1
|
Feng J, Wang Z, Huang W, Zhao X, Xu L, Teng C, Li Y. Hyaluronic acid-decorated lipid nanocarriers as novel vehicles for curcumin: Improved stability, cellular absorption, and anti-inflammatory effects. Food Chem 2025; 463:141420. [PMID: 39369603 DOI: 10.1016/j.foodchem.2024.141420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/14/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024]
Abstract
This study aimed to investigate how hyaluronic acid interfacial decoration affects the stability, cellular absorption, and anti-inflammatory effects of curcumin-loaded nanostructured lipid carriers. Nanocarriers were synthesized with an ovalbumin single layer and ovalbumin/hyaluronic acid double, mixed, or conjugated layers. All nanocarriers were spherical (200-300 nm diameter), and their encapsulation efficiency exceeded 95 %. Among the layers, the conjugated one exhibited the highest elastic surface dilatational modulus of approximately 40 mN/m, and the longest curcumin half-life of 186.07 days at 4 °C. Spearman's correlation analysis showed a negative correlation (r = -0.6698) between the recrystallization index and curcumin stability. The layer's mechanical strength improved curcumin stability by preventing crystal transition. Hyaluronic acid decoration enhanced the curcumin uptake of Caco-2 cells by 1.96-2.48 folds. Among the layers, the conjugate one was the most effective because of its strong binding constant with the receptor. Hyaluronic acid decoration improved the anti-inflammatory effects of curcumin.
Collapse
Affiliation(s)
- Jin Feng
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Zhen Wang
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Wuyang Huang
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Xingyu Zhao
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Lujing Xu
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Cong Teng
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Ying Li
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China.
| |
Collapse
|
2
|
Liu Y, Wu Q, Zhang J, Mao X. Effect of different amphiphilic emulsifiers complexed with xanthan gum on the stability of walnut milk and structural characterization of their complexes. Food Chem 2024; 455:139873. [PMID: 38850987 DOI: 10.1016/j.foodchem.2024.139873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/02/2024] [Accepted: 05/26/2024] [Indexed: 06/10/2024]
Abstract
The kind of compounding emulsifier used and the amount of compounding have a significant impact on the emulsion's stability. In this study, the average particle size, Zeta potential, emulsification index, laser confocal microstructure, and rheological properties shows that the ratio of monoglyceride-xanthan gum and sucrose ester-xanthan gum could maintain the good stability of the emulsion in a certain range, and the monoglyceride and sucrose ester compounding could effectively improve the stability of the emulsion in a specific ratio (7:3). The results of fluorescence spectroscopy, Fourier transform infrared spectroscopy and sodium dodecyl sulfate polyacrylamide gel electrophoresis indicated that the simultaneous complexation of three substances was more likely to produce hydrophobic interactions with walnut proteins than the simultaneous complexation of two substances. Also confirmed were the hydrogen bonding connections between the proteins and the monoglyceride, sucrose ester, and xanthan gum. Monoglyceride and xanthan gum complexes were also found to stabilize more proteins.
Collapse
Affiliation(s)
- Yuqing Liu
- School of Food Science and Technology, Shihezi University, Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), Shihezi 832003, China.
| | - Qingzhi Wu
- School of Food Science and Technology, Shihezi University, Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), Shihezi 832003, China.
| | - Jian Zhang
- School of Food Science and Technology, Shihezi University, Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), Shihezi 832003, China.
| | - Xiaoying Mao
- School of Food Science and Technology, Shihezi University, Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), Shihezi 832003, China.
| |
Collapse
|
3
|
Liu H, Huang Z, Xin T, Dong L, Deng M, Han L, Huang F, Su D. Effects of polysaccharides on colonic targeting and colonic fermentation of ovalbumin-ferulic acid based emulsion. Food Chem 2024; 453:139630. [PMID: 38781895 DOI: 10.1016/j.foodchem.2024.139630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/30/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
Rutin is a polyphenol with beneficial pharmacological properties. However, its bioavailability is often compromised due to low solubility and poor stability. Encapsulation technologies, such as emulsion systems, have been proven to be promising delivery vehicles for enhancing the bioavailability of bioactive compounds. Thus, this study was proposed and designed to investigate the colonic targeting and colonic fermentation characteristics of rutin-loaded ovalbumin-ferulic acid-polysaccharide (OVA-FA-PS) complex emulsions. The results indicate that OVA-FA-PS emulsion effectively inhibits the degradation of rutin active substances and facilitates its transport of rutin to the colon. The analysis revealed that the OVA-FA-κ-carrageenan emulsion loaded with rutin exhibited superior elasticity and colon targeting properties compared to the OVA-FA-hyaluronic acid or OVA-FA-sodium alginate emulsions loaded with rutin in the composite emulsion. Additionally, it was observed that the rutin loaded within the OVA-FA-κ-carrageenan emulsion underwent degradation and was converted to 4-hydroxybenzoic acid during colonic fermentation.
Collapse
Affiliation(s)
- Hesheng Liu
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Zhenzhen Huang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Ting Xin
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Lihong Dong
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Mei Deng
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Lipeng Han
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Fei Huang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China.
| | - Dongxiao Su
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
4
|
Zhang RY, Zhang HM, Guan TZ, Wang ZR, Li HX, Yuan L, Yang YJ, Rao SQ. Formation mechanism, environmental sensitivity and functional characteristics of succinylated ovalbumin/ε-polylysine electrostatic complexes: The roles of succinylation modification and ε-polylysine combination. Food Chem 2024; 447:138951. [PMID: 38489883 DOI: 10.1016/j.foodchem.2024.138951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 03/17/2024]
Abstract
Biocomplex materials formed by oppositely charged biopolymers (proteins) tend to be sensitive to environmental conditions and may lose part functional properties of original proteins, and one of the approaches to address these weaknesses is protein modification. This study established an electrostatic composite system using succinylated ovalbumin (SOVA) and ε-polylysine (ε-PL) and investigated the impact of varying degrees of succinylation and ε-PL addition on microstructure, environmental responsiveness and functional properties. Molecular docking illustrated that the most favorable binding conformation was that ε-PL binds to OVA groove, which was contributed by the multi‑hydrogen bonding and hydrophobic interactions. Transmission electron microscopy observed that SOVA/ε-PL had a compact spherical structure with 100 nm. High-degree succinylation reduced complex sensitivity to heat, ionic strength, and pH changes. ε-PL improved the gel strength and antibacterial properties of SOVA. The study suggests possible uses of SOVA/ε-PL complex as multifunctional protein complex systems in the field of food additives.
Collapse
Affiliation(s)
- Ru-Yi Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Hui-Min Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Tian-Zhu Guan
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Zhi-Rong Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Hua-Xiang Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Lei Yuan
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Yan-Jun Yang
- State key laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Sheng-Qi Rao
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China.
| |
Collapse
|
5
|
Moreno-Vásquez MJ, Carretas-Valdez MI, Luque-Alcaraz AG, Quintero-Reyes IE, Tapia-Hernández JA, Arvizu-Flores AA, Moreno-Córdova EN, Graciano-Verdugo AZ. Conjugation of Lysozyme and Epigallocatechin Gallate for Improving Antibacterial and Antioxidant Properties. Curr Microbiol 2024; 81:264. [PMID: 39001894 DOI: 10.1007/s00284-024-03776-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/14/2024] [Indexed: 07/15/2024]
Abstract
One of the main interests in the food industry is the preservation of food from spoilage by microorganisms or lipid oxidation. A novel alternative is the development of additives of natural origin with dual activity. In the present study, a chemically modified lysozyme (Lys) with epigallocatechin gallate (EGCG) was developed to obtain a conjugate (Lys-EGCG) with antibacterial/antioxidant activity to improve its properties and increase its application potential. The modification reaction was carried out using a free radical grafting method for the Lys modification reaction, using ascorbic acid and hydrogen peroxide as radical initiators in an aqueous medium. The synthesis of Lys-EGCG conjugate was confirmed by spectroscopic (FT-IR, 1H-RMN, and XPS) and calorimetry differential scanning (DSC) analyses. The EGCG binding to the Lys biomolecule was quantified by the Folin-Ciocalteu method; the antibacterial activity was evaluated by minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MCB) against Staphylococcus aureus and Pseudomonas fluorescens; the antioxidant activity was evaluated by ABTS, DPPH, and FRAP. The spectroscopic results showed that the Lys-EGCG conjugate was successfully obtained, and the DSC analysis revealed a 20 °C increase (P < 0.05) in the denaturation temperature of Lys due to EGCG modification. The EGCG concentration in Lys-EGCG was 97.97 ± 4.7 µmol of EGCG/g of sample. The antibacterial and antioxidant activity of the Lys-EGCG conjugate was higher (P < 0.05) than pure EGCG and Lys. The chemical modification of Lys with EGCG allows for the bioconjugate with a dual function (antibacterial/antioxidant), broadening the range of Lys and EGCG applications to different areas such as food, cosmetic, and pharmaceutical industries.
Collapse
Affiliation(s)
- María J Moreno-Vásquez
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo, 83000, México
| | | | - Ana G Luque-Alcaraz
- Ingeniería Biomédica, Universidad Estatal de Sonora, Hermosillo, 83100, México
| | | | - José A Tapia-Hernández
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Hermosillo, 83000, México
| | - Aldo A Arvizu-Flores
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo, 83000, México
| | - Elena N Moreno-Córdova
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo, 83000, México
| | | |
Collapse
|
6
|
Liu Y, Ma L, Zhang Q, Liu Y, Li D. Construction of fatty acid-ovalbumin binary complexes to improve the water dispersibility, thermal/digestive stability and bioaccessibility of lutein: A comparative study of different fatty acids. Int J Biol Macromol 2024; 273:133010. [PMID: 38852735 DOI: 10.1016/j.ijbiomac.2024.133010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/30/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Lipids are increasingly being incorporated into delivery systems due to their ability to facilitate intestinal absorption of lipid-soluble nutrients through molecular solubilization and micellization. In this work, self-assembled complexes of ovalbumin (OVA) and nine dietary fatty acids (FAs) were constructed to improve the processability and absorbability of lutein (LUT). Results showed that all FAs could form stable hydrophilic particles with OVA under the optimized ultrasound-coupled pH conditions. Fourier infrared spectroscopy and transmission electron microscopy analysis showed that these binary complexes effectively encapsulated LUT with an encapsulation rate > 90.0 %. Stability experiments showed that these complexes protected LUT well, which could improve thermal stability and in vitro digestive stability by 1.66-3.58-fold and 1.27-2.74-fold, respectively. Besides, the bioaccessibility of LUT was also enhanced by 7.16-24.99-fold. The chain length and saturation of FAs affected the stability and absorption of LUT. Therefore, these results provided some reference for the selection of FAs for efficient delivery of lipid-soluble nutrients.
Collapse
Affiliation(s)
- Yunjun Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, People's Republic of China
| | - Liyuan Ma
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, People's Republic of China
| | - Qian Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, People's Republic of China
| | - Yixiang Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, People's Republic of China.
| | - Dan Li
- Navy Medical Center, Naval Medical University, Shanghai 200433, People's Republic of China
| |
Collapse
|
7
|
Wang Y, Liu S. Remarkable Enhancement of Antioxidant Activity of the Ovalbumin-EGCG Conjugate through a Novel Preceding Selective Protection Grafting Strategy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:13320-13327. [PMID: 38819406 DOI: 10.1021/acs.jafc.4c01187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Conventional radical grafting of proteins with catechins consumed the most antioxidant-active hydroxyls during grafting, thus failing to effectively retain antioxidant activity in conjugates. In this study, a novel strategy of selective protection of the most reactive hydroxyls before grafting was developed to preserve the most reactive hydroxyls and effectively retain antioxidant activity in conjugates. Selective protection of the most reactive hydroxyls of (-)-epigallocatechin-3-gallate (EGCG) was successfully realized in a yield of 87% applying trimethyl orthopropionate and catalytic calcium triflate at 40 °C. The novel ovalbumin (OVA)-EGCG conjugate with 93% grafting ratio was prepared by radical grafting with the selectively protected EGCG and subsequent deprotection. Substantially enhanced antioxidant performance of the novel OVA-EGCG conjugate in liposomes was unveiled with notably reduced curcumin degradation and leakage. The strategy and approaches developed in this study will be valuable to effectively improve the antioxidant activities of protein-catechin grafting conjugates.
Collapse
Affiliation(s)
- Yumin Wang
- Department of Food Science and Nutrition, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Songbai Liu
- Department of Food Science and Nutrition, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
8
|
Li H, Liu M, Ju X, Zhang H, Xia N, Wang J, Wang Z, Rayan AM. Physico-Chemical Characteristics of pH-Driven Active Film Loading with Curcumin Based on the Egg White Protein and Sodium Alginate Matrices. Foods 2024; 13:1340. [PMID: 38731711 PMCID: PMC11083475 DOI: 10.3390/foods13091340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
The low solubility and stability of fat-soluble curcumin in water limit its application in active packaging. This study explored the use of a pH-driven method to investigate the preparation and enhancement of the performance of films loaded with curcumin in a matrix of sodium alginate (Alg) and egg white protein (EWP). In this study, the EWP, Alg, and curcumin primarily bind through hydrogen bonding, electrostatic interactions, and hydrophobic interactions. Compared to EWP films, the films loaded with curcumin through the pH-driven method exhibited enhanced extensibility and water resistance, with an elongation at break (EB) of 103.56 ± 3.13% and a water vapor permeability (WVP) of 1.67 ± 0.03 × 10-10 g·m/m2·Pa·s. The addition of Alg improved the encapsulation efficiency and thermal stability of curcumin, thereby enhancing the antioxidant activity of the film through the addition of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals, which resulted in 106.95 ± 2.61 μg TE/g and 144.44 ± 8.89 μg TE/g, respectively. It is noteworthy that the detrimental effect of Alg on the color responsiveness of films containing curcumin has also been observed. This study provides a potential strategy and consideration for the loading of low water-soluble active substances and the preparation of active packaging.
Collapse
Affiliation(s)
- Hanyu Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (H.L.); (N.X.)
| | - Mengzhuo Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (H.L.); (N.X.)
| | - Xinyi Ju
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (H.L.); (N.X.)
| | - Huajiang Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (H.L.); (N.X.)
| | - Ning Xia
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (H.L.); (N.X.)
| | - Jing Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (H.L.); (N.X.)
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (H.L.); (N.X.)
| | - Ahmed M. Rayan
- Agricultural College, Suez Canal University, Ismailia 41522, Egypt;
| |
Collapse
|
9
|
Dong R, Huang Z, Ma W, Yu Q, Xie J, Tian J, Li B, Shan J, Chen Y. Fabrication of nanocomplexes for anthocyanins delivery by ovalbumin and differently dense sulphate half-ester polysaccharides nanocarriers: Enhanced stability, bio-accessibility, and antioxidant properties. Food Chem 2024; 432:137263. [PMID: 37657340 DOI: 10.1016/j.foodchem.2023.137263] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/09/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023]
Abstract
This study aimed to fabricate novel nanocomplexes for delivery of anthocyanins (ACN) utilizing ovalbumin (OVA) and sulphated-polysaccharides with varying linear charge density (κ-,ι-, λ-carrageenan and dextran sulfate: κC < ιC < λC < DS). Influence of OVA-sulphated-polysaccharides on ACN stability, antioxidant capacity, and bioaccessibility was investigated. Fabricated nanoparticlecosmeticsed superior encapsulation efficiency (94.11-96.2%) and loaded capacity (9.05-9.54%) for ACN. OVA-DS displayed the smallest particle size and turbidity, while OVA-κC-ACN exhibited the largest ones. ζ-Potential of nanoparticles raised with increasing ester-sulfate level in sulphated-polysaccharides. FT-IR, Raman and OVA conformational alterations revealed existence of intermolecular-interactions between ACN and OVA-polysaccharides. DSC and TGA showed considerable thermo-stability of self-assembled (ACN-loaded) OVA-polysaccharides. Spheroid-nanoparticles size increased after ACN-loading in SEM and CLSM. Composite nanocomplexes enhanced ACN stability and antioxidant properties under accelerated degradation conditions and simulated digestion, particularly, OVA-DS-ACN and OVA-λC-ACN. We provide a choice for reinforcing stability of hydrophilic nutraceuticals and improving its applications.
Collapse
Affiliation(s)
- Ruihong Dong
- Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Ziyan Huang
- Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Wenjie Ma
- Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Qiang Yu
- Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jianhua Xie
- Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, National R&D Professional Center For Berry Processing, National Engineering and Technology of Research Center For Small Berry, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, National R&D Professional Center For Berry Processing, National Engineering and Technology of Research Center For Small Berry, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Jialuo Shan
- Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Yi Chen
- Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
10
|
Ren J, Wu H, Lu Z, Qin Q, Jiao X, Meng G, Liu W, Li G. pH-driven preparation of pea protein isolate-curcumin nanoparticles effectively enhances antitumor activity. Int J Biol Macromol 2024; 256:128383. [PMID: 38000617 DOI: 10.1016/j.ijbiomac.2023.128383] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/30/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023]
Abstract
Soluble pea protein isolate-curcumin nanoparticles were successfully prepared at a novel pH combination, with encapsulation efficiency and drug loading amount of 95.69 ± 1.63 % and 32.73 ± 0.56 μg/mg, respectively, resulting in >4000-fold increase in the water solubility of curcumin. The encapsulation propensity and interaction mechanism of pea protein isolates with curcumin and colchicine were comparatively evaluated by structural characterization, molecular dynamics simulations and molecular docking. The results showed that the nanoparticles formed by curcumin and colchicine with pea protein isolates were mainly driven by hydrogen bonding and hydrophobic interactions, and the binding process did not alter the secondary structure of pea protein. In contrast, pea protein isolate-curcumin nanoparticles exhibited smaller particle size, lower RMSD value, lower binding Gibbs free energy and greater structural stability. Therefore, pea protein isolate is a suitable encapsulation material for hydrophobic compounds. Furthermore, the pea protein isolate-curcumin nanoparticles showed remarkably enhanced antitumor activity, as evidenced by a significant reduction in IC50, and the anti-tumor mechanism of it involved the ROS-induced mitochondria-mediated caspase cascade apoptosis pathway. These findings provide insights into the development of pea protein-based delivery systems and the possibility of a broader application of curcumin in antitumor activity.
Collapse
Affiliation(s)
- Jie Ren
- Beijing Engineering Research Center of Protein & Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing 100015, China
| | - Hanshuo Wu
- Beijing Engineering Research Center of Protein & Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing 100015, China
| | - Zhihao Lu
- Beijing Engineering Research Center of Protein & Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing 100015, China
| | - Qingyu Qin
- Engineering Laboratory for Agro Biomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Xinru Jiao
- Beijing Engineering Research Center of Protein & Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing 100015, China
| | - Ganlu Meng
- Beijing Engineering Research Center of Protein & Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing 100015, China
| | - Wenying Liu
- Engineering Laboratory for Agro Biomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China.
| | - Guoming Li
- Beijing Engineering Research Center of Protein & Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing 100015, China.
| |
Collapse
|
11
|
Yerramathi BB, Muniraj BA, Kola M, Konidala KK, Arthala PK, Sharma TSK. Alginate biopolymeric structures: Versatile carriers for bioactive compounds in functional foods and nutraceutical formulations: A review. Int J Biol Macromol 2023; 253:127067. [PMID: 37748595 DOI: 10.1016/j.ijbiomac.2023.127067] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
Alginate-based biopolymer products have gained attention for protecting and delivering bioactive components in nutraceuticals and functional foods. These naturally abundant anionic, unbranched, and linear copolymers are also produced commercially by microorganisms. Alone or in combination with other copolymers, they efficiently transport bioactive molecules in food and nutraceutical products. This review aims to provide an in-depth understanding of alginate-based products and structures, emphasizing their role in delivering functional molecules in various formulations and delivery systems. These include edible coatings/films, gels/emulsions, beads/droplets, microspheres/particles, and engineered nanostructures where alginates have been used potentially. By exploring these applications, readers gain insights into the benefits of these products. Because, alginate-based biopolymer products have shown promise in delivering bioactive compounds like vitamin C, vitamin D3, curcumin, β-carotene, resveratrol, folic acid, gliadins, caffeic acid, betanin, limonoids, quercetin, several polyphenols and essential oils, etc., which are chief contributors to treating specific/overall nutritional and chronic metabolic disorders. So, this review summarizes the potential of alginate-based structures/products in various forms for delivering a wide range of functional food ingredients and nutraceutical components that offer promising perspectives for future investigations.
Collapse
Affiliation(s)
- Babu Bhagath Yerramathi
- Food Technology Division, College of Sciences, Sri Venkateswara University, Tirupati 517502, Andhra Pradesh, India
| | - Beulah Annem Muniraj
- Integrated Food Technology, Sri Padmavathi Mahila Visvavidyalayam, Tirupati 517502, Andhra Pradesh, India
| | - Manjula Kola
- Food Technology Division, College of Sciences, Sri Venkateswara University, Tirupati 517502, Andhra Pradesh, India.
| | - Kranthi Kumar Konidala
- Bioinformatics, Department of Zoology, College of Sciences, Sri Venkateswara University, Tirupati 517502, Andhra Pradesh, India
| | - Praveen Kumar Arthala
- Department of Microbiology, Vikrama Simhapuri University, Nellore, Andhra Pradesh, India
| | | |
Collapse
|
12
|
Wang L, Mao J, Zhou Q, Deng Q, Zheng L, Shi J. A curcumin oral delivery system based on sodium caseinate and carboxymethylpachymaran nanocomposites. Int J Biol Macromol 2023; 253:126698. [PMID: 37678690 DOI: 10.1016/j.ijbiomac.2023.126698] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/09/2023]
Abstract
The food industry has paid lots of attentions to curcumin because of its potential bioactive qualities. However, its use is severely constrained by its low bioavailability, stability and water solubility. Herein, we created sodium caseinate and carboxymethylpachymaran (CMP) nanoparticles (SMCNPs) that were loaded with curcumin. The composite nanoparticles were spherical, as characterized by SEM and TEM, the fluorescence spectroscopy, FTIR and XRD research revealed that hydrogen bonding, hydrophobic interaction and electrostatic interaction were the main drivers behind the creation of the nanoparticles. The SMCNPs exhibited lower particle size, greater dispersion and higher encapsulation rate when the mass ratio of sodium caseinate to CMP was 3:5 (particle size of 166.8 nm, PDI of 0.15, and encapsulation efficiency of 88.07 %). The composite nanoparticles had good antioxidant activity, physical stability and sustained release effect on intestinal tract during the in vitro simulation experiments, successfully preventing the early release of curcumin into gastric fluid. Finally, cytotoxicity studies told that the prepared composite nanoparticles have good biocompatibility and can inhibit the growth of tumor cells (HT-29). In conclusion, using CMP and sodium caseinate as carriers in this study may open up a fresh, environmentally friendly, and long-lasting way to construct a bioactive material delivery system.
Collapse
Affiliation(s)
- Lan Wang
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jin Mao
- Key Laboratory of Biology and Genetic Improvement of Oil Crop, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Qi Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crop, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Qianchun Deng
- Key Laboratory of Biology and Genetic Improvement of Oil Crop, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Lei Zheng
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jie Shi
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
13
|
Xin Y, Liu Z, Yang C, Dong C, Chen F, Liu K. Smart antimicrobial system based on enzyme-responsive high methoxyl pectin-whey protein isolate nanocomplex for fresh-cut apple preservation. Int J Biol Macromol 2023; 253:127064. [PMID: 37748593 DOI: 10.1016/j.ijbiomac.2023.127064] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/23/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
The increase in pectin methylesterase (PME) activity on fresh-cut apple surface can smartly trigger the controlled release of bactericidal agents encapsulated within intelligent responsive Pickering emulsions. In this study, we developed a PME-responsive nanocomplex (W-H-II) to stabilize Pickering emulsion containing thyme essential oil (TEO), preserving fresh-cut apples. W-H-II, formed by heat-induced whey protein isolate (WPI) and high methoxyl pectin (HMP) (pH 4.5, 85 °C, 15 min, WPI:HMP ratio 1:2), exhibited good pH stability due to the stabilizing effects of hydrophobic, hydrogen bonding, and electrostatic interactions. The presence of PME triggered the demethylation of HMP within W-H-II, conferring PME response characteristics. Subsequently, a bacteriostasis experiment with pectinase-producing Bacillus subtilis provided evidence of PME-triggered TEO release from W-H-II-stabilized Pickering emulsion. Furthermore, microscopy techniques were employed to verify the demulsification behavior of the emulsion when PME activity ranged from 0.25 to 2.50 U mL-1. Finally, the PME-responsive TEO Pickering emulsion effectively preserved fresh-cut apples. Stored for 6 days at 5 °C and 10 °C, as the PME activity on the apple surface increased, the decay rate of the coated group was 0 %, with a total colony count below 3.0 log CFU g-1. This study introduces a novel intelligent preservation strategy for storing fresh-cut apples.
Collapse
Affiliation(s)
- Ying Xin
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Zhenzhen Liu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Chenhao Yang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Chen Dong
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China.
| | - Fusheng Chen
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China.
| | - Kunlun Liu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China.
| |
Collapse
|
14
|
Jiang M, Gan Y, Li Y, Qi Y, Zhou Z, Fang X, Jiao J, Han X, Gao W, Zhao J. Protein-polysaccharide-based delivery systems for enhancing the bioavailability of curcumin: A review. Int J Biol Macromol 2023; 250:126153. [PMID: 37558039 DOI: 10.1016/j.ijbiomac.2023.126153] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/15/2023] [Accepted: 08/03/2023] [Indexed: 08/11/2023]
Abstract
In recent years, a wide attention has been paid to curcumin in medicine due to its excellent physiological activities, including anti-inflammatory, antioxidant, antibacterial, and nerve damage repair. However, the low solubility, poor stability, and rapid metabolism of curcumin make its bioavailability low, which affects its development and application. As a unique biopolymer structure, protein-polysaccharide (PRO-POL)-based delivery system has the advantages of low toxicity, biocompatibility, biodegradability, and delayed release. Many scholars have investigated PRO-POL -based delivery systems to improve the bioavailability of curcumin. In this paper, we focus on the interactions between different proteins (e.g. casein, whey protein, soybean protein isolate, pea protein, zein, etc.) and polysaccharides (chitosan, sodium alginate, hyaluronic acid, pectin, etc.) and their effects on complexes diameter, surface charge, encapsulation drive, and release characteristics. The mechanism of the PRO-POL-based delivery system to enhance the bioavailability of curcumin is highlighted. In addition, the application of PRO-POL complexes loaded with curcumin is summarized, aiming to provide a reference for the construction and application of PRO-POL delivery systems.
Collapse
Affiliation(s)
- Mengyuan Jiang
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun 130021, China
| | - Yulu Gan
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun 130021, China
| | - Yongli Li
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun 130021, China
| | - Yuanzheng Qi
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun 130021, China
| | - Zhe Zhou
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun 130021, China
| | - Xin Fang
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun 130021, China
| | - Junjie Jiao
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun 130021, China
| | - Xiao Han
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun 130021, China
| | - Weijia Gao
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun 130021, China
| | - Jinghui Zhao
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun 130021, China; Jilin Province Key Laboratory of Tooth Department and Bone Remodeling, Changchun 130021, China.
| |
Collapse
|
15
|
Yang Q, Lyu S, Xu M, Li S, Du Z, Liu X, Shang X, Yu Z, Liu J, Zhang T. Potential Benefits of Egg White Proteins and Their Derived Peptides in the Regulation of the Intestinal Barrier and Gut Microbiota: A Comprehensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13168-13180. [PMID: 37639307 DOI: 10.1021/acs.jafc.3c03230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Impaired intestinal barrier function can impede the digestion and absorption of nutrients and cause a range of metabolic disorders, which are the main causes of intestinal disease. Evidence suggests that proper dietary protein intake can prevent and alleviate intestinal diseases. Egg white protein (EWP) has received considerable attention, because of its high protein digestibility and rich amino acid composition. Furthermore, bioactive peptides may have an increased repair effect due to their high degradation efficiency in the gut. In this study, we aimed to review the effects of EWP and its bioactive peptides on intestinal structural repair. The potential modulation mechanisms by which EWP and their peptides regulate the gut microbiota and intestinal barrier can be summarized as follows: (1) restoring the structure of the intestinal barrier to its intact form, (2) enhancing the intestinal immune system and alleviating the inflammatory response and oxidative damage, and (3) increasing the relative abundance of beneficial bacteria and metabolites. Further in-depth analysis of the coregulation of multiple signaling pathways by EWP is required, and the combined effects of these multiple mechanisms requires further evaluation in experimental models. Human trials can be considered to understand new directions for development.
Collapse
Affiliation(s)
- Qi Yang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, 130062 Changchun, China
- College of Food Science and Engineering, Jilin University, 130062 Changchun, China
| | - Siwen Lyu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, 130062 Changchun, China
- College of Food Science and Engineering, Jilin University, 130062 Changchun, China
| | - Menglei Xu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, 130062 Changchun, China
- College of Food Science and Engineering, Jilin University, 130062 Changchun, China
| | - Shengrao Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, 130062 Changchun, China
- College of Food Science and Engineering, Jilin University, 130062 Changchun, China
| | - Zhiyang Du
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, 130062 Changchun, China
- College of Food Science and Engineering, Jilin University, 130062 Changchun, China
| | - Xuanting Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, 130062 Changchun, China
- College of Food Science and Engineering, Jilin University, 130062 Changchun, China
| | - Xiaomin Shang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, 130062 Changchun, China
- College of Food Science and Engineering, Jilin University, 130062 Changchun, China
| | - Zhipeng Yu
- School of Food Science and Engineering, Hainan University, 570228 Haikou, China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, 130062 Changchun, China
- College of Food Science and Engineering, Jilin University, 130062 Changchun, China
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, 130062 Changchun, China
- College of Food Science and Engineering, Jilin University, 130062 Changchun, China
| |
Collapse
|
16
|
Han M, Liu K, Liu X, Rashid MT, Zhang H, Wang M. Research Progress of Protein-Based Bioactive Substance Nanoparticles. Foods 2023; 12:2999. [PMID: 37627998 PMCID: PMC10453113 DOI: 10.3390/foods12162999] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Bioactive substances exhibit various physiological activities-such as antimicrobial, antioxidant, and anticancer activities-and have great potential for application in food, pharmaceuticals, and nutraceuticals. However, the low solubility, chemical instability, and low bioavailability of bioactive substances limit their application in the food industry. Using nanotechnology to prepare protein nanoparticles to encapsulate and deliver active substances is a promising approach due to the abundance, biocompatibility, and biodegradability of proteins. Common protein-based nanocarriers include nano-emulsions, nano-gels, nanoparticles, and nano complexes. In this review, we give an overview of protein-based nanoparticle fabrication methods, highlighting their pros and cons. Additionally, we discuss the applications and current issues regarding the utilization of protein-based nanoparticles in the food industry. Finally, we provide perspectives on future development directions, with a focus on classifying bioactive substances and their functional properties.
Collapse
Affiliation(s)
- Mengqing Han
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (M.H.); (X.L.); (M.T.R.); (M.W.)
- School of Food and Reserves Storage, Henan University of Technology, Zhengzhou 450001, China
| | - Kunlun Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (M.H.); (X.L.); (M.T.R.); (M.W.)
- School of Food and Reserves Storage, Henan University of Technology, Zhengzhou 450001, China
| | - Xin Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (M.H.); (X.L.); (M.T.R.); (M.W.)
- School of Food and Reserves Storage, Henan University of Technology, Zhengzhou 450001, China
| | - Muhammad Tayyab Rashid
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (M.H.); (X.L.); (M.T.R.); (M.W.)
- School of Food and Reserves Storage, Henan University of Technology, Zhengzhou 450001, China
| | - Huiyan Zhang
- Zhengzhou Ruipu Biological Engineering Co., Ltd., Zhengzhou 450001, China;
| | - Meiyue Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (M.H.); (X.L.); (M.T.R.); (M.W.)
| |
Collapse
|
17
|
Sun S, Zhang X, Li J, Li Y, Zhou C, Xiang S, Tan M. Preparation and evaluation of ovalbumin-fucoidan nanoparticles for nicotinamide mononucleotide encapsulation with enhanced stability and anti-aging activity. Food Chem 2023; 418:135982. [PMID: 36996645 DOI: 10.1016/j.foodchem.2023.135982] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/16/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023]
Abstract
Nicotinamide mononucleotide (NMN) has been recognized as a promising bio-active compound in relieving aging-related mitochondrial dysfunction. Self-assembled nanoparticles were prepared based on interaction between ovalbumin (OVA) and fucoidan to improve the stability and bio-accessibility of NMN. The OVA-fucoidan nanoparticles (OFNPs) displayed outstanding thermal stability and entrapment ability of NMN. The reactive oxygen species (ROS) analysis and senescence-associated β-galactosidase (SA-β-gal) staining characterization indicated that NMN encapsulated by OFNPs could effectively alleviate the cellular senescence of d-galactose-induced senescent cells. In vivo Caenorhabitis elegans experiment demonstrated that NMN-loaded OFNPs caused less accumulation of lipofuscin and protected NMN from thermal damage. Compared with free NMN, the NMN-loaded OFNPs prolonged lifespan from 28 to 31 days, increased 26% reproductive ability, and improved 12% body length of Caenorhabitis elegans. The results indicated that the use of nanocarriers could be a good strategy to improve anti-oxidative stress and anti-aging ability of NMN.
Collapse
Affiliation(s)
- Shan Sun
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Gangjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Xuedi Zhang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Gangjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Jiaxuan Li
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Gangjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Yu Li
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Gangjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Chengfu Zhou
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Gangjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Siyuan Xiang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Gangjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Gangjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| |
Collapse
|
18
|
Bi D, Li M, Yao L, Zhu N, Fang W, Guo W, Wu Y, Xu H, Hu Z, Xu X. Enhancement of the chemical stability of nanoemulsions loaded with curcumin by unsaturated mannuronate oligosaccharide. Food Chem 2023; 414:135670. [PMID: 36827777 DOI: 10.1016/j.foodchem.2023.135670] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/18/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
Unsaturated mannuronate oligosaccharide (MOS) is an acidic oligosaccharide prepared from alginate-derived polymannuronate by enzymatic depolymerization, followed by double bond formation between C-4 and C-5 at the nonreducing end. In this study, MOS was used as a stabilizer to fabricate O/W nanoemulsions loaded with curcumin (MOS-CUR) for the first time. The results revealed that the MOS-CUR showed small droplet sizes and narrow size distributions and was slightly more stable than normal oil-in-water (O/W) curcumin nanoemulsions (water-CUR). Additionally, MOS can improve the superoxide anion scavenging ability and iron ion reducing ability of the curcumin nanoemulsion system. Although the digestion behaviour of MOS-CUR and water-CUR was similar, the bioavailability of curcumin in MOS-CUR was significantly higher than that in water-CUR. All these results indicated that MOS could be used as a stabilizer for preparing nanoemulsions to easily encapsulate labile nutrients and to enhance the bioavailability and antioxidant capacity of these nutrients.
Collapse
Affiliation(s)
- Decheng Bi
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Meiting Li
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China; Quality and Standards Academy, Shenzhen Technology University, Shenzhen 518118, PR China
| | - Lijun Yao
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Nanting Zhu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Weishan Fang
- Department of Experimental Teaching Center, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518060, PR China
| | - Wushuang Guo
- Department of Stomatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, PR China; Institute of Stomatological Research, Shenzhen University, Shenzhen, Guangdong 518055, PR China
| | - Yan Wu
- Instrumental Analysis Center, Shenzhen University, Shenzhen 518060, PR China
| | - Hong Xu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Xu Xu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
19
|
Li S, Murakami D, Nagatoishi S, Liu Y, Tsumoto K, Katayama Y, Mori T. One-pot preparation of mannan-coated antigen nanoparticles using human serum albumin as a matrix for tolerance induction. J Colloid Interface Sci 2023; 649:955-965. [PMID: 37392685 DOI: 10.1016/j.jcis.2023.06.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/10/2023] [Accepted: 06/25/2023] [Indexed: 07/03/2023]
Abstract
Nanoparticles (NPs) for allergen immunotherapy have garnered attention for their high efficiency and safety compared with naked antigen proteins. In this work, we present mannan-coated protein NPs, incorporating antigen proteins for antigen-specific tolerance induction. The heat-induced formation of protein NPs is a one-pot preparation method and can be applied to various proteins. Here, the NPs were formed spontaneously via heat denaturation of three component proteins: an antigen protein, human serum albumin (HSA) as a matrix protein, and mannoprotein (MAN) as a targeting ligand for dendritic cells (DCs). HSA is non-immunogenic, therefore suitable as a matrix protein, while MAN coats the surface of the NP. We applied this method to various antigen proteins and found that the self-disperse after heat denaturation was a requirement for incorporation into the NPs. We also established that the NPs could target DCs, and the incorporation of rapamycin into the NPs enhanced the induction of a tolerogenic phenotype of DC. The MAN coating provided steric hindrance and heat denaturation destroyed recognition structures, successfully preventing anti-antigen antibody binding, indicating the NPs may avoid anaphylaxis induction. The MAN-coated NPs proposed here, prepared by a simple method, have the potential for effective and safe allergies treatment for various antigens.
Collapse
Affiliation(s)
- Shunyi Li
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Daisuke Murakami
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, 812-8582 Fukuoka, Japan
| | - Satoru Nagatoishi
- The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yiwei Liu
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Kouhei Tsumoto
- The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yoshiki Katayama
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 819-0395, Japan; Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Fukuoka 819-0395, Japan; Center for Future Chemistry, Kyushu University, 819-0395, Japan; International Research Center for Molecular Systems, Kyushu University, Fukuoka 819-0395, Japan; Centre for Advanced Medicine Innovation, Kyushu University, Fukuoka 812-8582, Japan; Department of Biomedical Engineering, Chung Yuan Christian University, Chung Li, 32023, Taiwan, ROC.
| | - Takeshi Mori
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 819-0395, Japan; Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Fukuoka 819-0395, Japan; Center for Future Chemistry, Kyushu University, 819-0395, Japan.
| |
Collapse
|
20
|
Zhang B, Wang Y, Lu R. Pickering emulsion stabilized by casein-caffeic acid covalent nanoparticles to enhance the bioavailability of curcumin in vitro and in vivo. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3579-3591. [PMID: 36637046 DOI: 10.1002/jsfa.12447] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/01/2022] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND In recent years, the design of food-grade Pickering emulsion delivery systems has become an effective strategy for improving the low bioavailability of bioactive substances. Protein-based Pickering emulsions have received extensive attention because of a high biocompatibility and loading capacity. The bioavailability of active substances is mainly evaluated by simulating in vitro gastrointestinal digestion. As a model organism for antioxidation and anti-aging, Caenorhabditis elegans can provide additional biological information for the in vivo utilization of active substances. RESULTS After the introduction of caffeic acid, the average particle size and Zeta potential of the casein-caffeic acid covalent complex nanoparticles (CCP) were 171.11 nm and - 37.73 mV, respectively. The three-phase contact angle was also increased to 89.8°. By using CCP to stabilize Pickering emulsion (CCE), the retention quantity of the embedded curcumin increased by 2.19-fold after 28 days. In the simulated gastric digestion, curcumin degradation in CCE was reduced by 61.84%, released slowly in the intestinal environment, and the final bioaccessibility was increased by 1.90-fold. In C. elegans, CCE significantly reduced ROS accumulation, increased SOD activity by 2.01-fold and CAT activity by 2.30-fold, decreased MDA content by 36.76%, prolonging the lifespan of nematodes by 13.33% under H2 O2 stimulation and improving bioavailability in vivo. CONCLUSION The results indictae that CCP-stabilized Pickering emulsion can efficiently implement the physiological activities of bioactive compounds in vitro digestion and C. elegans, and thus it can be regarded as a reliable delivery system for food and medicine. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bingyan Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yunping Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Rongrong Lu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
21
|
Li X, Xu T, Wu C, Fan G, Li T, Wang Y, Zhou D. Fabrication and characterization of self-assembled whey protein isolate/short linear glucan core-shell nanoparticles for sustained release of curcumin. Food Chem 2023; 407:135124. [PMID: 36473353 DOI: 10.1016/j.foodchem.2022.135124] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/05/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
The aim of this research was to prepare a bistratal nanocomplex with a high loading capacity (LC) and harsh environment stability for controlled release of curcumin (Cur) in gastrointestinal conditions. Whey protein isolate (WPI)/short linear glucan (SLG) core-shell nanoparticles were fabricated by self-assembly for the delivery of Cur. The results showed that Cur@WPI@SLG nanoparticles had a relatively high LC (12.89 %) and small particle size (89.4 nm). The nanocomplex remained relatively stable in extreme pH conditions (2-4 and 8-10), high temperatures (60-70 °C), and ionic strength (<400 mM). Core-shell nanostructures facilitated the sustained release of Cur in simulated gastrointestinal conditions. In addition, the nanocomplex had little cytotoxicity at high concentrations, yet significantly enhanced the DPPH scavenging activity and reducing power of Cur. This delivery system will significantly improve the sustained release effect of Cur and broaden the application of hydrophobic nutrients in foods.
Collapse
Affiliation(s)
- Xiaojing Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Ting Xu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Caie Wu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Gongjian Fan
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Tingting Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yaosong Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Dandan Zhou
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| |
Collapse
|
22
|
Duan W, Chen L, Liu F, Li X, Wu Y, Cheng L, Liu J, Ai C, Huang Q, Zhou Y. The properties and formation mechanism of ovalbumin-fucoidan complex. Int J Biol Macromol 2023; 241:124644. [PMID: 37121411 DOI: 10.1016/j.ijbiomac.2023.124644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/02/2023]
Abstract
The polymeric materials formed by proteins and polysaccharides through molecular interactions have attracted public attention. In this study, a novel binary complex consisting of ovalbumin (OVA) and fucoidan (FUC) was obtained by electrostatic self-assembly. The self-assembly properties and the formation mechanism of the OVA-FUC binary complex were investigated by changing the charging degree and density of complex through altering pH value and polysaccharides proportion. Structural changes during the OVA-FUC electrostatic self-assembly process were investigated by a phase diagram, ζ-potential, and particle size. The optimal conditions for preparing soluble OVA-FUC binary complex were determined by the protein retention rate and insoluble solids content. Results showed that the soluble OVA-FUC binary complex could be obtained at the pH of 3.5 to 5, and the insoluble OVA-FUC binary complex was generated at the pH of 2.5 to 3.5. The OVA-FUC binary complex (19 ± 0.29 mN/m) possessed a medium ability to reduce interfacial tension of the water-oil interface compared with OVA (15 ± 1.13 mN/m) and FUC (24 ± 0.3 mN/m), indicating that OVA-FUC binary complex has good amphiphilicity and can be applied as a potential pH-controlled emulsifier in function food systems for delivering bioactive substances.
Collapse
Affiliation(s)
- Wenshan Duan
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, the Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang 550025, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lei Chen
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China.
| | - Fei Liu
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, the Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Xiefei Li
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, the Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Yongyan Wu
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, the Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang 550025, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lujie Cheng
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, the Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang 550025, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Junmei Liu
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, the Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang 550025, China; Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Chao Ai
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China.
| | - Qun Huang
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, the Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang 550025, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| | - Yan Zhou
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, the Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang 550025, China.
| |
Collapse
|
23
|
Li D, Cao G, Yao X, Yang Y, Yang D, Liu N, Yuan Y, Nishinari K, Yang X. Tartary buckwheat-derived exosome-like nanovesicles against starch digestion and their interaction mechanism. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
24
|
Chen Q, Dong L, Li Y, Liu Y, Xia Q, Sang S, Wu Z, Xiao J, Liu L, Liu L. Research advance of non-thermal processing technologies on ovalbumin properties: The gelation, foaming, emulsification, allergenicity, immunoregulation and its delivery system application. Crit Rev Food Sci Nutr 2023; 64:7045-7066. [PMID: 36803106 DOI: 10.1080/10408398.2023.2179969] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Ovalbumin (OVA) is the most abundant protein in egg white, with excellent functional properties (e.g., gelling, foaming, emulsifying properties). Nevertheless, OVA has strong allergenicity, which is usually mediated by specific IgE thus results in gut microbiota dysbiosis and causes atopic dermatitis, asthma, and other inflammation actions. Processing technologies and the interactions with other active ingredients can influence the functional properties and allergic epitopes of OVA. This review focuses on the non-thermal processing technologies effects on the functional properties and allergenicity of OVA. Moreover, the research advance about immunomodulatory mechanisms of OVA-mediated food allergy and the role of gut microbiota in OVA allergy was summarized. Finally, the interactions between OVA and active ingredients (such as polyphenols and polysaccharides) and OVA-based delivery systems construction are summarized. Compared with traditional thermal processing technologies, novel non-thermal processing techniques have less damage to OVA nutritional value, which also improve OVA properties. OVA can interact with various active ingredients by covalent and non-covalent interactions during processing, which can alter the structure or allergic epitopes to affect OVA/active components properties. The interactions can promote OVA-based delivery systems construction, such as emulsions, hydrogels, microencapsulation, nanoparticles to encapsulate bioactive components and monitor freshness for improving foods quality and safety.
Collapse
Affiliation(s)
- Qin Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Lezhen Dong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Ying Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Yahui Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Qiang Xia
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Shangyuan Sang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Zufang Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Jianbo Xiao
- Department Analytic & Food Chemistry, Faculty of Science, University of Vigo, Vigo, Spain
| | - Lingyi Liu
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| |
Collapse
|
25
|
Li X, An S, Wang C, Jiang Q, Gao D, Wang L. Protein-polysaccharides based nanoparticles for loading with Malus baccata polyphenols and their digestibility in vitro. Int J Biol Macromol 2023; 228:783-793. [PMID: 36581037 DOI: 10.1016/j.ijbiomac.2022.12.236] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 12/09/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
The poor solubility, instability and low absorption rate obstruct the bioavailability of polyphenols isolated from Malus baccata (MBP) during gastrointestinal digestion. In order to solve the limitable problems, the food-grade nanoparticles were fabricated by mucin (MC) and Hohenbuehelia serotina polysaccharides (HSP) for delivery of MBP (MBP-NPs). The physicochemical properties and morphology of MBP-NPs prepared by different condition were respectively characterized. During gastrointestinal digestion in vitro, the release characteristic and variation in phenolic composition of MBP-NPs were evaluated. The results showed that MBP-NPs formed by hydrogen bonding and hydrophobic interaction possessed the regularly spherical shapes and smooth surfaces and semi-crystalline properties. Moreover, MBP-NPs presented the excellent physicochemical stability. During simulated gastrointestinal digestion in vitro, MBP-NPs exhibited the sustained release characteristics of phenolic compounds, which were confirmed by SDS-PAGE measurement. Compared with that of unencapsulated MBP, the significant variation was occurred in the phenolic composition of MBP-NPs, indicating that MBP-NPs could prevent the degradation and transformation of phenolic compounds. This study provides a novel strategy to improve the bioavailability of polyphenols.
Collapse
Affiliation(s)
- Xiaoyu Li
- Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China; State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, PR China
| | - Siying An
- Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Cheng Wang
- Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Qianyu Jiang
- Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Dawei Gao
- Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Lu Wang
- Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China.
| |
Collapse
|
26
|
Development and characterization of high internal phase pickering emulsions stabilized by heat-induced electrostatic complexes particles: Growth nucleation mechanism and interface architecture. Food Chem 2023; 402:134512. [DOI: 10.1016/j.foodchem.2022.134512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/15/2022] [Accepted: 10/02/2022] [Indexed: 12/31/2022]
|
27
|
Lei F, Li P, Chen T, Wang Q, Wang C, Liu Y, Deng Y, Zhang Z, Xu M, Tian J, Ren W, Li C. Recent advances in curcumin-loaded biomimetic nanomedicines for targeted therapies. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
28
|
Liu Z, Wu Y, Zhang L, Tong S, Jin J, Gong X, Zhong J. rocF affects the production of tetramethylpyrazine in fermented soybeans with Bacillus subtilis BJ3-2. BMC Biotechnol 2022; 22:18. [PMID: 35787694 PMCID: PMC9254598 DOI: 10.1186/s12896-022-00748-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tetramethylpyrazine (TTMP) is a flavoring additive that significantly contributes to the formation of flavor compounds in soybean-based fermented foods. Over recent years, the application of TTMP in the food industry and medicine has been widely investigated. In addition, several methods for the industrial-scale production of TTMP, including chemical and biological synthesis, have been proposed. However, there have been few reports on the synthesis of TTMP through amino acid metabolic flux. In this study, we investigated genetic alterations of arginine metabolic flux in solid-state fermentation (SSF) of soybeans with Bacillus subtilis (B.subtilis) BJ3-2 to enhance the TTMP yield. RESULTS SSF of soybeans with BJ3-2 exhibited a strong Chi-flavour (a special flavour of ammonia-containing smelly distinct from natto) at 37 °C and a prominent soy sauce-like aroma at 45 °C. Transcriptome sequencing and RT-qPCR verification showed that the rocF gene was highly expressed at 45 °C but not at 37 °C. Moreover, the fermented soybeans with BJ3-2ΔrocF (a rocF knockout strain in B. subtilis BJ3-2 were obtained by homologous recombination) at 45 °C for 72 h displayed a lighter color and a slightly decreased pH, while exhibiting a higher arginine content (increased by 14%) than that of BJ3-2. However, the ammonia content of fermented soybeans with BJ3-2ΔrocF was 43% lower than that of BJ3-2. Inversely, the NH4+ content in fermented soybeans with BJ3-2ΔrocF was increased by 28% (0.410 mg/kg). Notably, the TTMP content in fermented soybeans with BJ3-2ΔrocF and BJ3-2ΔrocF + Arg (treated with 0.05% arginine) were significantly increased by 8.6% (0.4617 mg/g) and 18.58% (0.504 mg/g) respectively than that of the BJ3-2. CONCLUSION The present study provides valuable information for understanding the underlying mechanism during the TTMP formation process through arginine metabolic flux.
Collapse
Affiliation(s)
- Zhenli Liu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-Bioengineeringering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Yongjun Wu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-Bioengineeringering, Guizhou University, Guiyang, 550025, Guizhou, China.
| | - Lincheng Zhang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-Bioengineeringering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Shuoqiu Tong
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-Bioengineeringering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Jing Jin
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-Bioengineeringering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Xian Gong
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-Bioengineeringering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Jie Zhong
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-Bioengineeringering, Guizhou University, Guiyang, 550025, Guizhou, China
| |
Collapse
|
29
|
Tao X, Shi H, Cao A, Cai L. Understanding of physicochemical properties and antioxidant activity of ovalbumin-sodium alginate composite nanoparticle-encapsulated kaempferol/tannin acid. RSC Adv 2022; 12:18115-18126. [PMID: 35874031 PMCID: PMC9245490 DOI: 10.1039/d2ra02708a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/09/2022] [Indexed: 11/21/2022] Open
Abstract
In this research, ovalbumin (OVA) and sodium alginate (SA) were used as the materials to prepare an OVA–SA composite carrier, which protected and encapsulated the hydrophobic kaempferol (KAE) and the hydrophilic tannic acid (TA) (OVA–SA, OVA–TA–SA, OVA–KAE–SA, and OVA–TA–KAE–SA). Results showed that the observation of small diffraction peaks in carriers proved the successful encapsulation of KAE/TA. The protein conformation of the composite nanoparticles changed. OVA–TA–SA composite nanoparticles had the highest α-helix content and the fewest random coils, so the protein structure of it had the strongest stability. OVA–TA–KAE–SA composite nanoparticles had the strongest system stability and thermal stability, which might be due to the synergistic effect of the two polyphenols, suggesting the encapsulation of KAE/TA increased the system stability and the thermal stability of OVA–SA composite nanoparticles. Additionally, the composite nanoparticles were endowed with antioxidant ability and antibacterial ability (against Staphylococcus aureus and Escherichia coli) in the order OVA–TA–SA > OVA–TA–KAE–SA > OVA–KAE–SA based on the difference in antibacterial diameter (D, mm) and square (S, mm2), indicating that polyphenols enhanced the antibacterial and antioxidant ability of OVA–SA composite nanoparticles, and the enhancement effect of TA was stronger than that of KAE. These results provide a theoretical basis for the application of OVA–SA composite nanoparticles in the delivery of bioactive compounds. Ovalbumin (OVA) and sodium alginate (SA) were used as materials to prepare an OVA–SA composite carrier, which encapsulated the hydrophobic kaempferol (KAE) and the hydrophilic tannic acid (TA) (OVA–SA, OVA–TA–SA, OVA–KAE–SA, and OVA–TA–KAE–SA).![]()
Collapse
Affiliation(s)
- Xiaoya Tao
- Ningbo Research Institute, College of Biosystems Engineering and Food Science, Zhejiang University Ningbo 315100 China +86 571 88982726 +86 571 88982726.,Institute for Innovative Development of Food Industry, Institute for Advanced Study, Shenzhen University Shenzhen 518060 China
| | - Hang Shi
- College of Food Science and Engineering, Bohai University Jinzhou 121013 China
| | - Ailing Cao
- Hangzhou Customs District Hangzhou 310007 China
| | - Luyun Cai
- Ningbo Research Institute, College of Biosystems Engineering and Food Science, Zhejiang University Ningbo 315100 China +86 571 88982726 +86 571 88982726
| |
Collapse
|
30
|
Li C, Liu D, Huang M, Huang W, Li Y, Feng J. Interfacial engineering strategy to improve the stabilizing effect of curcumin-loaded nanostructured lipid carriers. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107552] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
31
|
Yu N, Shao S, Huan W, Ye Q, Nie X, Lu Y, Meng X. Preparation of novel self-assembled albumin nanoparticles from Camellia seed cake waste for lutein delivery. Food Chem 2022; 389:133032. [PMID: 35490515 DOI: 10.1016/j.foodchem.2022.133032] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/19/2022] [Accepted: 04/19/2022] [Indexed: 01/22/2023]
Abstract
The potential utilization value of Camellia seed cake was explored by extracting albumin (CSCA) to develop nanoparticles for lutein delivery. First, thermal property and amphiphilicity of CSCA were evaluated to guide nanoparticle preparation. Next, CSCA nanoparticles modified with chitosan (CS) were prepared through a thermally induced self-assembly method derived by electrostatic attraction and hydrophobic interaction. The optimized nanoparticles were prepared from CSCA:CS at a mass ratio of 2:1 with pH of 4.5, and an incubation temperature and time of 80 ℃ and 10 min, respectively. The nanoparticles had the highest effective loading capacity for lutein at 5.89 ± 0.78%, and the corresponding encapsulation efficiency was 43.82 ± 5.69%. The storage stability of lutein was improved by nanoparticle loading, and the bioaccessibility of lutein in simulated intestinal digestion increased from 26.8 ± 4.4% to 57.3 ± 9.6% after encapsulation into nanoparticles. These findings may facilitate the development of new and sustainable proteins from plant waste for delivery system applications.
Collapse
Affiliation(s)
- Ningxiang Yu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Shengxin Shao
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Weiwei Huan
- College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou 311300, Zhejiang, China
| | - Qin Ye
- Institute of Food Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310014, Zhejiang, China
| | - Xiaohua Nie
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Yuanchao Lu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Xianghe Meng
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| |
Collapse
|
32
|
Development of composite nanoparticles from gum Arabic and carboxymethylcellulose-modified Stauntonia brachyanthera seed albumin for lutein delivery. Food Chem 2022; 372:131269. [PMID: 34655829 DOI: 10.1016/j.foodchem.2021.131269] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/16/2021] [Accepted: 09/28/2021] [Indexed: 11/21/2022]
Abstract
Lutein is a carotenoid with several beneficial functions, but its poor water solubility, chemical instability, and low bioavailability limits its application. To overcome these shortcomings, self-assembly composite nanoparticles from Stauntonia brachyanthera seed albumin (SBSA), gum Arabic (GA), and carboxymethylcellulose (CMC) were developed for lutein encapsulation. Firstly, SBSA was extracted from seeds and its physicochemical properties were evaluated. Followingly, the nanoparticles were prepared with SBSA through a heat induced self-assembly method which were modified by GA and CMC. The nanoparticles exhibited good storage, pH, and salt stability. Hydrogen bonds, hydrophobic interactions, and electrostatic interactions were proved to derive the formation of nanoparticles. The maximum effective loading capacity (LC) of the lutein in nanoparticles was 0.92 ± 0.01% with an encapsulation efficiency (EE) at 83.95 ± 0.98%. Heat stability and storage stability of lutein were significantly enhanced after encapsulation into nanoparticles. In addition, the bioaccessibility of lutein increased from 17.50 ± 2.60% to 46.80 ± 4.70% after encapsulation into nanoparticles.
Collapse
|
33
|
Zhao W, Su L, Yu Z, Li J. Improved stability and controlled release of lycopene via self-assembled nanomicelles encapsulation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Li Y, Liang W, Huang M, Huang W, Feng J. Green preparation of holocellulose nanocrystals from burdock and their inhibitory effects against α-amylase and α-glucosidase. Food Funct 2022; 13:170-185. [PMID: 34874372 DOI: 10.1039/d1fo02012a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this work, holocellulose nanocrystals (hCNCs) were isolated from burdock insoluble dietary fiber (IDF) by enzymatic hydrolysis and ultrasonic treatment and their inhibitory effects against α-amylase and α-glucosidase were investigated. The hydrodynamic diameter of hCNCs decreased from about 600 to 200 nm with increasing sonication time, accompanied by an improvement in cellulose and glucose contents. Steady-state fluorescence studies suggested that static complexes were formed between hCNCs and α-amylase or α-glucosidase via a spontaneous and endothermic approach, which was driven by both hydrophobic interactions and hydrogen bonding. The median inhibitory concentration (IC50) values of hCNCs against the tested enzymes were positively correlated with their size, and non-competitive and mixed types of inhibition were detected using the Lineweaver-Burk plots. During the simulated digestion, the inclusion of burdock hCNCs obviously retarded the starch hydrolysis in both dose- and size-dependent manners, suggesting their potential in blocking the postprandial serum glucose upsurge.
Collapse
Affiliation(s)
- Ying Li
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China.
| | - Wei Liang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.,Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China.
| | - Meigui Huang
- Department of food science and engineering, College of light industry and food engineering, Nanjing forestry university, 159 Longpan Road, Nanjing 210037, China
| | - Wuyang Huang
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China.
| | - Jin Feng
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China.
| |
Collapse
|
35
|
Wan M, Huang Z, Yang X, Chen Q, Chen L, Liang S, Zeng Q, Zhang R, Dong L, Su D. Fabrication and interaction mechanism of ovalbumin‐based nanocarriers for metallic ion encapsulation. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15367] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mengxi Wan
- School of Chemistry and Chemical Engineering Guangzhou University Guangzhou Guangdong 510006 China
| | - Zhenzhen Huang
- School of Chemistry and Chemical Engineering Guangzhou University Guangzhou Guangdong 510006 China
| | - Xinxi Yang
- School of Chemistry and Chemical Engineering Guangzhou University Guangzhou Guangdong 510006 China
| | - Qiqi Chen
- School of Chemistry and Chemical Engineering Guangzhou University Guangzhou Guangdong 510006 China
| | - Leqi Chen
- School of Chemistry and Chemical Engineering Guangzhou University Guangzhou Guangdong 510006 China
| | - Siyue Liang
- School of Chemistry and Chemical Engineering Guangzhou University Guangzhou Guangdong 510006 China
| | - Qingzhu Zeng
- School of Chemistry and Chemical Engineering Guangzhou University Guangzhou Guangdong 510006 China
| | - Ruifen Zhang
- Sericultural & Agri‐Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing Guangzhou Guangdong 510006 China
| | - Lihong Dong
- Sericultural & Agri‐Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing Guangzhou Guangdong 510006 China
| | - Dongxiao Su
- School of Chemistry and Chemical Engineering Guangzhou University Guangzhou Guangdong 510006 China
| |
Collapse
|
36
|
Li T, Zhang X, Wang H, Li J, Wang H, Zhang X. Development, Physical-Chemical Characterization, and Molecular Docking Simulations of Ursolic Acid-Sodium Alginate Complexes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14311-14319. [PMID: 34797663 DOI: 10.1021/acs.jafc.1c02787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The aim of this study was to fabricate ursolic acid (UA)-sodium alginate (SA) complexes to improve the dissolution rate and antioxidant abilities. The antioxidant activity was evaluated by the DPPH (1,1-diphenyl-2-trinitrophenylhydrazine) assay and the pyrogallol auto-oxidation method. For the optimal composition ratio of UA:SA (1:5, w/w), the cumulative release of UA was about 101.22 ± 1.50% for 180 min. Powder X-ray diffractometry (PXRD), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM) analyses confirmed that the crystallinity of UA was significantly reduced by forming complexes with SA. By Fourier transform infrared spectroscopy (FTIR) and molecular docking simulations, it was observed that the hydroxyl group in UA formed hydrogen bonding with the carbonyl group in SA. The DPPH scavenger activities of the complexes were also increased compared with free UA. The results indicated that SA could serve as a promising carrier for lipophilic functional food ingredients due to improved solubility and antioxidant activity.
Collapse
Affiliation(s)
- Ting Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Xindi Zhang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Hongyue Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Jinghan Li
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota-Twin Cities, 308 SE Harvard St, Minneapolis, 55455 Minnesota, United States
| | - Hanxun Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Xiangrong Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
- School of Functional Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| |
Collapse
|
37
|
Yuan D, Zhou F, Shen P, Zhang Y, Lin L, Zhao M. Self-assembled soy protein nanoparticles by partial enzymatic hydrolysis for pH-Driven Encapsulation and Delivery of Hydrophobic Cargo Curcumin. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106759] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
38
|
|
39
|
Zhang X, Zeng Q, Liu Y, Cai Z. Enhancing the resistance of anthocyanins to environmental stress by constructing ovalbumin-propylene glycol alginate nanocarriers with novel configurations. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106668] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
40
|
Whey protein isolate-dextran conjugates: Decisive role of glycation time dependent conjugation degree in size control and stability improvement of colloidal nanoparticles. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111766] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
41
|
Shanshan W, Meigui H, Chunyang L, Zhi C, Li C, Wuyang H, Ying L, Jin F. Fabrication of ovalbumin-burdock polysaccharide complexes as interfacial stabilizers for nanostructured lipid carriers: Effects of high-intensity ultrasound treatment. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106407] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
42
|
Gao J, Liu C, Shi J, Ni F, Shen Q, Xie H, Wang K, Lei Q, Fang W, Ren G. The regulation of sodium alginate on the stability of ovalbumin-pectin complexes for VD3 encapsulation and in vitro simulated gastrointestinal digestion study. Food Res Int 2021; 140:110011. [DOI: 10.1016/j.foodres.2020.110011] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/11/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023]
|
43
|
Luo L, Wu Y, Liu C, Zou Y, Huang L, Liang Y, Ren J, Liu Y, Lin Q. Elaboration and characterization of curcumin-loaded soy soluble polysaccharide (SSPS)-based nanocarriers mediated by antimicrobial peptide nisin. Food Chem 2021; 336:127669. [PMID: 32758804 DOI: 10.1016/j.foodchem.2020.127669] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 07/16/2020] [Accepted: 07/23/2020] [Indexed: 12/18/2022]
Abstract
Curcumin was recently attracted great interest owing to its multiple bioactivities; however, the use of curcumin was hindered by its poor solubility and stability. In this study, curcumin-nisin-soy soluble polysaccharide nanoparticles (Cur-Nisin-SSPS-NPs, size = 118.76 nm) have been successfully elaborated to improve the application of curcumin. The formation of Cur-Nisin-SSPS-NPs was mediated by amphiphilic and positively charged nisin: SSPS encapsulated nisin, which was mainly driven by electrostatic attraction. And nisin-SSPS complex encapsulated curcumin mainly through hydrophobic interactions between nisin and curcumin. The encapsulation efficiency of curcumin (91.66%) in this novel nanocarriers was significantly higher than that in nanoparticles prepared by a single SSPS (31.82%) or nisin (41.69%), most likely because more hydrophobic regions of nisin were exposed after interacting with SSPS through electrostatic interaction. Consequently, this facile and green nanocarriers improved the solubility/dispersibility and stability of curcumin and nisin, as well as endowed SSPS-based nanoparticles with antioxidant and antimicrobial activities.
Collapse
Affiliation(s)
- Lijuan Luo
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Ying Wu
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Chun Liu
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Yuan Zou
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing 100048, China; College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Liang Huang
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Ying Liang
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jiali Ren
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yingli Liu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Qinlu Lin
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| |
Collapse
|
44
|
Yu N, Jiang C, Ning F, Hu Z, Shao S, Zou X, Meng X, Xiong H. Protein isolate from Stauntonia brachyanthera seed: Chemical characterization, functional properties, and emulsifying performance after heat treatment. Food Chem 2020; 345:128542. [PMID: 33321349 DOI: 10.1016/j.foodchem.2020.128542] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/18/2020] [Accepted: 10/30/2020] [Indexed: 01/17/2023]
Abstract
The seed of Stauntonia brachyanthera is usually regarded as waste after fructus processing. Here, the potential utilization value of the protein isolate (SSPI) from seeds was evaluated by investigating its physicochemical and functional properties. SSPI was a complex protein containing 7 distinct subunits that had high contents of most essential amino acids. The maximum foaming capacity of SSPI was 406.7 ± 41% at pH 9.0, and the water holding/oil adsorption capacities were 4.66 g/g and 9.06 g/g, respectively. SSPI aggregates with a particle size of 154.1 ± 5.2 nm was prepared after heat treatment, which was performed as a Pickering-like stabilizer for the structuring of water-in-oil-in-water emulsions. The outer droplet size of emulsions decreased as the aggregate concentration increased. Emulsion gels could be observed with the increasing aggregate concentration and oil fraction. Further study found that the stabilities of inner water-in-oil droplets and creaming were progressively increased by increasing the aggregate concentration during storage.
Collapse
Affiliation(s)
- Ningxiang Yu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China; State Key Laboratory of Food Science and Technology, Nanchang University, No.235 Nanjing East Road, Nanchang 330047, China
| | - Chengjia Jiang
- State Key Laboratory of Food Science and Technology, Nanchang University, No.235 Nanjing East Road, Nanchang 330047, China
| | - Fangjian Ning
- State Key Laboratory of Food Science and Technology, Nanchang University, No.235 Nanjing East Road, Nanchang 330047, China; Human Aging Research Institute, School of Life Sciences, Nanchang University, No. 999 Xuefu Road, Nanchang 330031, China
| | - Zhenying Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, No.235 Nanjing East Road, Nanchang 330047, China; Human Aging Research Institute, School of Life Sciences, Nanchang University, No. 999 Xuefu Road, Nanchang 330031, China
| | - Shengxin Shao
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Xianguo Zou
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China; State Key Laboratory of Food Science and Technology, Nanchang University, No.235 Nanjing East Road, Nanchang 330047, China
| | - Xianghe Meng
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Hua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, No.235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
45
|
Zou W, Mourad FK, Zhang X, Ahn DU, Cai Z, Jin Y. Phase separation behavior and characterization of ovalbumin and propylene glycol alginate complex coacervates. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105978] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Xiang C, Gao J, Ye H, Ren G, Ma X, Xie H, Fang S, Lei Q, Fang W. Development of ovalbumin-pectin nanocomplexes for vitamin D3 encapsulation: Enhanced storage stability and sustained release in simulated gastrointestinal digestion. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105926] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
47
|
Liu Q, Cui H, Muhoza B, Duhoranimana E, Xia S, Hayat K, Hussain S, Tahir MU, Zhang X. Fabrication of low environment-sensitive nanoparticles for cinnamaldehyde encapsulation by heat-induced gelation method. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105789] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
48
|
Feng X, Zhang X, Li S, Zheng Y, Shi X, Li F, Guo S, Yang J. Preparation of aminated fish scale collagen and oxidized sodium alginate hybrid hydrogel for enhanced full-thickness wound healing. Int J Biol Macromol 2020; 164:626-637. [PMID: 32668308 DOI: 10.1016/j.ijbiomac.2020.07.058] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/23/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022]
Abstract
Acute full-thickness wounds require a more extended healing period, thus increasing the risk of infection. Severe infection frequently resulted in wound ulceration, necrosis, and even life-threatening complications. Here, a hybrid hydrogel comprising aminated collagen (AC), oxidized sodium alginate (OSA), and antimicrobial peptides (polymyxin B sulfate and bacitracin) was developed to enhance full-thickness wound healing. The AC with low immunogenicity and high biocompatibility was made from marine fish scales, which are eco-friendly, low-cost, and sustainable. The cross-linked hydrogel was formed by a Schiff base reaction without any catalysts and additional procedures. As expected, the presented hybrid hydrogel can effectively against E. coli and S. aureus, as well as promote cell growth and angiogenesis in vitro. In addition, the hydrogel can promote full-thickness wound healing in a rat model through accelerating reepithelialization, collagen deposition, and angiogenesis. Our work demonstrated that the hybrid hydrogel has promising applications in the field of wound healing, which would prompt the utilization of marine fish resources during food processing.
Collapse
Affiliation(s)
- Xiaolian Feng
- College of Chemistry, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Xiaofang Zhang
- College of Chemistry, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Shiqi Li
- College of Chemistry, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Yunquan Zheng
- College of Chemistry, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China.
| | - Xianai Shi
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Feng Li
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Shaobin Guo
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Jianmin Yang
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China.
| |
Collapse
|
49
|
Feng J, Huang M, Chai Z, Li C, Huang W, Cui L, Li Y. The influence of oil composition on the transformation, bioaccessibility, and intestinal absorption of curcumin in nanostructured lipid carriers. Food Funct 2020; 11:5223-5239. [PMID: 32458895 DOI: 10.1039/d0fo00473a] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, the influences of liquid medium-chain triglyceride (MCT) and solid glyceryl tristearate (GTS) contents in the lipid matrix of nanostructured lipid carriers (NLCs) on their delivering capacities with respect to curcumin (Cur) were investigated by using a simulated gastrointestinal tract and Caco-2 monolayer models. The transformation of the encapsulated Cur decreased on increasing the MCT content in the lipid matrix of NLCs because it facilitated their lipolysis and promoted the exposure of Cur to a harsher exterior environment. Cur bioaccessibility was positively correlated with the level of micellized stearic acid resulting from GTS hydrolysis, which might be attributed to the fact that it could afford large hydrophobic domains to accommodate Cur. This value initially increased with an increase in the MCT content, reaching a maximum at 20% (w/w) and decreasing thereafter. The intestinal absorption of micellar Cur ranged from 26.06% to 38.76%, and a majority of the transported molecules were its reductive and conjugative metabolites. Overall, NLC containing 20% MCT in the lipid matrix afforded the highest Cur bioavailability, followed by that containing 10, 0, 40, 60, and 100% MCT. This work provides useful insights into the rational design of NLCs to optimize the bioavailability of the loaded agent.
Collapse
Affiliation(s)
- Jin Feng
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Meigui Huang
- Department of food science and engineering, College of light industry and food engineering, Nanjing forestry university, 159 Longpan Road, Nanjing 210037, China
| | - Zhi Chai
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Chunyang Li
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Wuyang Huang
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Li Cui
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Ying Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China. and Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| |
Collapse
|
50
|
Li X, Chen Y, Mao Y, Dai P, Sun X, Zhang X, Cheng H, Wang Y, Banda I, Wu G, Ma J, Huang S, Forouzanfar T. Curcumin Protects Osteoblasts From Oxidative Stress-Induced Dysfunction via GSK3β-Nrf2 Signaling Pathway. Front Bioeng Biotechnol 2020; 8:625. [PMID: 32612986 PMCID: PMC7308455 DOI: 10.3389/fbioe.2020.00625] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 05/21/2020] [Indexed: 12/14/2022] Open
Abstract
Osteoblasts dysfunction, induced by oxidative stress (OS), is one of major pathological mechanisms for osteoporosis. Curcumin (Cur), a bioactive antioxidant compound, isolated from Curcumin longa L, was regarded as a strong reactive oxygen species (ROS) scavenger. However, it remains unveiled whether Cur can prevent osteoblasts from OS-induced dysfunction. To approach this question, we adopted a well-established OS model to investigate the preventive effect of Cur on osteoblasts dysfunction by measuring intracellular ROS production, cell viability, apoptosis rate and osteoblastogenesis markers. We showed that the pretreatment of Cur could significantly antagonize OS so as to suppress endogenous ROS production, maintain osteoblasts viability and promote osteoblastogenesis. Inhibiting Glycogen synthase kinase (GSK3β) and activating nuclear factor erythroid 2 related factor 2 (Nrf2) could significantly antagonize the destructive effects of OS, which indicated the critical role of GSK3β-Nrf2 signaling. Furthermore, Cur also abolished the suppressive effects of OS on GSK3β-Nrf2 signaling pathway. Our findings demonstrated that Cur could protect osteoblasts against OS-induced dysfunction via GSK3β-Nrf2 signaling and provide a promising way for osteoporosis treatment.
Collapse
Affiliation(s)
- Xumin Li
- Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China.,Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam, MOVE Research Institute, University of Amsterdam and Vrije University Amsterdam, Amsterdam, Netherlands.,Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China.,Department of Oral and Maxillofacial Surgary/Pathology, Amsterdam UMC and Academic Centre for Dentistry Amsterdam, Amsterdam Movement Science, Vrije Universitetit Amsterdam, Amsterdam, Netherlands
| | - Yang Chen
- Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China.,Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yixin Mao
- Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China.,Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China.,Laboratory for Myology, Amsterdam Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Panpan Dai
- Department of Stomatology, Taizhou Hospital, Wenzhou Medical University, Linhai, China
| | - Xiaoyu Sun
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam, MOVE Research Institute, University of Amsterdam and Vrije University Amsterdam, Amsterdam, Netherlands.,Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China.,Department of Periodontology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Xiaorong Zhang
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China.,Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Haoran Cheng
- Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China.,Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yingting Wang
- Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China.,Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Isaac Banda
- Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China.,Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Gang Wu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam, MOVE Research Institute, University of Amsterdam and Vrije University Amsterdam, Amsterdam, Netherlands
| | - Jianfeng Ma
- Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China.,Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Shengbin Huang
- Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China.,Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam, MOVE Research Institute, University of Amsterdam and Vrije University Amsterdam, Amsterdam, Netherlands.,Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Tim Forouzanfar
- Department of Oral and Maxillofacial Surgary/Pathology, Amsterdam UMC and Academic Centre for Dentistry Amsterdam, Amsterdam Movement Science, Vrije Universitetit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|