1
|
Engelhardt A, Ebeling M, Kaltenegger E, Langel D, Ober D. An easy and sensitive assay for acetohydroxyacid synthases based on the simultaneous detection of substrates and products in a single step. Anal Bioanal Chem 2024:10.1007/s00216-024-05613-1. [PMID: 39443363 DOI: 10.1007/s00216-024-05613-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Acetohydroxyacid synthase (AHAS, EC 2.2.1.6) catalyzes the first step in the synthesis of the branched-chain amino acids valine, leucine, and isoleucine, pathways being present in plants and microorganisms, but not in animals. Thus, AHAS is an important target for numerous herbicides and, more recently, for the development of antimicrobial agents. The need to develop new and optimized herbicides and pharmaceuticals requires a detailed understanding of the biochemistry of AHAS. AHAS transfers an activated two-carbon moiety derived from pyruvate to either pyruvate or 2-oxobutyrate as acceptor substrates, forming 2-acetolactate or 2-acetohydroxy-2-butyrate, respectively. Various methods have been described in the literature to biochemically characterize AHAS with respect to substrate preferences, substrate specificity, or kinetic parameters. However, the simultaneous detection and quantification of substrates and unstable products of the AHAS-catalyzed reaction have always been a challenge. Using AHAS isoform II from Escherichia coli, we have developed a sensitive assay for AHAS-catalyzed reactions that uses derivatization with ethyl chloroformate to stabilize and volatilize all reactants in the aqueous solution and detect them by gas chromatography coupled to flame ionization detection or mass spectrometry. This assay allows us to characterize the product formation in reactions in single and dual substrate reactions and the substrate specificity of AHAS, and to reinterpret previous biochemical observations. This assay is not limited to the AHAS-catalyzed reactions, but should be applicable to studies of many metabolic pathways.
Collapse
Affiliation(s)
- Annika Engelhardt
- Botanical Institute and Botanic Gardens, Kiel University, D-24098, Kiel, Germany
| | - Marco Ebeling
- Botanical Institute and Botanic Gardens, Kiel University, D-24098, Kiel, Germany
| | | | - Dorothee Langel
- Botanical Institute and Botanic Gardens, Kiel University, D-24098, Kiel, Germany
| | - Dietrich Ober
- Botanical Institute and Botanic Gardens, Kiel University, D-24098, Kiel, Germany.
| |
Collapse
|
2
|
Cheng Y, Wang Y, Lonhienne T, Wang JG, Guddat LW. Crystal Structures of Arabidopsis thaliana Acetohydroxyacid Synthase in Complex with the Herbicide Triasulfuron and Two Analogues with Herbicidal Activity in Field Trials. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39373624 DOI: 10.1021/acs.jafc.4c04990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Triasulfuron is a commercial herbicide of the sulfonylurea family. This compound targets acetohydroxyacid synthase (AHAS, E.C. 2.2.1.6), the first enzyme in the branched chain amino acid biosynthesis pathway. Here, we have determined crystal structures of Arabidopsis thaliana AHAS (AtAHAS) in complex with triasulfuron and two newly designed herbicidal compounds, identified as FMO and CMO, showing that their binding modes are subtly different. Kinetic studies showed all three compounds exhibit varying Ki values, 0.192 ± 0.013 μM for triasulfuron, 0.086 ± 0.013 μM for FMO, and 1.448 ± 0.058 μM for CMO, but all are strong time-dependent accumulative inhibitors of AtAHAS. Apart from triasulfuron being a powerful herbicide with application rates of 10-15 g/ha in wheat fields, CMO and FMO are also herbicidal at 7.5-30 g/ha for barnyard grass. This study emphasizes that accumulative inhibition is an important factor that contributes to herbicidal activity.
Collapse
Affiliation(s)
- Yan Cheng
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| | - Yuan Wang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Thierry Lonhienne
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| | - Jian-Guo Wang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
3
|
Yan Y, Chen Y, Hu H, Jiang Y, Kang Z, Wu J. Discovery of a New Class of Lipophilic Pyrimidine-Biphenyl Herbicides Using an Integrated Experimental-Computational Approach. Molecules 2024; 29:2409. [PMID: 38893290 PMCID: PMC11173721 DOI: 10.3390/molecules29112409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Herbicides are useful tools for managing weeds and promoting food production and sustainable agriculture. In this study, we report on the development of a novel class of lipophilic pyrimidine-biphenyl (PMB) herbicides. Firstly, three PMBs, Ia, IIa, and IIIa, were rationally designed via a scaffold hopping strategy and were determined to inhibit acetohydroxyacid synthase (AHAS). Computational simulation was carried out to investigate the molecular basis for the efficiency of PMBs against AHAS. With a rational binding mode, and the highest in vitro as well as in vivo potency, Ia was identified as a preferable hit. Furthermore, these integrated analyses guided the design of eighteen new PMBs, which were synthesized via a one-step Suzuki-Miyaura cross-coupling reaction. These new PMBs, Iba-ic, were more effective in post-emergence control of grass weeds compared with Ia. Interestingly, six of the PMBs displayed 98-100% inhibition in the control of grass weeds at 750 g ai/ha. Remarkably, Ica exhibited ≥ 80% control against grass weeds at 187.5 g ai/ha. Overall, our comprehensive and systematic investigation revealed that a structurally distinct class of lipophilic PMB herbicides, which pair excellent herbicidal activities with new interactions with AHAS, represent a noteworthy development in the pursuit of sustainable weed control solutions.
Collapse
Affiliation(s)
- Yitao Yan
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Yinglu Chen
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Hanxian Hu
- School of Physics, Zhejiang University, Hangzhou 310027, China
| | - Youwei Jiang
- Hangzhou Jingyinkang Biological Technology Co., Ltd., Hangzhou 311110, China
| | | | - Jun Wu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Guo M, Zhou J, Tian Y, Du X, Tang X, Lu H, Li Y, Xu Y, Yuan Z, Qin Z. Synthesis, Herbicidal Activity against Barnyard Grass, and Photolytic Behavior of Aryl 2,6-Dipyrimidinoxybenzoates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:300-312. [PMID: 38110303 DOI: 10.1021/acs.jafc.3c05238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
In this study, we investigated the characteristics and herbicidal potential of bispyribac phenolic esters, which belong to the 2-(pyrimidin-2-yloxy)benzoic acid (PYB) class of acetohydroxyacid synthase (AHAS-)-inhibiting herbicides. These herbicides are primarily used for controlling Poaceae and broadleaf weeds. Among them, bispyribac-sodium stands out as a representative in this class. Surprisingly, other bispyribac esters, including alkanol and phenol esters exhibit considerably reduced herbicidal activity compared to bispyribac-sodium. In contrast, oxime esters (e.g., pyribenzoxim) demonstrate high activity. To further understand and develop novel PYB herbicides, we synthesized and screened a series of bispyribac phenolic esters while investigating their photochemical behaviors. Several compounds displayed excellent herbicidal activity, with compounds Ia-19 and Ic showing impressive 90% effective dosages for fresh weight inhibition of barnyard grass, measuring 0.55 and 0.60 g a.i./hm2, respectively. These values were approximately half of bispyribac-sodium or pyribenzoxim. The results indicate that the herbicidal activity of phenolic esters is influenced by both their binding ability to the AHAS enzyme and their decomposition into bispyribac acid. For instance, bispyribac phenol ester exhibited considerably reduced receptor affinity compared to bispyribac-sodium, and faced challenges in transforming into bispyribac acid, explaining its diminished herbicidal activity. However, introducing a photosensitive nitro group led to a complete transformation. This modification improved its affinity with AHAS and accelerated its decomposition into bispyribac acid, further accelerated by photocatalysis. Consequently, nitro-containing compounds displayed heightened herbicidal activity. The findings from this study open possibilities for structural optimization of phenolic esters through quantitative structure-activity relationship analysis, potentially regulating their activity-releasing period. Furthermore, the high activity of aromatic heterocyclic esters offers new insights into developing novel PYB herbicides.
Collapse
Affiliation(s)
- Menglei Guo
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Jing Zhou
- College of Agriculture, Yangtze University, Jinzhou 434023, China
| | - Yiyi Tian
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaoying Du
- College of Agriculture, Yangtze University, Jinzhou 434023, China
| | - Xianjun Tang
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Huizhe Lu
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Yiyi Li
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Yanjun Xu
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Ziyang Yuan
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Zhaohai Qin
- College of Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
5
|
Sun XW, Liu Y, Wang X, Li HR, Lin X, Tang JY, Xu Q, Agnew-Francis KA, Fraser JA, Sun ZJ, Guddat LW, Wang JG. Structure-activity relationships of bensulfuron methyl and its derivatives as novel agents against drug-resistant Candida auris. Chem Biol Drug Des 2024; 103:e14364. [PMID: 37806947 DOI: 10.1111/cbdd.14364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 10/10/2023]
Abstract
With the emergence of the human pathogen Candida auris as a threat to human health, there is a strong demand to identify effective medicines to prevent the harm caused by such drug-tolerant human fungi. Herein, a series of 33 new derivatives of bensulfuron methyl (BSM) were synthesized and characterized by 1 H NMR, 13 C NMR, and HRMS. Among the target compounds, 8a possessed the best Ki value of 1.015 μM against C. auris acetohydroxyacid synthase (CauAHAS) and an MIC value of 6.25 μM against CBS10913, a clinically isolated strain of C. auris. Taken together the structures of BSM and the synthesized compounds, it was found that methoxy groups at both meta-position of pyrimidine ring are likely to provide desirable antifungal activities. Quantum calculations and molecular dockings were performed to understand the structure-activity relationships. The present study has hence provided some interesting clues for the discovery of novel antibiotics with this distinct mode of action.
Collapse
Affiliation(s)
- Xue-Wen Sun
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, China
| | - Yixuan Liu
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Xiaofang Wang
- Newish Technology (Beijing) Co., Ltd., Beijing, China
| | - Hao-Ran Li
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, China
| | - Xin Lin
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Jin-Yin Tang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, China
| | - Qing Xu
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, China
| | - Kylie A Agnew-Francis
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - James A Fraser
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Zhi-Juan Sun
- Newish Technology (Beijing) Co., Ltd., Beijing, China
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Jian-Guo Wang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, China
| |
Collapse
|
6
|
Niemczak M, Stachowiak W, Kaczmarek DK, Grzanka M, Sobiech Ł. A comprehensive study demonstrating the influence of the solvent composition on the phytotoxicity of compounds, as exemplified by 2,4-D-based ILs with a choline-type cation. PEST MANAGEMENT SCIENCE 2023; 79:3602-3610. [PMID: 37183344 DOI: 10.1002/ps.7543] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND Growing concern for the protection of the environment and existing ecosystems has resulted in increasing consideration of phytotoxicity tests as valid ecotoxicological indicators of the potential hazards of the use of ionic liquids (ILs) or any other chemical. The objective of this study was to gain a detailed understanding of the influence of the solvent composition of spray solutions on the phytotoxic effect of foliar application of ionic pairs with weak (choline 2,4-dichlorophenoxyacetate, [Chol][2,4-D]), medium (N-hexylcholine 2,4-dichlorophenoxyacetate, [C6 Chol][2,4-D]) and good (N-dodecylcholine 2,4-dichlorophenoxyacetate, [C12 Chol][2,4-D]) surface-active properties. RESULTS Experimental results unambiguously demonstrated that the biological activity of the test salt solutions, particularly [Chol][2,4-D] and [C6 Chol][2,4-D], can be strongly affected by the addition of an organic solvent, such as methanol, ethanol, dimethylformamide (DMF) or dimethylsulfoxide (DMSO) compared to solutions in pure water. However, the observed tendency is less pronounced for the compound exhibiting good surface activity, [C12 Chol][2,4-D]. CONCLUSIONS The collected findings show that caution is warranted in the exploitation or modification of methodologies for assessing phytotoxicity to ensure the reliable interpretation of obtained results for environmental risk assessment or building quantitative structure-activity relationship (QSAR) models. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Michał Niemczak
- Faculty of Chemical Technology, Poznan University of Technology, Poznan, Poland
| | - Witold Stachowiak
- Faculty of Chemical Technology, Poznan University of Technology, Poznan, Poland
| | | | - Monika Grzanka
- Department of Agronomy, Poznan University of Life Sciences, Poznan, Poland
| | - Łukasz Sobiech
- Department of Agronomy, Poznan University of Life Sciences, Poznan, Poland
| |
Collapse
|
7
|
Ding Y, Zhao DM, Kang T, Shi J, Ye F, Fu Y. Design, Synthesis, and Structure-Activity Relationship of Novel Aryl-Substituted Formyl Oxazolidine Derivatives as Herbicide Safeners. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7654-7668. [PMID: 37191232 DOI: 10.1021/acs.jafc.3c00467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Nicosulfuron is the leading herbicide in the global sulfonylurea (SU) herbicide market; it was jointly developed by DuPont and Ishihara. Recently, the widespread use of nicosulfuron has led to increasingly prominent agricultural production hazards, such as environmental harm and influence on subsequent crops. The use of herbicide safeners can significantly alleviate herbicide injury to protect crop plants and expand the application scope of existing herbicides. A series of novel aryl-substituted formyl oxazolidine derivatives were designed using the active group combination method. Title compounds were synthesized using an efficient one-pot method and characterized by infrared (IR) spectrometry, 1H and 13C nuclear magnetic resonance (NMR), and high-resolution mass spectrometry (HRMS). The chemical structure of compound V-25 was further identified by X-ray single crystallography. The bioactivity assay and structure-activity relationship proved that nicosulfuron phytotoxicity to maize could be reduced by most title compounds. The glutathione S-transferase (GST) activity and acetolactate synthase (ALS) in vivo were determined, and compound V-12 showed inspiring activity comparable to that of the commercial safener isoxadifen-ethyl. The molecular docking model indicated that compound V-12 competed with nicosulfuron for the acetolactate synthase active site and that this is the protective mechanism of safeners. Absorption, distribution, metabolism, excretion, and toxicity (ADMET) predictions demonstrated that compound V-12 exhibited superior pharmacokinetic properties to the commercialized safener isoxadifen-ethyl. The target compound V-12 shows strong herbicide safener activity in maize; thus, it may be a potential candidate compound that can help further protect maize from herbicide damage.
Collapse
Affiliation(s)
- Yu Ding
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Dong-Mei Zhao
- School of Food Engineering, East University of Heilongjiang, Harbin, Heilongjiang 150076, People's Republic of China
| | - Tao Kang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Juan Shi
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Fei Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
- School of Food Engineering, East University of Heilongjiang, Harbin, Heilongjiang 150076, People's Republic of China
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| |
Collapse
|
8
|
Chotsaeng N. Design, Synthesis, and Structure-Activity Relationship (SAR) Studies of Ketone-Isobenzofuranone Hybrid Herbicides. Chem Biodivers 2023; 20:e202200932. [PMID: 36565431 DOI: 10.1002/cbdv.202200932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022]
Abstract
Thirty-five ketone-isobenzofuranone hybrids (1-35) were designed, synthesized, and evaluated for their herbicidal activity against Chinese amaranth (Amaranthus tricolor) and barnyard grass (Echinochloa crus-galli). The structure-activity relationship (SAR) results revealed that the position and type of substituent were crucial for activity. The o-substituted derivatives outperformed the m- and p-substituted derivatives. Compounds with strong electron-donating groups (OH, OMe) had low activity, while those with heterocycles (N-methylpyrrole, furan, and thiophene) had a moderate herbicidal effect. Compounds with a weak electron-donating group (Me) and weak, moderate, and strong electron-withdrawing groups (F, Cl, Br, and NO2 ) showed promising herbicidal activity. Among these, the o-F substituted compound (20) was the most effective against Chinese amaranth, and the o-Cl substituted compound (23) was the most potent against barnyard grass. This is the first time the herbicidal potential of ketone-isobenzofuranone hybrids has been studied. The discovery of current chemical clues would be beneficial for the development of novel herbicides.
Collapse
Affiliation(s)
- Nawasit Chotsaeng
- Department of Chemistry and Integrated Applied Chemistry Research Unit, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| |
Collapse
|
9
|
Zhou S, Zhao LT, Meng FF, Hua XW, Li YH, Liu B, Chen J, Chen AL, Li ZM. Synthesis, herbicidal activity and soil degradation of novel 5-substituted sulfonylureas as AHAS inhibitors. PEST MANAGEMENT SCIENCE 2022; 78:5313-5324. [PMID: 36054636 DOI: 10.1002/ps.7153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 08/03/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Chlorsulfuron, metsulfuron-methyl and ethametsulfuron can damage sensitive crops in rotation pattern as a result of their long persistence in soil. To explore novel sulfonylurea (SU) herbicides with favorable soil degradation rates, four series of SUs were synthesized through a structure-based drug design (SBDD) strategy. RESULTS The target compounds, especially Ia, Id and Ie, exhibited prospective herbicidal activity against dicotyledon oil seed rape (Brassica campestris), amaranth (Amaranthus retroflexus), monocotyledon barnyard grass (Echinochloa crusgalli) and crab grass (Digitaria sanguinalis) at a concentration of 15 a.i. g ha-1 . Additionally, Ia, Id and Ig displayed excellent inhibitory effects against AtAHAS, with Kapp i values of 59.1, 34.5 and 71.8 μm, respectively, which were much lower than that of chlorsulfuron at 149.4 μm. The π-π stack and H-bonds between the Ia conformation and AtAHAS in the molecular docking results confirmed the series of compounds to be conventional AHAS inhibitors. In alkaline soil (pH = 8.46), compounds Ia-Ig revealed various degrees of acceleration in the degradation rate compared with chlorsulfuron. Besides, compound Ia showed considerable wheat and corn safety under postemergence at the concentration of 30, 60 and even 120 a.i. g ha-1 . CONCLUSION Overall, based on the synthetic procedure, herbicidal activity, soil degradation and crop safety, the Ia sulfonylureas series were chosen to be investigated as prospective AHAS inhibitors. The 5-dimethylamino group on SUs accelerated the degradation rate at different levels in alkaline soils which seems to be controllable in conventional cropping systems in their further application. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sha Zhou
- Collaborative Innovation Center of Green Pesticide, National Joint Engineering Laboratory of Biopesticide Preparation, Zhejiang A&F University State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, China
| | - Lv-Ting Zhao
- Collaborative Innovation Center of Green Pesticide, National Joint Engineering Laboratory of Biopesticide Preparation, Zhejiang A&F University State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - Fan-Fei Meng
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, China
| | - Xue-Wen Hua
- College of Agriculture, Liaocheng University, Liaocheng, China
| | - Yong-Hong Li
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, China
| | - Bin Liu
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, China
| | - Jie Chen
- Collaborative Innovation Center of Green Pesticide, National Joint Engineering Laboratory of Biopesticide Preparation, Zhejiang A&F University State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - An-Liang Chen
- Collaborative Innovation Center of Green Pesticide, National Joint Engineering Laboratory of Biopesticide Preparation, Zhejiang A&F University State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - Zheng-Ming Li
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, China
| |
Collapse
|
10
|
Chotpatiwetchkul W, Chotsaeng N, Laosinwattana C, Charoenying P. Structure-Activity Relationship Study of Xanthoxyline and Related Small Methyl Ketone Herbicides. ACS OMEGA 2022; 7:29002-29012. [PMID: 36033657 PMCID: PMC9404509 DOI: 10.1021/acsomega.2c02704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/29/2022] [Indexed: 05/26/2023]
Abstract
Xanthoxyline (1), a small natural methyl ketone, was previously reported as a plant growth inhibitor. In this research, related methyl ketones bearing electron-donating and electron-withdrawing groups, together with heteroaromatics, were investigated against seed germination and seedling growth of Chinese amaranth (Amaranthus tricolor L.) and barnyard grass [Echinochloa crus-galli (L.) Beauv]. The structure-activity relationships (SARs) of methyl ketone herbicides were clarified, and which types and positions of substituents were crucially important for activity were also clarified. Indole derivatives, namely, 3-acetylindole (43) and 3-acetyl-7-azaindole (44) were found to be the most active methyl ketones that highly suppressed plant growth at low concentrations. The molecular docking on the 4-hydroxyphenylpyruvate dioxygenase (HPPD) enzyme indicated that carbonyl, aromatic, and azaindole were key interactions of HPPD inhibitors. This finding would be useful for the development of small ketone herbicides.
Collapse
Affiliation(s)
- Warot Chotpatiwetchkul
- Department
of Chemistry, School of Science, King Mongkut’s
Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Nawasit Chotsaeng
- Department
of Chemistry, School of Science, King Mongkut’s
Institute of Technology Ladkrabang, Bangkok 10520, Thailand
- Integrated
Applied Chemistry Research Unit, School of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Chamroon Laosinwattana
- Department
of Plant Production Technology, School of Agricultural Technology, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Patchanee Charoenying
- Department
of Chemistry, School of Science, King Mongkut’s
Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| |
Collapse
|
11
|
Shang MH, Zhang K, Zhang JS, Niu CW, Li YH, Song FH, Wang JG. Chemical synthesis, biological activities, and molecular simulations of novel sulfonylurea compounds bearing ortho-alkoxy substitutions. Chem Biol Drug Des 2022; 100:487-501. [PMID: 35792871 DOI: 10.1111/cbdd.14114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/21/2022] [Accepted: 07/03/2022] [Indexed: 11/27/2022]
Abstract
A series of 51 novel sulfonylurea compounds with ortho-alkoxy substituent at phenyl ring were chemically synthesized and spectroscopically characterized. The biological activities of the target compounds were evaluated using the enzyme inhibition against acetohydroxyacid synthase (AHAS; EC 2.2.1.6) from fungal or plant source, as well as cell-based antifungal assay and greenhouse pot herbicidal assay. Among the target compounds, 6e showed desirable antifungal activity against Candida albicans standard isolate sc5314 with minimum inhibition concentration (MIC) of 0.39 mg/L (0.98 μM) after 24 h, and 6a demonstrated promising pre-emergence herbicidal activity against Echinochloacrus-galli at 30 g/ha dosage. Representative compounds 6a, 6e, and 6i showed no cell cytotoxicity even at 40 mg/L concentration. Theoretical DFT calculations indicated HOMO maps should be considered to understand the structure-activity relationships. The present study has hence provided useful information for further discovery of novel antifungal agents or selective herbicides.
Collapse
Affiliation(s)
- Ming-Hao Shang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin, China
| | - Kai Zhang
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| | - Jia-Shuang Zhang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin, China
| | - Cong-Wei Niu
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin, China
| | - Yong-Hong Li
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin, China
| | - Fu-Hang Song
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| | - Jian-Guo Wang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin, China
| |
Collapse
|
12
|
Yang L, Sun Y, He L, Fan Y, Wang T, Luo J. Synthesis and herbicidal activity of novel 1,2,4-triazole derivatives containing fluorine, phenyl sulfonyl and pyrimidine moieties. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Structural basis of resistance to herbicides that target acetohydroxyacid synthase. Nat Commun 2022; 13:3368. [PMID: 35690625 PMCID: PMC9188596 DOI: 10.1038/s41467-022-31023-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/27/2022] [Indexed: 01/02/2023] Open
Abstract
Acetohydroxyacid synthase (AHAS) is the target for more than 50 commercial herbicides; first applied to crops in the 1980s. Since then, 197 site-of-action resistance isolates have been identified in weeds, with mutations at P197 and W574 the most prevalent. Consequently, AHAS is at risk of not being a useful target for crop protection. To develop new herbicides, a functional understanding to explain the effect these mutations have on activity is required. Here, we show that these mutations can have two effects (i) to reduce binding affinity of the herbicides and (ii) to abolish time-dependent accumulative inhibition, critical to the exceptional effectiveness of this class of herbicide. In the two mutants, conformational changes occur resulting in a loss of accumulative inhibition by most herbicides. However, bispyribac, a bulky herbicide is able to counteract the detrimental effects of these mutations, explaining why no site-of-action resistance has yet been reported for this herbicide. Acetohydroxyacid synthase (AHAS) is the target of more than 50 commercial herbicides, with many site-of-action resistance isolates identified in weeds. Here, the authors report the structural and kinetic characterizations to explain the effect AHAS mutations have on herbicide potency.
Collapse
|
14
|
Jiang B, Chai Y, He X, Wang Y, Chen B, Li Y, Li R. Synthesis, herbicidal activity study, and molecular docking of novel acylthiourea derivatives. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2022.2063289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Binbin Jiang
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Yunlong Chai
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Xu He
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Yan Wang
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Bo Chen
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Yang Li
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Ranhong Li
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| |
Collapse
|
15
|
Wang YE, Yang D, Dai L, Huo J, Chen L, Kang Z, Mao J, Zhang J. Design, Synthesis, Herbicidal Activity, and Molecular Docking Study of 2-Thioether-5-(Thienyl/Pyridyl)-1,3,4-Oxadiazoles as Potent Transketolase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2510-2519. [PMID: 35175764 DOI: 10.1021/acs.jafc.1c06897] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Transketolase (TK) has been regarded as a new target for the development of novel herbicides. In this study, a series of 2-thioether-5-(thienyl/pyridyl)-1,3,4-oxadiazoles were designed and synthesized based on TK as the new target. The preliminary bioassay results indicated that compounds 4l and 4m displayed the best herbicidal activities against Amaranthus retroflexus (AR) and Digitaria sanguinalis (DS), with the inhibition exceeding 90% at 100-200 mg/L in vitro. Moreover, they also displayed higher postemergence herbicidal activities (90% control) against AR and DS than all of the positive controls at 45-90 g [active ingredient (ai)]/ha in a greenhouse. Notably, compounds 4l and 4m showed a broad spectrum of weed control at 90 g ai/ha. More significantly, compound 4l exhibited good crop selectivity against maize at 90 g ai/ha. Both fluorescent binding experiments and molecular docking analyses indicated that compounds 4l and 4m exhibited strong TK inhibitory activities with superior binding affinities than the others. Preliminary mechanism studies suggested that they might exert their TK inhibitory effects by occupying the active cavity of At TK and forming more strong interactions with amino acids in the active site. Taken together, these results suggested that compound 4l was a potential herbicide candidate for weed control in maize fields targeting TK.
Collapse
Affiliation(s)
- Yan-En Wang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
- College of Science, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Dongchen Yang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Longtao Dai
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Jingqian Huo
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Lai Chen
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Zhanhai Kang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Jianyou Mao
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Jinlin Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| |
Collapse
|
16
|
Zu G, Chen J, Song B, Hu D. Synthesis, Anti-Tomato Spotted Wilt Virus Activities, and Interaction Mechanisms of Novel Dithioacetal Derivatives Containing a 4(3 H)-Quinazolinone Pyrimidine Ring. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14459-14466. [PMID: 34807587 DOI: 10.1021/acs.jafc.1c03555] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A series of unreported novel dithioacetal derivatives containing a 4(3H)-quinazolinone pyrimidine ring were synthesized, and their antiviral activities were evaluated against tomato spotted wilt virus (TSWV). A three-dimensional quantitative structure-activity relationship (3D-QSAR) analysis was established, and compound D32 was designed and synthesized according to the analysis results of the CoMFA and CoMSIA models. The bioassay results showed that compound D32 exhibited excellent inactivation activity against TSWV, with EC50 values of 144 μg/mL, which was better than those of ningnanmycin (149 μg/mL) and the lead compound xiangcaoliusuobingmi (525 μg/mL). The binding ability of compound D32 to TSWV CP was tested by microscale thermophoresis (MST), and the binding constant value was 4.4 μM, which was better than those of ningnanmycin (6.2 μM) and xiangcaoliusuobingmi (59.1 μM). Therefore, this study indicates that novel dithioacetal derivatives containing a 4(3H)-quinazolinone pyrimidine ring may be applied as new antiviral agents.
Collapse
Affiliation(s)
- Guangcheng Zu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, P. R. China
| | - Jixiang Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, P. R. China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, P. R. China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, P. R. China
| |
Collapse
|
17
|
Yang L, Sun Y, Lu Z, Liang J, Wang T, Luo J. Synthesis and herbicidal activity of pyrimidyl‐1,2,4‐triazole derivatives containing aryl sulfonyl moiety. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Lingyun Yang
- Jiangxi Province Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang China
| | - Yi Sun
- Jiangxi Province Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang China
| | - Zhifeng Lu
- Jiangxi Province Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang China
| | - Jingru Liang
- Jiangxi Province Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang China
| | - Tao Wang
- Jiangxi Province Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang China
| | - Jin Luo
- Analytical and Testing Center Jiangxi Normal University Nanchang China
| |
Collapse
|
18
|
Yang L, Wang D, Ma D, Zhang D, Zhou N, Wang J, Xu H, Xi Z. In Silico Structure-Guided Optimization and Molecular Simulation Studies of 3-Phenoxy-4-(3-trifluoromethylphenyl)pyridazines as Potent Phytoene Desaturase Inhibitors. Molecules 2021; 26:molecules26226979. [PMID: 34834071 PMCID: PMC8618034 DOI: 10.3390/molecules26226979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
A series of novel 3-phenoxy-4-(3-trifluoromethylphenyl)pyridazines 2–5 were designed, based on the structure of our previous lead compound 1 through the in silico structure-guided optimization approach. The results showed that some of these new compounds showed a good herbicidal activity at the rate of 750 g ai/ha by both pre- and post-emergence applications, especially compound 2a, which displayed a comparable pre-emergence herbicidal activity to diflufenican at 300–750 g ai/ha, and a higher post-emergence herbicidal activity than diflufenican at the rates of 300–750 g ai/ha. Additionally, 2a was safe to wheat by both pre- and post-emergence applications at 300 g ai/ha, showing the compound’s potential for weed control in wheat fields. Our molecular simulation studies revealed the important factors involved in the interaction between 2a and Synechococcus PDS. This work provided a lead compound for weed control in wheat fields.
Collapse
Affiliation(s)
- Lijun Yang
- National Pesticide Engineering Research Center, Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China; (L.Y.); (D.W.); (D.M.); (D.Z.); (N.Z.)
| | - Dawei Wang
- National Pesticide Engineering Research Center, Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China; (L.Y.); (D.W.); (D.M.); (D.Z.); (N.Z.)
| | - Dejun Ma
- National Pesticide Engineering Research Center, Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China; (L.Y.); (D.W.); (D.M.); (D.Z.); (N.Z.)
| | - Di Zhang
- National Pesticide Engineering Research Center, Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China; (L.Y.); (D.W.); (D.M.); (D.Z.); (N.Z.)
| | - Nuo Zhou
- National Pesticide Engineering Research Center, Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China; (L.Y.); (D.W.); (D.M.); (D.Z.); (N.Z.)
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38, Xueyuan Road, Beijing 100191, China;
| | - Han Xu
- National Pesticide Engineering Research Center, Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China; (L.Y.); (D.W.); (D.M.); (D.Z.); (N.Z.)
- Correspondence: (H.X.); (Z.X.)
| | - Zhen Xi
- National Pesticide Engineering Research Center, Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China; (L.Y.); (D.W.); (D.M.); (D.Z.); (N.Z.)
- Correspondence: (H.X.); (Z.X.)
| |
Collapse
|
19
|
Wang YE, Yang D, Huo J, Chen L, Kang Z, Mao J, Zhang J. Design, Synthesis, and Herbicidal Activity of Thioether Containing 1,2,4-Triazole Schiff Bases as Transketolase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11773-11780. [PMID: 34587736 DOI: 10.1021/acs.jafc.1c01804] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Transketolase (TK) represents a potential target for novel herbicide development. To discover novel TK inhibitors with potency against resistant weeds, 36 thioether compounds containing 1,2,4-triazole Schiff bases were designed and synthesized for herbicidal activity evaluation. The results demonstrated that compounds 5av and 5aw provided excellent weed control with inhibition of over 90% against the tested weeds, even at concentrations as low as 100 mg/L in vitro. In addition, compounds 5av and 5aw exhibited higher postemergence herbicidal activity than all of the positive controls against the tested weeds at 50-90 g [active ingredient (ai)]/ha in a greenhouse, while being safe for crops of maize and wheat at 90 g (ai)/ha. Fluorescent binding experiments of At TK indicated that compounds 5av and 5aw had strong TK inhibitory activity and could tightly bind with the enzyme At TK. Also, molecular docking analyses revealed that the structures of compounds 5av and 5aw were suitable for TK inhibitory activity. Taken together, these results suggested that compounds 5av and 5aw were promising herbicide candidates for weed control in wheat and maize fields targeting TK.
Collapse
Affiliation(s)
- Yan-En Wang
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, People's Republic of China
- College of Science, Hebei Agricultural University, Baoding, Hebei 071001, People's Republic of China
| | - Dongchen Yang
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, People's Republic of China
| | - Jingqian Huo
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, People's Republic of China
| | - Lai Chen
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, People's Republic of China
| | - Zhanhai Kang
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, People's Republic of China
| | - Jianyou Mao
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, People's Republic of China
| | - Jinlin Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, People's Republic of China
| |
Collapse
|
20
|
Wu YP, Wang Y, Li JH, Li RH, Wang J, Li SX, Gao XY, Dong L, Li AQ. Design, synthesis, herbicidal activity, in vivo enzyme activity evaluation and molecular docking study of acylthiourea derivatives as novel acetohydroxyacid synthase inhibitor. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Synthesis and Antifungal and Insecticidal Activities of Novel N-Phenylbenzamide Derivatives Bearing a Trifluoromethylpyrimidine Moiety. J CHEM-NY 2021. [DOI: 10.1155/2021/8370407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Seventeen novel N-phenylbenzamide derivatives bearing a trifluoromethylpyrimidine moiety were synthesized via four-step reactions. Their antifungal and insecticidal properties were evaluated. Antifungal test results demonstrated that some of the synthesized compounds showed better in vitro bioactivities against Phomopsis sp., Botryosphaeria dothidea (B. dothidea), and Botrytis cinerea (B. cinerea) at 50 μg/mL than pyrimethanil. Unfortunately, the synthesized compounds revealed lower insecticidal activities against Spodoptera frugiperda (S. frugiperda) and Mythimna separata (M. separata) at 500 μg/mL than chlorantraniliprole.
Collapse
|
22
|
Wang HL, Li HR, Zhang YC, Yang WT, Yao Z, Wu RJ, Niu CW, Li YH, Wang JG. Discovery of ortho-Alkoxy Substituted Novel Sulfonylurea Compounds That Display Strong Herbicidal Activity against Monocotyledon Grasses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8415-8427. [PMID: 34283603 DOI: 10.1021/acs.jafc.1c02081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In the present study, we have designed and synthesized a series of 42 novel sulfonylurea compounds with ortho-alkoxy substitutions at the phenyl ring and evaluated their herbicidal activities. Some target compounds showed excellent herbicidal activity against monocotyledon weed species. When applied at 7.5 g ha-1, 6-11 exhibited more potent herbicidal activity against barnyard grass (Echinochloa crus-galli) and crab grass (Digitaria sanguinalis) than commercial acetohydroxyacid synthase (AHAS; EC 2.2.1.6) inhibitors triasulfuron, penoxsulam, and nicosulfuron at both pre-emergence and postemergence conditions. 6-11 was safe for peanut for postemergence application at this ultralow dosage, suggesting that it could be considered a potential herbicide candidate for peanut fields. Although 6-11 and triasulfuron share similar chemical structures and have close Ki values for plant AHAS, a significant difference has been observed between their LUMO maps from DFT calculations, which might be a possible factor that leads to their different behaviors toward monocotyledon weed species.
Collapse
Affiliation(s)
- Hai-Lian Wang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hao-Ran Li
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yi-Chi Zhang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wen-Tao Yang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zheng Yao
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ren-Jun Wu
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Cong-Wei Niu
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yong-Hong Li
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jian-Guo Wang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
23
|
Jia L, Gao S, Zhang YY, Zhao LX, Fu Y, Ye F. Fragmenlt Recombination Design, Synthesis, and Safener Activity of Novel Ester-Substituted Pyrazole Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8366-8379. [PMID: 34310139 DOI: 10.1021/acs.jafc.1c02221] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fenoxaprop-p-ethyl (FE), a type of acetyl-CoA carboxylase (ACCase) inhibitor, has been extensively applied to a variety of crop plants. It can cause damage to wheat (Triticum aestivum) even resulting in the death of the crop. On the prerequisite of not reducing herbicidal efficiency on target weed species, herbicide safeners selectively protect crops from herbicide injury. Based on fragment splicing, a series of novel substituted pyrazole derivatives was designed to ultimately address the phytotoxicity to wheat caused by FE. The title compounds were synthesized in a one-pot way and characterized via infrared spectroscopy, 1H nuclear magnetic resonance, 13C nuclear magnetic resonance, and high-resolution mass spectrometry. The bioactivity assay proved that the FE phytotoxicity to wheat could be reduced by most of the title compounds. The molecular docking model indicated that compound IV-21 prevented fenoxaprop acid (FA) from reaching or acting with ACCase. The absorption, distribution, metabolism, excretion, and toxicity predictions demonstrated that compound IV-21 exhibited superior pharmacokinetic properties to the commercialized safener mefenpyr-diethyl. The current work revealed that a series of newly substituted pyrazole derivatives presented strong herbicide safener activity in wheat. This may serve as a potential candidate structure to contribute to the further protection of wheat from herbicide injury.
Collapse
Affiliation(s)
- Ling Jia
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Shuang Gao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Yuan-Yuan Zhang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Li-Xia Zhao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Fei Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
24
|
Li JH, Li RH, Wang Y, Li SX, Wu YP, Zhang J, Zhu YG, Xie BJ. Synthesis, herbicidal activity, enzyme activity, and molecular docking of novel aniline thiourea. PHOSPHORUS SULFUR 2021. [DOI: 10.1080/10426507.2021.1901702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jia hui Li
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Ran hong Li
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Yan Wang
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Sui xin Li
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Yun peng Wu
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Jing Zhang
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Yong gang Zhu
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Bei jie Xie
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| |
Collapse
|
25
|
Su S, Chen M, Tang X, Peng F, Liu T, Zhou Q, Zhan W, He M, Xie C, Xue W. Design, Synthesis and Antibacterial Activity of Novel Pyrimidine-Containing 4H-Chromen-4-One Derivatives*. Chem Biodivers 2021; 18:e2100186. [PMID: 34159725 DOI: 10.1002/cbdv.202100186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/18/2021] [Indexed: 11/05/2022]
Abstract
A series of pyrimidine-containing 4H-chromen-4-one derivatives were designed and synthesized by combining bioactive substructures. Preliminary biological activity results showed that most of the compounds displayed significant inhibitory activities in vitro against Xanthomonas axonopodis pv. Citri (X. axonopodis), Xanthomonas oryzae pv. oryzae (X. oryzae) and Ralstonia solanacearum (R. solanacearum). In particular, compound 2-[(3-{[5,7-dimethoxy-4-oxo-2-(3,4,5-trimethoxyphenyl)-4H-1-benzopyran-3-yl]oxy}propyl)sulfanyl]-4-(4-methylphenyl)-6-oxo-1,6-dihydropyrimidine-5-carbonitrile (4c) demonstrated a good inhibitory effect against X. axonopodis and X. oryzae, with the half-maximal effective concentration (EC50 ) values of 15.5 and 14.9 μg/mL, respectively, and compound 2-[(3-{[5,7-Dimethoxy-4-oxo-2-(3,4,5-trimethoxyphenyl)-4H-1-benzopyran-3-yl]oxy}propyl)sulfanyl]-4-(3-fluorophenyl)-6-oxo-1,6-dihydropyrimidine-5-carbonitrile (4h) showed the best antibacterial activity against R. solanacearum with an EC50 value of 14.7 μg/mL. These results were better than commercial reagents bismerthiazol (BT, 51.7, 70.1 and 52.7 μg/mL, respectively) and thiodiazole copper (TC, 77.9, 95.8 and 72.1 μg/mL, respectively). In vivo antibacterial activity results indicated that compound 4c displayed better curative (42.4 %) and protective (49.2 %) activities for rice bacterial leaf blight than BT (35.2, 39.1 %) and TC (30.8, 27.3 %). The mechanism of compound 4c against X. oryzae was analyzed through scanning electron microscopy (SEM). These results indicated that pyrimidine-containing 4H-chromen-4-one derivatives have important value in the research of new agrochemicals.
Collapse
Affiliation(s)
- Shijun Su
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, P. R. China
| | - Mei Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, P. R. China
| | - Xuemei Tang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, P. R. China
| | - Feng Peng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, P. R. China
| | - Tingting Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, P. R. China
| | - Qing Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, P. R. China
| | - Wenliang Zhan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, P. R. China
| | - Ming He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, P. R. China
| | - Chengwei Xie
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, P. R. China
| | - Wei Xue
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, P. R. China
| |
Collapse
|
26
|
Cheng J, Li X. Development and Application of Activity-based Fluorescent Probes for High-Throughput Screening. Curr Med Chem 2021; 29:1739-1756. [PMID: 34036907 DOI: 10.2174/0929867328666210525141728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 11/22/2022]
Abstract
High-throughput screening facilitates the rapid identification of novel hit compounds; however, it remains challenging to design effective high-throughput assays, partially due to the difficulty of achieving sensitivity in the assay techniques. Among the various analytical methods that are used, fluorescence-based assays dominate owing to their high sensitivity and ease of operation. Recent advances in activity-based sensing/imaging have further expanded the availability of fluorescent probes as monitors for high-throughput screening of result outputs. In this study, we have reviewed various activity-based fluorescent probes used in high-throughput screening assays, emphasizing their structure-related working mechanisms. Moreover, we have explored the possibility of the development of additional and better probes to boost hit identification and drug development against various targets.
Collapse
Affiliation(s)
- Juan Cheng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xin Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
27
|
Ma D, Yin Y, Chen YL, Yan YT, Wu J. Design, step-economical diversity-oriented synthesis of an N-heterocyclic library containing a pyrimidine moiety: discovery of novel potential herbicidal agents. RSC Adv 2021; 11:15380-15386. [PMID: 35424046 PMCID: PMC8698718 DOI: 10.1039/d1ra02663a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/15/2021] [Indexed: 01/12/2023] Open
Abstract
The synthesis of highly diverse libraries has become of paramount importance for obtaining novel leads for drug and agrochemical discovery. Herein, the step-economical diversity-oriented synthesis of a library of various pyrimidine-N-heterocycle hybrids was developed, in which a 4,6-dimethoxypyrimidine core was incorporated into nine kinds of N-heterocycles. A total of 34 structurally diverse compounds were synthesized via a two-step process from very simple and commercially available starting materials. Further, in vivo biological screening of this library identified 11 active compounds that exhibited good post-emergence herbicidal activity against D. sanguinalis at 750 g ai per ha. More importantly, pyrimidine-tetrahydrocarbazole hybrid 5q showed good to excellent herbicidal activity against five test weeds at the same dosage. Pyrimidine-tetrahydrocarbazole hybrids represent a novel class of herbicidal agents that may become promising lead compounds in the herbicidal discovery process.
Collapse
Affiliation(s)
- Dong Ma
- Department of Chemistry, Zhejiang University Hangzhou 310027 P. R. China +86-571-87951895
| | - Yang Yin
- Department of Chemistry, Zhejiang University Hangzhou 310027 P. R. China +86-571-87951895
| | - Ying-Lu Chen
- Department of Chemistry, Zhejiang University Hangzhou 310027 P. R. China +86-571-87951895
| | - Yi-Tao Yan
- Department of Chemistry, Zhejiang University Hangzhou 310027 P. R. China +86-571-87951895
| | - Jun Wu
- Department of Chemistry, Zhejiang University Hangzhou 310027 P. R. China +86-571-87951895
| |
Collapse
|
28
|
Butcher RJ, Purdy AP, Fischer SA, Gunlycke D. Structural and theoretical studies of 4-chloro-2-methyl-6-oxo-3,6-dideuteropyrimidin-1-ium chloride ( d 6). Acta Crystallogr E Crystallogr Commun 2021; 77:390-395. [PMID: 33936763 PMCID: PMC8025851 DOI: 10.1107/s205698902100270x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/11/2021] [Indexed: 11/11/2022]
Abstract
The title compound, C5D6ClN2O+·Cl-, crystallizes in the ortho-rhom-bic space group, Pbcm, and consists of a 4-chloro-2-methyl-6-oxo-3,6-di-hydro-pyrimidin-1-ium cation and a chloride anion where both moieties lie on a crystallographic mirror. The cation is disordered and was refined as two equivalent forms with occupancies of 0.750 (4)/0.250 (4), while the chloride anion is triply disordered with occupancies of 0.774 (12), 0.12 (2), and 0.11 (2). Unusually, the bond angles around the C=O unit range from 127.2 (6) to 115.2 (3)° and similar angles have been found in other structures containing a 6-oxo-3,6-di-hydro-pyrimidin-1-ium cation, including the monclinic polymorph of the title compound, which crystallizes in the monoclinic space group P21/c [Kawai et al. (1973 ▸). Cryst. Struct. Comm. 2, 663-666]. The cations and anions pack into sheets in the ab plane linked by N-H⋯Cl hydrogen bonds as well as C-H⋯O and Cl⋯O inter-actions. In graph-set notation, these form R 3 3(11) and R 3 2(9) rings. Theoretical calculations seem to indicate that the reason for the unusual angles at the sp 2 C is the electrostatic inter-action between the oxygen atom and the adjacent N-H hydrogen.
Collapse
Affiliation(s)
- Ray J. Butcher
- Department of Chemistry, Howard University, 525 College Street NW, Washington DC 20059, USA
| | - Andrew P. Purdy
- Chemistry Division, Code 6100, Naval Research Laboratory, 4555 Overlook Av, SW, Washington DC 20375-5342, USA
| | - Sean A. Fischer
- Chemistry Division, Code 6189, Naval Research Laboratory, 4555 Overlook Av, SW, Washington DC 20375-5342, USA
| | - Daniel Gunlycke
- Chemistry Division, Code 6189, Naval Research Laboratory, 4555 Overlook Av, SW, Washington DC 20375-5342, USA
| |
Collapse
|
29
|
Huang JJ, Wang F, Ouyang Y, Huang YQ, Jia CY, Zhong H, Hao GF. HerbiPAD: a free web platform to comprehensively analyze constitutive property and herbicide-likeness to estimate chemical bioavailability. PEST MANAGEMENT SCIENCE 2021; 77:1273-1281. [PMID: 33063413 DOI: 10.1002/ps.6140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/10/2020] [Accepted: 10/16/2020] [Indexed: 05/26/2023]
Abstract
BACKGROUND Herbicides, as efficient weed control measures, play a crucial role in ensuring food security. The emergence of herbicide-resistant weeds has negatively affected food security and promoted the demand for new and improved herbicides. The balance between bioavailability and the potency of a compound is one of the most pressing challenges in the development of novel ideal herbicides. Herbicide-likeness analysis is crucial for the evaluation of this balance and thus may help to address this issue. Many herbicide-likeness analysis methods have been developed to screen potential novel lead compounds. However, there remains a lack of user-friendly and integrated tools to comprehensively evaluate herbicide-likeness. RESULTS Herbicide-likeness of compounds was assessed through integrated analysis incorporating the physicochemical properties of commercial herbicides, a qualitative rule, and three quantitative scoring functions developed for evaluating herbicide-likeness. HerbiPAD (http://agroda.gzu.edu.cn:9999/ccb/database/HerbiPAD/) is a free web platform integrated with the collected database and scoring model. This platform contains 542 approved herbicides and > 29 000 physicochemical descriptors. The accuracy of HerbiPAD in distinguishing known herbicides from nonherbicides was 84.2%. In the case study, HerbiPAD evaluated 60 new compounds from seven different herbicide targets, and the accuracy of predicting better bioavailability was 83.3%. CONCLUSIONS HerbiPAD was designed to quickly and efficiently evaluate herbicide-likeness by integrating qualitative and quantitative analyses. The simple and effective interpretation of the analysis interface may help noncomputational experts understand herbicide-likeness. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jun-Jie Huang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Fan Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, China
| | - Yan Ouyang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| | - Yuan-Qin Huang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Chen-Yang Jia
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, China
| | - Hang Zhong
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| | - Ge-Fei Hao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| |
Collapse
|
30
|
Nqoro X, Jama S, Morifi E, Aderibigbe BA. 4-Aminosalicylic Acid-based Hybrid Compounds: Synthesis and In vitro Antiplasmodial Evaluation. LETT DRUG DES DISCOV 2021. [DOI: 10.2174/1570180817999200802031547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background:
Malaria is a deadly and infectious disease responsible for millions of death
worldwide, mostly in the African region. The malaria parasite has developed resistance to the currently
used antimalarial drugs, and it has urged researchers to develop new strategies to overcome
this challenge by designing different classes of antimalarials.
Objectives:
A class of hybrid compounds containing 4-aminosalicylic acid moiety was prepared via
esterification and amidation reactions and characterized using FTIR, NMR and LC-MS. In vitro antiplasmodial
evaluation was performed against the asexual NF54 strain of P. falciparum parasites.
Methods:
In this research, known 4-aminoquinoline derivatives were hybridized with 4-
aminosalicylic acid to afford hybrid compounds via esterification and amidation reactions. 4-
aminosalicylic acid, a dihydrofolate compound inhibits DNA synthesis in the folate pathway and is
a potential pharmacophore for the development of antimalarials.
Results:
The LC-MS, FTIR, and NMR analysis confirmed the successful synthesis of the compounds.
The compounds were obtained in yields in the range of 63-80%. The hybrid compounds
displayed significant antimalarial activity when compared to 4-aminosalicylic acid, which exhibited
poor antimalarial activity. The IC50 value of the most potent hybrid compound, 9 was 9.54±0.57 nm.
Conclusion:
4-aminosalicylic has different functionalities, which can be used for hybridization with
a wide range of compounds. It is a potential pharmacophore that can be utilized for the design of
potent antimalarial drugs. It was found to be a good potentiating agent when hybridized with 4-
aminoquinoline derivatives suggesting that they can be utilized for the synthesis of a new class of
antimalarials.
Collapse
Affiliation(s)
- Xhamla Nqoro
- Department of Chemistry, University of Fort Hare, Alice Campus,South Africa
| | - Siphesihle Jama
- Department of Chemistry, University of Fort Hare, Alice Campus,South Africa
| | - Eric Morifi
- School of Chemistry, Mass Spectrometry Division, University of the Witwatersrand, Johannesburg Private Bag X3, WITS, 2050,South Africa
| | | |
Collapse
|
31
|
Li JH, Wang Y, Wu YP, Li RH, Liang S, Zhang J, Zhu YG, Xie BJ. Synthesis, herbicidal activity study and molecular docking of novel pyrimidine thiourea. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 172:104766. [PMID: 33518053 DOI: 10.1016/j.pestbp.2020.104766] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/16/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
According to the pharmacophore binding strategy and principle of bioelectronic isobaric, used the sulfonylurea bridge as the parent structure, a series of novel thiourea compounds containing aromatic-substituted pyrimidines were designed and synthesized. The preliminary herbicidal activity tests showed that some compounds had good herbicidal activity against Digitaria adscendens, Amaranthus retroflexus, especially for compound 4d and 4f. The results showed that compound 4d had an inhibition rate of 81.5% on the root growth of Brassica napus L. at the concentration of 100 mg L-1, and compound 4f had an inhibition rate of 81% on the root growth of Digitaria adscendens at the concentration of 100 mg L-1. Compounds 4d and 4f had higher comparative activity on Echinochloa crus-galli than the commercial herbicide bensulfuron-methyl. The preliminary structure-activity relationship (SAR) was also summarized. We also tested the in vivo AHAS enzyme activity inhibition experiment of 14 compounds at 100 mg L-1, and the results showed that they all have inhibitory activity on the enzyme, with the highest inhibition rate reaching 44.4% (compound 4d). Based on the results of molecular docking to yeast acetohydroxyacid synthase (AHAS), the possible herbicidal activity mechanism of these compounds was evaluated.
Collapse
Affiliation(s)
- Jia-Hui Li
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Yan Wang
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China.
| | - Yun-Peng Wu
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Ran-Hong Li
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Shuang Liang
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Jing Zhang
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Yong-Gang Zhu
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Bei-Jie Xie
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| |
Collapse
|
32
|
Ethyl (S)-2-Benzamido-5-[(4,6-dimethylpyrimidin-2-yl)amino]pentanoate. MOLBANK 2020. [DOI: 10.3390/m1166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Pyrimidines are compounds with a wide range of biological activities, and the synthesis of pyrimidine derivatives—useful in chemical and medicinal applications—is important in medicinal chemistry. This work shows the synthesis under microwave irradiation of the novel compound ethyl (S)-2-benzamido-5-[(4,6-dimethylpyrimidin-2-yl)amino]pentanoate (3) from (S)-N-α-benzoyl-l-arginine ethyl ester hydrochloride (1) and acetylacetone (2). Compound 3 was easily purified, obtained in moderate yield (70%), and fully characterized by UV-Vis, FTIR-ATR spectroscopy, 1H-NMR, 13C-NMR, HRMS, and EI-MS.
Collapse
|
33
|
Qu RY, Yang JF, Chen Q, Niu CW, Xi Z, Yang WC, Yang GF. Fragment-based discovery of flexible inhibitor targeting wild-type acetohydroxyacid synthase and P197L mutant. PEST MANAGEMENT SCIENCE 2020; 76:3403-3412. [PMID: 31943722 DOI: 10.1002/ps.5739] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/03/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Intensifying weed resistance has challenged the use of existing acetohydroxyacid synthase (AHAS)-inhibiting herbicides. Hence, there is currently an urgent requirement for the discovery of a new AHAS inhibitor to effectively control AHAS herbicide-resistant weed species produced by target mutation. RESULTS To combat weed resistance caused by AHAS with P197L mutation, we built a structure library consisting of pyrimidinyl-salicylic acid derivatives. Using the pharmacophore-linked fragment virtual screening (PFVS) approach, hit compound 8 bearing 6-phenoxymethyl substituent was identified as a potential AHAS inhibitor with antiresistance effect. Subsequently, derivatives of compound 8 were synthesized and evaluated for their inhibitory activities. The study of the enzyme-based structure-activity relationship and structure-resistance relationship studies led to the discovery of a qualified candidate, 28. This compound not only significantly inhibited the activity of wild-type Arabidopsis thaliana (At) AHAS and P197L mutant, but also exhibited good antiresistance properties (RF = 0.79). Notably, compared with bispyribac at 37.5-150 g of active ingredient per hectare (g a.i. ha-1 ), compound 27 exhibited higher growth inhibition against both sensitive and resistant Descurainia sophia, CONCLUSION: The title compounds have great potential to be developed as new leads to effectively control herbicide-resistant weeds comprising AHAS with P197L mutation. Also, our study provided a positive case for discovering novel, potent and antiresistance inhibitors using a fragment-based drug design approach.
Collapse
Affiliation(s)
- Ren-Yu Qu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Chemical Biology Center, Central China Normal University, Wuhan, P. R. China
| | - Jing-Fang Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Chemical Biology Center, Central China Normal University, Wuhan, P. R. China
| | - Qiong Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Chemical Biology Center, Central China Normal University, Wuhan, P. R. China
| | - Cong-Wei Niu
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, P. R. China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, P. R. China
| | - Wen-Chao Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Chemical Biology Center, Central China Normal University, Wuhan, P. R. China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Chemical Biology Center, Central China Normal University, Wuhan, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, P. R. China
| |
Collapse
|
34
|
Wu W, Chen M, Fei Q, Ge Y, Zhu Y, Chen H, Yang M, Ouyang G. Synthesis and Bioactivities Study of Novel Pyridylpyrazol Amide Derivatives Containing Pyrimidine Motifs. Front Chem 2020; 8:522. [PMID: 32850614 PMCID: PMC7411148 DOI: 10.3389/fchem.2020.00522] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/21/2020] [Indexed: 11/29/2022] Open
Abstract
In this study, thirteen new pyridylpyrazolamide derivatives containing pyrimidine motifs were synthesized via six-step reactions. Bioassay results showed that some of the synthesized compounds revealed good antifungal properties against Sclerotinia sclerotiorum, Phytophthora infestans, Thanatephorus cucumeris, Gibberella zeae, Fusarium oxysporum, Cytospora mandshurica, Botryosphaeria dothidea, and Phompsis sp. at 50 μg/mL, which were similar to those of Kresoxim-methyl or Pyrimethanil. Meanwhile, bioassay results indicated that the synthesized compounds showed a certain insecticidal activity against Spodoptera litura, Mythimna separata, Pyrausta nubilalis, Tetranychus urticae, Rhopalosiphum maidis, and Nilaparvata lugens at 200 μg/mL, which was lower than that of Chlorantraniliprole. To the best of our knowledge, this study is the first report on the antifungal and insecticidal activities of pyridylpyrazol amide derivatives containing a pyrimidine moiety.
Collapse
Affiliation(s)
- Wenneng Wu
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, China.,Center for Research and Development of Fine Chemicals, School of Pharmaceutical Sciences, Entomology of Institute, Guizhou University, Guiyang, China
| | - Meihang Chen
- Material and Chemistry Engineering Institute, Tongren College, Tongren, China
| | - Qiang Fei
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, China
| | - Yonghui Ge
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, China
| | - Yingying Zhu
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang, China
| | - Haijiang Chen
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, China
| | - Maofa Yang
- Center for Research and Development of Fine Chemicals, School of Pharmaceutical Sciences, Entomology of Institute, Guizhou University, Guiyang, China
| | - Guiping Ouyang
- Center for Research and Development of Fine Chemicals, School of Pharmaceutical Sciences, Entomology of Institute, Guizhou University, Guiyang, China
| |
Collapse
|
35
|
Zan N, Xie D, Li M, Jiang D, Song B. Design, Synthesis, and Anti-ToCV Activity of Novel Pyrimidine Derivatives Bearing a Dithioacetal Moiety that Targets ToCV Coat Protein. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6280-6285. [PMID: 32330024 DOI: 10.1021/acs.jafc.0c00987] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Novel pyrimidine sulfide derivatives containing a dithioacetal and strobilurin moiety were designed and synthesized. Their antiviral activities against tomato chlorosis virus (ToCV) were investigated through the tomato chlorosis virus coat protein (ToCVCP)-oriented screening method. Microscale thermophoresis was used to study the interaction between the compound and the ToCVCP. Compounds B13 and B23 interacted better with ToCVCP than the other compounds and had dissociation constant (Kd) values of 0.09 and 0.06 μM, respectively. These values were lower than those of the control agents, ningnanmycin (0.19 μM) and ribavirin (6.54 μM), which indicated that the compounds had a strong binding effect with ToCVCP. Quantitative real-time polymerase chain reaction was used to evaluate the role of compounds B13 and B23 in the gene regulation of ToCVCP. Both compounds significantly reduced the expression level of the ToCVCP gene in Nicotiana benthamiana with reduction values of 88 and 83%, which were better than those of ningnanmycin (65%) and lead compound C14 (73%). Pyrimidine sulfide containing a dithioacetal and strobilurin moiety is significant in the research and development of novel anti-ToCV agents.
Collapse
Affiliation(s)
- Ningning Zan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Dandan Xie
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Miao Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Donghao Jiang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
36
|
Xiang L, Zhang L, Wu Q, Xu Z, Li J, Du X, Qin Z. Synthesis and herbicidal activity against barnyard grass of novel diarylmethanone O-(2,6-bis((4,6-dimethoxypyrimidin-2-yl)oxy)benzoyl)oximes. PEST MANAGEMENT SCIENCE 2020; 76:2058-2067. [PMID: 31943725 DOI: 10.1002/ps.5741] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/24/2019] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Pyribenzoxim is an excellent herbicide that can effectively control barnyard grass. However, there are few reports of its structural analogs and structure-activity relationship (SAR), which makes pyribenzoxim an isolated case. Here, a series of diarylmethanone oxime esters characterized by pyridine heterocycles were designed and synthesized for herbicidal screening and SAR investigation against barnyard grass. RESULTS At greenhouse treatment concentrations of 1.17-37.5 μg mL-1 , the title compounds showed a positive dose-toxicity correlation toward barnyard grass plants, with the damage becoming progressively more serious over time. At a concentration of 18.75 μg mL-1 and above, obvious damage was observed in 3 days, most plants died in 7 days, and all died in 14 days. Different degrees of damage were also seen when the concentration was lower than 9.38 μg mL-1 . The selected compounds 5-20 and 5-21 showed excellent control against Echinochloa crusgalli (L.) Beauv., Leptochloa chinensis (L.) Nees, Cyperus difformis L. and Lindernia procumbens (Krock.) Philcox in paddy fields, which was slightly better than that of pyribenzoxim. CONCLUSION SAR analysis of greenhouse data revealed that the type and position of substituents on aromatic rings greatly influenced the activity of the compounds, although log P values showed no obvious correlation with activity. Combined with compounds 5-20 and 5-21, which showed moderate and excellent activity in greenhouse experiments, and excellent activity in controlling barnyard grass in the field, we conclude that pyribenzoxim analogs probably act as prodrugs, and this could be a focus of attention in future studies on structural optimization of the herbicide. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lanxiang Xiang
- College of Agriculture, Yangtze University, Jinzhou, China
| | - Lei Zhang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Qinglai Wu
- College of Agriculture, Yangtze University, Jinzhou, China
| | - Zhihong Xu
- College of Agriculture, Yangtze University, Jinzhou, China
| | - Junkai Li
- College of Agriculture, Yangtze University, Jinzhou, China
| | - Xiaoying Du
- College of Agriculture, Yangtze University, Jinzhou, China
| | - Zhaohai Qin
- College of Agriculture, Yangtze University, Jinzhou, China
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| |
Collapse
|
37
|
Zhou S, Meng FF, Hua XW, Li YH, Liu B, Wang BL, Chen J, Chen AL, Li ZM. Controllable Soil Degradation Rate of 5-Substituted Sulfonylurea Herbicides as Novel AHAS Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3017-3025. [PMID: 32059105 DOI: 10.1021/acs.jafc.9b06679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chlorsulfuron has been applied in wheat fields as a recognized herbicide worldwide, yet it was officially banned in China since 2014 for its soil persistence problem. On the basis of our previous research that 5-dimethylamino distinctively accelerated degradation rate in soils, a modified amino moiety (Ia-c) and monosubstituted amino group (Id-e) were introduced onto the fifth position of the benzene ring in sulfonylurea structures, as well as heterocyclic amino substituents (If-g) to seek a suitable soil degradation rate during such an in situ crop rotation system. Referring to the biological data and ScAHAS inhibition and ScAHAS docking results, they turned out to be AHAS inhibitors with high potent herbicidal activities. The various influence on soil degradation rate along with crop safety indicated that different substituents on the fifth position have exerted an apparent impact. Their united study of structure-activity-safety-degradation relationship has great potential to provide valuable information for further development of eco-friendly agrochemicals.
Collapse
Affiliation(s)
- Shaa Zhou
- Collaborative Innovation Center of Green Pesticide, National Joint Engineering Laboratory of Biopesticide Preparation, Zhejiang A & F University State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, Zhejiang, China
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Fan-Fei Meng
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xue-Wen Hua
- College of Agriculture, Liaocheng University, Liaocheng 252000, China
| | - Yong-Hong Li
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Bin Liu
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Bao-Lei Wang
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jie Chen
- Collaborative Innovation Center of Green Pesticide, National Joint Engineering Laboratory of Biopesticide Preparation, Zhejiang A & F University State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, Zhejiang, China
| | - An-Liang Chen
- Collaborative Innovation Center of Green Pesticide, National Joint Engineering Laboratory of Biopesticide Preparation, Zhejiang A & F University State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, Zhejiang, China
| | - Zheng-Ming Li
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
38
|
Xu X, Cai X, Wang B, Min W, Wang Q, Lai C, Hu H, Xu D. Synthesis and Herbicidal Activities of Novel Substituted Acetophenone Oxime Esters of Pyrithiobac. ChemistrySelect 2020. [DOI: 10.1002/slct.201903927] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiangjian Xu
- National & Local Joint Engineering Research Center for High-efficiency Refining and High-quality Utilization of Biomass, School of pharmaceutical and Life SciencesChangzhou University Changzhou 213164 P.R. China
| | - Xinhong Cai
- National & Local Joint Engineering Research Center for High-efficiency Refining and High-quality Utilization of Biomass, School of pharmaceutical and Life SciencesChangzhou University Changzhou 213164 P.R. China
| | - Bin Wang
- National & Local Joint Engineering Research Center for High-efficiency Refining and High-quality Utilization of Biomass, School of pharmaceutical and Life SciencesChangzhou University Changzhou 213164 P.R. China
| | - Wei Min
- School Of PharmacyJiangsu Ocean University Lianyungang 222005 P.R. China
| | - Qin Wang
- National & Local Joint Engineering Research Center for High-efficiency Refining and High-quality Utilization of Biomass, School of pharmaceutical and Life SciencesChangzhou University Changzhou 213164 P.R. China
| | - Chao Lai
- National & Local Joint Engineering Research Center for High-efficiency Refining and High-quality Utilization of Biomass, School of pharmaceutical and Life SciencesChangzhou University Changzhou 213164 P.R. China
| | - Hang Hu
- National & Local Joint Engineering Research Center for High-efficiency Refining and High-quality Utilization of Biomass, School of pharmaceutical and Life SciencesChangzhou University Changzhou 213164 P.R. China
| | - Defeng Xu
- National & Local Joint Engineering Research Center for High-efficiency Refining and High-quality Utilization of Biomass, School of pharmaceutical and Life SciencesChangzhou University Changzhou 213164 P.R. China
| |
Collapse
|
39
|
Huang L, Huang R, Pang F, Li A, Huang G, Zhou X, Li Q, Li F, Ma X. Synthesis and biological evaluation of dehydroabietic acid-pyrimidine hybrids as antitumor agents. RSC Adv 2020; 10:18008-18015. [PMID: 35517208 PMCID: PMC9053630 DOI: 10.1039/d0ra02432e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/30/2020] [Indexed: 11/21/2022] Open
Abstract
A series of novel dehydroabietic acid derivatives containing pyrimidine moieties were designed and synthesized. Some of them displayed more potent inhibitory activities compared with 5-FU.
Collapse
Affiliation(s)
- Lin Huang
- School of Pharmacy
- Guilin Medical University
- Guilin
- PR China
| | - Rong Huang
- School of Pharmacy
- Guilin Medical University
- Guilin
- PR China
| | - Fuhua Pang
- School of Pharmacy
- Guilin Medical University
- Guilin
- PR China
| | - Anke Li
- School of Pharmacy
- Guilin Medical University
- Guilin
- PR China
| | - Guobao Huang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- College of Chemistry and Food Science
- Yulin Normal University
- Yulin
- PR China
| | - Xiaoqun Zhou
- School of Pharmacy
- Guilin Medical University
- Guilin
- PR China
| | - Qian Li
- School of Pharmacy
- Guilin Medical University
- Guilin
- PR China
| | - Fangyao Li
- School of Pharmacy
- Guilin Medical University
- Guilin
- PR China
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
| | - Xianli Ma
- School of Pharmacy
- Guilin Medical University
- Guilin
- PR China
| |
Collapse
|
40
|
Wang B, Xu X, Gong S, Wang Q, Hu H, Xu D. Synthesis and Herbicidal Activity of O‐(2,6‐Bis(4,6‐dimethoxypyrimidin‐2‐yloxy) benzoyl)oxime 3‐Trifluoromethylacetophenone. ChemistrySelect 2019. [DOI: 10.1002/slct.201902806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Bin Wang
- School of pharmaceutical and Life SciencesChangzhou University Changzhou 213164 P.R. China
| | - Xiangjian Xu
- School of pharmaceutical and Life SciencesChangzhou University Changzhou 213164 P.R. China
| | - Shunze Gong
- School of pharmaceutical and Life SciencesChangzhou University Changzhou 213164 P.R. China
| | - Qin Wang
- School of pharmaceutical and Life SciencesChangzhou University Changzhou 213164 P.R. China
| | - Hang Hu
- School of pharmaceutical and Life SciencesChangzhou University Changzhou 213164 P.R. China
| | - Defeng Xu
- School of pharmaceutical and Life SciencesChangzhou University Changzhou 213164 P.R. China
- National & Local Joint Engineering Research Center for High-efficiency Refining and High-quality Utilization of BiomassChangzhou University Changzhou 213164 P. R. China
| |
Collapse
|
41
|
Xie Y, Zhang C, Wang Z, Wei C, Liao N, Wen X, Niu C, Yi L, Wang Z, Xi Z. Fluorogenic Assay for Acetohydroxyacid Synthase: Design and Applications. Anal Chem 2019; 91:13582-13590. [PMID: 31603309 DOI: 10.1021/acs.analchem.9b02739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Acetohydroxyacid synthase (AHAS) exists in plants and many microorganisms (including gut flora) but not in mammals, making it an attractive drug target. Fluorescent-based methods should be practical for high-throughput screening of inhibitors. Herein, we describe the development of the first AHAS fluorogenic assay based on an intramolecular charge transfer (ICT)-based fluorescent probe. The assay is facile, sensitive, and continuous and can be applied toward various AHASs from different species, AHAS mutants, and crude cell lysates. The fluorogenic assay was successfully applied for (1) high-throughput screening of commerical herbicides toward different AHASs for choosing matching herbicides, (2) identification of a Soybean AHAS gene with broad-spectrum herbicide resistance, and (3) identification of selective inhibitors toward intestinal-bacterial AHASs. Among the AHAS inhibitors, an active agent was found for selective inhibition of obesity-associated Ruminococcus torques growth, implying the possibility of AHAS inhibitors for the ultimate goal toward antiobesity therapeutics. The fluorogenic assay opens the door for high-throughput programs in AHAS-related fields, and the design principle might be applied for development of fluorogenic assays of other synthases.
Collapse
Affiliation(s)
- Yonghui Xie
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, National Pesticide Engineering Research Center (Tianjin), College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Changyu Zhang
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess , Beijing University of Chemical Technology (BUCT) , Beijing 100029 , P. R. China
| | - Zhihua Wang
- State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , P. R. China
| | - Chao Wei
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, National Pesticide Engineering Research Center (Tianjin), College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Ningjing Liao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, National Pesticide Engineering Research Center (Tianjin), College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Xin Wen
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, National Pesticide Engineering Research Center (Tianjin), College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Congwei Niu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, National Pesticide Engineering Research Center (Tianjin), College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Long Yi
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess , Beijing University of Chemical Technology (BUCT) , Beijing 100029 , P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering , Nankai University , Tianjin 300071 , P. R. China
| | - Zejian Wang
- State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , P. R. China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, National Pesticide Engineering Research Center (Tianjin), College of Chemistry , Nankai University , Tianjin 300071 , P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering , Nankai University , Tianjin 300071 , P. R. China
| |
Collapse
|
42
|
Li G, Zhou C, Zhu C, He L, Li X, Xu Z, Xu X, Shao X, Li Z, Cheng J. Design, Synthesis, Insecticidal Evaluation and Modeling Studies on 1,4,6,7- tetrahydropyrazolo[3,4-d][1,3]oxazine Derivatives: An Application of Scaffold Hopping Strategy on Fipronil. LETT DRUG DES DISCOV 2019. [DOI: 10.2174/1570180816666190701101734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background::As the first phenylpyrazole pesticide, fipronil has been widely used in crop protection and public hygiene. In the low energy conformation of fipronil, a pseudo-six-membered ring is observed through an intramolecular hydrogen bond.Methods: :A scaffold hopping strategy was applied to mimic the pseudo-six-membered ring of fipronil by non-aromatic ring. All compounds were synthesized with a proper synthetic route and characterized by 1H NMR, 13C NMR and high-resolution mass spectra. Insecticidal activities of all target compounds against Plutella xylostella were assessed by a professional organization. Physicochemical property prediction and docking study of these compounds with GABA receptor were also performed.Results::A series of 1,4,6,7-tetrahydropyrazolo[3,4-d][1,3]oxazine derivatives containing twenty-five compounds were designed, synthesized and evaluated. Several compounds exhibited moderate activities against Plutella xylostella. The strong electron-withdrawing groups are conducive to improve activities of this series of compounds against Plutella xylostella. Docking study showed that the most active compound 10 with nitro group could bind within the TM2 domain of GABA receptor, in which a hydrogen bond was observed with residue 6’Thr. The activity of 10 was weaker than fipronil due to the differences in physicochemical properties.Conclusion: :More attention should be paid to physicochemical properties during novel pesticide hit or lead design through scaffold hopping.
Collapse
Affiliation(s)
- Guanglong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Cong Zhou
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Chengchun Zhu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Lujue He
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoyang Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhiping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoyong Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
43
|
Abbass SA, Moustafa GAI, Hassan HA, Abuo-Rahma GEDA. Facile one-pot three-component synthesis of 4,6-diaryl-3,4-dihydropyrimidine-2(1 H)-thiones under ultrasonic irradiation. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1652759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Shymaa A. Abbass
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Gamal A. I. Moustafa
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
- Department of Chemistry, University of Southampton, Highfield, UK
| | - Heba A. Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
| | | |
Collapse
|
44
|
Yan Z, Liu A, Ou Y, Li J, Yi H, Zhang N, Liu M, Huang L, Ren J, Liu W, Hu A. Design, synthesis and fungicidal activity evaluation of novel pyrimidinamine derivatives containing phenyl-thiazole/oxazole moiety. Bioorg Med Chem 2019; 27:3218-3228. [DOI: 10.1016/j.bmc.2019.05.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 05/02/2019] [Accepted: 05/18/2019] [Indexed: 01/31/2023]
|
45
|
Wu WN, Jiang YM, Fei Q, Du HT. Synthesis and fungicidal activity of novel 1,2,4-triazole derivatives containing a pyrimidine moiety. PHOSPHORUS SULFUR 2019. [DOI: 10.1080/10426507.2019.1633321] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Wen-Neng Wu
- Food and pharmaceutical Engineering Institute, Guiyang University, Guiyang, PR China
| | - Yang-Ming Jiang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, PR China
| | - Qiang- Fei
- Food and pharmaceutical Engineering Institute, Guiyang University, Guiyang, PR China
| | - Hai-Tang Du
- Food and pharmaceutical Engineering Institute, Guiyang University, Guiyang, PR China
| |
Collapse
|
46
|
Wu RJ, Ren T, Gao JY, Wang L, Yu Q, Yao Z, Song GQ, Ruan WB, Niu CW, Song FH, Zhang LX, Li M, Wang JG. Chemical preparation, biological evaluation and 3D-QSAR of ethoxysulfuron derivatives as novel antifungal agents targeting acetohydroxyacid synthase. Eur J Med Chem 2018; 162:348-363. [PMID: 30448420 DOI: 10.1016/j.ejmech.2018.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/01/2018] [Accepted: 11/03/2018] [Indexed: 12/29/2022]
Abstract
Accetohydroxyacid synthase (AHAS) is the first enzyme involved in the biosynthetic pathway of branched-chain amino acids. Earlier gene mutation of Candida albicans in a mouse model suggested that this enzyme is a promising target of antifungals. Recent studies have demonstrated that some commercial AHAS-inhibiting sulfonylurea herbicides exerted desirable antifungal activity. In this study, we have designed and synthesized 68 novel ethoxysulfulron (ES) derivatives and evaluated their inhibition constants (Ki) against C. albicans AHAS and cell based minimum inhibitory concentration (MIC) values. The target compounds 5-1, 5-10, 5-22, 5-31 and 5-37 displayed stronger AHAS inhibitions than ES did. Compound 5-1 had the best Ki of 6.7 nM against fungal AHAS and MIC values of 2.5 mg/L against Candida albicans and Candica parapsilosis after 72 h. A suitable nematode model was established here and the antifungal activity of 5-1 was further evaluated in vivo. A possible binding mode was simulated via molecular docking and a comparative field analysis (CoMFA) model was constructed to understand the structure-activity relationship. The current study has indicated that some ES derivatives should be considered as promising hits to develop antifungal drugs with novel biological target.
Collapse
Affiliation(s)
- Ren-Jun Wu
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Tongtong Ren
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jie-Yu Gao
- State Key Laboratory of Microbial Resources and CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Li Wang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zheng Yao
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Guo-Qing Song
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wei-Bin Ruan
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Cong-Wei Niu
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Fu-Hang Song
- State Key Laboratory of Microbial Resources and CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li-Xin Zhang
- State Key Laboratory of Microbial Resources and CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Mingchun Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Jian-Guo Wang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
47
|
Xie Y, Wen X, Zhao D, Niu C, Zhao Y, Qi H, Xi Z. Interactions between the ACT Domains and Catalytic Subunits of Acetohydroxyacid Synthases (AHASs) from Different Species. Chembiochem 2018; 19:2387-2394. [DOI: 10.1002/cbic.201800367] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/16/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Yonghui Xie
- State Key Laboratory of Elemento-Organic Chemistry; Department of Chemical Biology; National Pesticide Engineering Research Center (Tianjin); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); College of Chemistry; Nankai University; Tianjin 300071 P.R. China
| | - Xin Wen
- State Key Laboratory of Elemento-Organic Chemistry; Department of Chemical Biology; National Pesticide Engineering Research Center (Tianjin); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); College of Chemistry; Nankai University; Tianjin 300071 P.R. China
| | - Dongmei Zhao
- State Key Laboratory of Elemento-Organic Chemistry; Department of Chemical Biology; National Pesticide Engineering Research Center (Tianjin); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); College of Chemistry; Nankai University; Tianjin 300071 P.R. China
| | - Congwei Niu
- State Key Laboratory of Elemento-Organic Chemistry; Department of Chemical Biology; National Pesticide Engineering Research Center (Tianjin); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); College of Chemistry; Nankai University; Tianjin 300071 P.R. China
| | - Yuefang Zhao
- State Key Laboratory of Elemento-Organic Chemistry; Department of Chemical Biology; National Pesticide Engineering Research Center (Tianjin); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); College of Chemistry; Nankai University; Tianjin 300071 P.R. China
| | - Haoman Qi
- State Key Laboratory of Elemento-Organic Chemistry; Department of Chemical Biology; National Pesticide Engineering Research Center (Tianjin); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); College of Chemistry; Nankai University; Tianjin 300071 P.R. China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry; Department of Chemical Biology; National Pesticide Engineering Research Center (Tianjin); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); College of Chemistry; Nankai University; Tianjin 300071 P.R. China
| |
Collapse
|