studies on STZ injection-induced models, and also discusses the protection of EGCG to clarify its treatment in STZ-induced diabetes and AD.
Collapse
Affiliation(s)
- Jin-Jing Jia
- College of Life Sciences, Xinyang Normal University, Xinyang, China
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
- Henan Key Laboratory of Tea Biology, Xinyang Normal University, Xinyang, China
| | - Xian-Si Zeng
- College of Life Sciences, Xinyang Normal University, Xinyang, China
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
- Henan Key Laboratory of Tea Biology, Xinyang Normal University, Xinyang, China
| | - Xin-Qiang Song
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Peng-Peng Zhang
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Lei Chen
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| |
Collapse
|