1
|
Feng R, Xiong X, Dou P, Li J, Benjakul S, Luo Y, Tan Y, Hong H. Quantitative analysis of 4-hydroxy-2-nonenal (HNE) in fish muscle by high-performance liquid chromatography with pre-column derivatization using (2,4-dinitrophenyl)-hydrazine. Food Chem 2025; 464:141841. [PMID: 39504905 DOI: 10.1016/j.foodchem.2024.141841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/28/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024]
Abstract
4-Hydroxy-2-nonenal (HNE), a reactive compound produced during the peroxidation of polyunsaturated fatty acids, is implicated in numerous diseases and the degradation of food quality. Although the detection of HNE in meat has a long history, methods for detecting HNE in freshwater fish are inadequate due to the significant influence of matrix differences (i.e., the matrix effect). We developed a method to measure HNE in six freshwater fish species: Grass carp, Silver carp, Bighead carp, Common carp, Crucian carp, and Wuchang bream. This method showed excellent linearity (R2 values from 0.9943 to 0.9958) and high recovery rates (95.45-104.41 %), with limits of detection (LOD) between 0.029 and 0.176 μmol/kg, covering a range of 0.006 to 25.600 μmol/kg. Matrix effect assessment revealed matrix factors (Mf) between 0.13 and 0.47. This study enhances our understanding of lipid oxidation in fish and guides improvements in food processing techniques.
Collapse
Affiliation(s)
- Ruifang Feng
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xin Xiong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Peipei Dou
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jinlin Li
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China
| | - Soottawat Benjakul
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Yongkang Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuqing Tan
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
2
|
Wang C, Zhu H, Zhang M, Zhu L, Zheng W, Lu W, Niu Y, Zhang Y, Gao B, Yu LL. Ninety-Day Subchronic Toxicology of Individual and Combined Toxicants from the Thermal Processing of Lipid-Rich Foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:28122-28137. [PMID: 39638751 DOI: 10.1021/acs.jafc.4c07892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Oxidative derivatives of triacylglycerols (ox-TGs), aldehydes, and 3-monochloropropane-1,2-diol esters (3-MCPDE) were simultaneously evaluated in a 90-day subchronic study, focusing on biological indicators, biochemical indicators, and serum metabolomics as the first part of integrated toxicity and interactions. After 90 days of feeding Kunming mice, coexposure to combined toxicants significantly inhibited the trend of liver weight gain, reduced the levels of total bilirubin (TBIL) and direct bilirubin (DBIL), and decreased uric acid (UA) compared to individual toxicant exposure. A total of 21 and 31 biomarkers in female and male mice were identified, respectively. Co-exposure to combined toxicants might mitigate the changes in cytidine, CDP, dUMP, and dUDP involved in purine and pyrimidine metabolism caused by a single exposure, but exacerbate the changes in l-tryptophan, 5-hydroxy-l-tryptophan, and 5-hydroxyindoleacetic acid, which are involved in tryptophan metabolism. These results provided new insights into a comprehensive toxicity and interaction evaluation model of multiple combined toxicants in food.
Collapse
Affiliation(s)
- Chenxu Wang
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hanshu Zhu
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Miao Zhang
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lin Zhu
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenhao Zheng
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Weiying Lu
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuge Niu
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yaqiong Zhang
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Boyan Gao
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liangli Lucy Yu
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
3
|
Li N, Fan X, Chen T, Wang Y, Tan Z, Liu C, Zhou D, Li D. Molecular mechanism of color deepening of ready-to-eat shrimp during storage. Food Chem 2024; 450:139332. [PMID: 38640527 DOI: 10.1016/j.foodchem.2024.139332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/27/2024] [Accepted: 04/09/2024] [Indexed: 04/21/2024]
Abstract
Color deepening occurs during storage of ready-to-eat (RTE) shrimps, which seriously affects their marketing cycle. This study investigated the molecular mechanisms of color deterioration in RTE shrimps during accelerated storage, shedding light on the pattern of change in colored products and content. The findings revealed significant occurrences of phenolic oxidation, lipid oxidation, and Maillard browning reactions during accelerated storage. Qualitative and quantitative analyses were conducted on the colored products resulting from these chemical reactions. Multivariate mathematical models were employed to analyze the phenolic oxidation products (2-methylanthraquinone and p-benzoquinone), lipid oxidation products (lipofuscin-like pigments and hydrophobic pyrroles), and Maillard browning products (pyrazines and melanoidins). These products were identified as the main contributors to the deepening of the color of RTE shrimps during storage. The outcomes of this research could enhance our understanding of the color change mechanism in thermally processed marine foods, providing valuable insights for quality maintenance and industrial advancement.
Collapse
Affiliation(s)
- Na Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xin Fan
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Tingjia Chen
- Dalian Salt Chemical Group Co., Ltd. Dalian 116034, China
| | - Yefan Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Zhifeng Tan
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.; Academy of Food Interdisciplinary Science, Dalian Technology Innovation Center for Chinese Prepared Food, Dalian Polytechnic University, Dalian 116034, China
| | - Chang Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Dayong Zhou
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.; Academy of Food Interdisciplinary Science, Dalian Technology Innovation Center for Chinese Prepared Food, Dalian Polytechnic University, Dalian 116034, China
| | - Deyang Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.; Academy of Food Interdisciplinary Science, Dalian Technology Innovation Center for Chinese Prepared Food, Dalian Polytechnic University, Dalian 116034, China..
| |
Collapse
|
4
|
Feng R, Yu Q, Bao Y, Chen L, Luo Y, Tan Y, Hong H. Myofibrillar protein lipoxidation in fish induced by linoleic acid and 4-hydroxy-2-nonenal: Insights from LC-MS/MS analysis. Food Res Int 2024; 187:114357. [PMID: 38763641 DOI: 10.1016/j.foodres.2024.114357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 05/21/2024]
Abstract
The oxidation of fish lipids and proteins is interconnected. The LOX (lipoxygenase)-catalyzed LA (linoleic acid) oxidation system on MPs (myofibrillar proteins) was established in vitro, to investigate the impact of lipoxidation on the physicochemical properties of fish MPs. By detecting HNE (4-hydroxy-2-nonenal) concentration during LA oxidation, the HNE treatment system was established to investigate the role of HNE in this process. In addition, the site specificity of modification on MPs was detected utilizing LC-MS/MS. Both treatments could induce sidechain modification, increase particle size, and cause loss of nutritional value through the reduction in amino acid content of MPs. The HNE group is more likely to alter the MPs' surface hydrophobicity compared to the LA group. By increasing the exposure of modification sites in MPs, the HNE group has more types and number of modifications compared to the LA group. LA group mainly induced the modification of single oxygen addition on MPs instead, which accounted for over 50 % of all modifications. The LA group induced a more pronounced reduction in the solubility of MPs as compared to the HNE group. In conclusion, HNE binding had a high susceptibility to Lys on MPs. Protein aggregation, peptide chain fragmentation, and decreased solubility occurred in the LA group mainly induced by peroxide generated during lipid oxidation or the unreacted LA instead of HNE. This study fills in the mechanism of lipoxidation on protein oxidation in fish and sheds light on the HNE modification sites of MPs, paving the way for the development of oxidation control technology.
Collapse
Affiliation(s)
- Ruifang Feng
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qinye Yu
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yulong Bao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Liang Chen
- Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Yongkang Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuqing Tan
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
5
|
Albarri R, Vardara HF, Al S, Önal A. Chromatographic Methods and Sample Pretreatment Techniques for Aldehydes, Biogenic Amine, and Carboxylic Acids in Food Samples. Crit Rev Anal Chem 2024:1-22. [PMID: 38900595 DOI: 10.1080/10408347.2024.2367232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
This review paper critically examines the current state of research concerning the analysis and derivatization of aldehyde, aromatic hydrocarbons and carboxylic acids components in foods and drinks samples, with a specific focus on the application of Chromatographic techniques. These diverse components, as vital contributors to the sensory attributes of food, necessitate accurate and sensitive analytical methods for their identification and quantification, which is crucial for ensuring food safety and compliance with regulatory standards. In this paper, High-Performance Liquid Chromatography (HPLC) and Gas Chromatographic (GC) methods for the separation, identification, and quantification of aldehydes in complex food matrices were reviewed. In addition, the review explores derivatization strategies employed to enhance the detectability and stability of aldehydes during chromatographic analysis. Derivatization methods, when applied judiciously, improve separation efficiency and increase detection sensitivity, thereby ensuring a more accurate and reliable quantification of aldehyde aromatic hydrocarbons and carboxylic acids species in food samples. Furthermore, methodological aspects encompassing sample preparation, chromatographic separation, and derivatization techniques are discussed. Validation was carried out in term of limit of detections are highlighted as crucial elements in achieving accurate quantification of compounds content. The discussion presented by emphasizing the significance of the combined HPLC and GC chromatography methods, along with derivatization strategies, in advancing the analytical capabilities within the realm of food science.
Collapse
Affiliation(s)
- Raneen Albarri
- Faculty of Pharmacy, Department of Analytical Chemistry, Institute of Health Science, Istanbul University, Istanbul, Turkey
| | - Hümeyra Funda Vardara
- Faculty of Pharmacy, Department of Analytical Chemistry, Istanbul University, Istanbul, Turkey
| | - Selen Al
- Faculty of Pharmacy, Department of Analytical Chemistry, Istanbul University, Istanbul, Turkey
| | - Armağan Önal
- Faculty of Pharmacy, Department of Analytical Chemistry, Istanbul University, Istanbul, Turkey
| |
Collapse
|
6
|
Dordevic D, Gablo N, Zelenkova L, Dordevic S, Tremlova B. Utilization of Spent Coffee Grounds as a Food By-Product to Produce Edible Films Based on κ-Carrageenan with Biodegradable and Active Properties. Foods 2024; 13:1833. [PMID: 38928775 PMCID: PMC11202819 DOI: 10.3390/foods13121833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Coffee ranks as the second most consumed beverage globally, and its popularity is associated with the growing accumulation of spent coffee grounds (SCG), a by-product that, if not managed properly, constitutes a serious ecological problem. Analyses of SCG have repeatedly shown that they are a source of substances with antioxidant and antimicrobial properties. In this study, we assessed SCG as a substrate for the production of edible/biodegradable films. The κ-carrageenan was utilized as a base polymer and the emulsified SCG oil as a filler. The oil pressed from a blend of Robusta and Arabica coffee had the best quality and the highest antioxidant properties; therefore, it was used for film production. The film-forming solution was prepared by dissolving κ-carrageenan in distilled water at 50 °C, adding the emulsified SCG oil, and homogenizing. This solution was cast onto Petri dishes and dried at room temperature. Chemical characterization showed that SCG increased the level of polyphenols in the films and the antioxidant properties, according to the CUPRAC assay (CC1 23.90 ± 1.23 µmol/g). SCG performed as a good plasticizer for κ-carrageenan and enhanced the elongation at the break of the films, compared with the control samples. The solubility of all SCG films reached 100%, indicating their biodegradability and edibility. Our results support the application of SCG as an active and easily accessible compound for the food packaging industry.
Collapse
Affiliation(s)
| | - Natalia Gablo
- Department of Plant Origin Food Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic; (D.D.); (L.Z.); (S.D.); (B.T.)
| | | | | | | |
Collapse
|
7
|
Assi A, Michael‐Jubeli R, Jacques‐Jamin C, Baillet‐Guffroy A, Duplan H, Tfayli A. Characterization of triglycerides photooxidation under solar radiations: A stepwise Raman study. ANALYTICAL SCIENCE ADVANCES 2023; 4:293-301. [PMID: 38715594 PMCID: PMC10989555 DOI: 10.1002/ansa.202200060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 11/17/2024]
Abstract
Triglycerides (TGs) are one of the main components of the glycerolipid family. Their main task in cells is to store excess fatty acids. TG energy storage is mainly concentrated in adipocytes. TGs and free fatty acids constitute the majority (57.5%) of the skin surface lipids (SSLs). TGs are essential for the formation of the skin water barrier. This work is the second part of a global study that aims to evaluate the effect of solar radiations on SSLs using vibrational spectroscopy. In the first part of this work, a stepwise characterization of free fatty acids was performed, and different spectral descriptors were used to follow the different structural modifications during the photo-oxidation process, that is hydrogen abstraction, formation of hydroperoxides and peroxyl radicals as primary oxidation products and the formation of aldehydes, ketones, alcohol as secondary products. In this second part, the photo-oxidation of TGs was evaluated using Raman spectroscopy. A decrease in the CH2/CH3 stretching bands ratio that confirmed the hydrogen abstraction, an increase in the 1165/1740 cm-1 ((δ(OH) and υ(C-O))/ν(C=O) (ester)) ratio indicated the formation of secondary oxidation products such as hydroperoxides. And finally, an increase in the 1725/1740 cm-1 (υ(C=O) (ald.)/υ(C=O) (ester)) ratio and the trans ν(C=C)/cis ν(C=C) ratio highlighted the formation of aldehydes, alcohols, ketone, trans secondary products and others.
Collapse
Affiliation(s)
- Ali Assi
- Lipides: Systèmes Analytiques et BiologiquesLip(Sys)2Faculty of PharmacyUniversité Paris‐SaclayOrsayFrance
| | - Rime Michael‐Jubeli
- Lipides: Systèmes Analytiques et BiologiquesLip(Sys)2Faculty of PharmacyUniversité Paris‐SaclayOrsayFrance
| | | | - Arlette Baillet‐Guffroy
- Lipides: Systèmes Analytiques et BiologiquesLip(Sys)2Faculty of PharmacyUniversité Paris‐SaclayOrsayFrance
| | - Hélène Duplan
- Center of Research Pierre Fabre Dermo‐Cosmetics (PFDC)ToulouseFrance
| | - Ali Tfayli
- Lipides: Systèmes Analytiques et BiologiquesLip(Sys)2Faculty of PharmacyUniversité Paris‐SaclayOrsayFrance
| |
Collapse
|
8
|
Alfaro Gómez M, Fernández-Santos MDR, Jurado-Campos A, Soria-Meneses PJ, Montoro Angulo V, Soler AJ, Garde JJ, Rodríguez-Robledo V. On Males, Antioxidants and Infertility (MOXI): Certitudes, Uncertainties and Trends. Antioxidants (Basel) 2023; 12:1626. [PMID: 37627621 PMCID: PMC10451353 DOI: 10.3390/antiox12081626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Male infertility (MI) involves various endogenous and exogenous facts. These include oxidative stress (OS), which is known to alter several physiological pathways and it is estimated to be present at high levels in up to 80% of infertile men. That is why since the late 20th century, the relationship between OS and MI has been widely studied. New terms have emerged, such as Male Oxidative Stress Infertility (MOSI), which is proposed as a new category to define infertile men with high OS levels. Another important term is MOXI: Male, Antioxidants, and Infertility. This term refers to the hypothesis that antioxidants could improve male fertility without the use of assisted reproductive technology. However, there are no evidence-based antioxidant treatments that directly improve seminal parameters or birth ratio. In this regard, there is controversy about their use. While certain scientists argue against their use due to the lack of results, others support this use because of their safety profile and low price. Some uncertainties related to the use of antioxidants for treating MI are their questionable efficacy or the difficulties in knowing their correct dosage. In addition, the lack of quality methods for OS detection can lead to excessive antioxidant supplementation, resulting in "reductive stress". Another important problem is that, although the inflammatory process is interdependent and closely linked to OS, it is usually ignored. To solve these uncertainties, new trends have recently emerged. These include the use of molecules with anti-inflammatory and antioxidant potential, which are also able to specifically target the reproductive tissue; as well as the use of new methods that allow for reliable quantification of OS and a quality diagnosis. This review aims to elucidate the main uncertainties about MOXI and to outline the latest trends in research to develop effective therapies with clinically relevant outcomes.
Collapse
Affiliation(s)
- Manuel Alfaro Gómez
- Facultad de Farmacia, Universidad de Castilla la Mancha, 02071 Albacete, Spain;
| | - María del Rocío Fernández-Santos
- Facultad de Farmacia, Universidad de Castilla la Mancha, 02071 Albacete, Spain;
- SaBio IREC (CSIC—UCLM—JCCM), Campus Universitario, 02071 Albacete, Spain; (A.J.-C.); (P.J.S.-M.); (V.M.A.); (A.J.S.); (J.J.G.)
| | - Alejandro Jurado-Campos
- SaBio IREC (CSIC—UCLM—JCCM), Campus Universitario, 02071 Albacete, Spain; (A.J.-C.); (P.J.S.-M.); (V.M.A.); (A.J.S.); (J.J.G.)
| | - Pedro Javier Soria-Meneses
- SaBio IREC (CSIC—UCLM—JCCM), Campus Universitario, 02071 Albacete, Spain; (A.J.-C.); (P.J.S.-M.); (V.M.A.); (A.J.S.); (J.J.G.)
| | - Vidal Montoro Angulo
- SaBio IREC (CSIC—UCLM—JCCM), Campus Universitario, 02071 Albacete, Spain; (A.J.-C.); (P.J.S.-M.); (V.M.A.); (A.J.S.); (J.J.G.)
| | - Ana Josefa Soler
- SaBio IREC (CSIC—UCLM—JCCM), Campus Universitario, 02071 Albacete, Spain; (A.J.-C.); (P.J.S.-M.); (V.M.A.); (A.J.S.); (J.J.G.)
| | - José Julián Garde
- SaBio IREC (CSIC—UCLM—JCCM), Campus Universitario, 02071 Albacete, Spain; (A.J.-C.); (P.J.S.-M.); (V.M.A.); (A.J.S.); (J.J.G.)
| | - Virginia Rodríguez-Robledo
- Facultad de Farmacia, Universidad de Castilla la Mancha, 02071 Albacete, Spain;
- SaBio IREC (CSIC—UCLM—JCCM), Campus Universitario, 02071 Albacete, Spain; (A.J.-C.); (P.J.S.-M.); (V.M.A.); (A.J.S.); (J.J.G.)
| |
Collapse
|
9
|
Ma L, Cui Y, Wang F, Liu H, Cheng W, Peng L, Brennan C, Benjakul S, Xiao G. Fast and sensitive UHPLC-QqQ-MS/MS method for simultaneous determination of typical α,β-unsaturated aldehydes and malondialdehyde in various vegetable oils and oil-based foods. Food Chem 2023; 400:134028. [DOI: 10.1016/j.foodchem.2022.134028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/03/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022]
|
10
|
Eggen MD, Merboth P, Neukirchner H, Glomb MA. Lipid Peroxidation Has Major Impact on Malondialdehyde-Derived but Only Minor Influence on Glyoxal and Methylglyoxal-Derived Protein Modifications in Carbohydrate-Rich Foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10271-10283. [PMID: 35968682 DOI: 10.1021/acs.jafc.2c04052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In the present work, the contribution of lipid peroxidation on modifications of lysine and arginine residues of proteins was investigated. Lipid peroxidation had a major impact on malondialdehyde-derived protein modifications; however, the influence on glyoxal and methylglyoxal-derived modifications in flat wafers was negligible. Therefore, vegetable oils (either linseed oil, sunflower oil, or coconut oil) were added to respective batters, and flat wafers were baked (150 °C, 3-10 min). Analysis of malondialdehyde indicated oxidation in linseed wafers, which was supported by the direct quantitation of three malondialdehyde protein adducts in the range of 0.09-23.5 mg/kg after enzymatic hydrolysis. In contrast, levels of free glyoxal and methylglyoxal were independent of the type of oil added, which was in line with the analysis of 13 advanced glycation end products. Comprehensive incubations of 40 mM N2-t-Boc-lysine (100 mM phosphate buffer, pH 7.4) with either 10% oil or an equimolar concentration of carbohydrates led to magnitudes higher (103-105) amounts of N6-carboxymethyl lysine, N6-glycolyl lysine, and N6-carboxyethyl lysine in the latter. Furthermore, malondialdehyde exceeded glyoxal and methylglyoxal in incubations of pure oils at 150 °C by factors of 30 and 100, respectively.
Collapse
Affiliation(s)
- Michael D Eggen
- Institute of Chemistry, Food Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle, Saale, Germany
| | - Paul Merboth
- Institute of Chemistry, Food Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle, Saale, Germany
| | - Helen Neukirchner
- Institute of Chemistry, Food Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle, Saale, Germany
| | - Marcus A Glomb
- Institute of Chemistry, Food Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle, Saale, Germany
| |
Collapse
|
11
|
Effect of olive polyphenols on lipid oxidation of high-fat beef during digestion. Food Res Int 2022; 161:111843. [DOI: 10.1016/j.foodres.2022.111843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 11/22/2022]
|
12
|
Custodio-Mendoza J, Caamaño-Fernandez C, Lage M, Almeida P, Lorenzo R, Carro A. GC–MS determination of malondialdehyde, acrolein, and 4-hydroxy-2-nonenal by ultrasound-assisted dispersive liquid-liquid microextraction in beverages. Food Chem 2022; 384:132530. [DOI: 10.1016/j.foodchem.2022.132530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 02/15/2022] [Accepted: 02/19/2022] [Indexed: 12/19/2022]
|
13
|
Zhuang Y, Dong J, He X, Wang J, Li C, Dong L, Zhang Y, Zhou X, Wang H, Yi Y, Wang S. Impact of Heating Temperature and Fatty Acid Type on the Formation of Lipid Oxidation Products During Thermal Processing. Front Nutr 2022; 9:913297. [PMID: 35719170 PMCID: PMC9201814 DOI: 10.3389/fnut.2022.913297] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Thermal treatment of lipids rich in fatty acids contributes to the formation of lipid oxidation products (LOPs), which have potentially harmful effects on human health. This study included soybean oil (SO), palm oil (PO), olive oil (OO), and lard oil (LO) as the research objects, with an aim to investigate the impact of heating temperature and fatty acid type on the generation of LOPs (α-dicarbonyl compounds, malondialdehyde (MDA), α,β-unsaturated aldehydes, and 16 volatile aldehydes). Results showed that LOPs increased significantly (p < 0.05) with the increase in temperature (100 ~ 200°C). Furthermore, the amount of 2,3-butanedione (159.53 μg/g), MDA (3.15 μg/g), 4-hydroxy-hexenal (3.03 μg/g), 2-butenal (292.18%), 2-pentenal (102.26%), hexanal (898.72%), and 2,4-heptadienal (E, E) (2182.05%) were more at 200°C in SO rich in polyunsaturated fatty acids (PUFAs) than other oils. Results from heat map analysis indicated that the 2, 4-heptadienal, and glyoxal related to the myristic acid of oil. Moreover, the MDA was in close association with PUFAs. Based on the effect of temperature and fatty acid type on the generation of LOPs, this study could serve as a control method to reduce harmful LOPs.
Collapse
Affiliation(s)
- Yuan Zhuang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin, China
| | - Jun Dong
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin, China
| | - Xiaomei He
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin, China
| | - Junping Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin, China
| | - Changmo Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin, China
| | - Lu Dong
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Yan Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Xiaofei Zhou
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin, China
| | - Hongxun Wang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Yang Yi
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin, China
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
- *Correspondence: Shuo Wang
| |
Collapse
|
14
|
Bartkovský M, Sopková D, Andrejčáková Z, Vlčková R, Semjon B, Marcinčák S, Bujňák L, Pospiech M, Nagy J, Popelka P, Kyzeková P. Effect of Concentration of Flaxseed ( Linum usitatissimum) and Duration of Administration on Fatty Acid Profile, and Oxidative Stability of Pork Meat. Animals (Basel) 2022; 12:ani12091087. [PMID: 35565513 PMCID: PMC9105188 DOI: 10.3390/ani12091087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/28/2022] Open
Abstract
Flaxseed is a common ingredient used for livestock feed. The aim of this work was to study the effect of a diet supplemented with flaxseed at 5% and 10% concentrations in the intervals of 3 and 6 weeks prior slaughter on fatty acid profile and oxidative stability of pork meat. Meat samples were collected after slaughter from each animal (five groups, n = 6). Samples of the musculus longissimus dorsi (MLD) and the musculus gluteobiceps (MGB) were selected. Chemical composition, fatty acid profile and oxidative stability during the storage of meat under chilling conditions (4 °C, 7 days) was analyzed. The addition of flaxseed significantly affected the composition of fatty acid profile and the shelf life of the produced meat. The fat content was changed in the experimental groups with 10% flaxseed supplementation (10.84% in MGB and 9.56% MLD) versus the control group. Despite the different concentrations of flaxseed, the best EPA/AA ratio was observed in the experimental groups fed with flaxseed supplementation for 3 weeks. The worst oxidative stability of meat samples (p < 0.05) was recorded in the experimental groups with the addition of flaxseed for 6 weeks, which was related to higher PUFA content in samples of the experimental groups and higher susceptibility of PUFAs to lipid oxidation. The oxidative stability of meat in the experimental group fed 5% flaxseed supplementation for 3 weeks was not affected.
Collapse
Affiliation(s)
- Martin Bartkovský
- Department of Food Hygiene, Technology and Safety, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia; (B.S.); (S.M.); (J.N.); (P.P.)
- Correspondence: (M.B.); (D.S.); Tel.: +421-917-124-764 (M.B.); +421-915-984-767 (D.S.)
| | - Drahomíra Sopková
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia; (Z.A.); (R.V.)
- Correspondence: (M.B.); (D.S.); Tel.: +421-917-124-764 (M.B.); +421-915-984-767 (D.S.)
| | - Zuzana Andrejčáková
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia; (Z.A.); (R.V.)
| | - Radoslava Vlčková
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia; (Z.A.); (R.V.)
| | - Boris Semjon
- Department of Food Hygiene, Technology and Safety, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia; (B.S.); (S.M.); (J.N.); (P.P.)
| | - Slavomír Marcinčák
- Department of Food Hygiene, Technology and Safety, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia; (B.S.); (S.M.); (J.N.); (P.P.)
| | - Lukáš Bujňák
- Department of Animal Nutrition and Husbandry, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia;
| | - Matej Pospiech
- Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackého Tr. 1946/1, 61242 Brno, Czech Republic;
| | - Jozef Nagy
- Department of Food Hygiene, Technology and Safety, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia; (B.S.); (S.M.); (J.N.); (P.P.)
| | - Peter Popelka
- Department of Food Hygiene, Technology and Safety, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia; (B.S.); (S.M.); (J.N.); (P.P.)
| | - Petronela Kyzeková
- Clinic of Swine, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia;
| |
Collapse
|
15
|
An Improved GC-MS Method for Malondialdehyde (MDA) Detection: Avoiding the Effects of Nitrite in Foods. Foods 2022; 11:foods11091176. [PMID: 35563899 PMCID: PMC9099496 DOI: 10.3390/foods11091176] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/02/2022] [Accepted: 04/15/2022] [Indexed: 12/29/2022] Open
Abstract
Malondialdehyde (MDA) is one of the representative end products under lipid peroxidation, indicating the degree of lipid oxidation in foods. However, compounds in pickled products, especially the nitrite in salted lean pork can react with MDA under the acidic condition, leads to the loss of MDA and an underestimation on lipid oxidation through the conventional assay. In this study, the quantification for MDA in the sample containing sodium nitrite were found lacking accuracy by the thiobarbituric acid (TBA) assay and chromatography assay based on alkaline hydrolysis as the reaction between them were difficult to be completely inhibited. Among other trials, the improvement GC-MS analysis utilizing deuterium substituted MDA (MDA-d2) as an internal standard and applying perfluorophenylhydrazine (PFPH) as a derivative reagent can reduce the deviations from the presence of nitrite in the salted lean pork meat and the recovery is between 93.9% and 98.4% and coefficient of variation for the intermediate precision is between 1.1 and 3.5% using the method. The advanced gas chromatograph mass spectrometer (GC-MS) assay also has a very low detection limit (0.25 ng/mL) with both hydrolysis types.
Collapse
|
16
|
Astaxanthin improved the storage stability of docosahexaenoic acid-enriched eggs by inhibiting oxidation of non-esterified poly-unsaturated fatty acids. Food Chem 2022; 381:132256. [PMID: 35123229 DOI: 10.1016/j.foodchem.2022.132256] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 01/25/2023]
Abstract
This study assessed the potential and mechanism of action of astaxanthin, to improve the stability of docosahexaenoic acid (22:6(n-3); DHA) enriched egg products, during storage at 4 °C. The reduction in DHA content after 42 days of storage in astaxanthin-DHA eggs (from hens fed supplemental astaxanthin and DHA) was <3%, whereas the reduction in regular-DHA eggs (hens fed DHA only) was over 17%. Astaxanthin also decreased production of oxidation products including 4-hydroxy-2-hexenal, 4-hydroxy-2-nonenal and malondialdehyde in eggs during storage, thus markedly improving the oxidative stability of DHA-enriched eggs. The yolk lipidomic profile showed higher intensities for most DHA-containing lipids, especially DHA-phosphatidylcholine, DHA-phosphatidylethanolamine and DHA-non-esterified fatty acid, compared with regular-DHA eggs. Astaxanthin acts primarily by suppressing oxidation of DHA-non-esterified fatty acid, which minimizes the degradation of DHA and appears to be the primary protection mode of yolk DHA during storage.
Collapse
|
17
|
Tokur B, Korkmaz K, Uçar Y. Enhancing sunflower oil by the addition of commercial thyme and rosemary essential oils: The effect on lipid quality of Mediterranean horse mackerel and anchovy during traditional pan-frying. Int J Gastron Food Sci 2021. [DOI: 10.1016/j.ijgfs.2021.100428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
18
|
A sensitive chemiluminescence detection approach for determination of 2,4-dinitrophenylhydrazine derivatized aldehydes using online UV irradiation - luminol CL reaction. Application to the HPLC analysis of aldehydes in oil samples. Talanta 2021; 233:122522. [PMID: 34215137 DOI: 10.1016/j.talanta.2021.122522] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 01/01/2023]
Abstract
Aldehydes are toxic carbonyl compounds that are identified in various matrices surrounding us. For instance, aldehydes could be formed during the cooking and frying of foods which affects the food quality and safety. Derivatization is a must for the determination of aldehydes as they lack intrinsic chromophoric groups. 2,4-Dinitrophenyl hydrazine (DNPH) is the most used derivatizing reagent for aldehydes and the formed hydrazones could be determined by either HPLC-UV or LC-MS. However, UV detection is non-sensitive, and the MS equipment is expensive and not widely available. Thus, herein we report a smart chemiluminescence (CL) detection method for the DNPH aldehydes derivatives. These derivatives are supposed to possess photosensitization ability due to the presence of strong chromophoric structures; nitrobenzene and phenyl hydrazone. Upon their UV irradiation, singlet oxygen is found to be produced which then converts the DNPH-aldehyde derivative into hydroperoxide. Next, the hydroperoxide reacts with luminol in an alkaline medium producing a strong CL. An HPLC system with online UV irradiation and online reaction with luminol followed by CL detection was constructed and used for the determination of aldehydes after their derivatization with DNPH. The developed method showed excellent sensitivity with detection limits down to 1.5-18.5 nM. The achieved sensitivity is superior to that obtained by HPLC-UV and LC-MS detection methods for DNPH-aldehydes derivatives. Additionally, our approach is an chemiluminogenic where the DNPH reagent itself does not produce CL which is an excellent advantage. The method was applied successfully for the determination of aldehydes in canola oil samples using simple liquid-liquid extraction showing good recovery (87.0-106.0%), accuracy (87.2-106.6), and precision (RSD≤10.2%). After analysis of fresh and heated oil samples, it was demonstrated that heating of oil, even for short time, strongly elevated the level of their aldehydes' content. At last, it was found that the results of the analysis of aldehydes in oil samples using the proposed method perfectly matched those obtained by a reference LC-MS method.
Collapse
|
19
|
Han L, He YE, Wang S, Cheng W, Ma L, Liu G, Han D, Niu LI. Effects of Methyl Cellulose and Soybean Protein Isolate Coating on Amount of Oil and Chemical Hazards in Chinese Fried Dough Cake. J Food Prot 2021; 84:1333-1339. [PMID: 33770178 DOI: 10.4315/jfp-21-062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 03/22/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Fat-related diseases and chemical hazards produced during the frying process pose a major threat to human health. Coatings have been used as a practical method to reduce the amount of oil and chemical hazards associated with fried foods. Methyl cellulose (MC) and soy protein isolate were used as coating materials to pretreat Chinese fried dough cake (CFDC) before frying. The 1.5% MC concentration was the best choice for coating to simultaneously lower oil and chemical hazards in CFDC. The CFDC prepared using 1.5% MC had 11.3% oil, 73.70 μg/kg acrylamide, 0.15 mg KOH/100 kg acid, 8.54 mmol/kg peroxide, p-anisidine value of 6.36, 0.36 μg/g malondialdehyde, 0.13 μg/g 4-hydroxy-2-(E)-hexenal (HHE), 0.51 μg/g 4-hydroxy-2-(E)-nonenal (HNE), and 4,272 μg/kg glycidyl ester. In contrast, the uncoated CFDC had 19.2% oil, 117.55 μg/kg acrylamide, 0.25 mg KOH/100 kg acid, 14.40 mmol/kg peroxide, p-anisidine value of 9.76, 0.63 μg/g malondialdehyde, 0.23 μg/g HHE, 0.86 μg/g HNE, and 5,758 μg/kg glycidyl ester. MC and soy protein isolate enhanced the oil barrier of the coating film, which effectively reduced the heat transfer coefficients, oil transfer, oil oxidation, and chemical hazards in the CFDC. Our work on this edible coating contributes to methods for control of oil and chemical hazards in fried foods. HIGHLIGHTS
Collapse
Affiliation(s)
- Lipeng Han
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, People's Republic of China
| | - Y E He
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Shujie Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Weiwei Cheng
- Institute for Advanced Study, Shenzhen University, Shenzhen 518016, People's Republic of China
| | - Lukai Ma
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, People's Republic of China
| | - Guoqin Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Dongxue Han
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, People's Republic of China
| | - L I Niu
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
20
|
Han L, He Y, Wang S, Cheng W, Ma L, Liu G, Han D, Niu L. Effects of methyl cellulose‐based coating on physiochemical properties and chemical hazards of Chinese fried dough cake during storage. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Lipeng Han
- Center for Advanced Analytical Science School of Chemistry and Chemical Engineering Guangzhou University Guangzhou 510006 China
| | - Ye He
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Shujie Wang
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Weiwei Cheng
- Institute for Advanced Study Shenzhen University Shenzhen 518016 China
| | - Lukai Ma
- College of Light Industry and Food Zhongkai University of Agriculture and Engineering Guangzhou 510225 China
| | - Guoqin Liu
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Dongxue Han
- Center for Advanced Analytical Science School of Chemistry and Chemical Engineering Guangzhou University Guangzhou 510006 China
| | - Li Niu
- Center for Advanced Analytical Science School of Chemistry and Chemical Engineering Guangzhou University Guangzhou 510006 China
| |
Collapse
|
21
|
Zhang X, Ni L, Zhu Y, Liu N, Fan D, Wang M, Zhao Y. Quercetin Inhibited the Formation of Lipid Oxidation Products in Thermally Treated Soybean Oil by Trapping Intermediates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3479-3488. [PMID: 33703898 DOI: 10.1021/acs.jafc.1c00046] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this research, we studied the inhibitory mechanism of quercetin, one popular phenolic compound, against aldehyde formation in thermally treated soybean oil. It was found that quercetin reduced unsaturated aldehyde formation significantly, with the inhibitory effect decreased with the extension of the heating time. Meanwhile, quercetin had minimum effects on the fatty acid profile compared to untreated samples. Some new phenolic derivatives were formed in thermally treated soybean oil with quercetin, further analyzed by liquid chromatography-tandem mass spectrometry, and compared to newly synthesized derivatives (characterized by mass spectrometry and nuclear magnetic resonance spectroscopy). On the basis of their chemical structures, we proposed that quercetin reacted with 13-oxo-octadecadienoic acid, 10-oxo-hexadecenoic acid, and 10-oxo-octadecenoic acid formed from peroxidation of linoleic acid, palmitoleic acid, and oleic acid, respectively, to inhibit aldehyde formation. In addition, newly formed quercetin-3-O-hexanoate, quercetin-3-O-heptanoate, and quercetin-3-O-nonanoate showed weaker 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt radical cation scavenging activity and weaker antioxidant activity in soybean oil, which explained the decreased inhibitory activity of quercetin against aldehyde formation during heat treatment. More interesting, quercetin-3-O-hexanoate showed improved cellular antioxidant activity compared to the parent quercetin. Overall, quercetin inhibited the formation of lipid oxidation products in thermally treated soybean oil by reacting with early intermediates in the lipid oxidation reaction, and quercetin derivatives formed in the process could be with enhanced cellular antioxidant activity. Our results provide novel insight into the inhibitory mechanism of quercetin against the formation of lipid oxidation products.
Collapse
Affiliation(s)
- Xu Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, People's Republic of China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, People's Republic of China
| | - Ling Ni
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, People's Republic of China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, People's Republic of China
| | - Yamin Zhu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, People's Republic of China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, People's Republic of China
| | - Ning Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, People's Republic of China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, People's Republic of China
| | - Daming Fan
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Mingfu Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, People's Republic of China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, People's Republic of China
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong Special Administrative Region of the People's Republic of China
| | - Yueliang Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, People's Republic of China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, People's Republic of China
| |
Collapse
|
22
|
Food matrixes play a key role in the distribution of contaminants of lipid origin: A case study of malondialdehyde formation in vegetable oils during deep-frying. Food Chem 2021; 347:129080. [PMID: 33508586 DOI: 10.1016/j.foodchem.2021.129080] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/20/2020] [Accepted: 01/07/2021] [Indexed: 11/20/2022]
Abstract
Vegetable oils are increasingly replacing animal fats in diets, but malondialdehyde (MDA), a peroxidation product of these oils, has been regarded as toxic; this necessitated investigation of MDA formation during consumption. This study investigated MDA formation in four vegetable oils during frying French fries (FF) and fried chicken breast meat (FCBM) at 180 °C for 7 h. Results showed that MDA contents were lower in oils used for frying foods than in control oils, mainly because MDA was incorporated into the foods. MDA content was lower in FF, but higher in FCBM, due to the different food components. Model oil and food system analyses yielded similar results. MDA bound the hydrophobic helical structure in starch-based FF, but was exhibited greater reactivity with nucleophilic groups in protein-based FCBM, resulting in stronger interaction with FCBM than with FF. Our results indicated the existence of distinct mechanisms underlying MDA migration in different food matrixes.
Collapse
|
23
|
Albuquerque TG, Costa HS, Oliveira MBPP. 4-hydroxy-2-alkenals in foods: a review on risk assessment, analytical methods, formation, occurrence, mitigation and future challenges. Crit Rev Food Sci Nutr 2021; 62:3569-3597. [PMID: 33397127 DOI: 10.1080/10408398.2020.1867499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Undoubtedly, significant advances were performed concerning 4-hydroxy-2-alkenals research on foods, and their formation by double oxidation of polyunsaturated fatty acids. But further studies are still needed, especially on their occurrence in foods enriched with n-3 and n-6 fatty acids, as well as in foods for infants and processed foods. Major factors concerning the formation of 4-hydroxy-2-alkenals were discussed, namely the influence of fatty acids composition, time/temperature, processing conditions, salt, among others. Regarding mitigation, the most effective strategies are adding phenolic extracts to foods matrices, as well as other antioxidants, such as vitamin E. Exposure assessment studies revealed 4-hydroxy-2-alkenals values that could not be considered a risk for human health. However, these toxic compounds remain unaltered after digestion and can easily reach the systemic circulation. Therefore, it is crucial to develop in vivo research, with the inclusion of the colon phase, as well as, cell membranes of the intestinal epithelium. In conclusion, according to our review it is possible to eliminate or effectively decrease 4-hydroxy-2-alkenals in foods using simple and economic practices.
Collapse
Affiliation(s)
- Tânia Gonçalves Albuquerque
- Department of Food and Nutrition, National Institute of Health Dr. Ricardo Jorge, I.P, Lisbon, Portugal.,REQUIMTE-LAQV, Faculty of Pharmacy, University of Porto, Porto, Portugal.,Instituto Universitário Egas Moniz, Lisbon, Portugal
| | - Helena S Costa
- Department of Food and Nutrition, National Institute of Health Dr. Ricardo Jorge, I.P, Lisbon, Portugal.,REQUIMTE-LAQV, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | | |
Collapse
|
24
|
Optimization of the thiobarbituric acid-malonaldehyde reaction in non-aqueous medium. Direct analysis of malonaldehyde in oil samples by HPLC with fluorimetric detection. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
25
|
Nilsson R, Liu NA. Nuclear DNA damages generated by reactive oxygen molecules (ROS) under oxidative stress and their relevance to human cancers, including ionizing radiation-induced neoplasia part II: Relation between ROS-induced DNA damages and human cancer. RADIATION MEDICINE AND PROTECTION 2020. [DOI: 10.1016/j.radmp.2020.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
26
|
Determination of malondialdehyde, acrolein and four other products of lipid peroxidation in edible oils by Gas-Diffusion Microextraction combined with Dispersive Liquid-Liquid Microextraction. J Chromatogr A 2020; 1627:461397. [DOI: 10.1016/j.chroma.2020.461397] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/21/2022]
|
27
|
Nilsson R, Liu NA. Nuclear DNA damages generated by reactive oxygen molecules (ROS) under oxidative stress and their relevance to human cancers, including ionizing radiation-induced neoplasia part I: Physical, chemical and molecular biology aspects. RADIATION MEDICINE AND PROTECTION 2020. [DOI: 10.1016/j.radmp.2020.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
28
|
The effect of heating on the formation of 4-hydroxy-2-hexenal and 4-hydroxy-2-nonenal in unsaturated vegetable oils: Evaluation of oxidation indicators. Food Chem 2020; 321:126603. [DOI: 10.1016/j.foodchem.2020.126603] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 02/16/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023]
|
29
|
Sun H, Peng X, Li C, Zhang WM, Cao J. Determination of 2,4-decadienal in edible oils using reversed-phase liquid chromatography and its application as an alternative indicator of lipid oxidation. J Food Sci 2020; 85:1418-1426. [PMID: 32304227 DOI: 10.1111/1750-3841.15132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/11/2020] [Accepted: 03/16/2020] [Indexed: 12/12/2022]
Abstract
As a major product of linoleic acid-rich oils, 2,4-decadienal has unique reactivity that may be potentially toxic to human body. In this study, a reliable reversed-phase liquid chromatography method for the determination of carbonyls was developed, and 2,4-decadienal as the target aldehyde was validated. Furthermore, the possibility of 2,4-decadienal as a lipid oxidation marker was evaluated. The optimal sample pretreatment method was extraction by 2 mL of acetonitrile three times, followed by derivatization at 40 °C for 30 min. The method was linear, sensitive, and accurate with detection and quantification limits of 15 and 50 nmol/L, respectively, and had good average recoveries for 2,4-decadienal in oil samples. In tested edible oils, during heating at 180 °C, the level of 2,4-decadienal rose faster than other aldehydes, including one of the characteristic aldehydes, hexanal. Moreover, good linear relationships between the 2,4-decadienal content and other oxidation indices (R2 = 0.858 to 0.984 for the anisidine value; R2 = 0.876 to 0.986 for the total oxidation value) were observed in sunflower and corn oils under 8 hr heating at three temperatures (120, 150, and 180 °C), indicating that 2,4-decadienal can predict the oxidation of oil. PRACTICAL APPLICATION: 2,4-Decadienal is a toxic aldehyde produced by the oxidation of linoleic acid-rich oils, which is closely related to human health. This work is the first to demonstrate that 2,4-decadienal can be used as an alternative oxidation indicator for linoleic acid-rich oils and is of great significance for the quality control of edible oil in the food industry.
Collapse
Affiliation(s)
- Huihui Sun
- College of Food Science and Engineering, Hainan University, Haikou, Hainan, 570228, China
| | - Xiaoxiang Peng
- College of Food Science and Engineering, Hainan University, Haikou, Hainan, 570228, China
| | - Chuan Li
- College of Food Science and Engineering, Hainan University, Haikou, Hainan, 570228, China
| | - Wei-Min Zhang
- College of Food Science and Engineering, Hainan University, Haikou, Hainan, 570228, China
| | - Jun Cao
- College of Food Science and Engineering, Hainan University, Haikou, Hainan, 570228, China
| |
Collapse
|
30
|
Ma L, Liu G, Cheng W, Liu X, Liu H, Wang Q, Mao G, Cai X, Brennan C, Brennan MA. Formation of malondialdehyde, 4‐hydroxy‐hexenal and 4‐hydroxy‐nonenal during deep‐frying of potato sticks and chicken breast meat in vegetable oils. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14462] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lukai Ma
- College of Light Industry and Food Zhongkai University of Agriculture and Engineering Guangzhou 510225 China
| | - Guoqin Liu
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Products Safety School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Weiwei Cheng
- Institute for Advanced Study Shenzhen University Shenzhen 518060 China
| | - Xinqi Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health School of Food and Chemical Engineering Beijing Technology and Business University Beijing 100048 China
| | - Huifan Liu
- College of Light Industry and Food Zhongkai University of Agriculture and Engineering Guangzhou 510225 China
| | - Qin Wang
- College of Light Industry and Food Zhongkai University of Agriculture and Engineering Guangzhou 510225 China
| | - Guoxing Mao
- College of Light Industry and Food Zhongkai University of Agriculture and Engineering Guangzhou 510225 China
| | - Xintong Cai
- College of Light Industry and Food Zhongkai University of Agriculture and Engineering Guangzhou 510225 China
| | - Charles Brennan
- Department of Wine Food and Molecular Biosciences Lincoln University Lincoln 7647 New Zealand
| | - Margaret A. Brennan
- Department of Wine Food and Molecular Biosciences Lincoln University Lincoln 7647 New Zealand
| |
Collapse
|
31
|
Zhou X, Zhang Z, Liu X, Wu D, Ding Y, Li G, Wu Y. Typical reactive carbonyl compounds in food products: Formation, influence on food quality, and detection methods. Compr Rev Food Sci Food Saf 2020; 19:503-529. [DOI: 10.1111/1541-4337.12535] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/25/2019] [Accepted: 12/28/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Xuxia Zhou
- Department of Food Science and TechnologyZhejiang University of Technology Hangzhou China
| | - Zhiwen Zhang
- Department of Food Science and TechnologyZhejiang University of Technology Hangzhou China
| | - Xiaoying Liu
- Department of Food Science and TechnologyZhejiang University of Technology Hangzhou China
| | - Di Wu
- Yangtze Delta Region Institute of Tsinghua University Zhejiang China
| | - Yuting Ding
- Department of Food Science and TechnologyZhejiang University of Technology Hangzhou China
| | - Guoliang Li
- School of Food and Biological EngineeringShaanxi University of Science and Technology Xian China
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical ScienceChina National Center for Food Safety Risk Assessment Beijing China
| |
Collapse
|
32
|
4-Hydroxy-2-nonenal in food products: A review of the toxicity, occurrence, mitigation strategies and analysis methods. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.12.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
Lanza B, Ninfali P. Antioxidants in Extra Virgin Olive Oil and Table Olives: Connections between Agriculture and Processing for Health Choices. Antioxidants (Basel) 2020; 9:E41. [PMID: 31906540 PMCID: PMC7023406 DOI: 10.3390/antiox9010041] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/17/2019] [Accepted: 12/28/2019] [Indexed: 01/11/2023] Open
Abstract
: This review focuses on the conditions required to increase and maintain the antioxidant nutrients in both extra virgin olive oil (EVOO) and table olives (TOs) from the agronomic and technological practices to the gastronomy. The main antioxidants of TOs and EVOO are phenol alcohols and acids, secoiridoids, lignans and flavones, all of which possess the ability to prolong the oil's shelf-life and exhibit healthy properties for humans. The precise detection of secoiridoid derivatives remains the breakthrough for the nutritional and health quality certification of extra virgin olive oils (EVOOs) required for EFSA health claims. To attain the necessary antioxidant quality in both EVOO and TOs, it is necessary to hard focus on the several steps in the production chain, including olive cultivar, agronomic conditions, harvesting methods, and transformation technology. The quality level is maintained if the storage conditions aim to minimize the oxidative processes that occur due to oxygen and light. In terms of minor polar biophenols, there is disagreement on which between the organic or conventional EVOOs show higher concentration values. The strict disciplinary of production of protected designation EVOOs does not ensure higher phenol values in comparison to the artisanal EVOOs. In gastronomy, the EVOOs are preferable to seed oils, particularly during frying vegetable. The EVOOs show higher heat stability, linked both to the fatty acid composition and the phenol content, that is important for preventing fatty acids oxidation. Concerning TOs, the commercial presentation includes olives and olive paste. Both products show a remarkable loss of natural antioxidants after pasteurization and during storage as the thermal treatment mostly impacts on TOs secoiridoids.
Collapse
Affiliation(s)
- Barbara Lanza
- Council for Agricultural Research and Economics (CREA), Research Centre for Engineering and Agro-Food Processing (CREA-IT), Via Nazionale 38, I-65012 Cepagatti (PE), Italy
| | - Paolino Ninfali
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61029 Urbino (PU), Italy;
| |
Collapse
|
34
|
Kishikawa N, El-Maghrabey MH, Kuroda N. Chromatographic methods and sample pretreatment techniques for aldehydes determination in biological, food, and environmental samples. J Pharm Biomed Anal 2019; 175:112782. [DOI: 10.1016/j.jpba.2019.112782] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 11/26/2022]
|
35
|
|
36
|
Han L, Lin Q, Liu G, Han D, Niu L, Su D. Lipids Promote Glycated Phospholipid Formation by Inducing Hydroxyl Radicals in a Maillard Reaction Model System. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7961-7967. [PMID: 31260294 DOI: 10.1021/acs.jafc.9b02771] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Food-derived glycated phospholipids is potentially hazardous to human health. However, there are few studies on the effects of lipids on the formation of glycated phospholipids. In this work, two model systems were established: (1) a model system including 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (PE), glucose, and Fenton reagent and (2) a model system including PE, glucose, and five kind of vegetable oils. The contents of carboxymethyl-PE, carboxyethyl-PE, Amadori-PE, hydroxyl radical (OH•), glyoxal, and methylglyoxal were determined with high-performance liquid chromatography mass spectrometry. The results of the first model system showed that OH• oxidized glucose to produce glyoxal and methylglyoxal, which then reacted with PE to form carboxymethyl-PE and carboxyethyl-PE. OH• also oxidized Amadori-PE to form carboxymethyl-PE. The results of the second model system showed that vegetable oils with higher number of moles of carbon-carbon unsaturated double bond in vegetable oil per kilogram could produce more OH•, which promote the formation of carboxymethyl-PE and carboxyethyl-PE by oxidizing glucose and oil. We elucidated the effects of oils on the formation of glycated phospholipids in terms of OH• and intermediates. This work will contribute to better understanding the formation mechanism of glycated phospholipids with oil.
Collapse
Affiliation(s)
- Lipeng Han
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering , Guangzhou University , Guangzhou 510006 , China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , Guangzhou 510640 , China
| | - Qingna Lin
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , Guangzhou 510640 , China
| | - Guoqin Liu
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , Guangzhou 510640 , China
| | - Dongxue Han
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering , Guangzhou University , Guangzhou 510006 , China
| | - Li Niu
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering , Guangzhou University , Guangzhou 510006 , China
| | - Dongxiao Su
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering , Guangzhou University , Guangzhou 510006 , China
| |
Collapse
|
37
|
Ma L, Liu G, Liu X. Malondialdehyde, 4‐Hydroxy‐2‐Hexenal, and 4‐Hydroxy‐2‐Nonenal in Vegetable Oils: Formation Kinetics and Application as Oxidation Indicators. EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201900040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Lukai Ma
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou 510640China
| | - Guoqin Liu
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou 510640China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product SafetySouth China University of TechnologyGuangzhou 510640China
| | - Xinqi Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Technology and Business UniversityBeijing 100048China
- School of Food and Chemical EngineeringBeijing Technology and Business UniversityBeijing 100048China
| |
Collapse
|
38
|
Wang Q, Luo J, Liu H, Brennan CS, Liu J, Zou X. Protective effects of the flavonoid fraction obtained from pomelo fruitlets through ultrasonic-associated microwave extraction against AAPH-induced erythrocyte hemolysis. RSC Adv 2019; 9:16007-16017. [PMID: 35521418 PMCID: PMC9064334 DOI: 10.1039/c9ra02523e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 05/06/2019] [Indexed: 01/20/2023] Open
Abstract
Pomelo fruitlet is a side-product of pomelo, and this study aimed to extract the antioxidative flavonoid compounds from pomelo fruitlets with high efficiency through ultrasonic-associated microwave methods. Scanning electron microscopy analysis indicated that the spatial structure of the pomelo fruitlet powder was changed; microwaves and ultrasonic waves facilitated the formation of globular and curved surfaces, respectively. Ultrasonic-microwave synergistic pretreatment resulted in significantly higher yield. Each type of flavonoid compound was characterized using PR-LCMS analysis, and naringin with high nutritive value was detected in all groups. After purifying the flavone fractions with AB-8 macroporous resin, naringin, 2''-O-acetyl-3'-O-methylrutin, and 5,7,8,3'-tetrahydroxy-3,4'-dimethoxy were identified, which could act as free radical scavengers to protect erythrocytes from AAPH-induced hemolysis. This study strongly improved the effects of ultrasonic-microwave synergetic methods on the high utilization of pomelo fruitlets, especially in terms of flavonoid extraction and bioavailability.
Collapse
Affiliation(s)
- Qin Wang
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering Guangzhou Guangdong 510225 China
| | - Jieying Luo
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering Guangzhou Guangdong 510225 China
| | - Huifan Liu
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering Guangzhou Guangdong 510225 China
| | - Charles Stephen Brennan
- Department of Food, Wine and Molecular Biosciences, University of Lincoln Christchurch New Zealand
| | - Jianliang Liu
- Modern Agriculture Research Center, Zhongkai University of Agriculture and Engineering Guangzhou Guangdong 510225 China
| | - Xiaoyu Zou
- Sericultural and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing China
| |
Collapse
|
39
|
Ma L, Liu G, Zhang H, Liu X. Understanding the difference of 4‐hydroxyhexenal and 4‐hydroxynonenal formation in various vegetable oils during thermal processes by kinetic and thermodynamic study. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Lukai Ma
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Products Safety Ministry of Education Engineering Research Center of Starch & Protein Processing School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Guoqin Liu
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Products Safety Ministry of Education Engineering Research Center of Starch & Protein Processing School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Hua Zhang
- Facility of Food Science School of Agriculture Yanbian University Yanji 133000 China
| | - Xinqi Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health School of Food and Chemical Engineering Beijing Technology and Business University Beijing 100048 China
| |
Collapse
|
40
|
Nogueira MS, Scolaro B, Milne GL, Castro IA. Oxidation products from omega-3 and omega-6 fatty acids during a simulated shelf life of edible oils. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.11.044] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
41
|
Ma L, Liu G, Cheng W, Liu X, Liu H, Wang Q. Matrix-mediated distribution of 4-hydroxy-2-hexanal (nonenal) during deep-frying of chicken breast and potato sticks in vegetable oil. Food Funct 2019; 10:7052-7062. [DOI: 10.1039/c9fo01878f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The distribution of HHE/HNE was mediated in different food matrices, namely, starch-based and protein-based foods, during deep-frying of vegetable oils.
Collapse
Affiliation(s)
- Lukai Ma
- College of Light Industry and Food
- Zhongkai University of Agriculture and Engineering
- Guangzhou
- China
| | - Guoqin Liu
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Products Safety
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Weiwei Cheng
- College of Food Science
- South China Agricultural University
- Guangzhou 510640
- China
| | - Xinqi Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- School of Food and Chemical Engineering
- Beijing Technology and Business University
- Beijing 100048
- China
| | - Huifan Liu
- College of Light Industry and Food
- Zhongkai University of Agriculture and Engineering
- Guangzhou
- China
| | - Qin Wang
- College of Light Industry and Food
- Zhongkai University of Agriculture and Engineering
- Guangzhou
- China
| |
Collapse
|
42
|
Ma L, Liu G, Cheng W, Liu X. The distribution of 4‐hydroxy‐hexenal and 4‐hydroxy‐nonenal in different vegetable oils and their formation from fatty acid methyl esters. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.14061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Lukai Ma
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Guoqin Liu
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Products Safety South China University of Technology Guangzhou 510640 China
| | - Weiwei Cheng
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Xinqi Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing 100048 China
- School of Food and Chemical Engineering Beijing Technology and Business University Beijing 100048 China
| |
Collapse
|
43
|
Ma L, Liu G, Liu X. Amounts of malondialdehyde do not accurately represent the real oxidative level of all vegetable oils: a kinetic study of malondialdehyde formation. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13952] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Lukai Ma
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 China
| | - Guoqin Liu
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety; South China University of Technology; Guangzhou 510640 China
| | - Xinqi Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health; Beijing Technology and Business University; Beijing 100048 China
- School of Food and Chemical Engineering; Beijing Technology and Business University; Beijing 100048 China
| |
Collapse
|