1
|
Rodríguez-Urretavizcaya B, Vilaplana L, Marco MP. Strategies for quorum sensing inhibition as a tool for controlling Pseudomonas aeruginosa infections. Int J Antimicrob Agents 2024; 64:107323. [PMID: 39242051 DOI: 10.1016/j.ijantimicag.2024.107323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/06/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
Antibiotic resistance is one of the most important concerns in global health today. A growing number of infections are becoming harder to treat with conventional drugs and fewer new antibiotics are being developed. In this context, strategies based on blocking or attenuating virulence pathways that do not focus on eradication of bacteria are potential therapeutic approaches that should reduce the selective pressure exerted on the pathogen. This virulence depletion can be achieved by inhibiting the conserved quorum sensing (QS) system, a mechanism that enables bacteria to communicate with one another in a density-dependent manner. QS regulates gene expression, leading to the activation of important processes such as virulence and biofilm formation. This review highlights the approaches reported so far for disrupting different steps of the QS system of the multiresistant pathogen Pseudomonas aeruginosa. The authors describe different types of molecules (including enzymes, natural and synthetic small molecules, and antibodies) already identified as P. aeruginosa quorum quenchers (QQs) or QS inhibitors (QSIs), grouped according to the QS circuit that they block (Las, Rhl, Pqs and some examples from the controversial pathway Iqs). The discovery of new QQs and QSIs is expected to help reduce antibiotic doses, or at least to provide options that act as adjuvants to enhance the effect of antibiotic treatment. Moreover, this article outlines the advantages and possible drawbacks of each strategy and provides perspectives on the potential developments in this field in the future.
Collapse
Affiliation(s)
- Bárbara Rodríguez-Urretavizcaya
- Nanobiotechnology for diagnostics group (Nb4D), Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia IQAC-CSIC. Jordi Girona 18-26, 08034 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Lluïsa Vilaplana
- Nanobiotechnology for diagnostics group (Nb4D), Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia IQAC-CSIC. Jordi Girona 18-26, 08034 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - M-Pilar Marco
- Nanobiotechnology for diagnostics group (Nb4D), Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia IQAC-CSIC. Jordi Girona 18-26, 08034 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain
| |
Collapse
|
2
|
Khan F. Multifaceted strategies for alleviating Pseudomonas aeruginosa infection by targeting protease activity: Natural and synthetic molecules. Int J Biol Macromol 2024; 278:134533. [PMID: 39116989 DOI: 10.1016/j.ijbiomac.2024.134533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/29/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Pseudomonas aeruginosa has become a top-priority pathogen in the health sector because it is ubiquitous, has high metabolic/genetic versatility, and is identified as an opportunistic pathogen. The production of numerous virulence factors by P. aeruginosa was reported to act individually or cooperatively to make them robots invasion, adherences, persistence, proliferation, and protection against host immune systems. P. aeruginosa produces various kinds of extracellular proteases such as alkaline protease, protease IV, elastase A, elastase B, large protease A, Pseudomonas small protease, P. aeruginosa aminopeptidase, and MucD. These proteases effectively allow the cells to invade and destroy host cells. Thus, inhibiting these protease activities has been recognized as a promising approach to controlling the infection caused by P. aeruginosa. The present review discussed in detail the characteristics of these proteases and their role in infection to the host system. The second part of the review discussed the recent updates on the multiple strategies for attenuating or inhibiting protease activity. These strategies include the application of natural and synthetic molecules, as well as metallic/polymeric nanomaterials. It has also been reported that a propeptide present in the middle domain of protease IV also attenuates the virulence properties and infection ability of P. aeruginosa.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Institute of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea; International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
3
|
Vadakkan K, Sathishkumar K, Mapranathukaran VO, Ngangbam AK, Nongmaithem BD, Hemapriya J, Nair JB. Critical review on plant-derived quorum sensing signaling inhibitors in pseudomonas aeruginosa. Bioorg Chem 2024; 151:107649. [PMID: 39029321 DOI: 10.1016/j.bioorg.2024.107649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/21/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
Pseudomonas aeruginosa, a biofilm-forming organism with complex quorum mechanisms (Las, Rhl, PQS, and IQS), poses an imminent danger to the healthcare sector and renders current treatment options for chemotherapy ineffectual. The pathogen's diverse pathogenicity, antibiotic resistance, and biofilms make it difficult to eradicate it effectively. Quorum sensing, a complex system reliant on cell density, controls P. aeruginosa's pathogenesis. Quorum-sensing genes are key components of P. aeruginosa's pathogenic arsenal, and their expression determines how severe the spread of infection becomes. Over the past ten years, there has been a noticeable increase in the quest for and development of new antimicrobial medications. Quorum sensing may be an effective treatment for infections triggered by bacteria. Introducing quorum-sensing inhibitors as an anti-virulent strategy might be an intriguing therapeutic method that can be effectively employed along with current medications. Amongst the several speculated processes, a unique anti-virulence strategy using anti-quorum sensing and antibiofilm medications for targeting pseudomonal infestations seems to be at the forefront. Due to their noteworthy quorum quenching capabilities, biologically active phytochemicals have become more well-known in the realm of science in this context. Recent research showed how different phytochemical quorum quenching actions affect P. aeruginosa's QS-dependent pathogenicity. This review focuses on the most current data supporting the implementation of plant bio-actives to treat P.aeruginosa-associated diseases, as well as the benefits and future recommendationsof employing them in anti-virulence therapies as a supplementary drug development approach towards conventional antibiotic approaches.
Collapse
Affiliation(s)
- Kayeen Vadakkan
- Department of Biotechnology, St. Mary's College (Autonomous), Thrissur, Kerala 680020, India; Manipur International University, Imphal, Manipur 795140, India.
| | - Kuppusamy Sathishkumar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Thandalam, Chennai, Tamil Nadu 602105, India
| | | | | | | | - Janarthanam Hemapriya
- Department of Microbiology, DKM College for Women, Vellore, Tamil Nadu 632001, India
| | - Jyotsna B Nair
- Department of Biotechnology, JDT Islam College of Arts and Science, Vellimadukunnu, Kozhikode, Kerala 673012, India
| |
Collapse
|
4
|
Zhang ZS, He Z, Shi Y, Guan M, Zhao DS, Zhu D, Xiong LT, Li Y, Deng X, Cui ZN. Structure-Based Discovery of Symmetric Disulfides from Garlic Extract as Pseudomonas aeruginosa Quorum Sensing Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20299-20307. [PMID: 39231265 DOI: 10.1021/acs.jafc.4c04404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Microorganisms are the most common cause of food spoilage. Pseudomonas aeruginosa is a common foodborne pathogen that causes food spoilage and poses a serious threat to food safety. As a crucial target in antitoxicity strategies, the quorum sensing (QS) system shows promising potential for further development. The garlic extract diallyl disulfide exhibits inhibitory activity against the QS system of P. aeruginosa, with disulfide bonds serving as the active component. However, the biological activity of other symmetric disulfides has not been investigated in this capacity. The study synthesized 39 disulfide bond-containing analogs and evaluated their activity as quorum sensing inhibitors (QSIs). The results showed that p-hydroxyphenyl substitution can replace the allyl groups while maintaining strong biological activity. The virulence factors production was reduced by compound 2i, with the strongest inhibitory effect being observed on elastase production. Synergistic inhibition was observed in the presence of antibiotics like ciprofloxacin and tobramycin. 2i successfully inhibited P. aeruginosa infection in the Galleria mellonella larvae model. Primary mechanism studies using transcriptome, surface plasmon resonance and molecular docking suggested that 2i inhibits the QS system by targeting the LasR protein. Thus, compound 2i could be used in developing QSIs for the control of P. aeruginosa infections.
Collapse
Affiliation(s)
- Zhao-Sheng Zhang
- State Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Zhe He
- State Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yu Shi
- State Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China
| | - Mingming Guan
- State Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Dong-Sheng Zhao
- Department of Pharmacy, Quanzhou Medical College, Quanzhou 362100, China
| | - Di Zhu
- State Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Lan-Tu Xiong
- State Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yasheng Li
- Department of Infectious Diseases, Anhui Province Key Laboratory of Infectious Diseases & Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong SAR 999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| | - Zi-Ning Cui
- State Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
5
|
Gopalakrishnan AV, Kanagaraja A, Sakthivelu M, Devadasan V, Gopinath SCB, Raman P. Role of fatty acids in modulating quorum sensing in Pseudomonas aeruginosa and Chromobacterium violaceum: an integrated experimental and computational analysis. Int Microbiol 2024:10.1007/s10123-024-00590-y. [PMID: 39292411 DOI: 10.1007/s10123-024-00590-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/15/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024]
Abstract
The broad-spectrum antibacterial capabilities of fatty acids (FAs) and their reduced propensity to promote resistance have rendered as a promising substitute for conventional antibiotics. The structural significance of fatty acid production with the other lipids is a major energy source, and signal transduction has drawn a great deal of research attention to these biomolecules. Saturated and monounsaturated fatty acids reduce virulence by preventing harmful opportunistic bacteria like Pseudomonas aeruginosa and Chromobacterium violaceum from activating their quorum sensing (QS) systems. In this finding, the fatty acids capric acid, caprylic acid, and monoelaidin were selected to evaluate their anti-QS activity against the C. violaceum and P. aeruginosa. At the minimum inhibitory concentration (MIC) and sub-MIC concentration of the three fatty acids, the virulence factor production of both the bacteria was quantified. The virulence factors like EPS, biofilm quantification and visualization, and motility assays were inhibited in the dose-dependent manner (MIC and sub-MIC) for both the organisms whereas this pattern was followed in the pyocyanin, pyoverdine, rhamnolipid, protease of P. aeruginosa and the violacein, and chitinase of C. violaceum. In all these biochemical assays, the capric acid could effectively reduce the production and further validated at gene expression level by RT-qPCR. The study on the gene expression for all these virulence factors reveals that the capric acid inhibited the growth of both the organisms in a higher fold than the caprylic and monoelaidin. The in silico approach of structural validation for the binding of ligands with the proteins in the QS circuit was studied by molecular docking in Schrodinger software. The Las I and Las R in P. aeruginosa and the CviR of C. violaceum protein structures were docked with the selected three fatty acids. The capric acid binds to the pocket with the highest binding score of all the proteins than the caprylic and monoelaidin fatty acids. Thus, capric acid proves to be the therapeutic biomolecule for the anti-QS activity of opportunistic bacteria.
Collapse
Affiliation(s)
- Allwyn Vyas Gopalakrishnan
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chengalpet, Dt. Tamil Nadu, India
| | - Abinaya Kanagaraja
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chengalpet, Dt. Tamil Nadu, India
| | - Meenakumari Sakthivelu
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chengalpet, Dt. Tamil Nadu, India
| | - Velmurugan Devadasan
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chengalpet, Dt. Tamil Nadu, India
| | - Subash C B Gopinath
- Center for Global Health Research, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602 105, Tamil Nadu, India
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600, Arau, Perlis, Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000, Kangar, Perlis, Malaysia
- Department of Technical Sciences, Western Caspian University, Baku, AZ, 1075, Azerbaijan
| | - Pachaiappan Raman
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chengalpet, Dt. Tamil Nadu, India.
| |
Collapse
|
6
|
Guan M, Zhu D, Wei J, He Z, Xiong LT, Zeng Y, Song G, Deng X, Cui ZN. Design and Synthesis of Aryl Amide Derivatives Containing Thiazole as Type III Secretion System Inhibitors against Pseudomonas aeruginosa. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17210-17218. [PMID: 39056370 DOI: 10.1021/acs.jafc.4c02277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
To identify potent inhibitors of the type III secretion system (T3SS) in the foodborne pathogen Pseudomonas aeruginosa, we synthesized 35 thiazole-containing aryl amides by merging salicylic acid with various heterocycles through active splicing. Screening for exoS promoter activity led to the discovery of a highly effective T3SS inhibitor from these 35 compounds. Through subsequent experiments, it was confirmed that compound II-22 specifically targeted the T3SS of P. aeruginosa. Additionally, compound II-22 inhibited the secretion of the effector protein ExoS by modulating the CyaB-cAMP/Vfr-ExsA and ExsCED-ExsA regulatory pathways. Furthermore, compound II-22 suppressed the transcription of genes involved in the needle complex assembly, leading to reduced bacterial virulence. Further validation through inoculation tests using Galleria mellonella larvae demonstrated the strong in vivo efficacy of compound II-22. The study also revealed that compound II-22 enhanced the bactericidal activity of antibiotics, such as CIP (ciprofloxacin) and TOB (tobramycin). These results could help develop novel antimicrobial drugs to reduce bacterial resistance.
Collapse
Affiliation(s)
- Mingming Guan
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Di Zhu
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Junjie Wei
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Zhe He
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Lan-Tu Xiong
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yan Zeng
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Gaopeng Song
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR 999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| | - Zi-Ning Cui
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
7
|
Pan D, Wu H, Li JJ, Wang B, Jia AQ. Two cinnamoyl hydroxamates as potential quorum sensing inhibitors against Pseudomonas aeruginosa. Front Cell Infect Microbiol 2024; 14:1424038. [PMID: 39165918 PMCID: PMC11333444 DOI: 10.3389/fcimb.2024.1424038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/18/2024] [Indexed: 08/22/2024] Open
Abstract
Introduction Pseudomonas aeruginosa is a ubiquitous pathogen that causes various infectious diseases through the regulation of quorum sensing (QS). The strategy of interfering with the QS systems of P. aeruginosa, coupled with a reduction in the dosage of conventional antibiotics, presents a potential solution to treating infection and mitigating antibiotic resistance. In this study, seven cinnamoyl hydroxamates were synthesized to evaluate their inhibitory effects on QS of P. aeruginosa. Among these cinnamic acid derivatives, we found cinnamoyl hydroxamic acid (CHA) and 3-methoxy-cinnamoyl hydroxamic acid (MCHA) were the two most effective candidates. Furtherly, the effect of CHA and MCHA on the production of virulence factors and biofilm of P. aeruginosa were evaluated. Ultimately, our study may offer promising potential for treating P. aeruginosa infections and reducing its virulence. Methods The disc diffusion test were conducted to evaluate inhibitory effects on QS of seven cinnamoyl hydroxamates. The influence of CHA and MCHA on the production of virulence and flagellar motility of P. aeruginosa was furtherly explored. Scanning electron microscopy (SEM) experiment were conducted to evaluate the suppression of CHA and MCHA on the formed biofilm of P. aeruginosa. RT-qPCR was used to detect rhlI, lasA, lasB, rhlA, rhlB, and oprL genes in P. aeruginosa. In silico docking study was performed to explore the molecular mechanism of CHA and MCHA. The synergistic effects of CHA with gentamicin were detected on biofilm cell dispersal. Result After treatment of CHA or MCHA, the production of multiple virulence factors, including pyocyanin, proteases, rhamnolipid, and siderophore, and swimming and swarming motilities in P. aeruginosa were inhibited significantly. And our results showed CHA and MCHA could eliminate the formed biofilm of P. aeruginosa. RT-qPCR revealed that CHA and MCHA inhibited the expression of QS related genes in P. aeruginosa. Molecular docking indicated that CHA and MCHA primarily inhibited the RhlI/R system in P. aeruginosa by competing with the cognate signaling molecule C4-HSL.Additionally, CHA exhibited potent synergistic effects with gentamicin on biofilm cell dispersal. Discussion P. aeruginosa is one of the most clinically and epidemiologically important bacteria and a primary cause of catheter-related urinary tract infections and ventilator-associated pneumonia. This study aims to explore whether cinnamoyl hydroxamates have inhibitory effects on QS. And our results indicate that CHA and MCHA, as two novel QSIs, offer promising potential for treating P. aeruginosa infections and reducing its virulence.
Collapse
Affiliation(s)
- Deng Pan
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Hua Wu
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jun-Jian Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Bo Wang
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Ai-Qun Jia
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
8
|
Zheng MZ, Chen WX, Zhao YX, Fang Q, Wang LG, Tian SY, Shi YG, Chen JS. Ascorbic acid potentiates photodynamic inactivation mediated by octyl gallate and blue light for rapid eradication of planktonic bacteria and biofilms. Food Chem 2024; 448:139073. [PMID: 38574713 DOI: 10.1016/j.foodchem.2024.139073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 03/07/2024] [Accepted: 03/16/2024] [Indexed: 04/06/2024]
Abstract
This study reported for the first time that Ascorbic acid (AA) could appreciably boost the efficiency of Octyl gallate (OG)-mediated photodynamic inactivation (PDI) on Escherichia coli and Staphylococcus aureus in planktonic and biofilm states. The combination of OG (0.075 mM) and AA (200 mM) with 420 nm blue light (212 mW/cm2) led to a >6 Log killing within only 5 min for E. coli and S. aureus and rapid eradication of biofilms. The mechanism of action appears to be the generation of highly toxic hydroxyl radicals (•OH) via photochemical pathways. OG was exposed to BL irradiation to generate various reactive oxygen radicals (ROS) and the addition of AA could transform singlet oxygen (1O2) into hydrogen peroxide (H2O2), which could further react with AA to generate enormous •OH. These ROS jeopardized bacteria and biofilms by nonspecifically attacking various biomacromolecules. Overall, this PDI strategy provides a powerful microbiological decontamination modality to guarantee safe food products.
Collapse
Affiliation(s)
- Mei-Zhi Zheng
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Wen-Xuan Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Yue-Xin Zhao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Qiang Fang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Ling-Gang Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Shi-Yi Tian
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Yu-Gang Shi
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China.
| | - Jian-She Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| |
Collapse
|
9
|
Wang J, Yang JY, Durairaj P, Wen WH, Sabapathi N, Yang L, Wang B, Jia AQ. Discovery and evaluation of 3-(2-isocyanobenzyl)-1 H-indole derivatives as potential quorum sensing inhibitors for the control of Pseudomonas aeruginosa infections in vitro. RSC Med Chem 2024; 15:d4md00354c. [PMID: 39185452 PMCID: PMC11342129 DOI: 10.1039/d4md00354c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/17/2024] [Indexed: 08/27/2024] Open
Abstract
Quorum sensing (QS) inhibition stands out as an innovative therapeutic strategy for combating infections caused by drug-resistant pathogens. In this study, we assessed the potential of 3-(2-isocyanobenzyl)-1H-indole derivatives as novel quorum sensing inhibitors (QSIs). Initial screenings of their QS inhibitory activities were conducted against Pseudomonas aeruginosa PAO1 and Chromobacterium violaceum CV026. Notably, six 3-(2-isocyanobenzyl)-1H-indole derivatives (4, 12, 25, 28, 32, and 33) exhibited promising QS, biofilms, and pyocyanin inhibitory activities under minimum inhibitory concentrations (MICs) against P. aeruginosa PAO1. Among them, 3-(2-isocyano-6-methylbenzyl)-1H-indole (IMBI, 32) emerged as the most promising candidate, demonstrating superior biofilm and pyocyanin inhibition. Further comprehensive studies revealed that derivative 32 at 25 μg mL-1 inhibited biofilm formation by 70% against P. aeruginosa PAO1, as confirmed by scanning electron microscopy (SEM). Additionally, derivative 32 substantially increased the susceptibility of mature biofilms, leading to a 57% destruction of biofilm architecture. In terms of interfering with virulence factors in P. aeruginosa PAO1, derivative 32 (25 μg mL-1) displayed remarkable inhibitory effects on pyocyanin, protease, and extracellular polysaccharides (EPS) by 73%, 51%, and 37%, respectively, exceeding the positive control resveratrol (RSV). Derivative 32 at 25 μg mL-1 also exhibited effective inhibition of swimming and swarming motilities. Moreover, it downregulated the expressions of QS-related genes, including lasI, lasR, rhlI, rhlR, pqsR, sdhB, sucD, sodB, and PA5439, by 1.82- to 10.87-fold. Molecular docking, molecular dynamics simulations (MD), and energy calculations further supported the stable binding of 32 to LasR, RhlI, RhlR, EsaL, and PqsR antagonizing the expression of QS-linked traits. Evaluation of the toxicity of derivative 32 on HEK293T cells via CCK-8 assay demonstrated low cytotoxicity. Overall, this study underscores the efficacy of derivative 32 in inhibiting virulence factors in P. aeruginosa. Derivative 32 emerges as a potential QSI for controlling P. aeruginosa PAO1 infections in vitro and an anti-biofilm agent for restoring or enhancing drug sensitivity in drug-resistant pathogens.
Collapse
Affiliation(s)
- Jiang Wang
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University Haikou 570311 China +86 898 68622476
| | - Jing-Yi Yang
- Hainan Branch, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University Sanya 572022 China
| | - Pradeepraj Durairaj
- Center for Translational Research, Shenzhen Bay Laboratory Shenzhen 518132 China
- FAMU-FSU College of Engineering, National High Magnetic Field Laboratory, Florida State University Tallahassee Florida 32310 USA
| | - Wei-Huan Wen
- Center for Translational Research, Shenzhen Bay Laboratory Shenzhen 518132 China
| | - Nadana Sabapathi
- Center for Translational Research, Shenzhen Bay Laboratory Shenzhen 518132 China
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology Shenzhen 518055 China
| | - Bo Wang
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University Haikou 570311 China +86 898 68622476
| | - Ai-Qun Jia
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University Haikou 570311 China +86 898 68622476
| |
Collapse
|
10
|
Du J, Li J, Wen J, Liu J, Xiao H, Zhang A, Yang D, Sun P, Zhou H, Xu J. A Systematic Hierarchical Virtual Screening Model for RhlR Inhibitors Based on PCA, Pharmacophore, Docking, and Molecular Dynamics. Int J Mol Sci 2024; 25:8000. [PMID: 39063243 PMCID: PMC11276863 DOI: 10.3390/ijms25148000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
RhlR plays a key role in the quorum sensing of Pseudomonas aeruginosa. The current structure-activity relationship (SAR) studies of RhlR inhibitors mainly focus on elucidating the functional groups. Based on a systematic review of previous research on RhlR inhibitors, this study aims to establish a systematic, hierarchical screening model for RhlR inhibitors. We initially established a database and utilized principal component analysis (PCA) to categorize the inhibitors into two classes. Based on the training set, pharmacophore models were established to elucidate the structural characteristics of ligands. Subsequently, molecular docking, molecular dynamics simulations, and the calculation of binding free energy and strain energy were performed to validate the crucial interactions between ligands and receptors. Then, the screening criteria for RhlR inhibitors were established hierarchically based on ligand structure characteristics, ligand-receptor interaction, and receptor affinity. Test sets were finally employed to validate the hierarchical virtual screening model by comparing it with the current SAR studies of RhlR inhibitors. The hierarchical screening model was confirmed to possess higher accuracy and a true positive rate, which holds promise for subsequent screening and the discovery of active RhlR inhibitors.
Collapse
Affiliation(s)
- Jiarui Du
- College of Pharmacy, Jinan University, Guangzhou 511436, China; (J.D.); (J.L.); (J.W.); (J.L.); (H.X.); (A.Z.); (D.Y.); (P.S.)
| | - Jiahao Li
- College of Pharmacy, Jinan University, Guangzhou 511436, China; (J.D.); (J.L.); (J.W.); (J.L.); (H.X.); (A.Z.); (D.Y.); (P.S.)
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Juqi Wen
- College of Pharmacy, Jinan University, Guangzhou 511436, China; (J.D.); (J.L.); (J.W.); (J.L.); (H.X.); (A.Z.); (D.Y.); (P.S.)
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Jun Liu
- College of Pharmacy, Jinan University, Guangzhou 511436, China; (J.D.); (J.L.); (J.W.); (J.L.); (H.X.); (A.Z.); (D.Y.); (P.S.)
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Haichuan Xiao
- College of Pharmacy, Jinan University, Guangzhou 511436, China; (J.D.); (J.L.); (J.W.); (J.L.); (H.X.); (A.Z.); (D.Y.); (P.S.)
| | - Antian Zhang
- College of Pharmacy, Jinan University, Guangzhou 511436, China; (J.D.); (J.L.); (J.W.); (J.L.); (H.X.); (A.Z.); (D.Y.); (P.S.)
| | - Dongdong Yang
- College of Pharmacy, Jinan University, Guangzhou 511436, China; (J.D.); (J.L.); (J.W.); (J.L.); (H.X.); (A.Z.); (D.Y.); (P.S.)
| | - Pinghua Sun
- College of Pharmacy, Jinan University, Guangzhou 511436, China; (J.D.); (J.L.); (J.W.); (J.L.); (H.X.); (A.Z.); (D.Y.); (P.S.)
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832003, China
| | - Haibo Zhou
- College of Pharmacy, Jinan University, Guangzhou 511436, China; (J.D.); (J.L.); (J.W.); (J.L.); (H.X.); (A.Z.); (D.Y.); (P.S.)
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Jun Xu
- College of Pharmacy, Jinan University, Guangzhou 511436, China; (J.D.); (J.L.); (J.W.); (J.L.); (H.X.); (A.Z.); (D.Y.); (P.S.)
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| |
Collapse
|
11
|
Arrigoni R, Ballini A, Jirillo E, Santacroce L. Current View on Major Natural Compounds Endowed with Antibacterial and Antiviral Effects. Antibiotics (Basel) 2024; 13:603. [PMID: 39061285 PMCID: PMC11274329 DOI: 10.3390/antibiotics13070603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Nowadays, infectious diseases of bacterial and viral origins represent a serious medical problem worldwide. In fact, the development of antibiotic resistance is responsible for the emergence of bacterial strains that are refractory even to new classes of antibiotics. Furthermore, the recent COVID-19 pandemic suggests that new viruses can emerge and spread all over the world. The increase in infectious diseases depends on multiple factors, including malnutrition, massive migration of population from developing to industrialized areas, and alteration of the human microbiota. Alternative treatments to conventional antibiotics and antiviral drugs have intensively been explored. In this regard, plants and marine organisms represent an immense source of products, such as polyphenols, alkaloids, lanthipeptides, and terpenoids, which possess antibacterial and antiviral activities. Their main mechanisms of action involve modifications of bacterial cell membranes, with the formation of pores, the release of cellular content, and the inhibition of bacterial adherence to host cells, as well as of the efflux pump. Natural antivirals can interfere with viral replication and spreading, protecting the host with the enhanced production of interferon. Of note, these antivirals are not free of side effects, and their administration to humans needs more research in terms of safety. Preclinical research with natural antibacterial and antiviral compounds confirms their effects against bacteria and viruses, but there are still only a few clinical trials. Therefore, their full exploitation and more intensive clinical studies represent the next steps to be pursued in this area of medicine.
Collapse
Affiliation(s)
- Roberto Arrigoni
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), 70124 Bari, Italy
| | - Andrea Ballini
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Emilio Jirillo
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Luigi Santacroce
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| |
Collapse
|
12
|
Kyei L, Piedl K, Menegatti C, Miller EM, Mevers E. Discovery of Biofilm Inhibitors from the Microbiota of Marine Egg Masses. JOURNAL OF NATURAL PRODUCTS 2024; 87:1635-1642. [PMID: 38814458 PMCID: PMC11217947 DOI: 10.1021/acs.jnatprod.4c00376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/31/2024]
Abstract
Biofilms commonly develop in immunocompromised patients, which leads to persistent infections that are difficult to treat. In the biofilm state, bacteria are protected against both antibiotics and the host's immune system; currently, there are no therapeutics that target biofilms. In this study, we screened a chemical fraction library representing the natural product capacity of the microbiota of marine egg masses, namely, the moon snail egg collars. This led to the identification of active fractions targeting both Pseudomonas aeruginosa and Staphylococcus aureus biofilms. Subsequent analysis revealed that a subset of these fractions were capable of eradicating preformed biofilms, all against S. aureus. Bioassay-guided isolation led us to identify pseudochelin A, a known siderophore, as a S. aureus biofilm inhibitor with an IC50 of 88.5 μM. Mass spectrometry-based metabolomic analyses revealed widespread production of pseudochelin A among fractions possessing S. aureus antibiofilm properties. In addition, a key biosynthetic gene involved in producing pseudochelin A was detected on 30% of the moon snail egg collars and pseudochelin A is capable of inhibiting the formation of biofilms (IC50 50.6 μM) produced by ecologically relevant bacterial strains. We propose that pseudochelin A may have a role in shaping the microbiome or protecting the egg collars from microbiofouling.
Collapse
Affiliation(s)
- Lois Kyei
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Karla Piedl
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Carla Menegatti
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Eleanor M. Miller
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Emily Mevers
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
13
|
Shah SD, Patel H, Saiyad SM, Bajpai B. Effect of a phthalate derivative purified from Bacillus zhangzhouensis SK4 on quorum sensing regulated virulence factors of Pseudomonas aeruginosa. Microb Pathog 2024; 191:106664. [PMID: 38679245 DOI: 10.1016/j.micpath.2024.106664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/21/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Pseudomonas aeruginosa causes life-threatening diseases and is resistant to almost all conventional antibiotics. The quorum sensing (QS) system of P. aeruginosa contributes to many pathogenic factors some of which are pigment production, motility, and biofilm. The disruption of quorum sensing system may be an impactful strategy to deal with infections. The present study investigates the anti-quorum sensing property of a bioactive molecule extracted from marine epibiotic bacteria present on the surface of seaweeds. Among all the isolates tested against monitor strain Chromobacterium violaceum (MTCC 2656), the one with the highest activity was identified as Bacillus zhangzhouensis SK4. The culture supernatant was extracted with chloroform which was then partially purified by TLC and column chromatography. The probable anti-QS compound was identified as 1,2-benzenedicarboxylic acid, bis (2-methylpropyl ester) by GC-MS and NMR analysis. The treatment of P. aeruginosa MCC 3457 with the lead compound resulted in the reduced production of pyocyanin, rhamnolipids, exopolysaccharide, biofilm, and motility. The observations of light and scanning electron microscopy also supported the biofilm inhibition. The lead compound showed synergism with the meropenem antibiotic and significantly reduced MIC. The molecular docking and pharmacokinetics study predicted 1, 2-benzenedicarboxylic acid, bis (2-methylpropyl ester), a phthalate derivative as a good drug candidate. The molecular dynamics study was also performed to check the stability of the lead compound and LasR complex. Further, lead compounds did not exhibit any cytotoxicity when tested on human embryonic kidney cells. As per our knowledge, this is the first report on the anti-QS activity of B. zhangzhouensis SK4, indicating that epibiotic bacteria can be a possible source of novel compounds to deal with the multidrug resistance phenomenon.
Collapse
Affiliation(s)
- Siddhi D Shah
- Ashok & Rita Patel Institute of Integrated Study and Research in Biotechnology and Allied Sciences (ARIBAS), The CVM University, Vallabh Vidyanagar, Anand, 388121, Gujarat, India.
| | - Harsh Patel
- Ashok & Rita Patel Institute of Integrated Study and Research in Biotechnology and Allied Sciences (ARIBAS), The CVM University, Vallabh Vidyanagar, Anand, 388121, Gujarat, India.
| | - Saklain Mustak Saiyad
- Ashok & Rita Patel Institute of Integrated Study and Research in Biotechnology and Allied Sciences (ARIBAS), The CVM University, Vallabh Vidyanagar, Anand, 388121, Gujarat, India.
| | - Bhakti Bajpai
- Ashok & Rita Patel Institute of Integrated Study and Research in Biotechnology and Allied Sciences (ARIBAS), The CVM University, Vallabh Vidyanagar, Anand, 388121, Gujarat, India.
| |
Collapse
|
14
|
Kadirvelu L, Sivaramalingam SS, Jothivel D, Chithiraiselvan DD, Karaiyagowder Govindarajan D, Kandaswamy K. A review on antimicrobial strategies in mitigating biofilm-associated infections on medical implants. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 6:100231. [PMID: 38510214 PMCID: PMC10951465 DOI: 10.1016/j.crmicr.2024.100231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
Biomedical implants are crucial in providing support and functionality to patients with missing or defective body parts. However, implants carry an inherent risk of bacterial infections that are biofilm-associated and lead to significant complications. These infections often result in implant failure, requiring replacement by surgical restoration. Given these complications, it is crucial to study the biofilm formation mechanism on various biomedical implants that will help prevent implant failures. Therefore, this comprehensive review explores various types of implants (e.g., dental implant, orthopedic implant, tracheal stent, breast implant, central venous catheter, cochlear implant, urinary catheter, intraocular lens, and heart valve) and medical devices (hemodialyzer and pacemaker) in use. In addition, the mechanism of biofilm formation on those implants, and their pathogenesis were discussed. Furthermore, this article critically reviews various approaches in combating implant-associated infections, with a special emphasis on novel non-antibiotic alternatives to mitigate biofilm infections.
Collapse
Affiliation(s)
- Lohita Kadirvelu
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | - Sowmiya Sri Sivaramalingam
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | - Deepsikha Jothivel
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | - Dhivia Dharshika Chithiraiselvan
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | | | - Kumaravel Kandaswamy
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| |
Collapse
|
15
|
Elfaky MA. Unveiling the hidden language of bacteria: anti-quorum sensing strategies for gram-negative bacteria infection control. Arch Microbiol 2024; 206:124. [PMID: 38409503 DOI: 10.1007/s00203-024-03900-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/04/2024] [Accepted: 02/16/2024] [Indexed: 02/28/2024]
Abstract
Quorum sensing (QS) is a communication mechanism employed by many bacteria to regulate gene expression in a population density-dependent manner. It plays a crucial role in coordinating various bacterial behaviors, including biofilm formation, virulence factor production, and antibiotic resistance. However, the dysregulation of QS can lead to detrimental effects, making it an attractive target for developing novel therapeutic strategies. Anti-QS approaches aim to interfere with QS signaling pathways, inhibiting the communication between bacteria, and disrupting their coordinated activities. Various strategies have been explored to achieve this goal. Advances in understanding QS mechanisms and the discovery of new targets have paved the way for the development of innovative anti-QS approaches. Combining multiple anti-QS strategies or utilizing them in combination with traditional antibiotics holds great promise for combating bacterial infections and addressing the challenges posed by antibiotic resistance. Anti-QS approaches offer a diverse range of strategies including natural compounds, antibody-mediated quorum quenching (QQ), computer-aided drug design for QQ, repurposing of Drugs approved by FDA as anti-QS agents and modulating quorum-sensing molecules which were discussed in detail in this review. This review, comprehensively and for the first time, sheds light on the significance of diverse anti-QS strategies in solving antimicrobial resistance problem in Gram-negative microbial infection.
Collapse
Affiliation(s)
- Mahmoud A Elfaky
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| |
Collapse
|
16
|
Xu Y, Bao L, Cao S, Pang B, Zhang J, Zhang Y, Chen M, Wang Y, Sun Q, Zhao R, Guo S, Sun J, Cui X. Pharmacological effects and mechanism of Maxing Shigan decoction in the treatment of Pseudomonas aeruginosa pneumonia. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117424. [PMID: 37984543 DOI: 10.1016/j.jep.2023.117424] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/05/2023] [Accepted: 11/11/2023] [Indexed: 11/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Maxing Shigan Decoction (MXSG) is a traditional Chinese Medicine effectively used in respiratory infections and bacterial pneumonia. However, the mechanism of MXSG treating acute Pseudomonas aeruginosa (P. aeruginosa) pneumonia is still unclear. AIM OF THE STUDY This study aimed to investigate the therapeutic effects of MXSG on acute P. aeruginosa pneumonia and explore its potential mechanisms. MATERIALS AND METHODS HPLC-MS analysis was performed to analyze the chemical composition. Antibacterial effects in vitro were evaluated by minimum inhibitory concentration (MIC). Forty-five male BALB/c mice were divided into control group, model group, levofloxacin group, MXSG-L (7.7 g/kg/d), and MXSG-H group (15.4 g/kg/d). Mice were intranasal instillation with P. aeruginosa to induce acute P. aeruginosa pneumonia model. Levofloxacin and MXSG were administered by oral gavage once a day. After 3 days of treatment, the lung index measurement, micro-CT, arterial blood gas analysis, bacteria load determination, and HE staining were performed. Network pharmacological analysis and transcriptome sequencing were employed to predict the potential mechanisms of MXSG on bacterial pneumonia. The expressions of relating genes were detected by immunofluorescence, Western blot, and RT-PCR. RESULTS In vitro, MIC of P. aeruginosa is greater than 500 mg/mL. In the treatment of acute P. aeruginosa pneumonia model, MXSG significantly improved body weight loss, lung index, and pulmonary lesions. MXSG treatment also reduced the bacterial load and ameliorated oxygen saturation significantly. Transcriptomes, immunofluorescence, Western blot, and RT-PCR analysis showed MXSG treating acute P. aeruginosa pneumonia through the IL-17 signaling pathway and HIF-1α/IL-6/STAT3 signaling pathway. CONCLUSIONS We demonstrated the efficacy and mechanism of MXSG in the treatment of acute P. aeruginosa pneumonia, which provides a scientific basis for its clinical application.
Collapse
Affiliation(s)
- Yingli Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Lei Bao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Shan Cao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Bo Pang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Jingsheng Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Yu Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Mengping Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Yaxin Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Qiyue Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Ronghua Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Shanshan Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Jing Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Xiaolan Cui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
17
|
Xu KZ, Xiang SL, Wang YJ, Wang B, Jia AQ. Methyl gallate isolated from partridge tea (Mallotus oblongifolius (Miq.) Müll.Arg.) inhibits the biofilms and virulence factors of Burkholderia thailandensis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117422. [PMID: 37977424 DOI: 10.1016/j.jep.2023.117422] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/05/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
ETHNOPHARMCOLOGICAL RELEVANCE The formation of biofilms is a factor leading to chronic infection and drug resistance in melioidosis. The production of biofilm formation and many virulence factors are regulated by quorum sensing (QS). Therefore, the discovery of QS inhibitors to reduce antibiotic abuse has attracted a lot of attention. In this case, the methanol extract of a unique ethnic medicinal plant partridge tea (Mallotus oblongifolius (Miq.) Müll.Arg.) and its isolated active compound were used as biofilms and QS inhibitors against Burkholderia thailandensis. AIM OF THE STUDY The purpose of this study is to investigate the anti-biofilm and anti-QS effect of the ethnic medicinal plant partridge tea and its active compounds against B. thailandensis. METHODS Active compound was isolated using classical phytochemical separation techniques under activity tracking. The biofilm and virulence factors (Proteases, lipases, rhamnolipids, and motility) of B. thailandensis were used to evaluate the activity of crude extracts and isolated compounds. RESULTS In this study, the extract of partridge tea and MG had good QS inhibitors activity against B. thailandensis E264. MG was investigated to inhibit QS-related virulence factors and the biofilm formation against B. thailandensis E264. The lipase activity of B. thailandensis E264 decreased by 49.41% at 150 μg/mL. At 75 μg/mL and 150 μg/mL, the erasion of mature biofilms reached 28.18% and 70.87%, respectively. Correspondingly, 150 μg/mL MG could significantly decrease btaR1 and btaR3 by 55.78% and 56.24%, respectively. Contradictorily, the rhamnolipid production of B. thailandensis E264 was 1.67 folds that of the control group at 150 μg/mL MG. CONCLUSION Through molecular docking analysis and biological phenotype data, we speculate that MG may inhibit the biofilms and virulence factors of B. thailandensis E264 by interfering two QS systems, BtaI1/R1 and BtaI3/R3. Therefore, MG should be one potential QSI for the treatment of Burkholderia pathogens.
Collapse
Affiliation(s)
- Kai-Zhong Xu
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China; Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Shi-Liang Xiang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Ying-Jie Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Bo Wang
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China
| | - Ai-Qun Jia
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China; Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China.
| |
Collapse
|
18
|
Barone S, Mateu B, Turco L, Pelliccia S, Lembo F, Summa V, Buommino E, Brindisi M. Unveiling the modulation of Pseudomonas aeruginosa virulence and biofilm formation by selective histone deacetylase 6 inhibitors. Front Microbiol 2024; 15:1340585. [PMID: 38371939 PMCID: PMC10869609 DOI: 10.3389/fmicb.2024.1340585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/10/2024] [Indexed: 02/20/2024] Open
Abstract
Bacterial infections represent a key public health issue due to the occurrence of multidrug-resistant bacteria. Recently, the amount of data supporting the dynamic control of epigenetic pathways by environmental cues has triggered research efforts toward the clarification of their role in microbial infections. Among protein post-translational modifications, reversible acetylation is the most implicated in the feedback to environmental stimuli and in cellular homeostasis. Accordingly, the latest studies identified the histone deacetylase 6 (HDAC6) enzyme as a crucial player in the complex molecular machinery underlying bacterial clearance or killing. A very important milestone for the elucidation of the consequence of HDAC6 activity in bacterial infections is herein described, unveiling for the first time the role of a potent HDAC6 inhibitor in interfering with biofilm formation and modulating virulence factors of P. aeruginosa. We demonstrated that compound F2F-2020202 affected the production of some important virulence factors in P. aeruginosa, namely pyocyanin and rhamnolipids, clearly impairing its ability to form biofilm. Furthermore, evidence of possible QS involvement is supported by differential regulation of specific genes, namely RhlI, phAz1, and qsrO. The data herein obtained also complement and in part explain our previous results with selective HDAC6 inhibitors able to reduce inflammation and bacterial load in chronic infection models recapitulating the cystic fibrosis (CF) phenotype. This study fosters future in-depth investigation to allow the complete elucidation of the molecular mechanisms underlying HDAC6's role in bacterial infections.
Collapse
Affiliation(s)
- Simona Barone
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Baptiste Mateu
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Luigia Turco
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Sveva Pelliccia
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Francesca Lembo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Vincenzo Summa
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | | |
Collapse
|
19
|
Cao X, Cheng XW, Liu YY, Dai HW, Gan RY. Inhibition of pathogenic microbes in oral infectious diseases by natural products: Sources, mechanisms, and challenges. Microbiol Res 2024; 279:127548. [PMID: 38016378 DOI: 10.1016/j.micres.2023.127548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/31/2023] [Accepted: 11/10/2023] [Indexed: 11/30/2023]
Abstract
The maintenance of oral health is of utmost importance for an individual's holistic well-being and standard of living. Within the oral cavity, symbiotic microorganisms actively safeguard themselves against potential foreign diseases by upholding a multifaceted equilibrium. Nevertheless, the occurrence of an imbalance can give rise to a range of oral infectious ailments, such as dental caries, periodontitis, and oral candidiasis. Presently, clinical interventions encompass the physical elimination of pathogens and the administration of antibiotics to regulate bacterial and fungal infections. Given the limitations of various antimicrobial drugs frequently employed in dental practice, the rising incidence of oral inflammation, and the escalating bacterial resistance to antibiotics, it is imperative to explore alternative remedies that are dependable, efficacious, and affordable for the prevention and management of oral infectious ailments. There is an increasing interest in the creation of novel antimicrobial agents derived from natural sources, which possess attributes such as safety, cost-effectiveness, and minimal adverse effects. This review provides a comprehensive overview of the impact of natural products on the development and progression of oral infectious diseases. Specifically, these products exert their influences by mitigating dental biofilm formation, impeding the proliferation of oral pathogens, and hindering bacterial adhesion to tooth surfaces. The review also encompasses an examination of the various classes of natural products, their antimicrobial mechanisms, and their potential therapeutic applications and limitations in the context of oral infections. The insights garnered from this review can support the promising application of natural products as viable therapeutic options for managing oral infectious diseases.
Collapse
Affiliation(s)
- Xin Cao
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Xing-Wang Cheng
- Center for Joint Surgery, Department of Orthopedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yin-Ying Liu
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A⁎STAR), 31 Biopolis Way, Singapore 138669, Singapore; Department of Food Science and Technology, Faculty of Science, National University of Singapore, 2 Science Drive 2, Singapore 117542, Singapore
| | - Hong-Wei Dai
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Ren-You Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A⁎STAR), 31 Biopolis Way, Singapore 138669, Singapore; Department of Food Science and Technology, Faculty of Science, National University of Singapore, 2 Science Drive 2, Singapore 117542, Singapore.
| |
Collapse
|
20
|
Elkhalifa ME, Ashraf M, Ahmed A, Usman A, Hamdoon AA, Elawad MA, Almalki MG, Mosa OF, Niyazov LN, Ayaz M. Polyphenols and their nanoformulations as potential antibiofilm agents against multidrug-resistant pathogens. Future Microbiol 2024; 19:255-279. [PMID: 38305223 DOI: 10.2217/fmb-2023-0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/13/2023] [Indexed: 02/03/2024] Open
Abstract
The emergence of multidrug-resistant (MDR) pathogens is a major problem in the therapeutic management of infectious diseases. Among the bacterial resistance mechanisms is the development of an enveloped protein and polysaccharide-hydrated matrix called a biofilm. Polyphenolics have demonstrated beneficial antibacterial effects. Phenolic compounds mediate their antibiofilm effects via disruption of the bacterial membrane, deprivation of substrate, protein binding, binding to adhesion complex, viral fusion blockage and interactions with eukaryotic DNA. However, these compounds have limitations of chemical instability, low bioavailability, poor water solubility and short half-lives. Nanoformulations offer a promising solution to overcome these challenges by enhancing their antibacterial potential. This review summarizes the antibiofilm role of polyphenolics, their underlying mechanisms and their potential role as resistance-modifying agents.
Collapse
Affiliation(s)
- Modawy Em Elkhalifa
- Public Health Department, Health Sciences College at Al-Leith, Umm Al-Qura University, Al leith, KSA
- Faculty of Public and Environmental Health, University of Khartoum, Khartoum, Sudan
| | - Muhammad Ashraf
- Department of Pharmacy, University of Malakand, Chakdara, Dir (L), KP, 18800, Pakistan
| | - Alshebli Ahmed
- Public Health Department, Health Sciences College at Al-Leith, Umm Al-Qura University, Al leith, KSA
- Faculty of Public and Environmental Health, University of Khartoum, Khartoum, Sudan
| | - Assad Usman
- Department of Pharmacy, University of Malakand, Chakdara, Dir (L), KP, 18800, Pakistan
| | - Alashary Ae Hamdoon
- Public Health Department, Health Sciences College at Al-Leith, Umm Al-Qura University, Al leith, KSA
- Faculty of Public and Environmental Health, University of Khartoum, Khartoum, Sudan
| | - Mohammed A Elawad
- Public Health Department, Health Sciences College at Al-Leith, Umm Al-Qura University, Al leith, KSA
- Faculty of Public and Environmental Health, University of Khartoum, Khartoum, Sudan
| | - Meshari G Almalki
- Public Health Department, Health Sciences College at Al-Leith, Umm Al-Qura University, Al leith, KSA
| | - Osama F Mosa
- Public Health Department, Health Sciences College at Al-Leith, Umm Al-Qura University, Al leith, KSA
| | - Laziz N Niyazov
- Medical Chemistry Department, Bukhara State Medical Institute Named After Abu Ali Ibn Sino, Bukhara, Uzbekistan
| | - Muhammad Ayaz
- Department of Pharmacy, University of Malakand, Chakdara, Dir (L), KP, 18800, Pakistan
| |
Collapse
|
21
|
Alasiri A, Soltane R, Taha MN, Abd El-Aleam RH, Alshehri F, Sayed AM. Bakuchiol inhibits Pseudomonas aeruginosa's quorum sensing-dependent biofilm formation by selectively inhibiting its transcriptional activator protein LasR. Int J Biol Macromol 2024; 255:128025. [PMID: 37979739 DOI: 10.1016/j.ijbiomac.2023.128025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/26/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
In the present study, we characterized Bakuchiol (Bak) as a new potent quorum sensing (QS) inhibitor against Pseudomonas aeruginosa biofilm formation. Upon extensive in vitro investigations, Bak was found to suppress the P. aeruginosa biofilm formation (75.5 % inhibition) and its associated virulence factor e.g., pyocyanin and rhamnolipids (% of inhibition = 71.5 % and 66.9 %, respectively). Upon LuxR-type receptors assay, Bak was found to selectively inhibit P. aeruginosa's LasR in a dose-dependent manner. Further in-depth molecular investigations (e.g., sedimentation velocity and thermal shift assays) revealed that Bak destabilized LasR upon binding and disrupted its functioning quaternary structure (i.e., the functioning dimeric form). The subsequent modeling and molecular dynamics (MD) simulations explained in more molecular detail how Bak interacts with LasR and how it can induce its dimeric form disruption. In conclusion, our study identified Bak as a potent and specific LasR antagonist that should be widely used as a chemical probe of QS in P. aeruginosa, offering new insights into LasR antagonism processes. The new findings shed light on the cryptic world of LuxR-type QS in this important opportunistic pathogen.
Collapse
Affiliation(s)
- Ahlam Alasiri
- Department of Biology, Adham University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| | - Raya Soltane
- Department of Biology, Adham University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| | - Mostafa N Taha
- Microbiology and Immunology Department, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt.
| | - Rehab H Abd El-Aleam
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Modern University for Technology and Information MTI, Cairo 11571, Egypt.
| | - Fatma Alshehri
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Ahmed M Sayed
- Pharmacognosy Department, Faculty of Pharmacy, Nahda University, Beni Suef, Egypt; Department of Pharmacognosy, College of Pharmacy, Almaaqal University, 61014 Basra, Iraq.
| |
Collapse
|
22
|
Chadha J, Khullar L, Gulati P, Chhibber S, Harjai K. Repurposing albendazole as a potent inhibitor of quorum sensing-regulated virulence factors in Pseudomonas aeruginosa: Novel prospects of a classical drug. Microb Pathog 2024; 186:106468. [PMID: 38036112 DOI: 10.1016/j.micpath.2023.106468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023]
Abstract
Pseudomonas aeruginosa has emerged as a critical superbug that poses a serious threat to public health. Owing to its virulence and multidrug resistance profiles, the pathogen demands immediate attention for devising alternate intervention strategies. In an attempt to repurpose drugs against P. aeruginosa, this preclinical study was aimed at investigating the antivirulence prospects of albendazole (AbZ), an FDA-approved anti-helminthic drug, recently predicted to disrupt quorum sensing (QS) in Chromobacterium violaceum. AbZ was scrutinized for its quorum quenching (QQ) prospects, effect on bacterial virulence, different motility phenotypes, and biofilm formation in vitro. Additionally, in silico analysis was employed to predict the molecular interactions between AbZ and QS receptors. At sub-inhibitory levels, AbZ demonstrated anti-QS activity and significantly abrogated AHL biosynthesis in P. aeruginosa. Moreover, AbZ significantly downregulated the transcript levels of QS- (lasI/lasR, rhlI/rhlR, and pqsA/pqsR) and QS-dependent virulence (aprA, lasA, lasB, plcH, and toxA) genes in P. aeruginosa. This coincided with reduced hemolysin, alginate, pyocyanin, rhamnolipids, total protease, and elastase production, thereby lowering phenotypic virulence. Molecular docking with AbZ further revealed strong associations and high binding energies with LasR (-8.8 kcal/mol), RhlR (-6.5 kcal/mol), and PqsR (-6.3 kcal/mol) receptors. AbZ also impeded bacterial motility and abolished EPS production, severely compromising pseudomonal biofilm formation. For the first time, AbZ was shown to interfere with QS circuitry and consequently disarming pseudomonal virulence. Hence, AbZ can be exploited for its antivirulence properties against P. aeruginosa.
Collapse
Affiliation(s)
- Jatin Chadha
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Lavanya Khullar
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Pallavi Gulati
- RLA College, University of Delhi (South Campus), New Delhi, India
| | - Sanjay Chhibber
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Kusum Harjai
- Department of Microbiology, Panjab University, Chandigarh, India.
| |
Collapse
|
23
|
Doesburg-van Kleffens M, Zimmermann-Klemd AM, Gründemann C. An Overview on the Hallucinogenic Peyote and Its Alkaloid Mescaline: The Importance of Context, Ceremony and Culture. Molecules 2023; 28:7942. [PMID: 38138432 PMCID: PMC10746114 DOI: 10.3390/molecules28247942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/27/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Peyote (Lophophora williamsii) is a cactus that contains various biologically active alkaloids-such as pellotine, anhalonidine, hordenine and mescaline. Here, mescaline induces the psychoactive effects of peyote through the activation of the serotonin 5-HT2A receptor and the subsequent release of calcium (Ca2+) from the endoplasmic reticulum (ER). Moreover, an evaluation of the therapeutic benefits of mescaline is also currently the subject of research. It is important to consider that the outcome of taking a psychedelic drug strongly depends on the mindset of the recipient and the context (set and setting principle), including ceremonies and culture. This overview serves to summarise the current state of the knowledge of the metabolism, mechanism of action and clinical application studies of peyote and mescaline. Furthermore, the benefits of the potential of peyote and mescaline are presented in a new light, setting an example for combining a form of treatment embedded in nature and ritually enriched with our current highly innovative Western medicine.
Collapse
|
24
|
Yin L, Wang Y, Xiang S, Xu K, Wang B, Jia AQ. Tyramine, one quorum sensing inhibitor, reduces pathogenicity and restores tetracycline susceptibility in Burkholderia cenocepacia. Biochem Pharmacol 2023; 218:115906. [PMID: 37951366 DOI: 10.1016/j.bcp.2023.115906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/22/2023] [Accepted: 11/01/2023] [Indexed: 11/14/2023]
Abstract
Burkholderia cenocepacia is an opportunistic respiratory pathogen of particular relevance to patients with cystic fibrosis (CF), primarily regulating its biological functions and virulence factors through two quorum sensing (QS) systems (CepI/R and CciI/R). The highly persistent incidence of multidrug resistant Burkholderia cenocepacia poses a global threat to public health. In this study, we investigated the effects of tyramine, one biogenic amine, on the QS systems of Burkholderia cenocepacia. Genetic and biochemical analyses revealed that tyramine inhibited the production of N-hexanoyl-homoserine (AHL) signaling molecules (C8-HSL and C6-HSL) by blocking the CepI/R and CciI/R systems. As a result, the inhibition of QS systems leads to reduced production of various virulence factors, such as biofilm formation, extracellular polysaccharides, lipase, and swarming motility. Notably, as a potential quorum sensing inhibitor, tyramine exhibits low toxicity in vivo in Galleria mellonella larvae and is well characterized by Lipinski's five rules. It also shows high gastrointestinal absorption and the ability to cross the blood-brain barrier according to SwissADME database and ProTox-II server. Additionally, tyramine was found to enhance the efficacy of tetracycline in reducing the infectivity of Burkholderia cenocepacia in Galleria mellonella larvae infection model. Therefore, tyramine could be a promising candidate for combination therapy with traditional antimicrobials to improve their effectiveness against Burkholderia cenocepacia.
Collapse
Affiliation(s)
- Lujun Yin
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, China; Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Yingjie Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Shiliang Xiang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Kaizhong Xu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Bo Wang
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, China
| | - Ai-Qun Jia
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, China.
| |
Collapse
|
25
|
Wang W, Liu JS, Zhou JW, Jia AQ. Synergistic effect of kanamycin and amikacin with setomimycin on biofilm formation inhibition of Listeria monocytogenes. Microb Pathog 2023; 185:106447. [PMID: 37972742 DOI: 10.1016/j.micpath.2023.106447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/12/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Listeria monocytogenes, a foodborne pathogen that causes listeriosis with high fatality rate, exhibits multidrug resistance (MDR) known to be progressively increasing. Alternative antibacterial strategies are in high demand for treating this well-known pathogen. Anti-biofilm and anti-virulence strategies are being explored as novel approaches to treat bacterial infections. In this study, one rare antibacterial named setomimycin was isolated from Streptomyces cyaneochromogenes, which showed potent antibacterial activity against L. monocytogenes. Next, the inhibition of biofilm formation and listeriolysin O (LLO) production against L. monocytogenes were investigated at sub-minimal inhibitory concentrations (sub-MICs) of setomimycin alone or combined with kanamycin and amikacin. Crystal violet staining confirmed that setomimycin combining with kanamycin or amikacin could dramatically reduce biofilm formation against L. monocytogenes at sub-MICs, which was further evaluated by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). In the meantime, sub-MICs of setomimycin could significantly suppress the secretion of LLO. Furthermore, the transcription of genes associated with biofilms and main virulence factors, such as LLO, flagellum, and metalloprotease, were suppressed by setomimycin at sub-MICs. Hence, the study provided a deep insight into setomimycin as an alternative antibacterial agent against L. monocytogenes.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China; Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China
| | - Jun-Sheng Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Jin-Wei Zhou
- School of Food and Biological Engineering, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Ai-Qun Jia
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China.
| |
Collapse
|
26
|
Vetrivel A, Vetrivel P, Dhandapani K, Natchimuthu S, Ramasamy M, Madheswaran S, Murugesan R. Inhibition of biofilm formation, quorum sensing and virulence factor production in Pseudomonas aeruginosa PAO1 by selected LasR inhibitors. Int Microbiol 2023; 26:851-868. [PMID: 36806045 DOI: 10.1007/s10123-023-00338-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/23/2023]
Abstract
The quorum sensing network of Pseudomonas aeruginosa mediates the regulation of genes controlling biofilm formation and virulence factors. The rise of drug resistance to Pseudomonas aeruginosa infections has made quorum sensing-regulated biofilm formation in clinical settings a major issue. In the present study, LasR inhibitors identified in our previous study were evaluated for their antibiofilm and antiquorum sensing activities against P. aeruginosa PAO1. The compounds selected were (3-[2-(3,4-dimethoxyphenyl)-2-(1H-indol-3-yl)ethyl]-1-(2-fluorophenyl)urea) (C1), (3-(4-fluorophenyl)-2-[(3-methylquinoxalin-2-yl)methylsulfanyl]quinazolin-4-one) (C2) and (2-({4-[4-(2-methoxyphenyl)piperazin-1-yl]pyrimidin-2-yl}sulfanyl)-N-(2,4,6-trimethylphenyl)acetamide) (C3). The minimum inhibitory concentrations of C1 and C2 were 1000 μM, whereas that of C3 was 500 μM. At sub-MICs, the compounds showed potent antibiofilm activity without affecting the growth of P. aeruginosa PAO1. Electron microscopy confirmed the disruption of biofilm by the selected compounds. The antiquorum sensing activity of the compounds was revealed by the inhibition of violacein in Chromobacterium violaceum and the inhibition of swimming and swarming motilities in P. aeruginosa PAO1. Furthermore, the compounds also attenuated the production of quorum sensing-mediated virulence factors. The qRT-PCR revealed the downregulation of quorum sensing regulatory genes, namely lasI, lasR, rhlI, rhlR, lasB, pqsA and pqsR. The selected compounds also exhibited lower cytotoxicity against peripheral blood lymphocytes. Thus, this study could pave a way to explore these compounds for the development of therapeutic agent against Pseudomonas aeruginosa biofilm-related infections.
Collapse
Affiliation(s)
- Aishwarya Vetrivel
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India
| | - Preethi Vetrivel
- Department of Pharmacy, National University of Singapore, Singapore 119077, Singapore
| | - Kavitha Dhandapani
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India
| | - Santhi Natchimuthu
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India
| | - Monica Ramasamy
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India
| | - Soundariya Madheswaran
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India
| | - Rajeswari Murugesan
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India.
| |
Collapse
|
27
|
Watkins JL, Li Q, Yeaman S, Facchini PJ. Elucidation of the mescaline biosynthetic pathway in peyote (Lophophora williamsii). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:635-649. [PMID: 37675639 DOI: 10.1111/tpj.16447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/08/2023]
Abstract
Peyote (Lophophora williamsii) is an entheogenic and medicinal cactus native to the Chihuahuan desert. The psychoactive and hallucinogenic properties of peyote are principally attributed to the phenethylamine derivative mescaline. Despite the isolation of mescaline from peyote over 120 years ago, the biosynthetic pathway in the plant has remained undiscovered. Here, we use a transcriptomics and homology-guided gene discovery strategy to elucidate a near-complete biosynthetic pathway from l-tyrosine to mescaline. We identified a cytochrome P450 that catalyzes the 3-hydroxylation of l-tyrosine to l-DOPA, a tyrosine/DOPA decarboxylase yielding dopamine, and four substrate-specific and regiospecific substituted phenethylamine O-methyltransferases. Biochemical assays with recombinant enzymes or functional analyses performed by feeding putative precursors to engineered yeast (Saccharomyces cerevisiae) strains expressing candidate peyote biosynthetic genes were used to determine substrate specificity, which served as the basis for pathway elucidation. Additionally, an N-methyltransferase displaying broad substrate specificity and leading to the production of N-methylated phenethylamine derivatives was identified, which could also function as an early step in the biosynthesis of tetrahydroisoquinoline alkaloids in peyote.
Collapse
Affiliation(s)
- Jacinta L Watkins
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Qiushi Li
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Sam Yeaman
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Peter J Facchini
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|
28
|
Silva E, Teixeira JA, Pereira MO, Rocha CMR, Sousa AM. Evolving biofilm inhibition and eradication in clinical settings through plant-based antibiofilm agents. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:154973. [PMID: 37499434 DOI: 10.1016/j.phymed.2023.154973] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/05/2023] [Accepted: 07/15/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND After almost 100 years since evidence of biofilm mode of growth and decades of intensive investigation about their formation, regulatory pathways and mechanisms of antimicrobial tolerance, nowadays there are still no therapeutic solutions to eradicate bacterial biofilms and their biomedical related issues. PURPOSE This review intends to provide a comprehensive summary of the recent and most relevant published studies on plant-based products, or their isolated compounds with antibiofilm activity mechanisms of action or identified molecular targets against bacterial biofilms. The objective is to offer a new perspective of most recent data for clinical researchers aiming to prevent or eliminate biofilm-associated infections caused by bacterial pathogens. METHODS The search was performed considering original research articles published on PubMed, Web of Science and Scopus from 2015 to April 2023, using keywords such as "antibiofilm", "antivirulence", "phytochemicals" and "plant extracts". RESULTS Over 180 articles were considered for this review with a focus on the priority human pathogens listed by World Health Organization, including Pseudomonas aeruginosa, Staphylococcus aureus, Klebsiella pneumoniae and Escherichia coli. Inhibition and detachment or dismantling of biofilms formed by these pathogens were found using plant-based extract/products or derivative compounds. Although combination of plant-based products and antibiotics were recorded and discussed, this topic is currently poorly explored and only for a reduced number of bacterial species. CONCLUSIONS This review clearly demonstrates that plant-based products or derivative compounds may be a promising therapeutic strategy to eliminate bacterial biofilms and their associated infections. After thoroughly reviewing the vast amount of research carried out over years, it was concluded that plant-based products are mostly able to prevent biofilm formation through inhibition of quorum sensing signals, but also to disrupt mature biofilms developed by multidrug resistant bacteria targeting the biofilm extracellular polymeric substance. Flavonoids and phenolic compounds seemed the most effective against bacterial biofilms.
Collapse
Affiliation(s)
- Eduarda Silva
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - José A Teixeira
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal; LABBELS - Associate Laboratory, Guimarães, Braga, Portugal
| | - Maria Olivia Pereira
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal; LABBELS - Associate Laboratory, Guimarães, Braga, Portugal
| | - Cristina M R Rocha
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal; LABBELS - Associate Laboratory, Guimarães, Braga, Portugal
| | - Ana Margarida Sousa
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal; LABBELS - Associate Laboratory, Guimarães, Braga, Portugal.
| |
Collapse
|
29
|
Shi YG, Chen WX, Zheng MZ, Zhao YX, Wang YR, Chu YH, Du ST, Shi ZY, Gu Q, Chen JS. Ultraefficient OG-Mediated Photodynamic Inactivation Mechanism for Ablation of Bacteria and Biofilms in Water Augmented by Potassium Iodide under Blue Light Irradiation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13672-13687. [PMID: 37671932 DOI: 10.1021/acs.jafc.3c03182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
While photodynamic inactivation (PDI) has emerged as a novel sterilization strategy for drinking water treatment that recently attracted tremendous attention, its efficiency needs to be further improved. In this study, we aimed to clarify the ultraefficient mechanism by which potassium iodide (KI) potentiates octyl gallate (OG)-mediated PDI against bacteria and biofilms in water. When OG (0.15 mM) and bacteria were exposed to blue light (BL, 420 nm, 210 mW/cm2), complete sterilization (>7.5 Log cfu/mL of killing) was achieved by the addition of KI (250 mM) within only 5 min (63.9 J/cm2). In addition, at lower doses of OG (0.1 mM) with KI (100 mM), the biofilm was completely eradicated within 10 min (127.8 J/cm2). The KI-potentiated mechanism involves in situ rapid photogeneration of a multitude of reactive oxygen species, especially hydroxyl radicals (•OH), reactive iodine species, and new photocytocidal substances (quinone) by multiple photochemical pathways, which led to the destruction of cell membranes and membrane proteins, the cleavage of genomic DNA and extracellular DNA within biofilms, and the degradation of QS signaling molecules. This multitarget synergistic strategy provided new insights into the development of an environmentally friendly, safe, and ultraefficient photodynamic drinking water sterilization technology.
Collapse
Affiliation(s)
- Yu-Gang Shi
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035 Zhejiang, China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310035 Zhejiang, China
| | - Wen-Xuan Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035 Zhejiang, China
| | - Mei-Zhi Zheng
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035 Zhejiang, China
| | - Yue-Xin Zhao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035 Zhejiang, China
| | - Yi-Ran Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035 Zhejiang, China
| | - Yen-Ho Chu
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 62102 Taiwan, China
| | - Shao-Ting Du
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Ze-Yu Shi
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Qing Gu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035 Zhejiang, China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310035 Zhejiang, China
| | - Jian-She Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035 Zhejiang, China
| |
Collapse
|
30
|
Li H, Gao M, Chen Z, Zhou Z, Li W, Zhang X, Jiang X, Luo L, Li F, Wang G, Zhang Y, Huang X, Zhu J, Fan S, Wu X, Huang C. Hordenine improves Parkinsonian-like motor deficits in mice and nematodes by activating dopamine D2 receptor-mediated signaling. Phytother Res 2023; 37:3296-3308. [PMID: 36883794 DOI: 10.1002/ptr.7790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 02/12/2023] [Accepted: 02/17/2023] [Indexed: 03/09/2023]
Abstract
Parkinson's disease (PD) is a chronic neurodegenerative disease characterized by selective loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and the striatum, leading to dopamine (DA) deficiency in the striatum and typical motor symptoms. A small molecule as a dietary supplement for PD would be ideal for practical reasons. Hordenine (HOR) is a phenolic phytochemical marketed as a dietary supplement found in cereals and germinated barley, as well as in beer, a widely consumed beverage. This study was aimed to identify HOR as a dopamine D2 receptor (DRD2) agonist in living cells, and investigate the alleviative effect and mechanism of HOR on PD-like motor deficits in mice and nematodes. Our results firstly showed that HOR is an agonist of DRD2, but not DRD1, in living cells. Moreover, HOR could improve the locomotor dysfunction, gait, and postural imbalance in MPTP- or 6-OHDA-induced mice or Caenorhabditis elegans, and prevent α-synuclein accumulation via the DRD2 pathway in C. elegans. Our results suggested that HOR could activate DRD2 to attenuate the PD-like motor deficits, and provide scientific evidence for the safety and reliability of HOR as a dietary supplement.
Collapse
Affiliation(s)
- Hongli Li
- Drug Discovery Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Gao
- Drug Discovery Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ziyu Chen
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhenyu Zhou
- Drug Discovery Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Li
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Physiology, and Institute for Brain Sciences, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiaoyang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Physiology, and Institute for Brain Sciences, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xi Jiang
- Drug Discovery Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lingling Luo
- Drug Discovery Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fei Li
- Drug Discovery Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gaorui Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xingxu Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jingning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Physiology, and Institute for Brain Sciences, School of Life Sciences, Nanjing University, Nanjing, China
| | - Shengjie Fan
- Drug Discovery Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Huang
- Drug Discovery Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
31
|
Hayet S, Ghrayeb M, Azulay DN, Shpilt Z, Tshuva EY, Chai L. Titanium complexes affect Bacillus subtilis biofilm formation. RSC Med Chem 2023; 14:983-991. [PMID: 37252093 PMCID: PMC10211322 DOI: 10.1039/d3md00075c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/01/2023] [Indexed: 05/31/2023] Open
Abstract
Biofilms are surface or interface-associated communities of bacterial cells, embedded in a self-secreted extracellular matrix (ECM). Cells in biofilms are 100-1000 times more resistant to antibiotic treatment relative to planktonic cells due to various reasons, including the ECM acting as a diffusion barrier to antibiotic molecules, the presence of persister cells that divide slowly and are less susceptible to cell-wall targeting drugs, and the activation of efflux pumps in response to antibiotic stress. In this study we tested the effect of two titanium(iv) complexes that have been previously reported as potent and non-toxic anticancer chemotherapeutic agents on Bacillus subtilis cells in culture and in biofilm forming conditions. The Ti(iv) complexes tested, a hexacoordinate diaminobis(phenolato)-bis(alkoxo) complex (phenolaTi) and a bis(isopropoxo) complex of a diaminobis(phenolato) "salan"-type ligand (salanTi), did not affect the growth rate of cells in shaken cultures, however they did affect biofilm formation. Surprisingly, while phenolaTi inhibited biofilm formation, the presence of salanTi induced the formation of more mechanically robust biofilms. Optical microscopy images of biofilm samples in the absence and presence of Ti(iv) complexes suggest that Ti(iv) complexes affect cell-cell and/or cell-matrix adhesion, and that these are interfered with phenolaTi and enhanced by salanTi. Our results highlight the possible effect of Ti(iv) complexes on bacterial biofilms, which is gaining interest in light of the emerging relations between bacteria and cancerous tumors.
Collapse
Affiliation(s)
- Shahar Hayet
- Institute of Chemistry, The Hebrew University of Jerusalem Edmond J. Safra Campus Jerusalem 91904 Israel +972 2 5660425 +972 2 6586084 +972 2 6585303
- The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem Jerusalem Israel
| | - Mnar Ghrayeb
- Institute of Chemistry, The Hebrew University of Jerusalem Edmond J. Safra Campus Jerusalem 91904 Israel +972 2 5660425 +972 2 6586084 +972 2 6585303
- The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem Jerusalem Israel
| | - David N Azulay
- Institute of Chemistry, The Hebrew University of Jerusalem Edmond J. Safra Campus Jerusalem 91904 Israel +972 2 5660425 +972 2 6586084 +972 2 6585303
- The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem Jerusalem Israel
| | - Zohar Shpilt
- Institute of Chemistry, The Hebrew University of Jerusalem Edmond J. Safra Campus Jerusalem 91904 Israel +972 2 5660425 +972 2 6586084 +972 2 6585303
| | - Edit Y Tshuva
- Institute of Chemistry, The Hebrew University of Jerusalem Edmond J. Safra Campus Jerusalem 91904 Israel +972 2 5660425 +972 2 6586084 +972 2 6585303
| | - Liraz Chai
- Institute of Chemistry, The Hebrew University of Jerusalem Edmond J. Safra Campus Jerusalem 91904 Israel +972 2 5660425 +972 2 6586084 +972 2 6585303
- The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem Jerusalem Israel
| |
Collapse
|
32
|
Ahamad Khan M, Lone SA, Shahid M, Zeyad MT, Syed A, Ehtram A, Elgorban AM, Verma M, Danish M. Phytogenically Synthesized Zinc Oxide Nanoparticles (ZnO-NPs) Potentially Inhibit the Bacterial Pathogens: In Vitro Studies. TOXICS 2023; 11:toxics11050452. [PMID: 37235266 DOI: 10.3390/toxics11050452] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023]
Abstract
The usefulness of nanoparticles (NPs) in biological applications, such as nanomedicine, is becoming more widely acknowledged. Zinc oxide nanoparticles (ZnO-NPs) are a type of metal oxide nanoparticle with an extensive use in biomedicine. Here, ZnO-NPs were synthesized using Cassia siamea (L.) leaf extract and characterized using state-of-the-art techniques; UV-vis spectroscopy, XRD, FTIR, and SEM. At sub-minimum inhibitory concentration (MIC) levels, the ability of ZnO@Cs-NPs to suppress quorum-mediated virulence factors and biofilm formation against clinical MDR isolates (Pseudomonas aeruginosa PAO1 and Chromobacterium violaceum MCC-2290) was tested. The ½MIC of ZnO@Cs-NPs reduced violacein production by C. violaceum. Furthermore, ZnO@Cs-NPs sub-MIC significantly inhibited virulence factors such aspyoverdin, pyocyanin, elastase, exoprotease, rhamnolipid, and the swimming motility of P. aeruginosa PAO1 by 76.9, 49.0, 71.1, 53.3, 89.5, and 60%, respectively. Moreover, ZnO@Cs-NPs also showed wide anti-biofilm efficacy, inhibiting a maximum of 67 and 56% biofilms in P. aeruginosa and C. violaceum, respectively. In addition, ZnO@Cs-NPs suppressed extra polymeric substances (EPS) produced by isolates. Additionally, under confocal microscopy, propidium iodide-stained cells of P. aeruginosa and C. violaceum show ZnO@Cs-NP-induced impairment in membrane permeability, revealing strong anti-bacterial efficacy. This research demonstrates that newly synthesized ZnO@Cs-NPs demonstrate a strong efficacy against clinical isolates. In a nutshell, ZnO@Cs-NPs can be used as an alternative therapeutic agent for managing pathogenic infections.
Collapse
Affiliation(s)
- Mo Ahamad Khan
- Department of Microbiology, Jawahar Lal Nehru Medical College (JNMC), Aligarh Muslim University, Aligarh 202002, India
| | - Showkat Ahmad Lone
- Department of Microbiology, Government Medical College, Baramulla 19310, India
| | - Mohammad Shahid
- Department of Agricultural Microbiology, Faculty of Agriculture Science, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Tarique Zeyad
- Department of Agricultural Microbiology, Faculty of Agriculture Science, Aligarh Muslim University, Aligarh 202002, India
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Aquib Ehtram
- La Jolla Institute for Immunology, San Diego, CA 92037, USA
| | - Abdallah M Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Meenakshi Verma
- Centre of Research & Development, Department of Chemistry, Chandigarh University, Mohali 160055, India
| | - Mohammad Danish
- Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
33
|
Zeng L, Lin F, Ling B. Effect of traditional Chinese medicine monomers interfering with quorum-sensing on virulence factors of extensively drug-resistant Acinetobacter baumannii. Front Pharmacol 2023; 14:1135180. [PMID: 37063277 PMCID: PMC10097947 DOI: 10.3389/fphar.2023.1135180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
The antimicrobial resistance of Acinetobacter baumannii (A. baumannii) clinical isolates has emerged as a great threat to public health. Quorum sensing (QS) is one of the resistance mechanisms for drug-resistant A. baumannii. Interfering with QS is a promising strategy to combat infections caused by drug-resistant bacteria. This study explored the QS inhibition ability of thirty-four traditional Chinese medicine monomers (TCMMs) and assessed the effect of QS inhibitors (QSIs) on the virulence factors of twelve extensively drug-resistant A. baumannii (XDRAB) strains. Nine traditional Chinese medicine monomers, such as caffeic acid, cinnamic acid, and myricetin, were found to be able to inhibit the bacterial QS. Then, at 1/8 of the minimal inhibitory concentration, we found that these QSIs inhibited extensively drug-resistant A. baumannii adhesion and biofilm formation and downregulated the expression levels of virulence-associated genes (abaI, abaR, csuE, pgaA, and bap). In conclusion, nine traditional Chinese medicine monomers have QS inhibitory activity and may downregulate QS genes to interfere with the QS system, which could inhibit the expression of extensively drug-resistant A. baumannii virulence factors. These results suggest that traditional Chinese medicine monomers could develop as novel anti-virulence compounds to control extensively drug-resistant A. baumannii infections.
Collapse
Affiliation(s)
- Li Zeng
- School of Pharmacy, Chengdu Medical College, Chengdu, China
- Department of Pharmacy, The Third People’s Hospital of Yibin, Yibin, China
| | - Fei Lin
- Department of Pharmacy, The First Affiliated Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, China
| | - Baodong Ling
- School of Pharmacy, Chengdu Medical College, Chengdu, China
- *Correspondence: Baodong Ling,
| |
Collapse
|
34
|
Wang WQ, Feng XC, Shi HT, Wang YM, Jiang CY, Xiao ZJ, Xu YJ, Zhang X, Yuan Y, Ren NQ. Biofilm inhibition based on controlling the transmembrane transport and extracellular accumulation of quorum sensing signals. ENVIRONMENTAL RESEARCH 2023; 221:115218. [PMID: 36608761 DOI: 10.1016/j.envres.2023.115218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/24/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
The regulation of bacterial quorum sensing (QS) has been used to inhibit biofouling in wastewater treatment plants and the formation of biofilms. In contrast to traditional QS regulation strategies, this study aimed to obstruct the transmembrane transport process of QS signals to decrease their extracellular accumulation. Three phytochemicals, astragaloside IV, eugenol, and baicalin were selected, their effects on biofilm formation by Pseudomonas aeruginosa PA14 were studied, and the mechanisms determined. The inhibition efficiency of biofilm formation by 50 mg/L astragaloside IV, 1 mg/L eugenol, and 1 mg/L baicalin were 37%, 26%, and 26%, respectively. Confocal laser scanning microscopy and analysis of extracellular polymeric substances indicated that the three inhibitors affected the structure and composition of the biofilms. Furthermore, bacterial motility and a variety of QS-related virulence factors were suppressed by the inhibitor treatment due to changes in bacterial QS. Notably, the three inhibitors all decreased the extracellular concentration of the QS signaling molecule 3-oxo-C12-homoseine lactone by affecting the function of efflux pump MexAB-OprM. This indirectly interfered with the bacterial QS system and thus inhibited biofilm formation. In conclusion, this study revealed the inhibitory effects and inhibition mechanism of three phytochemicals on efflux pump and QS of P. aeruginosa and realized the inhibition on biofilm formation. We update the efflux pump inhibitor library and provide a new way for biofilm contamination control.
Collapse
Affiliation(s)
- Wen-Qian Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| | - Xiao-Chi Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China.
| | - Hong-Tao Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| | - Yong-Mei Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| | - Chen-Yi Jiang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| | - Zi-Jie Xiao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| | - Yu-Jie Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| | - Xin Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| | - Yuan Yuan
- College of Biological Engineering, Beijing Polytechnic, Beijing, 10076, PR China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| |
Collapse
|
35
|
Wang X, Yuan W, Sun Z, Liu F, Wang D. Ultrasensitive multicolor electrochromic sensor built on closed bipolar electrode: Application in the visual detection of Pseudomonas aeruginosa. Food Chem 2023; 403:134240. [DOI: 10.1016/j.foodchem.2022.134240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/20/2022] [Accepted: 09/11/2022] [Indexed: 11/15/2022]
|
36
|
Combination of 2- tert-Butyl-1,4-Benzoquinone (TBQ) and ZnO Nanoparticles, a New Strategy To Inhibit Biofilm Formation and Virulence Factors of Chromobacterium violaceum. mSphere 2023; 8:e0059722. [PMID: 36645278 PMCID: PMC9942565 DOI: 10.1128/msphere.00597-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Drug-resistant bacteria have been raising serious social problems. Bacterial biofilms and different virulence factors are the main reasons for persistent infections. As a conditioned pathogen, Chromobacterium violaceum has evolved a vast network of regulatory mechanisms to modify and fine-tune biofilm development, contributing to multidrug resistance. However, there are few therapies to combat drug-resistant bacteria. Quorum sensing (QS) inhibitors (QSIs) are a promising strategy to solve antibiotic resistance. Our previous work suggested that 2-tert-butyl-1,4-benzoquinone (TBQ) is a potent QSI. In this study, the combination of zinc oxide nanoparticles (ZnO-NPs) and TBQ (ZnO-TBQ) was investigated for the treatment of Chromobacterium violaceum ATCC 12472 infection. ZnO-NPs attach to cell walls or biofilms, and the local dissolution of ZnO-NPs can lead to increased Zn2+ concentrations, which could destroy metal homeostasis, corresponding to disturbances in amino acid metabolism and nucleic acid metabolism. ZnO-NPs significantly improved the efficiency of TBQ in inhibiting the QS-related virulence factors and biofilm formation of C. violaceum ATCC 12472. ZnO-TBQ effectively reduces the expression of genes related to QS, which is conducive to limiting the infectivity of C. violaceum ATCC 12472. Caenorhabditis elegans nematodes treated with ZnO-TBQ presented a significant improvement in the survival rate by 46.7%. Overall, the combination of ZnO-NPs and TBQ offers a new strategy to attenuate virulence factors and biofilm formation synergistically in some drug-resistant bacteria. IMPORTANCE The combination of ZnO-NPs and TBQ (ZnO-TBQ) can compete with the inducer N-decanoyl-homoserine lactone (C10-HSL) by binding to CviR and downregulate genes related to the CviI/CviR system to interrupt the QS system of C. violaceum ATCC 12472. The downstream genes responding to cviR were also downregulated so that virulence factors and biofilm formation were inhibited. Furthermore, ZnO-TBQ presents multiple metabolic disturbances in C. violaceum ATCC 12472, which results in the reduced multidrug resistance and pathogenicity of C. violaceum ATCC 12472. In an in vivo assay, C. elegans nematodes treated with ZnO-TBQ presented a significant improvement in the survival rate by 46.7% by limiting the infectivity of C. violaceum ATCC 12472. In addition, ZnO-TBQ inhibited the generation of virulence factors and biofilm formation 2-fold compared to either ZnO-NPs or TBQ alone. The combination of ZnO-NPs with TBQ offers a potent synergistic strategy to reduce multidrug resistance and pathogenicity.
Collapse
|
37
|
Hijazi DM, Dahabiyeh LA, Abdelrazig S, Alqudah DA, Al-Bakri AG. Micafungin effect on Pseudomonas aeruginosa metabolome, virulence and biofilm: potential quorum sensing inhibitor. AMB Express 2023; 13:20. [PMID: 36807839 PMCID: PMC9941417 DOI: 10.1186/s13568-023-01523-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/22/2023] Open
Abstract
The prevalence of antibiotic resistance in Pseudomonas aeruginosa places a heavy burden on the health care sectors urging the need to find alternative, non-antibiotic strategies. The interference with the P. aeruginosa quorum sensing (QS) system represents a promising alternative strategy to attenuate the bacterial virulency and its ability to form biofilms. Micafungin has been reported to impede the pseudomonal biofilm formation. However, the influences of micafungin on the biochemical composition and metabolites levels of P. aeruginosa have not been explored. In this study, the effect of micafungin (100 µg/mL) on the virulence factors, QS signal molecules and the metabolome of P. aeruginosa was studied using exofactor assay and mass spectrometry-based metabolomics approaches. Furthermore, confocal laser scanning microscopy (CLSM) using the fluorescent dyes ConA-FITC and SYPRO® Ruby was used to visualize micafungin disturbing effects on the pseudomonal glycocalyx and protein biofilm-constituents, respectively. Our findings showed that micafungin significantly decreased the production of various QS-controlled virulence factors (pyocyanin, pyoverdine, pyochelin and rhamnolipid), along with a dysregulation in the level of various metabolites involved in QS system, lysine degradation, tryptophan biosynthesis, TCA cycle, and biotin metabolism. In addition, the CLSM examination showed an altered matrix distribution. The presented findings highlight the promising role of micafungin as a potential quorum sensing inhibitor (QSI) and anti-biofilm agent to attenuate P. aeruginosa pathogenicity. In addition, they point to the promising role of metabolomics study in investigating the altered biochemical pathways in P. aeruginosa.
Collapse
Affiliation(s)
- Duaa M. Hijazi
- grid.9670.80000 0001 2174 4509Department of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman, 11942 Jordan
| | - Lina A. Dahabiyeh
- grid.9670.80000 0001 2174 4509Department of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman, 11942 Jordan
| | - Salah Abdelrazig
- grid.9763.b0000 0001 0674 6207Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Khartoum, 1996, 11115 Khartoum, Sudan ,grid.4563.40000 0004 1936 8868Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD UK
| | - Dana A. Alqudah
- grid.9670.80000 0001 2174 4509Cell Therapy Center, The University of Jordan, Amman, 11942 Jordan
| | - Amal G. Al-Bakri
- grid.9670.80000 0001 2174 4509Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman, 11942 Jordan
| |
Collapse
|
38
|
Natural Medicine a Promising Candidate in Combating Microbial Biofilm. Antibiotics (Basel) 2023; 12:antibiotics12020299. [PMID: 36830210 PMCID: PMC9952808 DOI: 10.3390/antibiotics12020299] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/14/2023] [Accepted: 01/19/2023] [Indexed: 02/05/2023] Open
Abstract
Studies on biofilm-related infections are gaining prominence owing to their involvement in most clinical infections and seriously threatening global public health. A biofilm is a natural form of bacterial growth ubiquitous in ecological niches, considered to be a generic survival mechanism adopted by both pathogenic and non-pathogenic microorganisms and entailing heterogeneous cell development within the matrix. In the ecological niche, quorum sensing is a communication channel that is crucial to developing biofilms. Biofilm formation leads to increased resistance to unfavourable ecological effects, comprising resistance to antibiotics and antimicrobial agents. Biofilms are frequently combated with modern conventional medicines such as antibiotics, but at present, they are considered inadequate for the treatment of multi-drug resistance; therefore, it is vital to discover some new antimicrobial agents that can prevent the production and growth of biofilm, in addition to minimizing the side effects of such therapies. In the search for some alternative and safe therapies, natural plant-derived phytomedicines are gaining popularity among the research community. Phytomedicines are natural agents derived from natural plants. These plant-derived agents may include flavonoids, terpenoids, lectins, alkaloids, polypeptides, polyacetylenes, phenolics, and essential oils. Since they are natural agents, they cause minimal side effects, so could be administered with dose flexibility. It is vital to discover some new antimicrobial agents that can control the production and growth of biofilms. This review summarizes and analyzes the efficacy characteristics and corresponding mechanisms of natural-product-based antibiofilm agents, i.e., phytochemicals, biosurfactants, antimicrobial peptides, and their sources, along with their mechanism, quorum sensing signalling pathways, disrupting extracellular matrix adhesion. The review also provides some other strategies to inhibit biofilm-related illness. The prepared list of newly discovered natural antibiofilm agents could help in devising novel strategies for biofilm-associated infections.
Collapse
|
39
|
Anti-virulence activity of dihydrocuminyl aldehyde and nisin against spoilage bacterium Pseudomonas aeruginosa XZ01. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
40
|
Chen H, Ji PC, Qi YH, Chen SJ, Wang CY, Yang YJ, Zhao XY, Zhou JW. Inactivation of Pseudomonas aeruginosa biofilms by thymoquinone in combination with nisin. Front Microbiol 2023; 13:1029412. [PMID: 36741886 PMCID: PMC9893119 DOI: 10.3389/fmicb.2022.1029412] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 12/14/2022] [Indexed: 01/20/2023] Open
Abstract
Pseudomonas aeruginosa is one of the most important foodborne pathogens that can persist in leafy green vegetables and subsequently produce biofilms. In this study, the synergistic effect of thymoquinone and nisin in reducing biofilm formation of P. aeruginosa on lettuce was evaluated, and their anti-virulence and anti-biofilm mechanisms were also investigated. At concentrations ranging from 0.5 to 2 mg/ml, thymoquinone inhibited the production of autoinducers and virulence factors, and enhanced the susceptibility of P. aeruginosa biofilms to nisin as evidenced by the scanning electron microscopy and confocal laser scanning microscopy. Integrated transcriptomics, metabolomics, and docking analyses indicated that thymoquinone treatment disrupted the quorum sensing (QS) system, altered cell membrane component, and down-regulated the expressions of genes related to virulence, efflux pump, and antioxidation. The changed membrane component and repressed efflux pump system enhanced membrane permeability and facilitated the entrance of nisin into cells, thus improving the susceptibility of biofilms to nisin. The dysfunctional QS and repressed antioxidant enzymes lead to the enhancement of oxidative stress. The enhanced oxidative stress disrupted energy metabolism and protein metabolism and ultimately attenuated the virulence and pathogenicity of P. aeruginosa PAO1. Our study indicated that thymoquinone has the potential to function as a QS-based agent to defend against foodborne pathogens in combination with nisin.
Collapse
Affiliation(s)
- Hong Chen
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang, China
| | - Peng-Cheng Ji
- School of Food and Biological Engineering, Xuzhou University of Technology, Xuzhou, China
| | - Yue-Heng Qi
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang, China
| | - Shi-Jin Chen
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang, China
| | - Chang-Yao Wang
- School of Food and Biological Engineering, Xuzhou University of Technology, Xuzhou, China
| | - Yu-Jie Yang
- School of Food and Biological Engineering, Xuzhou University of Technology, Xuzhou, China
| | - Xin-Yu Zhao
- School of Food and Biological Engineering, Xuzhou University of Technology, Xuzhou, China
| | - Jin-Wei Zhou
- School of Food and Biological Engineering, Xuzhou University of Technology, Xuzhou, China,*Correspondence: Jin-Wei Zhou, ✉
| |
Collapse
|
41
|
Pepsin and Trypsin Treatment Combined with Carvacrol: An Efficient Strategy to Fight Pseudomonas aeruginosa and Enterococcus faecalis Biofilms. Microorganisms 2023; 11:microorganisms11010143. [PMID: 36677435 PMCID: PMC9863883 DOI: 10.3390/microorganisms11010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/21/2022] [Accepted: 12/30/2022] [Indexed: 01/08/2023] Open
Abstract
Biofilms consist of microbial communities enclosed in a self-produced extracellular matrix which is mainly responsible of biofilm virulence. Targeting this matrix could be an effective strategy to control biofilms. In this work, we examined the efficacy of two proteolytic enzymes, pepsin and trypsin, to degrade P. aeruginosa and E. faecalis biofilms and their synergistic effect when combined with carvacrol. The minimum dispersive concentrations (MDCs) and the contact times of enzymes, as well as the minimal inhibitory concentrations (MICs) and contact times of carvacrol, were determined against biofilms grown on polystyrene surfaces. For biofilms grown on stainless steel surfaces, the combined pepsin or trypsin with carvacrol treatment showed more significant reduction of both biofilms compared with carvacrol treatment alone. This reduction was more substantial after sequential treatment of both enzymes, followed by carvacrol with the greatest reduction of 4.7 log CFU mL−1 (p < 0.05) for P. aeruginosa biofilm and 3.3 log CFU mL−1 (p < 0.05) for E. faecalis biofilm. Such improved efficiency was also obvious in the epifluorescence microscopy analysis. These findings demonstrate that the combined effect of the protease-dispersing activity and the carvacrol antimicrobial activity could be a prospective approach for controlling P. aeruginosa and E. faecalis biofilms.
Collapse
|
42
|
Wang Y, Sun M, Cui X, Gao Y, Lv X, Li J, Bai F, Li X, Zhang D, Zhou K. Peptide LQLY3-1, a novel Vibrio harveyi quorum sensing inhibitor produced by Lactococcus lactis LY3-1. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
43
|
Yan H, Ma H, Li Y, Zhao L, Lin J, Jia Q, Hu Q, Han D. Oxidative stress facilitates infection of the unicellular alga Haematococcus pluvialis by the fungus Paraphysoderma sedebokerense. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:56. [PMID: 35596207 PMCID: PMC9123766 DOI: 10.1186/s13068-022-02140-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/14/2022] [Indexed: 11/26/2022]
Abstract
Background The green microalga Haematococcus pluvialis is used as a cell factory for producing astaxanthin, the high-value carotenoid with multiple biological functions. However, H. pluvialis is prone to the infection by a parasitic fungus Paraphysoderma sedebokerense, which is the most devastating threat to the mass culture of H. pluvialis all over the world. Through dissecting the mechanisms underlying the infection process, effective measures could be developed to mitigate the pathogen threatening for the natural astaxanthin industry. By far, understanding about the interaction between the algal host and fungal pathogen remains very limited. Results We observed that there were heat-stable substances with small molecular weight produced during the infection process and enhanced the susceptibility of H. pluvialis cells to the pathogen. The infection ratio increased from 10.2% (for the algal cells treated with the BG11 medium as the control) to 52.9% (for the algal cells treated with supernatant contained such substances) on the second day post-infection, indicating the yet unknown substances in the supernatant stimulated the parasitism process. Systematic approaches including multi-omics, biochemical and imaging analysis were deployed to uncover the identity of the metabolites and the underlying mechanisms. Two metabolites, 3-hydroxyanthranilic acid and hordenine were identified and proved to stimulate the infection via driving oxidative stress to the algal cells. These metabolites generated hydroxyl radicals to disrupt the subcellular components of the algal cells and to make the algal cells more susceptible to the infection. Based on these findings, a biosafe and environment-friendly antioxidant butylated hydroxyanisole (BHA) was selected to inhibit the fungal infection, which completely abolished the infection at 12 ppm. By applying 7 ppm BHA every 2 days to the algal cell culture infected with P. sedebokerense in the 100 L open raceway ponds, the biomass of H. pluvialis reached 0.448 g/L, which was comparable to that of the control (0.473 g/L). Conclusions This study provides for the first time, a framework to dissect the functions of secondary metabolites in the interaction between the unicellular alga H. pluvialis and its fungal parasite, indicating that oxidative degradation is a strategy used for the fungal infest. Eliminating the oxidative burst through adding antioxidant BHA could be an effective measure to reduce parasitic infection in H. pluvialis mass culture. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02140-y.
Collapse
|
44
|
Synergistic effect of propyl gallate and antibiotics against biofilms of Serratia marcescens and Erwinia carotovora in vitro. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
45
|
Wang D, Cui F, Ren L, Tan X, Li Q, Li J, Li T. Enhancing the Inhibition Potential of AHL Acylase PF2571 against Food Spoilage by Remodeling Its Substrate Scope via a Computationally Driven Protein Design. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14510-14521. [PMID: 36331356 DOI: 10.1021/acs.jafc.2c05753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The N-acyl homoserine lactone (AHL) acylases are widely used as quorum sensing (QS) blockers to inhibit bacterial food spoilage. However, their substrate specificity for long-chain substrates weakens their efficiency. In this study, a computer-assisted design of AHL acylase PF2571 was performed to modify its substrate scope. The results showed that the variant PF2571H194Y, L221R could effectively quench N-hexanoyl-l-homoserine lactone and N-octanoyl-l-homoserine lactone without impairing its activity against long-chain AHLs. Kinetic analysis of the enzymatic activities further corroborated the observed substrate expansion. The inhibitory activities of this variant were significantly enhanced against the QS phenotype of Aeromonas veronii BY-8, with inhibition rates of 45.67, 78.25, 54.21, and 54.65% against proteases, motility, biofilms, and extracellular polysaccharides, respectively. Results for molecular dynamics simulation showed that the steric hindrance, induced by residue substitution, could have been responsible for the change in substrate scope. This study dramatically improves the practicability of AHL acylase in controlling food spoilage.
Collapse
Affiliation(s)
- Dangfeng Wang
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Liaoning, Jinzhou121013, China
- College of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi214122, China
| | - Fangchao Cui
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Liaoning, Jinzhou121013, China
| | - Likun Ren
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Heilongjiang, Harbin150076, China
| | - Xiqian Tan
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Liaoning, Jinzhou121013, China
| | - Qiuying Li
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Liaoning, Jinzhou121013, China
| | - Jianrong Li
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Liaoning, Jinzhou121013, China
- College of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi214122, China
| | - Tingting Li
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Liaoning, Dalian116029, China
| |
Collapse
|
46
|
Mechmechani S, Gharsallaoui A, El Omari K, Fadel A, Hamze M, Chihib NE. Hurdle technology based on the use of microencapsulated pepsin, trypsin and carvacrol to eradicate Pseudomonas aeruginosa and Enterococcus faecalis biofilms. BIOFOULING 2022; 38:903-915. [PMID: 36451605 DOI: 10.1080/08927014.2022.2151361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
The biofilm lifestyle plays a major role in the resistance and virulence of Pseudomonas aeruginosa and Enterococcus faecalis. In this study, two microencapsulated proteases (pepsin ME-PEP and trypsin ME-TRYP) were evaluated for their biofilm dispersal activity and their synergistic effect with microencapsulated carvacrol (ME-CARV). Spray-drying was used to protect enzymes and essential oil and enhance their activities. Cell count analysis proved the synergistic activity of enzymes and carvacrol treatment as biofilms were further reduced after combined treatment in comparison to ME-CARV or enzymes alone. Furthermore, results showed that sequential treatment in the order ME-TRYP - ME-PEP - ME-CARV resulted in more efficient biofilm removal with a maximum reduction of 5 log CFU mL-1 for P. aeruginosa and 4 log CFU mL-1 for E. faecalis. This study proposes that the combination of microencapsulated proteases with ME-CARV could be useful for the effective control of P. aeruginosa and E. faecalis biofilms.
Collapse
Affiliation(s)
- Samah Mechmechani
- CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, Univ. Lille, Lille, France
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Adem Gharsallaoui
- Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, Univ Lyon, Villeurbanne, France
| | - Khaled El Omari
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
- Quality Control Center Laboratories at the Chamber of Commerce, Industry & Agriculture of Tripoli & North Lebanon, Tripoli, Lebanon
| | - Alexandre Fadel
- CNRS, INRAE, Centrale Lille, Université d'Artois, FR 2638 - IMEC -Institut Michel-Eugene Chevreul, Univ Lille, Lille, France
| | - Monzer Hamze
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Nour-Eddine Chihib
- CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, Univ. Lille, Lille, France
| |
Collapse
|
47
|
Yin L, Shen W, Liu JS, Jia AQ. 2-Hydroxymethyl-1-methyl-5-nitroimidazole, one siderophore inhibitor, occludes quorum sensing in Pseudomonas aeruginosa. Front Cell Infect Microbiol 2022; 12:955952. [PMID: 36159634 PMCID: PMC9497652 DOI: 10.3389/fcimb.2022.955952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Siderophore is necessary for the survival of microorganisms and is interregulated with quorum sensing (QS) systems. It is related to growth, proliferation, virulence, and other bacterial social activities as a virulence factor. Thus, we speculated that the QS system could be occluded by inhibiting siderophore production. 2-Hydroxymethyl-1-methyl-5-nitroimidazole (HMMN), one siderophore inhibitor of Pseudomonas aeruginosa PAO1 (P. aeruginosa PAO1), was obtained by using the Chromeazurol S (CAS) method. We found that HMMN inhibited siderophore production and influenced the biological effects of QS regulation, including biofilm formation and pyocyanin production. HMMN (150 μg/ml) inhibited the siderophore production of P. aeruginosa PAO1 by 69.37%. In addition, HMMN could inhibit pyocyanin production and biofilm formation and erase the formed biofilm of P. aeruginosa PAO1. HMMN (150 μg/ml) inhibited the biofilm formation of P. aeruginosa PAO1 by 28.24%. The erasure rate of the formed biofilm reached 17.03%. Furthermore, HMMN (150 μg/ml) inhibited P. aeruginosa PAO1 pyocyanin production by 36.06%. Meanwhile, positive-control hordenine (500.0 μg/ml) reduced the biofilm formation and pyocyanin production of P. aeruginosa PAO1 by 14.42% and 34.35%, respectively. The erasure rate of hordenine to the formed biofilm is 11.05% at 500 μg/ml. Quantitative real-time polymerase chain reaction (qRT-PCR) showed that HMMN downregulates not only siderophore-related genes but also QS-related genes, as well as hordenine. These results suggest that a siderophore inhibitor could be used as a QS inhibitor to occlude the QS system and reduce virulence.
Collapse
Affiliation(s)
- Lujun Yin
- School of Pharmaceutical Sciences, Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China
| | - Wang Shen
- School of Pharmaceutical Sciences, Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China
| | - Jun-Sheng Liu
- School of Pharmaceutical Sciences, Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China
| | - Ai-Qun Jia
- School of Pharmaceutical Sciences, Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China
- One Health Institute, Hainan University, Haikou, China
- *Correspondence: Ai-Qun Jia,
| |
Collapse
|
48
|
Potential of Impatiens balsamina Leaf Extract against Quorum Sensing in Pseudomonas aeruginosa PA01. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.3.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria control gene expression by quorum sensing (QS) mechanism owing to producing small signal molecules associated with population density. Both gram-positive and gram-negative bacteria use QS to manage various physiological characteristics, including bioluminescence, virulence gene expression, biofilm formation, and antibiotic resistance. Impatience balsamina is a flowering, perennial and annual herb indigenous to southern Asia in India. All parts of Impatience balsamina have a therapeutic effect on different diseases. This study evaluated the anti-quorum sensing activity of leaf extract of Impatience balsamina by examining its action on Violacein production by Chromobacterium violaceum, a biosensor strain, and Biofilm, Pyocyanin, Protease, and Chitinase production by the reference strain Pseudomonas aeruginosa PA 01. Minimum inhibitory concentration (MIC) for Pseudomonas aeruginosa PA 01was 3.125mg/ml. A concentration of 1.563mg/ml (sub-MIC) showed inhibition of 100% on Las A protease, 78.42% on chitinase, 30.75% on biofilm, and 93.33% on pyocyanin production by Pseudomonas aeruginosa PA 01. This article displayed the quorum quenching activity of Impatience balsamina by hindering the quorum-sensing controlled characteristics of bacteria without killing it, which reduces the proneness of drug resistance in bacteria, a globally accepted emerging problem in the medical field.
Collapse
|
49
|
Rather MA, Saha D, Bhuyan S, Jha AN, Mandal M. Quorum Quenching: A Drug Discovery Approach Against Pseudomonas aeruginosa. Microbiol Res 2022; 264:127173. [PMID: 36037563 DOI: 10.1016/j.micres.2022.127173] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/06/2022] [Accepted: 08/14/2022] [Indexed: 11/19/2022]
Abstract
Pseudomonas aeruginosa, a ubiquitous opportunistic and nosocomial biofilm-forming pathogen with complex, interconnected and hierarchical nature of QS systems (Las, Rhl, PQS, and IQS), is posing the biggest challenge to the healthcare sector and have made current chemotherapies incapable. Conventional antibiotics designed to intercept the biochemical or physiological processes precisely of planktonic microorganisms exert extreme selective pressure and develop resistance against them thereby emphasizing the development of alternative therapeutic approaches. Additionally, quorum sensing induced pathogenic microbial biofilms and production of virulence factors have intensified the pathogenicity, drug resistance, recurrence of infections, hospital visits, morbidity, and mortality many-folds. In this regard, QS could be a potential druggable target and the discovery of QS inhibiting agents as an anti-virulent measure could serve as an alternative therapeutic approach to conventional antibiotics. Quorum quenching (QQ) is a preferred strategy to combat microbial infections since it attenuates the pathogenicity of microbes and enhances the microbial biofilm susceptibility to antibiotics, thus qualifying as a suitable target for drug discovery. This review discusses the QS-induced pathogenicity of P. aeruginosa, the hierarchical QS systems, and QS inhibition as a drug discovery approach to complement classical antibiotic strategy.
Collapse
Affiliation(s)
- Muzamil Ahmad Rather
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India
| | - Debanjan Saha
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India
| | - Shuvam Bhuyan
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India
| | - Anupam Nath Jha
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India
| | - Manabendra Mandal
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India.
| |
Collapse
|
50
|
Mangal S, Chhibber S, Singh V, Harjai K. Guaiacol augments quorum quenching potential of Ciprofloxacin against Pseudomonas aeruginosa. J Appl Microbiol 2022; 133:2235-2254. [PMID: 35984044 DOI: 10.1111/jam.15787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/18/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022]
Abstract
AIM The present study aims to investigate the antimicrobial as well as antivirulence potential and the principle mechanism of action of guaiacol against Pseudomonas aeruginosa. METHODS AND RESULTS Quorum sensing inhibition and membrane disruption studies were performed to check effect of guaiacol on the virulence of P. aeruginosa. Production of various virulence factors and biofilm formation were studied at sub-MIC concentration of guaiacol alone (1/8 MIC) and in combination with ciprofloxacin (1/2 FIC). Guaiacol exhibited synergistic interactions with ciprofloxacin and further reduced production of all virulence factors and biofilm formation. Using crystal violet (CV) assay and quantification of exopolysaccharide we observed weak biofilm formation, together with reduced motilities at sub MIC which was further visualized by confocal laser microscopy and Field Emission Scanning Electron Microscopy (FESEM).The antibacterial activity of guaiacol against P. aeruginosa upon 2×MIC exposure coincided with enhanced membrane permeability leading to disruption and release of cellular material as quantified by CV uptake assay and Sodium dodecyl suphate-polyacrylamide gel electrophoresis (SDS-PAGE). The results demonstrated that sub MICs of guaiacol in combination with ciprofloxacin can act as a potent alternate compound for attenuation of quorum sensing in P. aeruginosa. CONCLUSION Study reports that guaiacol in combination with ciprofloxacin at 1/2 FIC significantly compromised the bacterial growth and motilities alongside inducing quorum quenching potential. This was accompanied by inhibition of biofilm which subsequently decreased EPS production at sub MIC concentration. Furthermore, guaiacol in combination displayed a severe detrimental effect on bacterial membrane disruption, thereby enhancing cellular material release. SIGNIFICANCE AND IMPACT OF STUDY For the first time, the potential of guaiacol in combination with ciprofloxacin in attenuation of virulence factors and biofilm formation in P. aeruginosa were described. Results corroborate on how plant bioactive in synergism with antibiotics can act as alternate treatment regime to tackle the menace of drug resistance.
Collapse
Affiliation(s)
- Surabhi Mangal
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Sanjay Chhibber
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Vasundhara Singh
- Department of Applied Sciences, Punjab Engineering College (Deemed to be University), Chandigarh, India
| | - Kusum Harjai
- Department of Microbiology, Panjab University, Chandigarh, India
| |
Collapse
|